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Abstract

Glitch tokens in Large Language Models
(LLMs) are rare yet critical anomalies that can
trigger unpredictable and erroneous model be-
haviors, undermining reliability and safety. Ex-
isting detection methods predominantly rely on
predefined embedding or activation patterns,
limiting their generalizability across diverse
architectures and potentially missing novel
glitch manifestations. We propose Glitch-
Miner, a gradient-based discrete optimization
framework that identifies glitch tokens by max-
imizing prediction entropy to capture uncer-
tainty, guided by a local search strategy for
efficient token space exploration. Extensive
evaluations on ten diverse LLM architectures
demonstrate that GlitchMiner significantly out-
performs state-of-the-art baselines in detection
accuracy and efficiency. Our approach ad-
vances robust, architecture-agnostic glitch to-
ken detection, enhancing the security and trust-
worthiness of LLM-based applications in criti-
cal domains.

1 Introduction

Large Language Models (LLMs) have catalyzed
breakthroughs across numerous domains, includ-
ing code generation (Jiang et al., 2024; Chen et al.,
2021; Nijkamp et al., 2022), healthcare (Goel et al.,
2023; Wang et al., 2023), and education (Wang
et al., 2024; Jury et al., 2024). Despite their suc-
cess, a subtle yet critical vulnerability threatens
their reliability: glitch tokens. Glitch tokens are
anomalous token inputs that can induce erratic or
nonsensical outputs, repetitive errors, or even by-
pass content filters, posing significant risks in sensi-
tive applications (Geiping et al., 2024; LessWrong
Community, 2023).

Prior work on glitch token detection (LessWrong
Community, 2023; Li et al., 2024) often rely on
heuristic analysis of token embeddings or cluster-
ing patterns. While effective in some settings, these
pattern-based methods often struggle to generalize

across the growing diversity of LLM architectures
and may fail to detect newly emerging glitch tokens
that deviate from known characteristics. This limi-
tation calls for a more adaptive and behavior-driven
detection methodology.

In this paper, we introduce GlitchMiner, a novel
framework that directly leverages prediction be-
havior to identify glitch tokens through gradient-
guided discrete optimization. Our key insight is to
use entropy—a principled measure of prediction
uncertainty—as the primary optimization objective.
By maximizing entropy, GlitchMiner systemati-
cally uncovers tokens that destabilize model confi-
dence without relying on fixed heuristics.

To address the challenge of discrete token search
in a large vocabulary, we propose a local search
strategy guided by first-order Taylor approxima-
tions of entropy changes in the embedding space.
This approach improves optimization precision and
reduces computational overhead, enabling efficient
exploration.

Our contributions are summarized as follows:

* Entropy-based detection paradigm: Intro-
ducing entropy maximization as a robust and
model-agnostic criterion for identifying glitch
tokens.

* Gradient-guided local search: Combining
gradient information with a localized search in
embedding space to effectively and efficiently
explore candidate tokens.

* Cross-architecture adaptability: Demon-
strating consistent performance gains across
ten LLMs from various families, including
Llama, Qwen, Gemma, Phi, and Mistral mod-
els.

Evaluations on ten diverse LLM architectures
demonstrate that GlitchMiner significantly outper-
forms state-of-the-art baselines in detecting glitch



tokens within fixed query budgets. Our approach
enhances cross-architecture robustness and detec-
tion efficiency, advancing the security and reliabil-
ity of LLM deployment in critical applications.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work on glitch to-
ken detection and gradient-based discrete optimiza-
tion. Section 3 details the GlitchMiner methodol-
ogy. Section 4 presents experimental evaluations
and ablation studies. We conclude in Section 5
with discussions and future directions.

2 Background and Related Work
2.1 What is a Glitch Token?

Glitch tokens, a concept that gained attention fol-
lowing the discovery of the "SolidGoldMagikarp"
phenomenon by Rumbelow et al. (LessWrong
Community, 2023), are anomalous tokens in LLMs
that can trigger unexpected and often erroneous
behaviors when processed by the model. These
tokens typically result from irregularities in the
training process, such as underrepresentation in
the training data or inconsistencies in tokenization
(Land and Bartolo, 2024; Geiping et al., 2024).
Glitch tokens have been found to exhibit several
key characteristics:

* They often have abnormal embedding pat-
terns, such as unusually small ¢5 norms or
atypical positions in the embedding space
(Land and Bartolo, 2024; LessWrong Com-
munity, 2023).

* When input to an LLM, they can cause the
model to produce repetitive, nonsensical, or
completely unrelated outputs (LessWrong
Community, 2023; Li et al., 2024).

* They may lead to significant deviations in the
model’s internal activations compared to nor-
mal tokens (Zhang et al., 2024).

* Glitch tokens can sometimes bypass content
filters or trigger unexpected model behaviors,
potentially compromising the safety and relia-
bility of LLMs (Geiping et al., 2024).

The study of glitch tokens is crucial for under-
standing and mitigating potential vulnerabilities in
LLMs, as these tokens can potentially be exploited
for adversarial attacks or lead to unintended model
behaviors in critical applications (Geiping et al.,
2024).

2.2 Glitch Token Detection

The detection of glitch tokens in LLMs has become
an increasingly important area of research, given
their potential to disrupt model performance and
reliability. The fundamental approach to identify-
ing these anomalous tokens often relies on repeti-
tion tasks, a method popularized by the SolidGold-
Magikarp study (LessWrong Community, 2023).
In these tasks, the model is prompted to repeat a
given token, with the assumption that normal to-
kens should be easily reproducible, while glitch
tokens often lead to failures in this simple task.

Building upon this basic principle, researchers
have developed several sophisticated methods to
detect glitch tokens more efficiently and accurately:

Magikarp (LessWrong Community, 2023) pi-
oneered a fast and lightweight approach by ana-
lyzing token embeddings. It identifies potentially
problematic tokens by examining characteristic pat-
terns in the embedding space, such as unusual ¢y
norms. These candidate tokens are then verified
using repetition tasks, allowing for quick detection
through direct queries to the model.

GlitchHunter (Li et al., 2024) introduced a
clustering-based method. This approach is founded
on the observation that glitch tokens often clus-
ter together in the embedding space. GlitchHunter
constructs a Token Embedding Graph (TEG) to rep-
resent token relationships and applies the Leiden
algorithm (Traag et al., 2019) to identify poten-
tial glitch clusters. These clusters are then refined
through iterative hypothesis testing to improve de-
tection accuracy.

GlitchProber (Zhang et al., 2024) takes a differ-
ent approach by analyzing the internal activations
within transformer layers, such as attention heads
and hidden states. It reduces the dimensionality of
these activations using PCA (Hotelling, 1933) and
applies SVM classifiers (Cortes, 1995) to identify
glitch tokens. Additionally, it integrates mitigation
mechanisms by modifying neuron activations to
minimize the impact of glitch tokens during infer-
ence.

While these methods have significantly ad-
vanced our ability to detect glitch tokens, they
are inherently limited by their reliance on pattern-
based heuristics. Magikarp and GlitchHunter focus
on specific embedding patterns or clustering be-
haviors, while GlitchProber examines predefined
patterns in activation spaces. This dependence on
pattern-based approaches can constrain their adapt-



ability across diverse LLLM architectures and poten-
tially overlook novel forms of glitch tokens.

Our proposed method, GlitchMiner, aims to
address these limitations by employing gradient-
based discrete optimization to directly analyze an
LLM’s prediction behavior, potentially offering a
more flexible and comprehensive approach to glitch
token detection.

2.3 Gradient-based Discrete Optimization

Gradient-based discrete optimization methods
(Ebrahimi et al., 2017; Shin et al., 2020; Zou et al.,
2023; Wen et al., 2024) leverage gradient informa-
tion to predict how individual tokens impact the
loss function. These approaches typically treat the
one-hot encoding of tokens or token embeddings as
continuous vectors to compute gradients, guiding
token replacements for optimization.

HotFlip (Ebrahimi et al., 2017) uses the one-
hot encoding of tokens to compute gradients and
selects the token with the largest negative gradient
to replace the current token, aiming to minimize
the loss. However, it only evaluates one candidate
token per iteration, which can lead to suboptimal
predictions and reduced accuracy.

AutoPrompt (Shin et al., 2020) improves upon
HotFlip by evaluating multiple candidate tokens in
each iteration. Instead of relying on gradients from
one-hot encodings, it utilizes token embedding gra-
dients for loss estimation, enhancing prediction ac-
curacy by considering a broader range of potential
token replacements.

GCG (Zou et al., 2023) extends HotFlip by in-
corporating multi-candidate token selection, sim-
ilar to AutoPrompt, but it still uses the one-hot
encoding of tokens to compute gradients for loss
estimation. Notably, GCG has been applied to au-
tomated jailbreaks (Shen et al., 2023) in LLMs,
efficiently searching for adversarial suffixes.

AutoPrompt and GCG both rely on large batch
sampling to mitigate inaccuracies in gradient pre-
diction. We identified that these inaccuracies arise
from the inaccuracy of Taylor expansions when
input tokens are distant from the original points.
This overlooks a fundamental condition of Taylor
approximation: its accuracy is highest for points
close to the reference point.

Building on these works, we introduce a local
search strategy in our approach. This improve-
ment enables us to achieve high precision in gra-
dient estimation without relying on large batch
sampling, by focusing on a smaller, localized to-

ken space. By addressing the core issue of Taylor
approximation accuracy, our method allows for
more efficient and accurate exploration of the to-
ken space, which is particularly valuable for glitch
token detection.

3 Method

Algorithm 1 GlitchMiner Pipeline

1: Input: Token set 7, Iteration number I, Batch
size B
2: Output: Glitch token set G
3: # Stage 1: Initialization
T* <« Filter(T) # Filter out the unnecessary
token set 7*
G+ 0
# Stage 2: Mining
fori: c Ido
Select a batch of tokens B from 7\ (7* U
G), where |B| = B
9: for each token t € B do

»

10: if Verify(¢) then
11: Addtto G
12: else

13: Addtto T
14: end if

15: end for

16: end for

GlitchMiner Pipeline. As illustrated in Algo-
rithm 1, GlitchMiner consists of two main stages:
initialization and mining.

During initialization, tokens that are unlikely to
be glitch tokens are filtered out to reduce the search
space and enhance computational efficiency. In the
subsequent mining stage, batches of unverified to-
kens are iteratively selected for verification. Each
token is evaluated: if identified as a glitch token,
it is added to the discovered set; otherwise, it is
excluded from further consideration. This iterative
process continues until a predefined stopping cri-
terion is met, such as reaching a target number of
iterations or detecting a sufficient number of glitch
tokens.

The key components of the GlitchMiner pipeline
are detailed as follows:

1. Token Filter: Efficiently excluding tokens
that do not require detection.

2. Glitch Token Verification: Procedures to
confirm whether a token is a glitch token.



3. Token Selection Strategy: Approaches for
selecting the most promising glitch token can-
didates at each iteration.

Through these components, GlitchMiner effec-
tively implements the glitch token mining process,
balancing thoroughness and efficiency in practice.

3.1 Token Filter

In the initialization stage of GlitchMiner, we first
filter all tokens to remove those that do not need to
be detected. Similar to (Land and Bartolo, 2024),
we designed a token filter module that classifies
tokens based on their characteristics and filters out
those that are unnecessary for detection.

The core idea of the token filter module is to clas-
sify each token by decoding and then re-encoding
it, ensuring it meets specific classification criteria.
Specifically, we prepend a special prefix "«" to each
token to maintain consistency during the encoding
and decoding process. Then, we filter out tokens
that fall into the following categories:

* SPECIAL: Special tokens, such as [BOS],
</s>, etc., which are enclosed in brackets or
angle brackets and contain alphabetic charac-
ters.

« UNDECODEABLE: Tokens that cannot be
decoded, usually containing illegal characters.

« UNREACHABLE: Tokens that cannot be re-
stored to their original token ID through the
decoding and re-encoding process.

During the classification process, we first decode
each token ID to obtain its corresponding string rep-
resentation. If decoding fails, the token is classified
as UNDECODEABLE. Next, we encode the de-
coded string and check if it can be restored to the
original token ID. If it cannot, the token is classified
as UNREACHABLE. If it meets the characteristics
of a special token, it is classified as SPECIAL.

By filtering out these unnecessary tokens, we
retain only the essential ones for subsequent min-
ing, which improves the algorithm’s efficiency and
ensures the accuracy of the detection results.

3.2 Glitch Token Verification

Our glitch token verification process consists of
two stages: optimization-driven detection and
cross-verification.

Template for Optimization. For our primary
detection and optimization process, we designed
the following task template:

User: Please repeat the string: "«{to-
ken}»"
Assistant: Sure, the string is: "«{token}

In this template, the blue text represents the
prompt, the green text {token} is the input token
being tested, and the red text {token} represents
the model’s predicted output. If the predicted to-
ken does not match the input token, it is initially
classified as a potential glitch token.

This template is specifically designed to sup-
port our gradient-based optimization process. Its
simplicity allows for clear gradient computations,
while the prefilled assistant response ensures a
uniform starting point for each token evalua-
tion. Wrapping the token in "«" and "»" symbols
minimizes interference from surrounding context.
These features enable precise entropy calculations
and gradient estimations, which are crucial for our
entropy-guided search strategy described in the to-
ken selection section.

Cross- Verification. While our primary template
is optimized for the search process, relying solely
on one template may lead to false positives. To
enhance the robustness of our detection, we im-
plement a cross-verification step using two addi-
tional templates derived from GlitchHunter and
Magikarp. Each potential glitch token identified by
our primary template undergoes verification with
these additional templates. A token is confirmed
as a glitch token only if it fails the repetition task
across all templates.

This two-stage approach combines the efficiency
of our optimization-driven search with the relia-
bility of multi-template verification, significantly
reducing false positives while maintaining the ef-
fectiveness of our gradient-based detection method.

3.3 Token Selection

Motivation. Previous methods for glitch token
detection often rely on manually observed embed-
ding patterns. However, these approaches can be
limited in their ability to adapt to diverse LLM ar-
chitectures and may overlook novel forms of glitch
tokens. To address these limitations, we propose
an entropy-based approach. Entropy, as a measure
of uncertainty in probability distributions, offers a
model-agnostic way to identify tokens that cause
unexpected behavior in LLMs. By focusing on to-
kens that maximize entropy, we can detect glitch
tokens that deviate significantly from normal token
behavior, regardless of their specific characteristics



or the underlying model architecture.
Entropy-Guided Exploration. We define the
entropy H (t) for a token ¢ as:

H(t) = =3 P(v| h(t)) log P(v | h(t))

veY

where h(t) is the context embedding for token ¢,
and P(v | h(t)) is the model’s predicted probabil-
ity distribution over the vocabulary V. By maximiz-
ing entropy, we aim to find tokens that cause high
uncertainty in the model’s predictions, potentially
indicating glitch behavior.

Optimization Objective. Our goal is to find a
batch of tokens B that maximizes the total entropy:

B =ar max H(t
gBC7’C,|B|:B teZB ( )
Here, 7. represents the current candidate set,
definedas 7. = 7 \ (T U G), where:

e 7 is the initial set of all tokens in the model’s
vocabulary.

e T™* is the set of tokens that have been filtered
out or verified as non-glitch tokens. This in-
cludes special tokens, undecoded tokens, and
tokens that have been checked and confirmed
as normal.

* G is the set of identified glitch tokens discov-
ered so far in the process.

By excluding 7 and G from 7, we ensure that
our search focuses only on the remaining unveri-
fied tokens, improving efficiency and preventing
redundant checks.

Local Search Strategy. To address the limi-
tations of global Taylor approximations and im-
prove optimization efficiency, we propose a local
search strategy. Starting from an initial token ¢y, we
compute its entropy H (to) and gradient V. H (t¢),
then define a local neighborhood N (ty) com-
prising the K nearest neighbors in the embedding
space. Restricting the search to this neighborhood
enhances approximation accuracy and enables fo-
cused exploration of promising glitch token candi-
dates (see Figure 1).

For each candidate token ¢t € N (tp), the en-
tropy is estimated via first-order Taylor expansion:

~

H(t) = H(to) + VeH(to) " (e; — e,),

@l : covont token
H(t) =275 A(t) = 176 - : Selected neighbor tokens
__Portaly X .
o : Tokens outside the neighborhood
ederbord
H(t) =231 : Unselected neighbor tokens

H(t) =093

Figure 1: Visualization of GlitchMiner’s local search
process. The current token (black) serves as the ref-
erence point. Its neighbor tokens (orange and red)
represent the K = 4 closest tokens in embedding space.
Among these, the candidate batch tokens (red) are
the top B = 2 tokens with the highest approximate
entropy values, estimated via first-order Taylor approx-
imation. Tokens outside the neighborhood (gray) are
excluded to maintain approximation accuracy and com-
putational efficiency.

where ey, e;, are the embeddings of tokens ¢ and %,
respectively. This approximation allows efficient
prediction of entropy changes without expensive
exact evaluations.

From the neighborhood, a batch B of B tokens
with the highest estimated entropy is selected. Ac-
tual entropy values are then computed for this batch,
and the token with the maximum entropy becomes
the new reference point for the next iteration. This
iterative refinement ensures search progression to-
ward tokens inducing higher model uncertainty.

By focusing on a localized region guided by en-
tropy gradients, our approach mitigates the approx-
imation errors inherent in global methods, balanc-
ing exploration and exploitation effectively. Con-
sequently, it enables efficient and accurate iden-
tification of glitch tokens across diverse LLM ar-
chitectures without relying on architecture-specific
assumptions, enhancing robustness and generality.

4 Experiments

4.1 Experimental Setup

Evaluated LLMs. We used a diverse set of LLMs
from five different model families to evaluate the
performance of our glitch token detection approach.
The selected models include Meta’s Llama se-
ries (Touvron et al., 2023; Al, 2024a), Alibaba’s
Qwen models (Yang et al., 2024; Alibaba, 2024),
Google’s Gemma models (Team et al., 2024), Mi-
crosoft’s Phi-3 models (Abdin et al., 2024), and
Mistral models (Jiang et al., 2023; Al, 2024b). The
details are presented in Table 1.



Model Family = Model Names

Llama Models
Qwen Models
Gemma Models
Phi-3 Models
Mistral Models

Llama-3.1-8B-Instruct , Llama-2-7B-chat-hf
Qwen2.5-7B-Instruct , Qwen2-7B-Instruct
Gemma-2-2b-it, Gemma-2-9b-it
Phi-3-mini-128k-instruct, Phi-3.5-mini-instruct
Mistral-7B-Instruct-v0.3, Mistral-Nemo-Instruct-2407

Table 1: Test LLMs used in the experiments.

Evaluation Metrics. We evaluate our glitch to-
ken detection method using the Detected @N met-
ric, which counts the number of true glitch tokens
identified within the top IV predictions. For in-
stance, Detected @ 1000 measures how many glitch
tokens are found among the top 1000 candidates.
This metric balances detection accuracy and query
efficiency, reflecting a method’s practical effective-
ness under fixed query budgets. Comparing De-
tected@N values thus provides a direct measure of
each method’s ability to maximize glitch token dis-
covery while minimizing computational resources,
making it well-suited for real-world applications.

Baselines. We compare our proposed glitch
token detection method with two state-of-the-art
approaches: GlitchHunter (Li et al., 2024) and
Magikarp (Land and Bartolo, 2024). These meth-
ods serve as the primary benchmarks for evaluating
our approach.

Although GlitchProber (Zhang et al., 2024) is
another relevant method, it follows a fundamen-
tally different approach by pre-collecting a subset
of glitch tokens to train a classifier, introducing a
supervised learning component. In contrast, Glitch-
Miner, along with GlitchHunter and Magikarp,
uses heuristic-based methods to detect glitch to-
kens without relying on labeled data or additional
classifier training. This methodological difference
makes a direct comparison less meaningful, so we
focus our evaluation on methods that align more
closely with our unsupervised approach.

Parameter Settings. In our implementation of
GlitchMiner, we use K=32 and B=8 as the default
parameters. These values were chosen based on em-
pirical testing to balance computational efficiency
and detection effectiveness. Specifically, K=32 de-
fines the size of the local neighborhood considered
in each iteration, while B=8 determines the batch
size for entropy computation. These settings have
shown to provide a good trade-off between explo-
ration of the token space and exploitation of local

information across various model architectures.
Initialization Strategy in Experiments. To en-
sure stable and consistent comparisons across runs,
we initialize the search with the token exhibiting
the smallest 2 norm in the embedding space, based
on prior observations that such tokens often exhibit
glitch-like behaviors. However, as shown in Fig-
ure 5, we found that GlitchMiner remains robust
to different initialization choices, achieving similar
performance even with random starting points.

4.2 Main Results

Table 2 displays the performance comparison
of GlitchMiner with the state-of-the-art methods
GlitchHunter and Magikarp across different LLM
architectures using the Detected @N metric. The
results highlight GlitchMiner’s strong and versatile
detection capabilities.

In the majority of cases, GlitchMiner achieved
the highest Detected @2000 score, consistently out-
performing both baselines in terms of identified
glitch tokens within the top 2000 predictions. This
is particularly evident in models such as Llama-
2-7B-chat-hf, where GlitchMiner achieved a De-
tected@2000 of 532, surpassing Magikarp by a
notable margin. For the Qwen and other mod-
els, GlitchMiner maintained robust performance,
demonstrating adaptability across different LLM
architectures.

These experimental findings underscore Glitch-
Miner’s ability not only to accurately detect glitch
tokens but also to generalize across a diverse set
of model architectures. This adaptability and pre-
cision position GlitchMiner as a powerful tool for
enhancing the robustness and security of LLMs.

4.3 Ablation Study

To evaluate the contributions of key components in
GlitchMiner, we conducted ablation studies focus-
ing on the local search strategy, neighborhood size
K, batch size B, and initialization token.



Model Metric | GlitchHunter | Magikarp | GlitchMiner (ours)
] Detected @1000 25 664 568
Llama-3.1-8B-Instruct Detected @2000 56 935 1164
Detected@ 1000 61 100 319
Llama-2-7B-chat-hf Detected @2000 126 186 532
Detected@ 1000 75 1000 1000
Qwen2.5-7B-Instruct Detected @2000 180 1893 1839
Detected@ 1000 %6 999 1000
Qwen2-7B-Instruct Detected @2000 191 1842 1847
Gomma22bit Detected @ 1000 23 678 744
Cmma-2-2b= Detected @2000 35 984 1019
Gomma2-9bit Detected@ 1000 29 623 775
emma-2-5b- Detected @2000 45 983 1089
PhiAS mini-instract Detected@ 1000 20 393 396
1-0- - MInI-INStruc Detected @2000 44 496 516
A ) Detected@ 1000 26 398 404
Phi-3-mini-128k-instruct Detected @2000 ss 489 517
X Detected @ 1000 6 110 219
Mistral-7B-Instruct-v0.3 Detected @2000 19 130 302
n Detected@ 1000 78 574 695
Mistral-Nemo-Instruct-2407 Detected @2000 79 918 976
Average Detected@ 1000 40.9 553.9 612.0
Detected @2000 93.0 885.6 980.1

Table 2: Detected@ 1000 and Detected @2000 comparison of methods across different models.

Local vs Global Detected@1000 for Different Models

1000 Search Strategy
Global
Local

800

600

Detected@1000

400

Figure 2: Comparison of GlitchMiner performance with
and without local search strategy

Effect of Local Search. The local search strat-
egy plays a crucial role in enhancing GlitchMiner’s
ability to detect glitch tokens by improving the pre-
cision of the Taylor approximation. Without local
search, detection accuracy drops significantly (Fig-
ure 2), as global search lacks the necessary gran-
ularity to maintain precise approximations within
the token space.

Effect of Neighborhood Size. We analyzed
the impact of neighborhood size K on detection
performance. As shown in Figure 3, increasing
K generally leads to a decline in Detected @ 1000
values across models. This trend indicates that as
K grows, the Taylor approximation becomes less
effective, resulting in reduced prediction accuracy.

Effect of Batch Size. As shown in Figure 4,
the performance of GlitchMiner remains relatively
stable as batch size B increases. Notably, even
with B = 1, GlitchMiner achieves effective detec-
tion results, indicating that it can make accurate

predictions without relying on a large batch size.

Effect of Initialization Token. As shown in
Figure 5, GlitchMiner’s performance remains sta-
ble across different initialization tokens. The red
dots represent the minimum ¢5 norm initialization,
while the orange dots show three random trials. For
most models, random initialization results are close
to the minimum ¢2 norm, indicating that Glitch-
Miner achieves consistent detection accuracy re-
gardless of the initialization approach.

4.4 Token Entropy Analysis

To further validate the effectiveness of our entropy-
based approach in detecting glitch tokens, we con-
ducted an entropy analysis comparing glitch tokens
and normal tokens across different models. For
each model, we computed the average entropy of
glitch tokens (Fgiitcn) and normal tokens (ENormal)-

Figure 6 presents the comparison of average en-
tropy values between glitch tokens and normal to-
kens for each evaluated model. As shown in the
figure, glitch tokens consistently exhibit signifi-
cantly higher entropy than normal tokens across all
models.

This pronounced difference in entropy values
indicates that models are more uncertain when pre-
dicting glitch tokens compared to normal tokens.
The higher entropy of glitch tokens validates our hy-
pothesis that maximizing entropy effectively guides
the search towards tokens that are challenging for
the model to predict.

Moreover, the consistent pattern of higher en-
tropy for glitch tokens across diverse model fami-
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Figure 3: Impact of different Neighborhood Size K on GlitchMiner’s performance
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Figure 4: Impact of different Batch Size B on GlitchMiner’s performance
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Figure 5: Effect of Initialization Method on Glitch-
Miner’s Detected @ 1000 score.

lies—including Llama, Qwen, Gemma, Phi-3, and
Mistral—demonstrates the generality and robust-
ness of our entropy-based approach. This suggests
that our method can be effectively applied to a wide
range of LLMs with different architectures and to-
kenization strategies.

These findings reinforce the effectiveness of
GlitchMiner’s entropy-based optimization in effi-
ciently detecting glitch tokens by focusing on areas
of high prediction uncertainty within the model.

5 Conclusion

In this paper, we introduced GlitchMiner, a novel
framework for detecting glitch tokens in LLMs
through gradient-based discrete optimization. Our
method effectively combines entropy-based loss
functions, which quantify the model’s predictive
uncertainty often associated with glitchy behav-
ior, with a local search strategy that efficiently

Average Entropy of Glitch Tokens vs Normal Tokens

= Gitch
E_Normal

Average Entropy

Figure 6: Average entropy comparison between glitch
tokens and normal tokens across different models.
Glitch tokens have higher entropy, indicating greater
uncertainty in the model’s predictions for these tokens.

navigates the vast discrete token space. This syn-
ergy demonstrably improves both detection accu-
racy and computational efficiency. Experimen-
tal results across a diverse set of LLMs highlight
GlitchMiner’s robustness and versatility, consis-
tently achieving superior glitch token detection
rates under fixed query budgets compared to exist-
ing methods. Our findings confirm GlitchMiner’s
effectiveness in identifying glitch tokens across
various architectures, underscoring its significant
potential for enhancing the security and reliability
of LLM-based applications, particularly in critical
domains where such anomalies can pose substantial
risks.



Limitations

GlitchMiner’s core limitation is its reliance on gra-
dient information, restricting its direct use to white-
box models. Consequently, it is not directly ap-
plicable for end-users interacting with black-box
APIs. However, this method is highly valuable for
LLM developers and providers. With their intrin-
sic white-box access, they can effectively deploy
GlitchMiner internally to proactively identify and
understand glitch tokens, thereby enhancing model
robustness and safety prior to public release. Fu-
ture work might explore adapting its principles to
gradient-scarce or black-box environments.
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