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Abstract
Glitch tokens in Large Language Models001
(LLMs) are rare yet critical anomalies that can002
trigger unpredictable and erroneous model be-003
haviors, undermining reliability and safety. Ex-004
isting detection methods predominantly rely on005
predefined embedding or activation patterns,006
limiting their generalizability across diverse007
architectures and potentially missing novel008
glitch manifestations. We propose Glitch-009
Miner, a gradient-based discrete optimization010
framework that identifies glitch tokens by max-011
imizing prediction entropy to capture uncer-012
tainty, guided by a local search strategy for013
efficient token space exploration. Extensive014
evaluations on ten diverse LLM architectures015
demonstrate that GlitchMiner significantly out-016
performs state-of-the-art baselines in detection017
accuracy and efficiency. Our approach ad-018
vances robust, architecture-agnostic glitch to-019
ken detection, enhancing the security and trust-020
worthiness of LLM-based applications in criti-021
cal domains.022

1 Introduction023

Large Language Models (LLMs) have catalyzed024

breakthroughs across numerous domains, includ-025

ing code generation (Jiang et al., 2024; Chen et al.,026

2021; Nijkamp et al., 2022), healthcare (Goel et al.,027

2023; Wang et al., 2023), and education (Wang028

et al., 2024; Jury et al., 2024). Despite their suc-029

cess, a subtle yet critical vulnerability threatens030

their reliability: glitch tokens. Glitch tokens are031

anomalous token inputs that can induce erratic or032

nonsensical outputs, repetitive errors, or even by-033

pass content filters, posing significant risks in sensi-034

tive applications (Geiping et al., 2024; LessWrong035

Community, 2023).036

Prior work on glitch token detection (LessWrong037

Community, 2023; Li et al., 2024) often rely on038

heuristic analysis of token embeddings or cluster-039

ing patterns. While effective in some settings, these040

pattern-based methods often struggle to generalize041

across the growing diversity of LLM architectures 042

and may fail to detect newly emerging glitch tokens 043

that deviate from known characteristics. This limi- 044

tation calls for a more adaptive and behavior-driven 045

detection methodology. 046

In this paper, we introduce GlitchMiner, a novel 047

framework that directly leverages prediction be- 048

havior to identify glitch tokens through gradient- 049

guided discrete optimization. Our key insight is to 050

use entropy—a principled measure of prediction 051

uncertainty—as the primary optimization objective. 052

By maximizing entropy, GlitchMiner systemati- 053

cally uncovers tokens that destabilize model confi- 054

dence without relying on fixed heuristics. 055

To address the challenge of discrete token search 056

in a large vocabulary, we propose a local search 057

strategy guided by first-order Taylor approxima- 058

tions of entropy changes in the embedding space. 059

This approach improves optimization precision and 060

reduces computational overhead, enabling efficient 061

exploration. 062

Our contributions are summarized as follows: 063

• Entropy-based detection paradigm: Intro- 064

ducing entropy maximization as a robust and 065

model-agnostic criterion for identifying glitch 066

tokens. 067

• Gradient-guided local search: Combining 068

gradient information with a localized search in 069

embedding space to effectively and efficiently 070

explore candidate tokens. 071

• Cross-architecture adaptability: Demon- 072

strating consistent performance gains across 073

ten LLMs from various families, including 074

Llama, Qwen, Gemma, Phi, and Mistral mod- 075

els. 076

Evaluations on ten diverse LLM architectures 077

demonstrate that GlitchMiner significantly outper- 078

forms state-of-the-art baselines in detecting glitch 079
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tokens within fixed query budgets. Our approach080

enhances cross-architecture robustness and detec-081

tion efficiency, advancing the security and reliabil-082

ity of LLM deployment in critical applications.083

The remainder of this paper is organized as fol-084

lows: Section 2 reviews related work on glitch to-085

ken detection and gradient-based discrete optimiza-086

tion. Section 3 details the GlitchMiner methodol-087

ogy. Section 4 presents experimental evaluations088

and ablation studies. We conclude in Section 5089

with discussions and future directions.090

2 Background and Related Work091

2.1 What is a Glitch Token?092

Glitch tokens, a concept that gained attention fol-093

lowing the discovery of the "SolidGoldMagikarp"094

phenomenon by Rumbelow et al. (LessWrong095

Community, 2023), are anomalous tokens in LLMs096

that can trigger unexpected and often erroneous097

behaviors when processed by the model. These098

tokens typically result from irregularities in the099

training process, such as underrepresentation in100

the training data or inconsistencies in tokenization101

(Land and Bartolo, 2024; Geiping et al., 2024).102

Glitch tokens have been found to exhibit several103

key characteristics:104

• They often have abnormal embedding pat-105

terns, such as unusually small ℓ2 norms or106

atypical positions in the embedding space107

(Land and Bartolo, 2024; LessWrong Com-108

munity, 2023).109

• When input to an LLM, they can cause the110

model to produce repetitive, nonsensical, or111

completely unrelated outputs (LessWrong112

Community, 2023; Li et al., 2024).113

• They may lead to significant deviations in the114

model’s internal activations compared to nor-115

mal tokens (Zhang et al., 2024).116

• Glitch tokens can sometimes bypass content117

filters or trigger unexpected model behaviors,118

potentially compromising the safety and relia-119

bility of LLMs (Geiping et al., 2024).120

The study of glitch tokens is crucial for under-121

standing and mitigating potential vulnerabilities in122

LLMs, as these tokens can potentially be exploited123

for adversarial attacks or lead to unintended model124

behaviors in critical applications (Geiping et al.,125

2024).126

2.2 Glitch Token Detection 127

The detection of glitch tokens in LLMs has become 128

an increasingly important area of research, given 129

their potential to disrupt model performance and 130

reliability. The fundamental approach to identify- 131

ing these anomalous tokens often relies on repeti- 132

tion tasks, a method popularized by the SolidGold- 133

Magikarp study (LessWrong Community, 2023). 134

In these tasks, the model is prompted to repeat a 135

given token, with the assumption that normal to- 136

kens should be easily reproducible, while glitch 137

tokens often lead to failures in this simple task. 138

Building upon this basic principle, researchers 139

have developed several sophisticated methods to 140

detect glitch tokens more efficiently and accurately: 141

Magikarp (LessWrong Community, 2023) pi- 142

oneered a fast and lightweight approach by ana- 143

lyzing token embeddings. It identifies potentially 144

problematic tokens by examining characteristic pat- 145

terns in the embedding space, such as unusual ℓ2 146

norms. These candidate tokens are then verified 147

using repetition tasks, allowing for quick detection 148

through direct queries to the model. 149

GlitchHunter (Li et al., 2024) introduced a 150

clustering-based method. This approach is founded 151

on the observation that glitch tokens often clus- 152

ter together in the embedding space. GlitchHunter 153

constructs a Token Embedding Graph (TEG) to rep- 154

resent token relationships and applies the Leiden 155

algorithm (Traag et al., 2019) to identify poten- 156

tial glitch clusters. These clusters are then refined 157

through iterative hypothesis testing to improve de- 158

tection accuracy. 159

GlitchProber (Zhang et al., 2024) takes a differ- 160

ent approach by analyzing the internal activations 161

within transformer layers, such as attention heads 162

and hidden states. It reduces the dimensionality of 163

these activations using PCA (Hotelling, 1933) and 164

applies SVM classifiers (Cortes, 1995) to identify 165

glitch tokens. Additionally, it integrates mitigation 166

mechanisms by modifying neuron activations to 167

minimize the impact of glitch tokens during infer- 168

ence. 169

While these methods have significantly ad- 170

vanced our ability to detect glitch tokens, they 171

are inherently limited by their reliance on pattern- 172

based heuristics. Magikarp and GlitchHunter focus 173

on specific embedding patterns or clustering be- 174

haviors, while GlitchProber examines predefined 175

patterns in activation spaces. This dependence on 176

pattern-based approaches can constrain their adapt- 177
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ability across diverse LLM architectures and poten-178

tially overlook novel forms of glitch tokens.179

Our proposed method, GlitchMiner, aims to180

address these limitations by employing gradient-181

based discrete optimization to directly analyze an182

LLM’s prediction behavior, potentially offering a183

more flexible and comprehensive approach to glitch184

token detection.185

2.3 Gradient-based Discrete Optimization186

Gradient-based discrete optimization methods187

(Ebrahimi et al., 2017; Shin et al., 2020; Zou et al.,188

2023; Wen et al., 2024) leverage gradient informa-189

tion to predict how individual tokens impact the190

loss function. These approaches typically treat the191

one-hot encoding of tokens or token embeddings as192

continuous vectors to compute gradients, guiding193

token replacements for optimization.194

HotFlip (Ebrahimi et al., 2017) uses the one-195

hot encoding of tokens to compute gradients and196

selects the token with the largest negative gradient197

to replace the current token, aiming to minimize198

the loss. However, it only evaluates one candidate199

token per iteration, which can lead to suboptimal200

predictions and reduced accuracy.201

AutoPrompt (Shin et al., 2020) improves upon202

HotFlip by evaluating multiple candidate tokens in203

each iteration. Instead of relying on gradients from204

one-hot encodings, it utilizes token embedding gra-205

dients for loss estimation, enhancing prediction ac-206

curacy by considering a broader range of potential207

token replacements.208

GCG (Zou et al., 2023) extends HotFlip by in-209

corporating multi-candidate token selection, sim-210

ilar to AutoPrompt, but it still uses the one-hot211

encoding of tokens to compute gradients for loss212

estimation. Notably, GCG has been applied to au-213

tomated jailbreaks (Shen et al., 2023) in LLMs,214

efficiently searching for adversarial suffixes.215

AutoPrompt and GCG both rely on large batch216

sampling to mitigate inaccuracies in gradient pre-217

diction. We identified that these inaccuracies arise218

from the inaccuracy of Taylor expansions when219

input tokens are distant from the original points.220

This overlooks a fundamental condition of Taylor221

approximation: its accuracy is highest for points222

close to the reference point.223

Building on these works, we introduce a local224

search strategy in our approach. This improve-225

ment enables us to achieve high precision in gra-226

dient estimation without relying on large batch227

sampling, by focusing on a smaller, localized to-228

ken space. By addressing the core issue of Taylor 229

approximation accuracy, our method allows for 230

more efficient and accurate exploration of the to- 231

ken space, which is particularly valuable for glitch 232

token detection. 233

3 Method 234

Algorithm 1 GlitchMiner Pipeline

1: Input: Token set T , Iteration number I , Batch
size B

2: Output: Glitch token set G
3: # Stage 1: Initialization
4: T ∗ ← Filter(T ) # Filter out the unnecessary

token set T ∗

5: G ← ∅
6: # Stage 2: Mining
7: for i ∈ I do
8: Select a batch of tokens B from T \ (T ∗ ∪
G), where |B| = B

9: for each token t ∈ B do
10: if Verify(t) then
11: Add t to G
12: else
13: Add t to T ∗

14: end if
15: end for
16: end for

GlitchMiner Pipeline. As illustrated in Algo- 235

rithm 1, GlitchMiner consists of two main stages: 236

initialization and mining. 237

During initialization, tokens that are unlikely to 238

be glitch tokens are filtered out to reduce the search 239

space and enhance computational efficiency. In the 240

subsequent mining stage, batches of unverified to- 241

kens are iteratively selected for verification. Each 242

token is evaluated: if identified as a glitch token, 243

it is added to the discovered set; otherwise, it is 244

excluded from further consideration. This iterative 245

process continues until a predefined stopping cri- 246

terion is met, such as reaching a target number of 247

iterations or detecting a sufficient number of glitch 248

tokens. 249

The key components of the GlitchMiner pipeline 250

are detailed as follows: 251

1. Token Filter: Efficiently excluding tokens 252

that do not require detection. 253

2. Glitch Token Verification: Procedures to 254

confirm whether a token is a glitch token. 255
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3. Token Selection Strategy: Approaches for256

selecting the most promising glitch token can-257

didates at each iteration.258

Through these components, GlitchMiner effec-259

tively implements the glitch token mining process,260

balancing thoroughness and efficiency in practice.261

3.1 Token Filter262

In the initialization stage of GlitchMiner, we first263

filter all tokens to remove those that do not need to264

be detected. Similar to (Land and Bartolo, 2024),265

we designed a token filter module that classifies266

tokens based on their characteristics and filters out267

those that are unnecessary for detection.268

The core idea of the token filter module is to clas-269

sify each token by decoding and then re-encoding270

it, ensuring it meets specific classification criteria.271

Specifically, we prepend a special prefix "«" to each272

token to maintain consistency during the encoding273

and decoding process. Then, we filter out tokens274

that fall into the following categories:275

• SPECIAL: Special tokens, such as [BOS],276

</s>, etc., which are enclosed in brackets or277

angle brackets and contain alphabetic charac-278

ters.279

• UNDECODEABLE: Tokens that cannot be280

decoded, usually containing illegal characters.281

• UNREACHABLE: Tokens that cannot be re-282

stored to their original token ID through the283

decoding and re-encoding process.284

During the classification process, we first decode285

each token ID to obtain its corresponding string rep-286

resentation. If decoding fails, the token is classified287

as UNDECODEABLE. Next, we encode the de-288

coded string and check if it can be restored to the289

original token ID. If it cannot, the token is classified290

as UNREACHABLE. If it meets the characteristics291

of a special token, it is classified as SPECIAL.292

By filtering out these unnecessary tokens, we293

retain only the essential ones for subsequent min-294

ing, which improves the algorithm’s efficiency and295

ensures the accuracy of the detection results.296

3.2 Glitch Token Verification297

Our glitch token verification process consists of298

two stages: optimization-driven detection and299

cross-verification.300

Template for Optimization. For our primary301

detection and optimization process, we designed302

the following task template:303

User: Please repeat the string: "«{to- 304

ken}»" 305

Assistant: Sure, the string is: "«{token} 306

In this template, the blue text represents the 307

prompt, the green text {token} is the input token 308

being tested, and the red text {token} represents 309

the model’s predicted output. If the predicted to- 310

ken does not match the input token, it is initially 311

classified as a potential glitch token. 312

This template is specifically designed to sup- 313

port our gradient-based optimization process. Its 314

simplicity allows for clear gradient computations, 315

while the prefilled assistant response ensures a 316

uniform starting point for each token evalua- 317

tion. Wrapping the token in "«" and "»" symbols 318

minimizes interference from surrounding context. 319

These features enable precise entropy calculations 320

and gradient estimations, which are crucial for our 321

entropy-guided search strategy described in the to- 322

ken selection section. 323

Cross-Verification. While our primary template 324

is optimized for the search process, relying solely 325

on one template may lead to false positives. To 326

enhance the robustness of our detection, we im- 327

plement a cross-verification step using two addi- 328

tional templates derived from GlitchHunter and 329

Magikarp. Each potential glitch token identified by 330

our primary template undergoes verification with 331

these additional templates. A token is confirmed 332

as a glitch token only if it fails the repetition task 333

across all templates. 334

This two-stage approach combines the efficiency 335

of our optimization-driven search with the relia- 336

bility of multi-template verification, significantly 337

reducing false positives while maintaining the ef- 338

fectiveness of our gradient-based detection method. 339

3.3 Token Selection 340

Motivation. Previous methods for glitch token 341

detection often rely on manually observed embed- 342

ding patterns. However, these approaches can be 343

limited in their ability to adapt to diverse LLM ar- 344

chitectures and may overlook novel forms of glitch 345

tokens. To address these limitations, we propose 346

an entropy-based approach. Entropy, as a measure 347

of uncertainty in probability distributions, offers a 348

model-agnostic way to identify tokens that cause 349

unexpected behavior in LLMs. By focusing on to- 350

kens that maximize entropy, we can detect glitch 351

tokens that deviate significantly from normal token 352

behavior, regardless of their specific characteristics 353
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or the underlying model architecture.354

Entropy-Guided Exploration. We define the355

entropy H(t) for a token t as:356

H(t) = −
∑
v∈V

P (v | h(t)) logP (v | h(t))357

where h(t) is the context embedding for token t,358

and P (v | h(t)) is the model’s predicted probabil-359

ity distribution over the vocabulary V . By maximiz-360

ing entropy, we aim to find tokens that cause high361

uncertainty in the model’s predictions, potentially362

indicating glitch behavior.363

Optimization Objective. Our goal is to find a364

batch of tokens B that maximizes the total entropy:365

B = arg max
B⊂Tc,|B|=B

∑
t∈B

H(t)366

Here, Tc represents the current candidate set,367

defined as Tc = T \ (T ∗ ∪ G), where:368

• T is the initial set of all tokens in the model’s369

vocabulary.370

• T ∗ is the set of tokens that have been filtered371

out or verified as non-glitch tokens. This in-372

cludes special tokens, undecoded tokens, and373

tokens that have been checked and confirmed374

as normal.375

• G is the set of identified glitch tokens discov-376

ered so far in the process.377

By excluding T ∗ and G from T , we ensure that378

our search focuses only on the remaining unveri-379

fied tokens, improving efficiency and preventing380

redundant checks.381

Local Search Strategy. To address the limi-382

tations of global Taylor approximations and im-383

prove optimization efficiency, we propose a local384

search strategy. Starting from an initial token t0, we385

compute its entropy H(t0) and gradient∇eH(t0),386

then define a local neighborhood NK(t0) com-387

prising the K nearest neighbors in the embedding388

space. Restricting the search to this neighborhood389

enhances approximation accuracy and enables fo-390

cused exploration of promising glitch token candi-391

dates (see Figure 1).392

For each candidate token t ∈ NK(t0), the en-393

tropy is estimated via first-order Taylor expansion:394

Ĥ(t) ≈ H(t0) +∇eH(t0)
⊤(et − et0),395

待 完 成 工 作
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Figure 1: Visualization of GlitchMiner’s local search
process. The current token (black) serves as the ref-
erence point. Its neighbor tokens (orange and red)
represent the K = 4 closest tokens in embedding space.
Among these, the candidate batch tokens (red) are
the top B = 2 tokens with the highest approximate
entropy values, estimated via first-order Taylor approx-
imation. Tokens outside the neighborhood (gray) are
excluded to maintain approximation accuracy and com-
putational efficiency.

where et, et0 are the embeddings of tokens t and t0, 396

respectively. This approximation allows efficient 397

prediction of entropy changes without expensive 398

exact evaluations. 399

From the neighborhood, a batch B of B tokens 400

with the highest estimated entropy is selected. Ac- 401

tual entropy values are then computed for this batch, 402

and the token with the maximum entropy becomes 403

the new reference point for the next iteration. This 404

iterative refinement ensures search progression to- 405

ward tokens inducing higher model uncertainty. 406

By focusing on a localized region guided by en- 407

tropy gradients, our approach mitigates the approx- 408

imation errors inherent in global methods, balanc- 409

ing exploration and exploitation effectively. Con- 410

sequently, it enables efficient and accurate iden- 411

tification of glitch tokens across diverse LLM ar- 412

chitectures without relying on architecture-specific 413

assumptions, enhancing robustness and generality. 414

4 Experiments 415

4.1 Experimental Setup 416

Evaluated LLMs. We used a diverse set of LLMs 417

from five different model families to evaluate the 418

performance of our glitch token detection approach. 419

The selected models include Meta’s Llama se- 420

ries (Touvron et al., 2023; AI, 2024a), Alibaba’s 421

Qwen models (Yang et al., 2024; Alibaba, 2024), 422

Google’s Gemma models (Team et al., 2024), Mi- 423

crosoft’s Phi-3 models (Abdin et al., 2024), and 424

Mistral models (Jiang et al., 2023; AI, 2024b). The 425

details are presented in Table 1. 426
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Model Family Model Names

Llama Models Llama-3.1-8B-Instruct , Llama-2-7B-chat-hf
Qwen Models Qwen2.5-7B-Instruct , Qwen2-7B-Instruct
Gemma Models Gemma-2-2b-it, Gemma-2-9b-it
Phi-3 Models Phi-3-mini-128k-instruct, Phi-3.5-mini-instruct
Mistral Models Mistral-7B-Instruct-v0.3, Mistral-Nemo-Instruct-2407

Table 1: Test LLMs used in the experiments.

Evaluation Metrics. We evaluate our glitch to-427

ken detection method using the Detected@N met-428

ric, which counts the number of true glitch tokens429

identified within the top N predictions. For in-430

stance, Detected@1000 measures how many glitch431

tokens are found among the top 1000 candidates.432

This metric balances detection accuracy and query433

efficiency, reflecting a method’s practical effective-434

ness under fixed query budgets. Comparing De-435

tected@N values thus provides a direct measure of436

each method’s ability to maximize glitch token dis-437

covery while minimizing computational resources,438

making it well-suited for real-world applications.439

Baselines. We compare our proposed glitch440

token detection method with two state-of-the-art441

approaches: GlitchHunter (Li et al., 2024) and442

Magikarp (Land and Bartolo, 2024). These meth-443

ods serve as the primary benchmarks for evaluating444

our approach.445

Although GlitchProber (Zhang et al., 2024) is446

another relevant method, it follows a fundamen-447

tally different approach by pre-collecting a subset448

of glitch tokens to train a classifier, introducing a449

supervised learning component. In contrast, Glitch-450

Miner, along with GlitchHunter and Magikarp,451

uses heuristic-based methods to detect glitch to-452

kens without relying on labeled data or additional453

classifier training. This methodological difference454

makes a direct comparison less meaningful, so we455

focus our evaluation on methods that align more456

closely with our unsupervised approach.457

Parameter Settings. In our implementation of458

GlitchMiner, we use K=32 and B=8 as the default459

parameters. These values were chosen based on em-460

pirical testing to balance computational efficiency461

and detection effectiveness. Specifically, K=32 de-462

fines the size of the local neighborhood considered463

in each iteration, while B=8 determines the batch464

size for entropy computation. These settings have465

shown to provide a good trade-off between explo-466

ration of the token space and exploitation of local467

information across various model architectures. 468

Initialization Strategy in Experiments. To en- 469

sure stable and consistent comparisons across runs, 470

we initialize the search with the token exhibiting 471

the smallest ℓ2 norm in the embedding space, based 472

on prior observations that such tokens often exhibit 473

glitch-like behaviors. However, as shown in Fig- 474

ure 5, we found that GlitchMiner remains robust 475

to different initialization choices, achieving similar 476

performance even with random starting points. 477

4.2 Main Results 478

Table 2 displays the performance comparison 479

of GlitchMiner with the state-of-the-art methods 480

GlitchHunter and Magikarp across different LLM 481

architectures using the Detected@N metric. The 482

results highlight GlitchMiner’s strong and versatile 483

detection capabilities. 484

In the majority of cases, GlitchMiner achieved 485

the highest Detected@2000 score, consistently out- 486

performing both baselines in terms of identified 487

glitch tokens within the top 2000 predictions. This 488

is particularly evident in models such as Llama- 489

2-7B-chat-hf, where GlitchMiner achieved a De- 490

tected@2000 of 532, surpassing Magikarp by a 491

notable margin. For the Qwen and other mod- 492

els, GlitchMiner maintained robust performance, 493

demonstrating adaptability across different LLM 494

architectures. 495

These experimental findings underscore Glitch- 496

Miner’s ability not only to accurately detect glitch 497

tokens but also to generalize across a diverse set 498

of model architectures. This adaptability and pre- 499

cision position GlitchMiner as a powerful tool for 500

enhancing the robustness and security of LLMs. 501

4.3 Ablation Study 502

To evaluate the contributions of key components in 503

GlitchMiner, we conducted ablation studies focus- 504

ing on the local search strategy, neighborhood size 505

K, batch size B, and initialization token. 506
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Model Metric GlitchHunter Magikarp GlitchMiner (ours)

Llama-3.1-8B-Instruct Detected@1000 25 664 568
Detected@2000 56 935 1164

Llama-2-7B-chat-hf Detected@1000 61 100 319
Detected@2000 126 186 532

Qwen2.5-7B-Instruct Detected@1000 75 1000 1000
Detected@2000 180 1893 1839

Qwen2-7B-Instruct Detected@1000 96 999 1000
Detected@2000 191 1842 1847

Gemma-2-2b-it Detected@1000 23 678 744
Detected@2000 35 984 1019

Gemma-2-9b-it Detected@1000 29 623 775
Detected@2000 45 983 1089

Phi-3.5-mini-instruct Detected@1000 20 393 396
Detected@2000 44 496 516

Phi-3-mini-128k-instruct Detected@1000 26 398 404
Detected@2000 55 489 517

Mistral-7B-Instruct-v0.3 Detected@1000 6 110 219
Detected@2000 19 130 302

Mistral-Nemo-Instruct-2407 Detected@1000 48 574 695
Detected@2000 79 918 976

Average Detected@1000 40.9 553.9 612.0
Detected@2000 93.0 885.6 980.1

Table 2: Detected@1000 and Detected@2000 comparison of methods across different models.

Figure 2: Comparison of GlitchMiner performance with
and without local search strategy

Effect of Local Search. The local search strat-507

egy plays a crucial role in enhancing GlitchMiner’s508

ability to detect glitch tokens by improving the pre-509

cision of the Taylor approximation. Without local510

search, detection accuracy drops significantly (Fig-511

ure 2), as global search lacks the necessary gran-512

ularity to maintain precise approximations within513

the token space.514

Effect of Neighborhood Size. We analyzed515

the impact of neighborhood size K on detection516

performance. As shown in Figure 3, increasing517

K generally leads to a decline in Detected@1000518

values across models. This trend indicates that as519

K grows, the Taylor approximation becomes less520

effective, resulting in reduced prediction accuracy.521

Effect of Batch Size. As shown in Figure 4,522

the performance of GlitchMiner remains relatively523

stable as batch size B increases. Notably, even524

with B = 1, GlitchMiner achieves effective detec-525

tion results, indicating that it can make accurate526

predictions without relying on a large batch size. 527

Effect of Initialization Token. As shown in 528

Figure 5, GlitchMiner’s performance remains sta- 529

ble across different initialization tokens. The red 530

dots represent the minimum ℓ2 norm initialization, 531

while the orange dots show three random trials. For 532

most models, random initialization results are close 533

to the minimum ℓ2 norm, indicating that Glitch- 534

Miner achieves consistent detection accuracy re- 535

gardless of the initialization approach. 536

4.4 Token Entropy Analysis 537

To further validate the effectiveness of our entropy- 538

based approach in detecting glitch tokens, we con- 539

ducted an entropy analysis comparing glitch tokens 540

and normal tokens across different models. For 541

each model, we computed the average entropy of 542

glitch tokens (EGlitch) and normal tokens (ENormal). 543

Figure 6 presents the comparison of average en- 544

tropy values between glitch tokens and normal to- 545

kens for each evaluated model. As shown in the 546

figure, glitch tokens consistently exhibit signifi- 547

cantly higher entropy than normal tokens across all 548

models. 549

This pronounced difference in entropy values 550

indicates that models are more uncertain when pre- 551

dicting glitch tokens compared to normal tokens. 552

The higher entropy of glitch tokens validates our hy- 553

pothesis that maximizing entropy effectively guides 554

the search towards tokens that are challenging for 555

the model to predict. 556

Moreover, the consistent pattern of higher en- 557

tropy for glitch tokens across diverse model fami- 558

7



Figure 3: Impact of different Neighborhood Size K on GlitchMiner’s performance

Figure 4: Impact of different Batch Size B on GlitchMiner’s performance

Figure 5: Effect of Initialization Method on Glitch-
Miner’s Detected@1000 score.

lies—including Llama, Qwen, Gemma, Phi-3, and559

Mistral—demonstrates the generality and robust-560

ness of our entropy-based approach. This suggests561

that our method can be effectively applied to a wide562

range of LLMs with different architectures and to-563

kenization strategies.564

These findings reinforce the effectiveness of565

GlitchMiner’s entropy-based optimization in effi-566

ciently detecting glitch tokens by focusing on areas567

of high prediction uncertainty within the model.568

5 Conclusion569

In this paper, we introduced GlitchMiner, a novel570

framework for detecting glitch tokens in LLMs571

through gradient-based discrete optimization. Our572

method effectively combines entropy-based loss573

functions, which quantify the model’s predictive574

uncertainty often associated with glitchy behav-575

ior, with a local search strategy that efficiently576
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Figure 6: Average entropy comparison between glitch
tokens and normal tokens across different models.
Glitch tokens have higher entropy, indicating greater
uncertainty in the model’s predictions for these tokens.

navigates the vast discrete token space. This syn- 577

ergy demonstrably improves both detection accu- 578

racy and computational efficiency. Experimen- 579

tal results across a diverse set of LLMs highlight 580

GlitchMiner’s robustness and versatility, consis- 581

tently achieving superior glitch token detection 582

rates under fixed query budgets compared to exist- 583

ing methods. Our findings confirm GlitchMiner’s 584

effectiveness in identifying glitch tokens across 585

various architectures, underscoring its significant 586

potential for enhancing the security and reliability 587

of LLM-based applications, particularly in critical 588

domains where such anomalies can pose substantial 589

risks. 590
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Limitations591

GlitchMiner’s core limitation is its reliance on gra-592

dient information, restricting its direct use to white-593

box models. Consequently, it is not directly ap-594

plicable for end-users interacting with black-box595

APIs. However, this method is highly valuable for596

LLM developers and providers. With their intrin-597

sic white-box access, they can effectively deploy598

GlitchMiner internally to proactively identify and599

understand glitch tokens, thereby enhancing model600

robustness and safety prior to public release. Fu-601

ture work might explore adapting its principles to602

gradient-scarce or black-box environments.603
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