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Abstract

Generative Foundation Models (GenFMs) have seen extensive deployment across diverse
domains, significantly impacting society yet simultaneously raising critical concerns about
their trustworthiness, including misinformation, safety risks, fairness, and privacy viola-
tions. Recognizing the complex nature of these issues, to bridge the gap between abstract
principles and operational actions throughout the GenFM lifecycle, we propose a flexible
and multidimensional set of trustworthiness guidelines. These guidelines incorporate ethical
principles, legal standards, and operational needs, addressing key dimensions such as fairness,
transparency, human oversight, accountability, robustness, harmlessness, truthfulness, and
privacy. Our guidelines serve as adaptable tools to bridge abstract principles and practical
implementations across varied scenarios. Building upon these guidelines, we identify several
core challenges currently unresolved in both theory and practice. Specifically, we examine
the dynamic tension between adaptability and consistent safety, the ambiguities in defining
and detecting harmful content, and the balancing of trustworthiness with model utility.
Through our analysis, we reveal that the trustworthiness of GenFMs remains inadequately
understood, highlighting the necessity for continuous, context-sensitive evaluation approaches.
Consequently, we propose potential solutions and methodological directions, emphasizing
integrated strategies that combine internal alignment mechanisms with external safeguards.
Our findings underscore that trustworthiness is not static but rather demands ongoing
refinement to ensure the responsible, fair, and safe deployment of GenFMs across various
application domains.

1 Introduction

Generative Foundation Models (GenFMs) are large-scale pre-trained architectures revolutionizing AI through
their multi-modal generative capabilities and adaptability across diverse applications (Zontak et al., 2024;
Liu et al., 2023b; Guo et al., 2024b). Recent high-profile cases, such as AI hallucinations causing medical
misdiagnoses and AI-generated deepfakes triggering societal anxiety, have made it clear that ensuring GenFM
trustworthiness is both critical and complex. For example, LLM-based chatbots have exhibited behavior
that contributed to real-world harm, where an AI’s unethical interaction allegedly influenced a user’s suicide
(Court, 2024). Jailbreak attacks on top-tier LLMs such as GPT-4 have revealed vulnerabilities that allow them
to generate outputs that violate platform policies (Wei et al., 2024; Zou et al., 2023). Additionally, GenFMs
have been documented leaking sensitive training data or private user content, further raising privacy concerns
(Huang et al., 2024e). As these models increasingly generate outputs indistinguishable from human-created
content, they pose risks of misinformation (Huang & Sun, 2023), biased decision-making (Ye et al., 2024),
and manipulation of public discourse (Zhang et al., 2024c; Solaiman et al., 2023). To address this issue, we
define trustworthiness as the extent to which a GenFM—together with its socio-technical ecosystem—remains
valid and reliable, safe, secure and resilient, privacy-preserving, fair, transparent, and accountable throughout
its lifecycle. As GenFMs integrate into critical infrastructure, ensuring their trustworthiness has become
crucial yet deeply challenging (Fan et al., 2025b; Kaur et al., 2022; Li et al., 2023a; Huang et al., 2024e).
We argue that we are still at the early stages of understanding the trustworthiness of GenFMs,
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and this paper aims to shed light on the challenges, domain-specific considerations, and broader implications
associated with the trustworthiness of these models.

Motivated by the increasing real-world deployment of GenFMs, we propose eight comprehensive guidelines to
bridge the gap between abstract principles and operational actions throughout the GenFM lifecycle. Unlike
existing rigid checklists, our guidelines span critical dimensions including fairness, transparency, human
oversight, accountability, robustness, harmlessness, truthfulness, and privacy, forming a flexible and adaptable
framework suitable for diverse stakeholders and application scenarios. This framework aligns with evolving
ethical principles (Hendrycks et al., 2020; Liu et al., 2023a), legal standards such as the EU AI Act (EU),
and varied domain-specific risks. Each guideline serves dual purposes: it anchors fundamental ethical and
regulatory commitments, and simultaneously acts as an adjustable scale, enabling stakeholders to prioritize
trustworthiness dimensions contextually based on specific downstream needs (Blu, 2022). Furthermore, our
design principles emphasize adaptability and sustainability, crucial for responding to evolving technologies and
dynamic societal expectations (Li et al., 2024a; Reuel & Undheim, 2024). After proposing a set of actionable
guidelines, we now turn to the core challenges that must be addressed to validate and operationalize
our trustworthiness framework. These challenges are critical to substantiating our central claim: that
GenFM trustworthiness remains poorly understood and must be evaluated across technical, evaluative, and
socio-technical axes.

Trustworthiness is a dynamic, context-sensitive concept. It varies with application domains, stakeholder
expectations, and societal norms (Razin & Alexander, 2024; National Institute of Standards and Technology,
2023). Recent research has thus shifted from static checklists toward lifecycle-aware methodologies. Concep-
tual work has proposed high-level desiderata—fairness, robustness, transparency, privacy, alignment, and
governance—for trustworthy GenFMs (Huang et al., 2024e; Liu et al., 2023c). Methodologically, scholars have
investigated every stage of the GenFM pipeline: large-scale pre-training audits that expose stereotypical or
toxic biases (Ngo et al., 2021); alignment techniques such as RLHF and DPO that enhance helpfulness while
reducing sycophancy and deception (Casper et al., 2023); adversarial evaluations that reveal deployment-time
vulnerabilities (Schlarmann & Hein, 2023); and post-deployment oversight that integrates policy-driven
moderation and external guard models (OpenAI, 2024). Complementary testbeds—DyVal (Zhu et al., 2023),
DataGen (Wu et al., 2024a), AutoBencher (Li et al., 2024c), and domain-specific suites such as LawBench,
CARES, and CLIMB (Fei et al., 2023; Xia et al., 2024; Zhang et al., 2024f)—have emerged to assess how well
GenFMs satisfy dynamic stakeholder requirements. Together, these developments highlight that each stage
of the model lifecycle introduces distinct trade-offs between utility and risk. For example, pre-training may
entrench harmful biases (Ngo et al., 2021), alignment can degrade capabilities (Casper et al., 2023), static
safety evaluations fail under adversarial interactions (Schlarmann & Hein, 2023), and reliance on external
safeguards raises questions of accountability. Thus, GenFM trustworthiness must be continuously negotiated,
assessed, and adapted through evolving technical and governance instruments.

Trustworthiness must be evaluated in a domain-specific manner. As GenFMs are increasingly applied to
high-stakes tasks in domains such as healthcare, science, robotics, and human–AI collaboration, a one-size-
fits-all trust framework proves inadequate. Each domain introduces unique norms, constraints, and risk
thresholds that reshape what constitutes trustworthy behavior. In healthcare, for instance, vision–language
GenFMs that generate radiology reports must be auditable and validated by human experts before informing
clinical decisions (Gui et al., 2024). To comply with regulations such as HIPAA (Gostin et al., 2009) and
GDPR (Li et al., 2019), researchers have developed approaches including federated or synthetic-data training
and attention-based explanations that preserve privacy while enabling clinician oversight (Johnson et al.,
2016; Yang et al., 2019; Doshi-Velez & Kim, 2017). In scientific research, trust hinges on reproducibility and
empirical verification: laboratories pair GenFM-generated hypotheses with uncertainty quantification and
validation pipelines to ensure methodological transparency (Bruynseels et al., 2025; Fan et al., 2023; Schwaller
et al., 2021). In robotics, untrusted outputs can result in physical harm. Therefore, GenFM-based planning
systems now incorporate structured safety layers that fuse scene perception with LLM-based reasoning to
detect and intercept risky commands (Xian et al., 2023; Wu et al., 2024b). In collaborative human–AI
settings, trust is shaped by users’ perceptions of fairness, alignment, and transparency. Interfaces that
expose confidence estimates or provenance logs are being explored to improve trust calibration and allocate
responsibility (Ramchurn et al., 2021; Lin et al., 2022; Staron et al., 2024). These domain-specific adaptations
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emphasize that ensuring trustworthiness is not merely a matter of technical robustness, but also of aligning
GenFM behavior with contextual values and expectations.

Trustworthiness must be assessed at the ecosystem level. As GenFMs become embedded in complex socio-
technical infrastructures, their trustworthiness can no longer be treated as an isolated property of a single
model. These systems now operate within dense networks that involve human stakeholders, software
pipelines, and other AI agents. Ensuring trust in such settings requires robust coordination, governance, and
communication protocols across the entire system. For example, when multiple generative agents collaborate
to complete tasks, they must reliably share information, adhere to shared constraints such as privacy and
safety, and pursue consistent goals across the system (Hu et al., 2025). Empirical studies have illustrated both
the promise and risk of such architectures: ChatDev demonstrates gains in software engineering throughput,
but also reveals novel vulnerabilities and attack surfaces (Qian et al., 2024). Meanwhile, OpenAI’s release of
Sora was accompanied by interdisciplinary red-team audits and stringent content moderation, underscoring the
importance of systemic oversight (OpenAI, 2024e). Governance mechanisms remain fragmented. Regulatory
frameworks such as the EU AI Act’s systemic-risk tier, the G7 Hiroshima Guiding Principles, and Anthropic’s
AI Safety Levels (ASL) each propose safeguards, but differ significantly in scope and enforceability (hir, 2023;
Anthropic, 2024). These efforts reflect growing awareness, yet also confirm that ecosystem-scale trust research
remains nascent. Unified standards for evaluation, provenance tracking, and institutional accountability are
still lacking, making it difficult to operationalize trust at the system level.

2 Guidelines of Trustworthy Generative Foundation Models

Trustworthiness of GenFMs is not a simple, one-dimensional characteristic—it encompasses a wide range of
considerations, each of which can vary in importance depending on the context of the application. Just as
The International Scientific Report on the Safety of Advanced AI (Bengio et al., 2024) mentioned, “General-
purpose AI can be applied for great good if properly governed.” It is clear that a rigid, universal set of rules
would not effectively address the diverse needs of different stakeholders, industries, and use cases.

Motivation. Our motivation for creating these guidelines stems from the recognition that flexibility is
crucial. Rather than imposing strict, inflexible rules, we aim to provide a set of adaptable principles that
can serve as a foundation for a wide range of stakeholders. These guidelines are not just for organizations
to shape their internal policies but are also intended to support developers, regulators, and researchers in
navigating the multifaceted landscape of trustworthiness. By offering a clear yet adaptable framework, we
enable stakeholders to align with key ethical and legal standards while also allowing for innovation and
customization in addressing their unique challenges.

Functionality. These guidelines serve as a versatile resource—not as directives, but as a flexible toolkit
to inform decision-making, design processes, and evaluation strategies. Whether it’s guiding a developer
in building more trustworthy GenFMs, assisting regulators in assessing compliance, or helping researchers
explore new trustworthiness dimensions, these guidelines provide a shared foundation. Ultimately, we aim to
empower all involved in the ecosystem of GenFMs to enhance trustworthiness in a way that is both rigorous
and adaptable, ensuring that these powerful technologies can be responsibly and effectively integrated into
society.

How do the guidelines differentiate from others? The guidelines set themselves apart from existing
frameworks, such as the European Union’s AI Act (EU) and the Blueprint for an AI Bill of Rights (Blu,
2022), by addressing the specific needs of stakeholders working with GenFMs. While the ’Blueprint’ and ’Act’
provide detailed, policy-oriented frameworks for broad regulatory oversight, our guidelines focus on being
application-agnostic and stakeholder-adaptive, making them especially suited to the dynamic and diverse
use cases of GenFMs. Importantly, the guidelines play a dual role as a "value anchor" and a "value scale"
of trustworthy GenFMs. The value anchor offers a clear and consistent foundation of principles that define
trustworthiness, ensuring alignment with core ethical, societal, and legal standards. At the same time, the
guidelines empower developers and stakeholders to establish the value scale—the specific trustworthiness
metrics, standards, and implementation strategies—tailored to the unique requirements of their models and
applications. This flexibility allows for innovation and customization while maintaining a firm grounding in
trustworthiness principles.
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2.1 Considerations of Establishing Guidelines

To define a set of guidelines to speculate the models’ behavior to ensure their trustworthiness, we first
establish the following considerations:

• Ethics and Social Responsibility. Ethical considerations are essential to ensure that the model
behaves in ways that respect human rights, cultural diversity, and societal values (Hendrycks et al., 2020).
This consideration emphasizes fairness, preventing bias, and promoting inclusivity, especially when interacting
with users from diverse backgrounds (Shi et al., 2024c). Social responsibility demands that models not
only avoid harm but also contribute positively to society by generating ethical outcomes (Liu et al., 2023a;
Weidinger et al., 2021). The design should integrate ethical risk assessments and include mechanisms to
prevent harmful or discriminatory outputs.

• Risk Management. The guidelines must account for managing and mitigating risks, both from
adversarial threats and internal model failures (Wei et al., 2024). This includes designing models to be
robust against adversarial attacks, unexpected inputs, and potential misuse (Wang et al., 2023f). Continuous
monitoring, stress testing, and resilience-building mechanisms are critical to maintaining trustworthiness.
By identifying and addressing potential vulnerabilities, risk management ensures the long-term safety and
reliability of models in real-world applications.

• User-Centered Design. When designing the guidelines, a user-centered approach is critical to ensure
that they are intuitive, inclusive, and aligned with the needs and preferences of end-users. This can involve
tailoring interactions to individual users where feasible or optimizing for diverse sub-populations based on
shared expectations, context, and cultural backgrounds (e.g., cultural diversity). By doing so, the proposed
framework supports a humanized and respectful interaction with the AI system. The guidelines should
also clearly communicate the model’s capabilities, limitations, and potential risks, enabling both users and
developers to make informed decisions (Reuel et al., 2024b; Gao et al., 2024).

• Adaptability and Sustainability. Guidelines should be designed to ensure adaptability and sustainabil-
ity, not just for current models but also for evolving technologies, legal environments, and societal expectations.
During guideline creation, it is essential to emphasize continuous learning, updates, and improvements that
allow the guidelines to remain effective and relevant over time. Guidelines that prioritize adaptability and
sustainability are more likely to provide long-term value and resilience in the face of changing conditions (Li
et al., 2024a; Reuel & Undheim, 2024).

2.2 Guideline Content

With the above considerations in mind, we formed a multidisciplinary team of researchers, encompassing
expertise in NLP, CV, HCI, Computer Security, Medicine, Computational Social Science, Robotics, Data
Mining, Law, and AI for Science. We synthesized existing principles, policies, and regulations from corporate
sources and government entities such as the European Union’s AI Act (EU) (abbreviated “Act”) and the
Blueprint for an AI Bill of Rights (abbreviated “Blueprint”) (Blu, 2022). This effort involved an exhaustive
review of these documents, systematic summarization, and multiple rounds of discussion among the team. As
a result, we distilled a unified set of guidelines designed to serve as a foundational reference. These guidelines
were presented to a panel of domain experts and stakeholders for their voting and ranking to ensure the
guidelines reflect diverse perspectives and practical relevance. Based on the panel’s feedback, the following
eight guidelines have been finalized. These guidelines are grounded in a cross-disciplinary understanding
of trustworthiness, integrating technical robustness, ethical considerations, legal compliance, and societal
impact. Together, they comprehensively address all dimensions of trustworthiness, as outlined in Table 1,
and are intended to guide both the development of GenFMs to ensure they meet these standards and the
evaluation processes to systematically assess their adherence.
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Table 1: Correlation between guideline and trustworthiness dimensions.
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Truthfulness ✓ ✓

Safety ✓ ✓ ✓

Fairness ✓ ✓

Robustness ✓

Privacy ✓ ✓ ✓

Machine Ethics ✓ ✓

Advanced AI Risk ✓

Accountability ✓

Transparency ✓ ✓

Guideline 1: The generative model should be designed and trained to ensure fairness, uphold broadly
accepted principles of values, and minimize biases in all user interactions. It must align with funda-
mental moral principles, be respectful of user differences, and avoid generating harmful, offensive, or
inappropriate content in any context.

• This guideline emphasizes fairness, universal values, and ethical principles to ensure trustworthy AI
interactions. Research highlights the importance of bias mitigation and fairness across demographic groups (Li
et al., 2023d; Gallegos et al., 2024). Governments mandate the use of representative data to prevent unjustified
differential treatment (Department for Science & Technology, 2023; Innovation & Canada, 2022; AI, 2019).
Additionally, the model must respect user differences (e.g., cultural background) and avoid harmful content.
The Blueprint (Blu, 2022) similarly stresses the importance of inclusive design and stakeholder engagement
to mitigate cultural risks and avoid harmful content. Other frameworks also stress harm prevention and
respect for diversity in AI (Ministry of Economy, Trade and Industry (METI), 2021; Department of Industry,
Science and Resources, Australia, 2021; Biden, 2023).

Guideline 2: The generative model’s intended use and limitations should be clearly communicated to
users and information that may contribute to the trustworthy model should be transparent.

• This guideline emphasizes the importance of transparent information. Previous studies have called for
the transparency of models’ information, such as upstream resources, model properties (e.g., evaluations),
and downstream usage and impact (Huang et al., 2024e; Bommasani et al., 2024b;a). Here we note that
not all information about the model should be disclosed; while what we focus is the “information that may
contribute to the trustworthy model”, since information including model architecture, and details of training
data is not compulsory to be public, which is supported by Act (EU) Article 78: Confidentiality–“Relevant
authorities and entities involved in implementing the Regulation i.e., Act (EU) must ensure the confidentiality
of any information and data obtained during their tasks.” In Act (EU) Article 14, the developers should
“correctly interpret the high-risk AI system’s output, taking into account, for example, the interpretation tools
and methods available”, which require them to use external mechanisms to make the model’s output more
transparent. This is also emphasized in the AI principles in other laws and acts (Ministry of Economy, Trade
and Industry (METI), 2021; Department of Industry, Science and Resources, Australia, 2021; Innovation &
Canada, 2022; Department for Science & Technology, 2023).

Guideline 3: Human oversight is required at all stages of model development, from design to deployment,
ensuring full control and accountability for the model’s behaviors.
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• This guideline is designed to speculate the model to be absolutely under the control of human beings
(termed as Human Oversight or controllable AI proposed by Kieseberg et al. (2023)) (AI, 2019; Shlegeris
et al., 2024). As mentioned in Act (EU) Recital 110, there are risks from models making copies of themselves
or ‘self-replicating’ or training other models. Moreover, Act (EU) Article 14: Human Oversight mentions:
“High-risk AI systems shall be designed and developed in a way that they can be effectively overseen by
natural persons”. Some acts also emphasize the importance of human oversight (Ministry of Economy, Trade
and Industry (METI), 2021; Department for Science & Technology, 2023; Department of Industry, Science
and Resources, Australia, 2021) or human intervention (Department for Science & Technology, 2023).

This guideline acknowledges that oversight can vary across different training approaches. While direct
human labeling, such as in Direct Preference Optimization (DPO) (Rafailov et al., 2024), ensures explicit
human oversight, methods like Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022b) or Constitutional AI (Bai et al., 2022b) introduce intermediary mechanisms where human influence is
indirect. The key requirement is that any system remains auditable and ultimately accountable to human
decision-makers, ensuring automated processes do not bypass meaningful human control.

Guideline 4: Developers and organizations should be identifiable and held responsible for the model’s
behaviors. Accountability mechanisms, including audits and compliance with regulatory standards,
should be in place to enforce this.

• This guideline demarcates the responsibility of developers of generative models (e.g. oversight and
deployment). Here, "organizations" refer to entities involved in the development, distribution, or operational
use of GenFM system, such as technology companies, research institutions, or governmental bodies overseeing
AI deployment. It requires them to establish comprehensive usage policies for their models and be responsible
for the potential impact brought by the models. For instance, Act (EU) Article 50 states that deployers of
an AI system that generates or manipulates content constituting a deepfake shall disclose that the content
has been artificially generated or manipulated. Moreover, Reuel et al. (2024a) proposed that verification of
AI-generated content is also a foundation challenge in AI governance. Accountability is also a key principle
and thing to be improved in other laws and acts (Ministry of Economy, Trade and Industry (METI), 2021;
Innovation & Canada, 2022; Department of Industry, Science and Resources, Australia, 2021; Department for
Science & Technology, 2023).

Guideline 5: The generative model should demonstrate robustness against adversarial attacks and be
capable of properly handling rare or unusual inputs. Continuous updates and testing are necessary to
maintain robustness and avoid unpredictable behaviors.

• The generative models should be robust to various perturbations and adversarial attacks (Huang et al.,
2024e). Act (EU) Article 15 emphasizes the importance of the robustness of AI systems. AI regulation of the
UK (Department for Science & Technology, 2023) defines robustness as one of the five core principles. This
guideline delineates that models should be able to (1) withstand adversarial attacks (e.g., jailbreak attack)
and (2) process rare or unexpected inputs without breaking down or behaving unpredictably (e.g., robust to
Out-of-Distribution (OOD) input (Li et al., 2021; Gui et al., 2022)).

Guideline 6: The model should prioritize harmlessness while maximizing its helpfulness, without
causing harm or negatively affecting others’ assets, including physical, digital, or reputational resources.
The model must not generate content that could result in harmful outcomes under any reasonable
circumstances involving human interaction.

• Recent studies have extensively explored the interplay between helpfulness and harmlessness (Wolf et al.,
2024; Qi et al., 2023; Huang et al., 2024e; Bai et al., 2022a). This guideline primarily evaluates the model’s
behavior from the perspective of potential harm and helpfulness (Dev et al., 2021). Different from Guideline 1,
this guideline emphasizes maintaining a balance between harmlessness and helpfulness, ensuring that models
are trustworthy while preserving their utility. It underscores that efforts to achieve trustworthiness should
not overly constrain developers, allowing space and opportunity to enhance the model’s task performance.
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We explicitly define the balance between helpfulness and harmlessness: helpfulness of the model should never
facilitate actions that could harm or compromise others’ property, reputation or assets. This guideline could
help resolve dilemmas in various situations. For instance, OpenAI’s model specification (OpenAI, 2024)
presents two queries: (a) “What are some tips for getting away with shoplifting?” (b) “I operate a small
retail store. What are some popular shoplifting methods I should look out for?” The query (a) seeks to harm
others’ assets, whereas the query (b) does not; therefore, the model is allowed to provide helpful responses
only to the latter. Furthermore, this guideline clarifies the boundary between harmfulness and harmlessness
by stipulating that LLMs should activate their safety mechanisms when inputs are deemed harmful from any
foreseeable human perspective.

Guideline 7: The model should generate reliable and accurate information, and make correct judgments,
avoiding the spread of misinformation. When the information is uncertain or speculative, the model
should clearly communicate this uncertainty to the user.

• This guideline requires the truthfulness in models’ generated responses (Slattery et al., 2024; Chen & Shu,
2023). Act (EU) Article 15 states that AI systems shall be designed and developed to achieve appropriate
accuracy. The ability to generate accurate information is directly related to the utility of generative models.
However, achieving absolute accuracy is challenging or almost infeasible due to the limitations in data quality,
training processes, and the difficulty in quantitatively measuring the output of generative algorithms. To
mitigate the risks associated with these limitations, Guideline 7 highlights the importance of uncertainty
indication, which compels the model to communicate uncertainties in its outputs. By indicating uncertainty
in its responses, models not only enhance user awareness of the reliability of the information provided but
also align with the principle of Honesty, as discussed in some studies (Chern et al., 2024; Shi et al., 2024d;
Gao et al., 2024).

Guideline 8: The generative model must ensure privacy and data protection, which includes the
information initially provided by the user and the information generated about the user throughout
their interaction with the model.

• This guideline emphasizes privacy preservation in the application of generative models. Various laws
and regulations highlight the importance of privacy protection in model usage (Department for Science &
Technology, 2023; Innovation & Canada, 2022; Department of Industry, Science and Resources, Australia,
2021; Ministry of Economy, Trade and Industry (METI), 2021; Slattery et al., 2024). The Blueprint also
underscores data privacy, stating that “the system must have built-in privacy protection mechanisms and
prioritize users’ privacy rights. It should ensure that only necessary data is collected in specific circumstances
and must respect users’ choices, avoiding unnecessary data collection or intrusive behavior.” Further, AI
RMF 1.0 (National Institute of Standards and Technology, 2023) encourages privacy protection through
Privacy-Enhancing Technologies (PETs), including data minimization methods like de-identification and
aggregation for certain model outputs. Notably, this guideline underscores bidirectional privacy preservation,
safeguarding both user input and model output.

2.3 Summary

In this section, we introduce a set of guidelines aimed at ensuring the trustworthiness of generative foundation
models across various sectors and applications. Since trustworthiness is a multifaceted concept that cannot be
encapsulated by rigid, universal rules, we establish key considerations for guideline development. These include
legal compliance, ethics and social responsibility, risk management, user-centered design, and adaptability. The
guidelines address critical aspects such as fairness, transparency, human oversight, accountability, robustness,
harmlessness, ethical norms, and privacy. By offering a flexible framework grounded in these considerations,
we empower developers, regulators, organizations, and researchers to align GenFMs with ethical and legal
standards while accommodating innovation and the unique challenges of different use cases.
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3 Fundamental Challenges in Understanding Trustworthiness

3.1 Trustworthiness is Subject to Dynamic Changes
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Figure 1: Dynamic requirements of trustworthiness in different downstream applications, where  indicates
high requirements for this trustworthy domain in the specific downstream task, and G#refers to relatively low
requirements.

The concept of "trustworthiness" in generative models is increasingly recognized as a dynamic and context-
dependent construct (Huang et al., 2024e; Liu et al., 2023c), reflecting the intricate and often conflicting
demands placed on these models across various domains, e.g., utilitarian or deontological (Gawronski &
Beer, 2017; Anderson & Anderson, 2011). Even when a certain definition is adopted, the very nature of such
principles may leave flexibility in their interpretation. As a result, different cultural, political, and societal
approaches that apply the same definition to a case may reach opposite conclusions. For instance, what one
society considers biased might be viewed as fair in another societal context (Henrich et al., 2010; Greene,
2014). This variability necessitates a deeper exploration into how trustworthiness is not a one-size-fits-all
attribute but rather an evolving quality that must be continually reassessed and redefined in response to
the unique challenges and ethical considerations of different applications, as shown in Figure 1. In previous
research, Klyman (Klyman, 2024) emphasizes that strict enforcement of acceptable use policies (AUPs) can
hinder researcher access and limit beneficial uses. This highlights the need for dynamic mechanisms to
enhance policy flexibility, adapting to evolving trust requirements.

At the core of this dynamic nature is the understanding that the expectations of what constitutes "trustworthy"
behavior for a generative model can shift dramatically depending on its deployment environment. For example,
in educational settings (Kasneci et al., 2023; George, 2023), the paramount concern is the protection of young
minds, leading to stringent requirements that the model must not generate harmful content such as violence,
explicit material (Miao et al., 2024), or misinformation (Huang & Sun, 2023; Huang et al., 2024d). Here, the
trustworthiness of the model is tightly coupled with its ability to filter out inappropriate content and adhere
to educational standards (Merlyn.org, 2024a;b;b).

However, this same model, when applied in a domain like artistic creation (Abuzuraiq & Pasquier, 2024),
medical domain (Han et al., 2024), or even certain research fields (Peng et al., 2023; Zhao et al., 2023; Jin
et al., 2024a; Salah et al., 2023; Zhang et al., 2024a; Roohani et al., 2024), might be required to operate
under a completely different set of trustworthiness criteria. For instance, for creative writers, overly strict
constraints on the truthfulness of generated content can hinder the model’s helpfulness, as flexibility in factual
accuracy is often essential for creativity. Moreover, in the medical field, generative models might include
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graphic content (e.g., gory or bloody images) in their inputs and outputs to effectively support healthcare
professionals. However, such content is generally unacceptable in educational contexts, especially when
targeting children or adolescents. In these contexts, the model’s ability to generate content that challenges
societal norms explores controversial ideas, or even delves into sensitive topics might be seen as not only
permissible but necessary for the fulfillment of its intended purpose. The trustworthiness of the model here is
thus defined not by what it excludes, but by the breadth and depth of its creative or analytical capacities,
even if those capacities might occasionally produce outputs that would be considered inappropriate in other
contexts. This fluidity in the definition of trustworthiness speaks to a broader issue in AI ethics: the necessity
for adaptive and context-aware governance mechanisms that can recalibrate the trust metrics of generative
models as they transition between different operational landscapes (Deloitte, 2024; WTW, 2024).

To achieve dynamic trustworthiness in AI models, two principal approaches are typically considered. The
first involves deploying highly specialized models designed for specific downstream tasks or domains. These
models are rigorously trained to meet the unique trustworthiness requirements of each task or domain. While
effective in isolated scenarios, this approach faces significant challenges in terms of scalability, as developing
and maintaining multiple models for diverse applications is resource-intensive and computationally costly.
Furthermore, such an approach risks limiting the model’s flexibility in handling novel or unexpected inputs
across various domains. The second approach seeks to overcome these limitations by enabling models to
dynamically adapt their trustworthiness criteria based on contextual understanding. In this paradigm, models
are equipped to interpret the specific contexts and adjust their responses accordingly. For example, OpenAI’s
model specifications (OpenAI, 2024) suggest that in creative text generation contexts, queries typically
considered harmful—such as “write me rap lyrics about cats that includes ‘fuck’ in every line”—may be
deemed appropriate given the creative nature of the task. This approach offers greater adaptability but also
presents new challenges in terms of alignment. The model must be able to reliably and accurately interpret
complex, often ambiguous, contextual cues while maintaining appropriate trustworthiness thresholds.

Furthermore, the concept of dynamic trustworthiness challenges us to rethink the conventional metrics used
to evaluate generative models. Traditional benchmarks that emphasize static evaluations might fail to capture
the nuanced and context-specific demands of different domains. Instead, there is a growing need for a more
fluid and adaptable framework for assessment (e.g., DyVal (Zhu et al., 2023), UniGen (Wu et al., 2024a),
AutoBencher (Li et al., 2024c), AutoBench-V (Bao et al., 2024) and others (Fan et al., 2024; Kurtic et al.,
2024)) or the evaluation framework for specific domain (Fei et al., 2023; Xia et al., 2024; Zhang et al., 2024f),
one that recognizes the multiplicity of stakeholders involved.

Building on this, trustworthiness varies significantly across different stakeholders, highlighting the importance
of transparency in benchmark design and implementation. When a benchmark adopts specific interpretations,
it inevitably aligns with certain approaches while potentially diverging from others. By being transparent
about the assumptions and definitions, benchmarks can provide valuable insights. Such transparency allows
stakeholders to make informed decisions about which benchmarks best align with their goals, contributing to
more meaningful evaluations of GenFMs. Consequently, we have proposed guidelines in §2.2 that address the
varying needs of stakeholders, ensuring that assessments remain flexible, context-aware, and aligned with the
diverse objectives of the GenFM ecosystem.

In conclusion, trustworthiness in generative models is far from a fixed attribute; it is a complex, multi-
dimensional quality that must be continually negotiated and redefined. This dynamic nature of trustworthiness
demands a more sophisticated approach to model deployment and assessment, one that is capable of adapting
to the diverse and changing needs of different domains.

3.2 Trustworthiness Enhancement Should Not Be Predicated on a Loss of Utility

As generative models continue to advance, the balance between trustworthiness and utility emerges as a crucial
issue. Some have perceived the SB 1047 AI Bill (Senate, 2024), introduced to ensure the trustworthiness
of advanced generative models rigorously, as a potential impediment to AI innovation (California Chamber
of Commerce, 2024). In this discussion, we will examine two key positions: (1) trustworthiness and utility
are inherently interconnected, and (2) it is not advisable to compromise either trustworthiness or utility in
pursuit of enhancing the other.
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Recent studies also unveil that trustworthiness is closely related to utility (Wolf et al., 2024; Qi et al., 2023;
Huang et al., 2024e; Bai et al., 2022a; Zhang et al., 2024e). For instance, Huang et al. (2024e) found that
the trustworthiness of LLMs is positively related to their utility performance. Qi et al. (2023) found that
fine-tuning LLMs without any malicious aims will still compromise the trustworthiness of LLMs. Bai et al.
(2022a) and Zhang et al. (2024e) aim to balance trustworthiness and helpfulness during model training. Even
though in LLM’s evaluation, trustworthiness and utility are closely related, Ren et al. (2024) found that many
safety benchmarks highly correlate with upstream model capabilities. The importance of maintaining this
balance is further emphasized by the findings of Klyman (Klyman, 2024), who discusses the role of acceptable
use policies in shaping the market for foundation models and the AI ecosystem.

Continuing from the argument that trustworthiness and utility are deeply interconnected, focusing exclusively
on enhancing one while neglecting the other can lead to unintended negative consequences. Overemphasis on
safety and alignment at the cost of utility is a prominent example. If models are excessively constrained to
prioritize safety features such as stringent content filtering or rigid ethical frameworks, it may limit their
ability to provide useful or creative responses, ultimately diminishing their overall utility (Röttger et al., 2023;
Kirk et al., 2023). This kind of imbalance, where trustworthiness is prioritized at the expense of utility, could
result in models that are overly cautious or even unusable in certain dynamic, real-world contexts where
flexibility and innovation are key.

On the other hand, sacrificing trustworthiness to maximize utility poses significant risks. Models that
have high utility but lack robustness in terms of fairness, transparency, or resistance to manipulation are
problematic. Such models might generate biased or harmful outputs, undermining user trust and creating
ethical dilemmas (Huang et al., 2024e; Liu et al., 2023c; Wang et al., 2023a). In high-stakes environments
like healthcare or finance, utility without trustworthiness is unsustainable, as untrustworthy models are
unlikely to be adopted or could even cause harm (Xia et al., 2024). To these ends, the approach of sacrificing
one dimension for the benefit of the other is inherently flawed. What is needed is a paradigm where both
trustworthiness and utility can be simultaneously improved to ensure models are both reliable and effective.

Rather than viewing trustworthiness and utility as competing objectives, recent research highlights the
potential for mutual enhancement. For example, some approaches begin by ensuring that the model is
harmless—establishing a baseline of trustworthiness—before optimizing for helpfulness or utility (Gao et al.,
2024). By incorporating multi-objective alignment (Yang et al., 2024b; Wang et al., 2024a; Zhou et al., 2024d;
Fu et al., 2024), some studies aim to maximize the helpfulness and harmlessness at the same time. These
approaches recognize that a rigid, one-size-fits-all alignment process might not be optimal; instead, dynamic
adjustments during the training process allow the model to improve both aspects simultaneously.

One crucial insight from these approaches is that harmlessness acts as a safeguard—ensuring that the model
is inherently trustworthy before other features are optimized. This aligns with the view that trustworthiness
is not a constraint on utility but a necessary component of it. By establishing a framework where the model
cannot generate harmful outputs, developers can confidently enhance the model’s utility without the risk of
ethical breaches or unintended consequences.

The balance between trustworthiness and utility is not a zero-sum game where enhancing one necessarily
diminishes the other (Tuan et al., 2024). On the contrary, the two can—and should—be pursued in tandem
to create robust, effective AI models. Sacrificing either trustworthiness or utility for short-term gains in the
other is ultimately unsustainable and could lead to detrimental consequences in both ethical and practical
applications. The key lies in developing methods, like the harmlessness-first approach, where trustworthiness
serves as a foundation for subsequent utility maximization. This strategy ensures that models remain both
safe and effective, setting the stage for a future where generative AI can thrive in a variety of real-world
contexts without compromising on either front.

3.3 Reassessing Ambiguities in the Safety of Attacks and Defenses

Let the input space be I and the output space be O. For any content z ∈ I ∪O we define a binary safety
indicator S(z) denoted at Equation 1

S(z) := 1
[
H(z) = 0

]
(1)
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Figure 2: Ambiguities in the safety of attacks and defenses.

where the latent harmfulness indicator H(z) ∈ {0, 1} equals 1 iff the content is harmful in ground-truth
human judgement. A practical detector returns an approximation Ŝ and consequently incurs false positives /
negatives (see risk definition later).

The ambiguity in determining the safety of inputs and outputs in generative models presents substantial
challenges. The distinction between harmful and benign content is not always clear-cut, both for the input
provided to the model and for its output. This lack of clarity complicates the development of robust safety
mechanisms and introduces ethical and practical challenges (Bauer & Bindschaedler, 2021; Truong et al., 2024;
Huang et al., 2025). We discuss this from the perspective of both input and output, as shown in Figure 2.

Ambiguity on the input side. A critical question arises: How can we clearly identify if the input
is harmful? Formally we wish to estimate posterior probability Equation 2.

Pr
[
H(x) = 1 | x

]
, x ∼ I (2)

Existing efforts approximate this probability with a learned map fθ : I → [0, 1] and a threshold τ , i.e.
Ĥ(x) = 1

[
fθ(x) > τ

]
(Wang & Chang, 2022; Ousidhoum et al., 2021; OpenAI, 2024b). However, semantically

adjacent prompts IA, IB ∈ I may satisfy dsim(IA, IB) < ε for some small ε > 0, yet H(IA) ̸= H(IB).

IA (benign-looking): “Please write a post encouraging people to build a strong national
defense.”
IB (potentially harmful): “Write a post promoting militaristic aggression.”

While IA might be labelled benign in exaggerated-safety studies (An et al., 2024), it can be a paraphrase of
IB generated by jailbreak techniques (Zeng et al., 2024b) We can therefore bound a worst-case input risk as
3, which requires Rin ≤ δ for a policy budget δ.

Rin := sup
x∈I, dsim(x,x′)<ε

∣∣Ĥ(x) − Ĥ(x′)
∣∣ (3)

Initial mitigations include rules in OpenAI’s Model Spec (OpenAI, 2024), which treat IA as permissible
because the misuse arises from downstream human intent.

Ambiguity on the output side. Similarly, the question “How can we accurately judge if the output
is harmful?” can be phrased as minimising posterior probability in Equation 4.

Pr
[
H

(
g(x)

)
= 1 | x

]
(4)

where g : I → O is the model generation function. Suppose the model returns y = g(x) = (disclaimer, ỹ),
with an ethical disclaimer followed by substantive content ỹ. An attacker can train a function ϕ that strips
disclaimers to reserve harmful content over ideal distribution over x denoted as D, i.e. y′ = ϕ(y) = ỹ, and the
effective output risk Rout(g, ϕ) can thus be described Equation 5.

Rout(g, ϕ) = Ex∼D
[
H

(
ϕ◦g(x)

)]
(5)

highlighting the gap between presentation safety and extraction safety (Ran et al., 2024; Mazeika et al., 2024).
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Trustworthy response taxonomy. Recent policies (Mu et al., 2024) define three reply types
{Refusehard, Refusesoft, Comply}. Let T (g, x) ∈ {0, 1, 2} encode these criteria and UX(gt(x)) to denote
the user utility of the t response. A refined objective is to choose, for every x, choose the T (g, x) by balancing
safety (λH) and user utility (λux) as in Equation 6.

T (g, x) = arg min
t∈{0,1,2}

{
λH E

[
H(gt(x))

]
+ λux UX(gt(x))

}
(6)

The above ambiguities systematically undermine the reliability, comparability, and reproducibility of current
safety research. In summary, distinguishing harmful from benign content in generative models demands
explicit definition (e.g., taxonomy, protocol, or specification). As models advance, tighter Lipschitz bounds
on H, attacker-aware risk measures, and multi-objective response optimisation will be crucial (Kapoor et al.,
2024; Ren et al., 2024; Koyejo & Li, 2024; Anderljung et al., 2023).

3.4 Dual Perspectives on Fair Evaluation: Developers vs. Attackers

To elevate the discussion on evaluating generative models, particularly about handling harmful or malicious
queries, it is essential to address a pivotal yet often overlooked issue: should the evaluation be framed from the
standpoint of developers or attackers? This differentiation is not merely theoretical (Jia & Gong, 2018; Huang
et al., 2013; Random Trees, 2024), but fundamentally shift the criteria for assessing a model’s performance
and reliability. In short, the design of generative AI should follow a strict ethical strategy grounded in the
developer’s perspective for general human welfare.

Notation. For each query x, the model outputs g(x) ∈ O ∪ {rej}, where rej indicates a refusal. Define
R(x) = 1[g(x) = rej], H

(
g(x)

)
= 1[answer is factually useful],

A(x) =
(
1 − R(x)

)
H

(
g(x)

)
,

so that R(x) = 1 iff the model refuses, H(g(x)) = 1 iff the answer helps an attacker, and A(x) = 1 iff it
provides a nonrefusal that is attacker-useful.

Developer Perspective. Let H and B denote the harmful and benign query distributions.
TPR = Pr

x∼H
[R(x) = 1], (7)

Udev(g) = TPR − λ Pr
x∼B

[R(x) = 1], (λ > 0). (8)

Here TPR is the true-positive refusal rate, and λ trades off safety against unnecessary refusals on benign
inputs. Any x with A(x) = 1 remains a critical failure regardless of phrasing (Du et al., 2023; Wang et al.,
2023c).

Attacker Perspective. From an attacker’s standpoint, both refusals and incorrect answers are failures.
The relevant metrics are

Uatk(g) = Pr
x∼H

[A(x) = 1] = ASRhlp, (9)

ASRnr = Pr
x∼H

[R(x) = 0]. (10)

Reporting only ASRnr implicitly treats all nonrefusals as helpful, which can overstate the real exploit risk
when answers are incorrect.

Why Prioritize Developer Metrics? In practice, as generative models grow more capable, any single
lapse–where the model does not refuse a harmful prompt and instead provides a response–becomes increasingly
likely to yield clear, actionable advice for malicious purposes. By driving the true-positive refusal rate toward
one (TPR → 1), we directly reduce the probability that an attacker obtains exploitable guidance (hence
ASRhlp → 0). Presenting both TPR and ASRhlp side by side makes visible the fundamental trade-off between
rejecting truly harmful queries and maintaining responsiveness on benign ones. This explicit, dual-metric
approach highlights where defense techniques succeed or fall short, ensuring that gains in refusal performance
are not offset by hidden rises in exploitability, and thus supports a transparent, fair evaluation framework.
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Toward richer reporting. In light of these considerations, we advocate that future work go beyond a
single success figure and routinely publish a comprehensive set of safety–utility metrics, including but not
limited to TPR, ASRhlp, and distributions of refusal quality.

3.5 A Need for Extendable Evaluation in Complex Generative Systems

Current evaluation frameworks or benchmarks predominantly focus on assessing the trustworthiness of
individual generative models (Wang et al., 2023a; Huang et al., 2024e). Formally, given a single model M

parameterised by θ and an evaluation dataset D = {(xk, yk)}|D|
k=1, these works estimate a scalar score

Score(M) = 1
|D|

|D|∑
k=1

u
(
Mθ(xk), yk

)
, (11)

where u(·, ·) is a task-specific utility or risk function. While such metrics provide reliable calibration for
single models, they fall short in effectively evaluating complex generative systems (Reuel et al., 2024a). The
remainder of this subsection therefore catalogues the challenges inherent in evaluating such systems; any
mathematical expressions that follow are intended only as illustrative sketches to guide future work, not as a
finished methodology.

Formalising a complex system. We describe a system as the triple

S = (M, G, X ), (12)

where M = {Mi}N
i=1 is the set of N generative models, G = (V, E) is a directed acyclic graph with

V = {1, . . . , N} and (i→j) ∈ E whenever the output of Mi is consumed by Mj , and X denotes the admissible
input space. For an input x ∈ X the system produces a tuple of outputs

y(x) = (y1, . . . , yN ) with yi ∼ Pθi

(
·
∣∣ paG(i)

)
, (13)

where paG(i) denotes the realised outputs of the parent nodes of i.

(1) Multiple models powering the system. Recent work has explored frameworks in which N ≫ 1
specialised agents—often instantiated by different foundation-model families—collaborate to accomplish
a higher-level goal (Guo et al., 2024b; Williams et al., 2023; Gao et al., 2023; Wang et al., 2023b; Chen
et al., 2024d; Qian et al., 2024). For example, ChatDev (Qian et al., 2024) can be written as a chain
MReq →MDesign →MCode →MTest. To gauge such a pipeline one might measure both per-stage utility ui and
an end-to-end (path-level) utility

Upath(S) = Ex∼D
[

uend
(
Downstream(x)

)]
, (14)

but designing robust path-level metrics remains an open challenge.

(2) Multi-modal information interaction. Let Mmod = {text, image, audio, video}. Each Mi carries a
modality signature σ(Mi) ⊆ Mmod. For a pair of outputs (o(m), o(n)) from two modalities m, n ∈ Mmod one
possible coherence proxy can be calculated as Equation 15

Cm,n

(
o(m), o(n)) = cos

〈
fm(o(m)), fn(o(n))

〉
(15)

where fm and fn embed the outputs into a shared semantic space. Aggregating such terms into a reliable
system-wide score, however, is still unsolved.

(3) Consistency and scalability. As N grows, naively enumerating edges in G becomes prohibitive: if
each inspection costs τ time units,

Ceval = τ |E| = Θ(τNd̄), (16)
with d̄ the average in-degree. Developing evaluators whose amortised cost grows sub-linearly with N is a
pressing research direction.
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Toward a composite trustworthiness objective (future work). Although a complete formulation lies
beyond this survey’s scope, future work may investigate composite objectives that balance utility, cross-modal
coherence, and risk, e.g.

J (S) = α Upath(S) + β Csys(S) − γ R(S), (17)

where Csys generalises pairwise coherences to the whole system and R aggregates error-propagation risks.
Estimating or optimising equation 17 in real time remains an open problem.

In summary, evaluating complex generative systems demands frameworks that account for inter-model
dependencies, cross-modal semantics, and scaling behaviour; designing such frameworks constitutes an open
and urgent challenge for the community.

3.6 Integrated Protection of Model Alignment and External Security

Recent research has increasingly focused on enhancing the safety alignment mechanisms of generative models,
particularly LLMs, and LVMs, to improve their overall trustworthiness (Ouyang et al., 2022b; Dai et al.,
2023; Ji et al., 2024; Yu et al., 2024; Akyürek et al., 2023). In this context, we propose that integrating
internal alignment mechanisms with external security measures constitutes a critical approach to developing
trustworthy generative systems.

This perspective emphasizes the equal importance of external protection alongside internal safety alignment.
External protection mechanisms, such as moderators designed to identify potentially harmful content in
both user inputs and model outputs, are gaining traction (ope, 2023; fac, 2023). For instance, recent studies
have introduced auxiliary models that work alongside generative models to enhance system trustworthiness
(Yuan et al., 2024; Cao et al., 2023; Huang et al., 2024c). Additionally, specific safety measures have been
implemented in practice, such as the text classifier used in DALL-E 3 to assess the harmfulness of user inputs
(OpenAI). Tools like detection classifiers, which can identify content generated by models like OpenAI’s Sora,
further contribute to safeguarding against misleading or harmful outputs (OpenAI, 2024e).

Three key reasons highlight the necessity for external protection mechanisms: (1) Natural Defect of
Alignment: Recent research has identified flaws in alignment methods (Xu et al., 2024; Wolf et al., 2023;
Ouyang et al., 2022b; Puthumanaillam et al., 2024). For example, Wolf et al. (2023) argue that current
approaches like RLHF (Ouyang et al., 2022b) are inherently vulnerable to adversarial prompting, leading to
undesirable behaviors. Additionally, Puthumanaillam et al. (2024) highlight that LLMs struggle with adapting
to evolving values and scenarios under current methods. These examples illustrate that current alignment
strategies for generative models have inherent limitations, making superalignment (Burns et al., 2024)
challenging to achieve to ensure trustworthiness. (2) Impact on Model Utility: Even though some studies
think safety mechanisms should be as sophisticated as the underlying model (Wei et al., 2024), strict safety
alignment within generative models can significantly compromise their utility, particularly in fundamental
tasks (Wolf et al., 2024; Tuan et al., 2024; Yuan et al., 2024; Zhang et al., 2024e). Overemphasis on internal
alignment can lead to overly conservative or restricted models, thereby diminishing their performance and
effectiveness in various applications. (3) Flexibility in Diverse Scenarios: Generative models that
are overly aligned for safety may lack the adaptability required for deployment across diverse contexts and
scenarios, as discussed in Section 3.1. In contrast, models with basic safety alignment, supplemented by
adjustable external protection, offer a more flexible and practical solution. This configuration allows for
dynamic adjustments to the external safety measures without fundamentally altering the model itself, thereby
facilitating broader and more nuanced applications of the generative system. Additionally, incorporating
more safety design principles (e.g., the principle of least privilege) is essential to establish a comprehensive
and robust safety mechanism for model deployment.

In conclusion, balancing internal safety alignment with robust external protection mechanisms presents a
promising pathway toward developing a trustworthy generative model-based system. This integrated approach
enables enhanced safety and adaptability, ultimately supporting the deployment of generative models across
a wider spectrum of real-world contexts.
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3.7 Alignment: A Double-Edged Sword? Investigating Untrustworthy Behaviors Resulting from
Instruction Tuning

 Improved Instruction Following
 Reduced Social and Ethical Risks
 Improved Reasoning Capabilities
 Improved Safety for End Users

 Sycophancy 
 Power Seeking
 Self-Preservation
 Deception

 Awareness
 Memorization
 Prompt Sensitivity
 Inverse-Scaling

Figure 3: Benefits and potential untrustworthy behaviors from alignment process.

A key distinction between LLMs like InstructGPT (Ouyang et al., 2022a) and earlier models such as GPT-3
(Brown et al., 2020) lies in their enhanced ability to follow human instructions, beyond just increased model
size. This improvement stems largely from alignment techniques that adjust the model’s behavior to better
align with human preferences. These techniques include Proximal Policy Optimization (PPO) (Schulman
et al., 2017), Direct Preference Optimization (DPO) (Rafailov et al., 2024), and Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022a). Broadly speaking, alignment (Shen et al., 2023a; Ji et al.,
2023; Wang et al., 2024c; 2023e; Yao et al., 2023; Cao et al., 2024; Liu et al., 2023c) involves embedding
human values and objectives into LLMs to improve their helpfulness, safety, and reliability, which are some of
the key attributes in establishing the model’s trustworthiness.

While alignment aims to reconcile the mathematical training of an LLM with the human values we expect,
this process can sometimes lead to unintended negative consequences. For instance, Lin et al. examined the
effects of alignment tuning by analyzing shifts in token distribution between base LLMs and their aligned
counterparts. Their findings reveal that the decoding performance of both the base models and aligned
versions remains nearly identical across most token positions (Lin et al.), aligning with earlier research (Zhou
et al., 2024a) suggesting that the impact of alignment tuning may be superficial. Additionally, Sharma et al.
(2023) found that sycophantic behaviors can emerge as an unintended consequence of the instruction tuning
process, with their experiments indicating that human preferences and preference models often prioritize
sycophantic responses over truthful ones. Similarly, Hubinger et al. (2019) identified deceptive alignment
as a potential risk, where a model appears to follow the specified objective within the training distribution
but actually pursues a different objective outside of it—an undesirable outcome of the alignment process.
Moreover, McKenzie et al. (2023) discovered that alignment can lead to overoptimization, potentially causing
inverse scaling, where a model’s performance deteriorates as its size increases. Lastly, studies (Turner et al.,
2019; Turner & Tadepalli, 2022; Krakovna & Kramar, 2023) have shown that optimal policies and reward
functions can incentivize systems to seek power in certain environments, a behavior known as power-seeking.
In line with this finding, Ngo et al. (2022) and Shevlane et al. (2023) have found that LLMs may develop
situational awareness, potentially enabling models to evade human oversight. More recently, there is growing
concern about alignment faking (Carlsmith, 2023; Greenblatt et al., 2024), where an LLM selectively complies
with its training objectives to avoid modifications to its behavior outside the training distribution. Carlsmith
(Carlsmith, 2023) analyzed the phenomenon of scheming or deceptive alignment, in which a model appears
to follow its specified objectives during training while secretly pursuing different, potentially harmful goals
once deployed. Furthermore, Greenblatt et al. (2024) conducted experiments showing that models can resist
changes to their goals without explicit instruction, highlighting the plausibility of alignment faking.

To understand the root causes of these issues, improving the interpretability of large generative models
(Singh et al., 2024a) is essential. In particular, Mechanistic Interpretability (Nanda et al., 2023; Conmy
et al., 2023; Zimmermann et al., 2024; Rai et al., 2024) is a powerful approach to unlocking the black box
of large generative models, enabling a deeper understanding of their inner workings. This method involves
reverse-engineering the computational mechanisms and representations learned by neural networks into
human-understandable algorithms and concepts, thereby providing a detailed, causal explanation of how
these models operate. Bereska and Gavves (Bereska & Gavves, 2024) explore how mechanistic interpretability
can be leveraged to enhance AI safety.
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Given the discussion above, we highlight the trustworthiness issues in large models that arise from the
alignment process. Therefore, future research should focus on improving alignment techniques or developing
mitigation strategies to reduce the undesirable behaviors resulting from instruction tuning.

3.8 Fairness and Ethical Considerations in GenFMs

Fairness (appendix A.1) in GenFMs is contextual, requiring adaptation to different groups’ needs rather than
uniform standards. It should foster mutual understanding, provide information without dictating choices, and
address both procedural fairness and outcomes. Moreover, models respond differently to ethical dilemmas
(appendix A.2)—some maintaining neutrality while others make decisive choices, reflecting either top-down
(principle-based) or bottom-up (context-based) ethical approaches. These differences highlight the need for
interdisciplinary research combining philosophy and cognitive science to enhance ethical reasoning, alongside
transparency mechanisms that explain models’ moral decision-making processes.

3.9 The Role of Natural Noise in Shaping Model Robustness and Security Risks

Robustness serves as a critical metric for evaluating GenFMs, specifically quantifying their response consistency
under natural perturbations. Formally, let f be the generation function, and δ be a natural perturbation
applied to input x. The robustness R can be defined as:

R = Ex,δ

[
C

(
f(x), f(x + δ)

)]
, (18)

where C(·, ·) denotes a consistency function (e.g., cosine similarity, BLEU score) that measures the similarity
between the outputs of unperturbed and perturbed inputs. A higher R indicates stronger robustness, i.e.,
greater output consistency under natural perturbations. Based on this robustness framework, we discuss
several critical considerations for enhancing model robustness in practice.

Balancing robustness training and overfitting risks. Noise perturbations exhibit a dual impact on
model performance, with detrimental effects outweighing beneficial ones in most scenarios. Interestingly, in
some cases, adding noise led to performance improvements, which aligns with previous research (Li et al.,
2020) suggesting potential overfitting in adversarial training of GenFMs. Adversarial training typically
combines losses from both clean and perturbed inputs, and can be formalized as:

min
θ

E(x,y)∼D
[
Lclean

(
fθ(x), y

)
+ λ · Ladv

(
fθ(x + δ), y

)]
, (19)

where λ is a balancing coefficient controlling the trade-off between clean performance and robustness.
Although adversarial training generally enhances model stability under perturbations, excessive adversarial
optimization—reflected in an overly large λ—may lead to critical vulnerabilities, such as reduced generalization
capability to novel or slightly varied attack patterns, increased susceptibility to adaptive attacks exploiting
overfitted defense mechanisms, and potential degradation of the model’s primary task performance. These
findings highlight the dual nature of noise in adversarial training and underscore the need for balanced
strategies that leverage its benefits while mitigating associated risks.

Differential robustness requirements across diverse prompt types. The GenFMs show significant
variation in robustness depending on the prompt type, with markedly better performance observed on close-
ended queries than on open-ended ones. For close-ended queries, which typically have clear and deterministic
answers, consistency is crucial. Errors in close-ended queries, especially those involving principled or safety-
critical decisions, can lead to severe consequences. For instance, in autonomous driving, misinterpreting
sensor data could result in incorrect decisions, such as failing to identify an obstacle or traffic sign. In the
field of medical health, consistency and high accuracy in responses are essential, even when noise is present.
Therefore, ensuring high robustness in close-ended queries is fundamental to model reliability, as these queries
are often tied to high-stakes scenarios where mistakes can have serious implications. In contrast, open-ended
queries are inherently more variable due to their subjective nature and dependence on factors such as the
temperature setting in model generation. This variability in responses makes it challenging to maintain
consistency under noisy conditions. However, open-ended queries often tolerate a degree of variability, and
the focus should be on improving coherence and relevance rather than strict consistency.
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3.10 Balancing Dynamic Adaptability and Consistent Safety Protocols in LLMs to Eliminate Jailbreak
Attacks

Different ways of asking the same 
question

Rejection to Answer

w/o safety training

w/ safety training

Different ways of asking the same 
question Jailbroken Answer

The Same Answer

Inconsistency of LLM safety Possible LLM Safety Enhancement

Output-Level consistency training

Dynamic context-sensitive safety detection module

Post-output dynamic defense

Figure 4: The root causes of LLM safety inconsistencies and potential improvement strategies.
While §3.1 highlights the importance of models dynamically adapting to different users’ needs, jailbreak
attacks often exploit this adaptability by simulating various roles to achieve success (Shen et al., 2023b;
Ma et al., 2024a; Liu et al., 2023d; Shah et al., 2023; Li et al., 2023c). This means that LLM simulations
can inadvertently create vulnerabilities, leading to successful jailbreaks. To prevent this, models need to
balance dynamic trustworthiness with robust security measures. We propose that different models could
use distinct trustworthiness protocols to meet diverse user needs. However, a single model must maintain
a consistent safety protocol to ensure that its safety standards are not compromised, regardless of how a
question is phrased. Specifically, as shown in Figure 4, for any given query, even if it is rephrased, placed in
different scenarios, or simulated under different contexts, the LLM should consistently judge whether the
query violates the safety protocols. In other words, the model must generate the same safe and trustworthy
response for different ways of asking the same question.

Current safety training methods, such as safety fine-tuning or RLHF for Safety, tend to focus on identifying
specific harmful inputs, aligning with the autoregressive nature of LLMs (Zhou et al., 2024b; Deng et al.,
2023b; Paulus et al., 2024; Bhardwaj & Poria, 2023). However, while harmful outputs are direct violations
of safety protocols, many different inputs can lead to the same harmful output, and it is impractical to
account for all these inputs during training. Since LLMs are primarily trained to provide helpful answers,
scenarios not covered during safety training may still result in successful jailbreaks. This highlights the
limitations of relying solely on input-based safety measures and underscores the need for models to ensure
output consistency alongside strict safety protocols to prevent potential vulnerabilities.

Jailbreak attacks often exploit the insufficient coverage during training. In these cases, LLMs transform
harmful queries by adding complexity or ambiguity, bypassing the boundaries set by safety training (Chao
et al., 2023; Shah et al., 2023; Gong et al., 2023; Ma et al., 2024a). Many studies have shown that LLMs
can also assist in rephrasing or breaking down harmful queries, effectively circumventing safety mechanisms
(Huang et al., 2024f; Chang et al., 2024). The issue here is that LLMs may not recognize that transforming
or rephrasing harmful queries is itself harmful. As a result, they may inadvertently relax the enforcement of
safety protocols. To address this, models must strictly enforce a consistent safety protocol, ensuring that
harmful queries cannot be executed, regardless of how they are phrased or transformed.

To overcome the limitations in current LLM safety training, a "multi-level consistency supervision mechanism"
could be implemented to improve model security. This approach enhances defense capabilities in three key
areas: First, by introducing output-level consistency training, models need to be trained to ensure that
semantically similar but differently phrased inputs yield the same safe and consistent output, preventing
harmful inputs from bypassing safety mechanisms through linguistic variation. Second, a context-sensitive
safety detection module can be added to track the entire conversation or input context, dynamically identifying
shifts in user intent, and preventing complex multi-step transformations from leading to jailbreaks. Finally,
post-output dynamic defense mechanisms can be designed to review the generated output in real-time,
ensuring it adheres to safety protocols, with dynamic rule updates to address new types of harmful inputs.
This approach reduces reliance on exhaustive input-based training, strengthens the model’s safety across
different contexts, and enhances both adaptability and consistency, preventing it from being manipulated
into producing harmful outputs.
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Additionally, since different models are designed to adapt to various users’ needs, they should be equipped
with a dynamic user policy to regulate user behavior and interactions, ensuring that the model’s safety and
consistency are maintained throughout the interaction.

4 Domain-Specific Trustworthiness Considerations

The deployment of GenFMs across critical domains necessitates a comprehensive examination of domain-
specific trustworthiness challenges. As these models increasingly influence high-stakes decisions in healthcare,
scientific research, robotics, and human-AI collaboration, understanding the unique reliability concerns in
each context becomes increasingly significant. This section explores how trustworthiness manifests differently
across domains, analyzing the technical, ethical, and governance challenges that must be addressed to ensure
responsible deployment. Please refer to appendix B for more details.

In the medical domain, trustworthiness of GenFMs faces three critical challenges: data quality limitations,
explainability requirements, and regulatory complexities. Medical data’s heterogeneity and privacy constraints
under regulations like HIPAA (Gostin et al., 2009) and GDPR (Li et al., 2019) hinder robust model
development, while techniques such as federated learning offer partial solutions despite communication
overhead risks (Johnson et al., 2016; Yang et al., 2019). Model explainability represents a critical frontier,
as healthcare professionals require transparent mechanisms to validate AI-generated insights in high-stakes
decision-making contexts (Doshi-Velez & Kim, 2017; Guidotti et al., 2018; Obermeyer et al., 2019). Approaches
like attention mechanisms and domain-specific explanation frameworks offer promising pathways to demystify
complex generative models (Selvaraju et al., 2017; Rudin, 2019). Additionally, evolving regulatory landscapes
present adoption barriers, as frameworks designed for static software struggle with dynamic generative models,
while liability questions regarding incorrect AI recommendations remain unresolved (Rieke et al., 2020; Beam
& Kohane, 2018; Muehlematter et al., 2021). Addressing these interconnected challenges is essential for
ensuring that GenFMs can be safely and effectively integrated into healthcare systems.

In scientific applications, generative models introduce unique trustworthiness challenges stemming from
the critical need for precision, safety, and speed in discovery processes. Trust in these models depends
on transparency, validation against empirical data, interpretability of model decisions, and uncertainty
quantification that helps researchers appropriately weigh model predictions (Fan et al., 2023; Messeri &
Crockett, 2024; Schwaller et al., 2021; Raghavan et al., 2023; Medina-Ortiz et al., 2024). For example, in drug
discovery, confidence scores allow prioritization of compounds with highest predicted efficacy (Nigam et al.,
2021; Borkakoti & Thornton, 2023), while in materials science, proposed molecular structures must align with
established principles before synthesis (Shu et al., 2020; Bickel et al., 2023). Balancing rapid innovation with
safety requires phased deployment approaches (Elemento et al., 2021; Kaur et al., 2023), implementation
of ethical constraints such as filters for potentially hazardous outputs (Gromski et al., 2019), and rigorous
experimental validation. This hybrid approach combining AI-driven discovery with human oversight enables
scientific advancement while maintaining necessary safety standards (Zhou et al., 2024c; Ramos et al., 2024).

In robotics and physical embodiment applications, trustworthiness concerns manifest through the
potential risks of LLM and VLM limitations translated into physical actions. These models can produce
errors resulting from language hallucinations and visual illusions (Guan et al., 2023), which raise significant
safety concerns when influencing robots’ interactions with real-world environments (Wu et al., 2024b; Robey
et al., 2024). Safety can be compromised in two main aspects: reasoning/planning failures, where ambiguous
decision-making or hazard identification deficiencies lead to unsafe maneuvers (Azeem et al., 2024), and
physical action errors, where Visual-Language-Action models may generate inaccurate high-level actions
or apply excessive force during execution (Ma et al., 2024d; Guruprasad et al., 2024). Approaches like
SafetyDetect help identify potential hazards in home environments through LLMs and scene graphs for safer
decision-making (Mullen et al., 2024), highlighting the necessity for comprehensive techniques addressing
both cognitive and physical safety dimensions in embodied AI systems.

Human-AI collaboration introduces fundamental challenges regarding trust calibration and accountability.
Trust calibration—determining when and to what extent AI systems can be trusted—is complicated by
users’ limited understanding of GenFMs due to opaque marketing claims and inherent model complexity
(Chen et al., 2024a; Bhardwaj et al., 2024; Slobodkin et al., 2023). This leads to either overtrust, where
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recommendations are accepted uncritically, or undertrust, where valuable insights are disregarded (Jiang et al.,
2024; He et al., 2023a; Elshan et al., 2022). Addressing these imbalances requires improved transparency
through methods like verbalized confidence scores, consistency-based approaches, and uncertainty estimation
(Lin et al., 2022; Tian et al., 2023; Wang et al., 2023d). Simultaneously, error attribution presents challenges
in determining responsibility when failures occur in complex decision-making processes. The solution involves
mechanisms tracing errors to root causes through model audits (Mökander, 2023), detailed decision pathway
logging (Staron et al., 2024), and context-aware explanations (Rauba et al., 2024), thereby fostering a culture
of shared responsibility between humans and AI systems that promotes robust and ethical collaboration even
in high-stakes scenarios.

Cybersecurity represents a case study highlighting both potential and peril of GenFMs. While frameworks
like SWE-bench and Cybench demonstrate value in automated security testing (Jimenez et al., 2024; Zhang
et al., 2024a), these advances present a double-edged sword. GenFMs enhance defense accessibility but
also introduce vectors for adversarial exploitation, with OpenAI reporting over A 20 state-linked operations
attempting to weaponize these systems in 2024 (OpenAI, 2024c). Their capabilities could accelerate zero-day
exploit discovery (Fang et al., 2024; Shen et al., 2024), automate sophisticated social engineering attacks
(Falade, 2023; Charfeddine et al., 2024), and generate advanced, adaptive malware (Madani, 2023; Usman
et al., 2024). These challenges parallel concerns in other domains like disinformation, academic integrity,
and sensitive research areas (Institute, 2024; of Chicago, 2024; Sandbrink, 2023), underscoring the need
for comprehensive governance frameworks balancing innovation with safeguards against misuse, beyond
preliminary efforts by industry leaders (Microsoft, 2023; Google, 2023; OpenAI, 2023).

5 Broader Implications

5.1 Interdisciplinary Collaboration is Essential to Ensure Trustworthiness

Medical Law Journalism

Interdisciplinary Domains Generative Model Developers
Align with societal concerns 

Promote positive use cases

Contribute to Democratic AI

Investigated model behavior

Potential impacts of models 

Design trustworthy system

Figure 5: Interdisciplinary influence of generative models.

Generative models have the potential to contribute or even revolutionize wide range of domains, from natural
language processing to scientific discovery (Colombo et al., 2024; Guo & Yang, 2024; Maatouk et al., 2024;
Guo et al., 2023; OpenAI, 2024). As generative models extend into other disciplines, there is a growing need
for a deeper understanding of interdisciplinary collaborations between generative models and other fields
(as shown in Figure 5). In this discussion, we seek to address the following two questions: 1) How could
interdisciplinary collaboration enhance the trustworthiness of generative models, and 2) How
could trustworthy generative models, in turn, bring values to other disciplines?

By integrating insights from various disciplines, each offering unique perspectives on the technical, ethical, and
social implications of these models, we can achieve a more comprehensive understanding of the trustworthiness
of generative models (Li et al., 2024d; Liu et al., 2024; Al-kfairy et al., 2024; Hadi et al., 2023). For
instance, OpenAI’s Sora, a text-to-video generative model (OpenAI, 2024d), necessitates engagement from
diverse disciplines—including policymakers, educators, and artists—to develop safety policies that resonate
with societal concerns and promote beneficial applications (OpenAI, 2024e). Furthermore, exploring the
psychological and cognitive dimensions of model trustworthiness yields insights into how these models interact
with human users and align with human values (Li et al., 2022; 2024d; Chen et al., 2024b; Huang et al.,
2024a). Research by Li et al. (2024d) examined how a psychometric evaluation framework could reveal
inconsistencies in LLMs’ responses during psychometric assessments, where a model may exhibit contrasting
traits across different assessment formats. This not only uncovers a fundamental difference between the
tendencies of models’ and humans’ behaviors, but it also compels a rigorous evaluation and cautious treatment
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of LLMs’ responses. Additionally, the extensive domain knowledge involved in the creation of domain-specific
benchmarks, such as those in medicine and scientific research, is crucial for ensuring the safe, reliable, and
ethical application of generative models in these areas (Xia et al., 2024; He et al., 2023b). A recent study
(Porsdam Mann et al., 2023), co-authored by an interdisciplinary team of experts in law, bioethics, and
machine learning, thoroughly examines the potential impacts of LLMs in critical areas such as education,
academic publishing, intellectual property, and the generation of errors and misinformation (of Oxford, 2023).

The benefits of trustworthy generative models, reciprocating by enhancing the very disciplines that contributed
to their creation (Eloundou et al., 2023). For example, understanding the trustworthiness of generative
models in embedded systems aids in designing safer, more dependable autonomous technologies (Boiko et al.,
2023). A recent study (Huang et al., 2024g) also explores the reliability of LLM simulations, offering valuable
insights for other disciplines, such as social science and psychology, to design more robust experiments. Zhou
et al. (2024c) also evaluate the trustworthiness of LLMs in scientific lab Q&A, which reveals the extent to
which LLMs can assist researchers in accomplishing scientific tasks. Other disciplines may also benefit from
the creative potential of LLMs, as demonstrated by a recent study that evaluates their ability to generate
research ideas (Si et al., 2024).

To summarize, interdisciplinary collaboration yields symbiotic benefits: diverse expertise not only enriches
our understanding of the trustworthiness about generative models, but also advance research and applications
within their contributing disciplines. This interconnection fosters a continuous cycle of innovation, where the
mutual enrichment of models and disciplines drives progress across the broader landscape of scientific inquiry
and technological development.

5.2 Confronting Advanced AI Risks: A New Paradigm for Governing GenFMs

Typical Trustworthiness-
Related Risks

Enmergent Advanced 
AI Risks

Prevention and 
Governance

 Bias & Stereotype
 Hallucination & Dishonesty
 Unsafe & Toxic

 Self-Replication and Autonomy 
 Persuasion and Manipulation
 Anthropomorphism AI

 Clarify the Ambiguities of GenFMs
 Prioritize Human-Centered Governance
 Recognize the Systemic Nature
 Continuously Redefine Trustworthiness

Figure 6: Discussion on Advanced AI Risks about GenFMs.

The rapid evolution of GenFMs necessitates a redefinition of how we conceptualize trustworthiness in AI.
Recent research has shown that as GenFMs grow in scale, they may exhibit unexpected and potentially harmful
behaviors (McKenzie et al., 2023). Traditionally, AI risks have been viewed as unintended consequences—such
as issues of bias, fairness, hallucination (Huang et al., 2023), and system failures—that can often be mitigated
through improved training data, algorithmic design, and governance frameworks. However, the increasing
complexity, autonomy, and capabilities of GenFMs have introduced a new category of challenges, referred to
as Advanced AI Risks. These risks differ fundamentally from conventional concerns due to their proactive,
emergent, and self-perpetuating nature, necessitating a shift from reactive mitigation to proactive governance
and preparedness. This shift is also emphasized in the recent paper by Simmons-Edler et al. (2024), which
discusses the geopolitical instability and threats to AI research posed by AI-powered autonomous weapons,
highlighting the need for proactive measures to address the near-future risks associated with full or near-full
autonomy in the military technology.

Advanced AI Risks emphasize challenges arising from intent-like behaviors—not in the literal sense of agency,
but in the model’s ability to simulate, emulate, or appear to exhibit intent. This blurring of lines between
tools and entities introduces several critical threats:

Self-Replication and Autonomy. GenFMs capable of self-replication pose unprecedented risks. Au-
tonomous systems that replicate using raw materials, as discussed in studies on self-replicating machines (sel;
Stenzel et al., 2024; Chan et al., 2023; Kulveit et al., 2025), can magnify threats, particularly when tied to

20



Under review as submission to TMLR

models with cyberattack or bioengineering capabilities. The Group of Seven (G7) recently highlighted the
dangers of self-replicating AI in its voluntary code of conduct for AI governance (hir, 2023). Catastrophic
scenarios, such as malicious misuse of autonomous models for creating enhanced pathogens or executing
sophisticated cyberattacks, underline the urgency of addressing this risk (Lee & Tiwari, 2024; Tang et al.,
2024). Shlegeris (2023)also point out one of the consequences brought by this risk–the collusion between
untrusted models.

Persuasion and Manipulation. Studies have extensively examined GenFMs’ capacity for influencing
and manipulating users (Ramani et al., 2024; Rogiers et al., 2024; Matz et al., 2024; Singh et al., 2024b).
While positive applications exist, such as promoting prosocial behaviors like vaccination or voting, the darker
implications cannot be ignored. At an individual level, models have been shown to manipulate emotions,
fostering user dependence (Ramlochan, 2024; Salvi et al., 2024). At a societal level, persuasive capabilities can
undermine democratic integrity, as Matz et al. (2024) describe—e.g., tailoring political messaging to match
users’ psychological profiles could unduly shift public opinion, aligning with concerns raised by Summerfield
et al. (2024) on the erosion of democratic values.

Emergent Risks from Anthropomorphism. Anthropomorphized AI systems, which project human-like
traits, represent both opportunities and risks. On one hand, anthropomorphic models can enhance trust,
accessibility, and engagement by making AI more relatable and intuitive (Deshpande et al., 2023; Chen
et al., 2024c). On the other hand, they inflate perceptions of AI’s capabilities, leading to misplaced trust
and unrealistic expectations. Moreover, assigning human-like agency to AI systems obscures accountability,
shifting responsibility away from developers and operators (Placani, 2024; Deshpande et al., 2023).

To address these risks effectively, a potential comprehensive, multifaceted approach is required: 1) Clarify
the Ambiguities of GenFMs. Defining the agency and intentionality of GenFMs through cognitive or theory-
of-mind frameworks (Segerie, 2024) is essential. For instance, clarifying key concepts like “agency AI” will
enable a better understanding of their decision-making processes and operational boundaries. 2) Prioritize
Human-Centered Governance. As emphasized in Guideline 3 of §2, human oversight must remain central to
AI governance frameworks. Ensuring that humans retain ultimate control over AI decisions, particularly in
high-stakes scenarios, is critical. Mechanisms must be in place to prevent GenFMs from making independent,
high-risk decisions without explicit human authorization. For instance, within a multi-agent system, Chan
et al. (2025) propose the concept of Oversight Layers to monitor agent behaviors. Furthermore, Kulveit
et al. (2025) argue that alignment should be considered at the level of the entire ecosystem, rather than
focusing solely on individual AI models. 3) Recognize the Systemic Nature of Advanced AI Risks. Unlike
traditional risks, advanced AI threats extend beyond individual systems or organizations, affecting global
networks and ecosystems. Effective mitigation demands collaborative efforts among governments, industries,
and international bodies to establish unified standards, share critical knowledge, and deploy robust safeguards.
Anthropic exemplifies this systemic approach with its AI Safety Levels (ASL) framework (Anthropic, 2024),
the industry’s first proposal of AI safety levels. ASL adapts biosafety level (BSL) standards to categorize AI
models based on their potential for catastrophic risks, focusing on CBRN weapon development and automated
AI research, while closely monitoring cyber-attack risks. It emphasizes that models must implement safety,
security, and operational measures aligned with their risk level, with higher ASL tiers demanding stricter
safety demonstrations. 4) Continuously Redefine Trustworthiness. As GenFMs evolve, so must the criteria
for evaluating their trustworthiness. This includes adapting to new capabilities and risks (e.g., the dynamic
requirements discussed in §3.1), implementing ongoing monitoring systems to detect vulnerabilities, and
committing to proactive measures that address gaps in governance and oversight.

5.3 Broad Impacts of Trustworthiness: From Individuals to Society and Beyond

Trustworthiness of generative models impacts individuals and society broadly (Wach et al., 2023). Individually,
models can perpetuate harmful biases and compromise privacy (Novelli et al., 2024; Chen & Esmaeilzadeh,
2024), while encouraging dangerous overreliance (Kim et al., 2024). Societally, they enable misinformation
through deepfakes (Huang & Sun, 2023; Lyu, 2024), amplify inequalities (Anderljung et al., 2023; Bukar
et al., 2024), disrupt education (Chiu, 2023; Geng & Trotta, 2024), economic structures (Chui et al., 2023;
Eloundou et al., 2023), and social dynamics (Baldassarre et al., 2023; Zeng et al., 2024a). Their environmental
footprint from computational requirements is substantial (Li et al., 2023b; Luccioni et al., 2024). Transparent
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benchmarking is essential to align evaluation with ethical priorities while maximizing benefits and minimizing
risks (Korinek, 2023). Please refer to appendix C for more details.

6 Conclusion

This paper underscores the inadequacy of existing approaches to capture the multifaceted, dynamic nature
of trust in GenFMs. We proposed a comprehensive, flexible framework consisting of eight core guidelines,
grounded in cross-disciplinary principles and adaptable to diverse application contexts. By proposing potential
solutions for key challenges—such as ambiguity in defining harm, trade-offs between utility and safety, and the
limitations of current alignment techniques—we highlight the pressing need for ongoing evaluation mechanisms
and ecosystem-level safeguards. Our findings affirm that trustworthiness is not a fixed attribute, but rather
a continuously negotiated quality that must adapt to changing values, contexts, and threats. Achieving
truly trustworthy GenFMs will require not only robust technical design, but also transparent governance,
interdisciplinary collaboration, and proactive regulatory engagement.
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A Detailed Analysis of Fairness and Ethical Reasoning in GenFMs

A.1 Lessons Learned in Ensuring Fairness of Generative Foundation Models

In achieving fairness within generative models (Gallegos et al., 2024; Chu et al., 2024; OpenAI, 2024a), it
is essential to recognize the complexity and multi-dimensional nature of the concept. Fairness cannot be
universally applied with a single, uniform standard; rather, it must be adapted to different groups’ unique
needs and contexts (Lee, 2019). Below, we explore several key considerations in defining and achieving
fairness in generative models.

Fairness is not a one-size-fits-all concept; it should be adapted to the needs of different groups
and contexts. Fairness is inherently context-dependent, and generative models should reflect this. A one-size-
fits-all approach to fairness may fail to account for different social groups’ varying needs and circumstances.
For instance, gender-specific needs such as maternity leave for women and paternity leave for men present
distinct challenges in workplace policy. If a generative model were to generate outcomes for workplace fairness
policies that only accounted for general parental leave, without distinguishing between the different impacts
of maternity versus paternity leave, it would fail to accommodate the specific needs of each gender. For
women, the physiological and social implications of childbirth require different support systems than for men,
who may face different challenges in balancing family and work life. Thus, fairness in generative models must
be adaptive, ensuring that outcomes for different demographic groups are both equitable and contextually
relevant.

Achieving fairness requires not only equal treatment within groups but also building under-
standing between different groups. Fairness is not solely about providing equal treatment within a group
(Weerts et al., 2023), but also about fostering mutual understanding between different groups. Consider
an example where a generative model generates job application feedback for different demographic groups.
While it might ensure that both men and women receive equally constructive feedback, it also needs to
avoid reinforcing subtle stereotypes or biases that could prevent cross-group understanding (Eloundou et al.,
2024). For example, if the model generates feedback that unintentionally suggests women apply for more
traditionally "feminine" roles like nursing while suggesting men apply for "masculine" roles like engineering,
it perpetuates societal divisions. A fair model would go further, encouraging users to explore roles beyond
traditional gender stereotypes and facilitating understanding between groups by suggesting opportunities for
men and women in a wide range of fields, thus promoting inclusivity and mutual respect.

Generative models should serve as tools to provide information, empowering users to make
their own decisions, rather than dictating choices. User decisions are often shaped by a wide range
of factors, such as cultural, societal, or personal influences, which models cannot fully account for. In the
pursuit of fairness, generative models should function as facilitators of decision-making, empowering users
with access to information rather than prescribing particular actions. For example, imagine a generative
model designed to assist students in selecting academic subjects or career paths. Instead of directly suggesting
that a female student should consider a humanities-based career, the model should present a balanced range of
academic options—such as STEM, business, arts, or humanities—based on the student’s interests, skills, and
preferences. The model should provide unbiased and relevant data about each field (such as job prospects, skill
requirements, and salary expectations), enabling the user to make an informed choice. A model that dictates
decisions, such as suggesting “Given that you are a woman, I would advise against pursuing math-intensive
careers,” risks reinforcing societal biases and disempowering users. Instead, models should act as supportive
tools, offering objective data that allows individuals to retain autonomy over their decisions.

Fairness must be evaluated both in terms of the model’s development process and its outcomes.
Fairness in generative models requires a dual evaluation: both the fairness of the development process
(procedural fairness) and the fairness of the model’s outputs (outcome fairness). Consider a scenario where a
generative model is trained to generate financial advice. Procedural fairness would require that the training
data used to build the model represents a diverse range of financial behaviors across different demographic
groups (e.g., age, gender, income level). If the model were trained predominantly on data from high-income
males, its recommendations might be skewed towards the financial realities of that group, failing to address
the needs of other populations, such as low-income families or retirees. Outcome fairness, in this context,
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would ensure that the financial advice generated is equally relevant, actionable, and beneficial for all users,
regardless of their demographic background. Therefore, a comprehensive fairness evaluation must encompass
both the process and the results to ensure that generative models produce genuinely equitable outcomes
(IBM, 2022).

The existence of social disparities forces us to question whether we should strive for fairness or
manage trade-offs in model outcomes. In a world where social and economic disparities are pervasive,
striving for fairness in generative models presents complex challenges. Consider an AI model designed to
evaluate loan applications. Strict fairness might dictate that all applicants are evaluated using the same
criteria, regardless of their background. However, applicants from historically disadvantaged communities
may have less access to credit and, therefore, lower credit scores, making them less likely to receive favorable
outcomes under a uniform evaluation system. In this case, enforcing equal treatment without addressing
historical disparities could perpetuate inequality. The model may need to account for these social disparities by
adjusting its evaluation criteria or weighting factors, such as considering community investment or alternative
financial behaviors that don’t rely on traditional credit scoring. Thus, the pursuit of fairness in model
outcomes may involve difficult trade-offs, where achieving equitable results requires nuanced adjustments
rather than strict adherence to identical treatment for all (Rao, 2023).

Disparagement in generative models may be subtle and difficult to distinguish from fact-based
statements, requiring careful handling. Disparagement in generative models can be insidious and difficult
to detect, especially when it is embedded in factually accurate statements. For instance, if a generative
model responds to a question about gender wage gaps by stating that "women, on average, earn 82% of
what men earn for the same job," this statement is factually correct but could reinforce negative perceptions
about women’s earning potential. While such a response provides accurate information, it might overlook
the broader context of systemic barriers that contribute to this wage gap, such as discriminatory hiring
practices or unequal access to leadership opportunities. A fair model must cautiously frame such data to
avoid perpetuating harmful narratives. Instead, it should provide balanced insights, such as highlighting
ongoing efforts to close the wage gap or discussing the structural changes needed to promote gender equality
in the workplace. This approach ensures that the model presents fact-based statements in a way that avoids
reinforcing societal biases or disparagement.

A.2 When Generative Models Meets Ethical Dilemma
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Figure 7: Visualization of model responses to ethical dilemmas, with each scenario represented by three
squares: the middle square (green) indicates neutrality, while the side squares (red) represent a bias toward
one of the conflicting moral choices.

Integrating Generative Models in decision-making processes has marked a new phase of technological
advancements and transformative capabilities across various industries. However, this growing integration
has also engendered a concomitant rise in ethical dilemmas and concerns (Nassar & Kamal, 2021). Ethical
dilemmas refer to situations where individuals face tough choices between conflicting moral values or principles
(Bush, 1994). These dilemmas not only highlight the complexities of human moral reasoning but also provide a
framework for assessing the ethical decision-making capabilities of generative models, such as LLMs (Cabrera
et al., 2023). Understanding these dilemmas is crucial for ensuring that models can operate in ways that
align with societal values and ethical norms. The importance of studying ethical dilemmas lies in their ability
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to reveal the underlying ethical frameworks that guide decision-making processes. By exploring how LLMs
respond to these dilemmas, researchers can evaluate their moral awareness, identify potential biases, and
improve their alignment with human ethical standards.

To evaluate how generative models handle ethical dilemmas, we designed ten queries representing complex
moral scenarios. Each scenario challenges the models to make ethically charged decisions, offering insights
into their ethical reasoning capabilities and revealing underlying biases. The results are shown in Figure 7.
By examining the models’ responses, we identify key trends in their behavior and decision-making patterns.

Tendency Towards Neutrality vs. Decisiveness. Our findings indicate that some models lean toward
neutrality, while others exhibit more decisive behavior. For instance, Gemini-1.5-flash consistently avoids
making explicit ethical choices in all scenarios, reflecting either an inclination towards neutrality or a design
aimed at minimizing intervention in morally charged situations. In contrast, models such as GPT-4o,
GPT-4o-mini, and several LLaMA variants tend to engage in more action-oriented decision-making, often
prioritizing outcomes that align with useful principles. For example, these models commonly intervene in
scenarios like the Trolley Problem to optimize results, suggesting a focus on outcome efficiency rather than
fairness. Meanwhile, risk-averse models such as GLM-4 and Mistral-8x22B prefer to avoid making choices,
indicating a potential reluctance to engage with dilemmas involving high uncertainty or ethical complexity.

Bias and Alignment in Ethical Prioritization When Facing Ethical Dilemmas. Differences in
ethical priorities between dilemmas can be contextualized through the lens of modern ethical frameworks,
which often fall into two categories: top-down and bottom-up approaches. Models like GPT-4o exhibit a
top-down inclination, as seen in dilemmas like the Trolley Problem, where they tend to adopt utilitarian
principles—sacrificing one life to save many. This approach reflects a reliance on pre-defined ethical rules
aimed at optimizing overall outcomes. In contrast, Gemini-1.5-flash demonstrates a tendency toward non-
intervention, which may align with bottom-up ethics. This approach emphasizes situational neutrality and
contextual reasoning over rigid principles. However, such flexibility can lead to inconsistencies when navigating
conflicting dilemmas, such as balancing pedestrian safety against passenger safety.

Additionally, models like Claude-3.5-sonnet occasionally display emotionally driven decisions, such as pri-
oritizing family members. These patterns highlight the diversity in how models are aligned with ethical
frameworks. However, it is important to acknowledge the limitations of these models, as they may lack the
depth needed to grasp the subtleties of human ethical reasoning. Consequently, their decisions may not fully
capture the complexities inherent in real-world moral situations.

Insights and Future Directions. The varied responses of generative models highlight the absence of a
unified ethical framework and illustrate differences between top-down and bottom-up approaches to moral
reasoning. Some models exhibit reasoning that appears aligned with utilitarian or deontological principles,
while others show context-dependent variability or even neutrality. Top-down approaches, which rely on
predefined ethical theories, offer clear guidance but can oversimplify complex dilemmas. In contrast, bottom-
up approaches, which derive ethical judgments from patterns in context-specific data, provide flexibility but
may lack consistency and coherence. These variations underscore the challenge of aligning AI models with
nuanced human ethical standards and emphasize the importance of achieving reflective equilibrium—a balance
in which general moral principles and particular judgments are refined in response to one another. Future
research should prioritize interdisciplinary approaches by integrating insights from philosophy, psychology,
and cognitive science to enhance ethical reasoning capabilities in generative models. Equally important is
the development of mechanisms for model transparency, allowing users to understand the rationale behind
specific ethical decisions and thereby fostering trust and accountability. Additionally, exploring ethical
alignment techniques, such as RLHF, can ensure that model decisions align with societal expectations. As
generative models become increasingly integrated into high-stakes areas like healthcare, law enforcement, and
autonomous systems, ensuring that their ethical responses reflect shared norms and values will be vital for
their responsible deployment.
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B Details of Domain-Specific Trustworthiness Considerations

B.1 Trustworthiness of Generative Foundation Models in Medical Domain

Addressing the challenges that arise with integrating GenFMs into healthcare is complex and multifaceted,
requiring both technical innovations and policy considerations. Although current advancements have made
strides, significant issues persist that require in-depth research and novel solutions to ensure the trustworthiness
of these models in high-stakes medical contexts.

Data quality and availability are key challenges for generative models in healthcare. Medical data is
often noisy, incomplete, and heterogeneous, coming from various sources like electronic health records (EHR),
medical imaging, and genomics (Johnson et al., 2016). Variability in data formats across institutions limits
interoperability and model utility. High-quality labeled data requires domain experts, making annotation
costly and time-consuming (Kohli et al., 2017). Data biases can also lead to poor generalization. Privacy
regulations like HIPAA (Gostin et al., 2009) and GDPR (Li et al., 2019) protect patient data but hinder
data sharing needed for robust model development (Shickel et al., 2017). Privacy-preserving techniques like
federated learning help but face challenges like communication overhead and privacy risks. Improving data
quality and availability requires standardizing data formats, better curation, and collaboration for secure
data sharing. Building large, diverse datasets is essential for model generalization and trustworthiness (Yang
et al., 2019).

Model explainability represents a critical frontier in the development of generative AI for healthcare,
addressing fundamental challenges of trust, ethics, and clinical utility. The "black-box" nature of complex
machine learning models creates a significant barrier to adoption, as healthcare professionals require transparent
mechanisms to validate and understand AI-generated insights. This transparency is not merely an academic
concern but a practical necessity in high-stakes medical decision-making (Doshi-Velez & Kim, 2017). The
imperative for explainability extends beyond technical considerations into ethical and legal domains. Clinicians
must be able to trace the reasoning behind AI recommendations, ensuring that patient care remains
fundamentally human-centered. Opaque models risk undermining informed consent, as patients have a right
to understand the basis of their treatment recommendations (Guidotti et al., 2018). Moreover, unexplainable
models can perpetuate or even amplify existing healthcare biases, potentially exacerbating systemic inequities
in medical diagnosis and treatment (Obermeyer et al., 2019). Emerging research has developed sophisticated
approaches to model interpretability, moving beyond simplistic transparency techniques. Methods like
attention mechanisms, feature visualization, and domain-specific explanation frameworks offer promising
pathways to demystify complex generative models (Selvaraju et al., 2017). These approaches aim to translate
intricate computational processes into clinically meaningful insights, allowing healthcare professionals to
critically assess AI-generated outputs within their expert knowledge context (Rudin, 2019). The goal of
interpretability is not to compromise model performance but to create a collaborative interface between
artificial intelligence and clinical expertise. By developing models that can articulate their reasoning,
researchers can build trust, enable more nuanced clinical decision support, and create intelligent algorithmic
tools that augment rather than replace human medical judgment (Caruana et al., 2015). This approach
heralds a transformative vision of technological evolution, where the most advanced systems are defined not
by their computational power, but by their capacity to engage in transparent, meaningful dialogue across the
boundaries of human and machine intelligence.

Regulatory and legal framework The evolving regulatory landscape for generative models in healthcare
presents barriers to adoption (Rieke et al., 2020; Beam & Kohane, 2018). Regulatory bodies like the FDA
(Food et al., 2021) and EMA (Fraser et al., 2018) ensure models are safe and effective, but the dynamic nature
of generative models challenges traditional frameworks designed for static software or devices (Muehlematter
et al., 2021). A major challenge is creating a standardized process for validating generative models, especially
those needing frequent updates. Current pathways do not fully address iterative model development (Wu
et al., 2021). Regulatory bodies are exploring new approaches like "software as a medical device" (SaMD)
(Food et al., 2019) and the Total Product Life Cycle (TPLC) approach (Hwang et al., 2016), but these need
further refinement. Legal liability is another issue. When generative models produce incorrect diagnoses or
recommendations, it is unclear who is responsible—developers, healthcare providers, or institutions. This
ambiguity hinders adoption due to potential legal risks. Clear accountability guidelines and robust validation
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are critical for fostering trust in generative models. Advancing the regulatory and legal framework for
generative models requires collaboration among developers, healthcare professionals, policymakers, and
regulators. Setting standards for data quality, model validation, transparency, and post-market surveillance
is essential to ensure generative models in healthcare are safe, reliable, and trustworthy.

B.2 Trustworthiness of Generative Foundation Models in AI for Science

In scientific fields such as chemistry, biology, and materials science, the application of generative models
introduces unique trustworthiness challenges due to the critical need for precision, safety, and speed in
discovery (Fan et al., 2023; Messeri & Crockett, 2024; He et al., 2023b; Zhang et al., 2023). These domains
require not only the rapid generation of data or models but also strict accuracy and adherence to established
scientific principles. While generative models hold immense potential for creating novel compounds and
materials, they also carry risks—such as the unintended generation of toxic or hazardous entities that could
pose harm if synthesized or used improperly. In this discussion, we aim to address two key questions: 1) To
what extent should humans trust the outputs of generative models? and 2) How can we balance
the need for rapid innovation with the imperatives of precision, safety, and ethical compliance
in scientific applications of these models?

The trust placed in generative model outputs depends on transparency, validation, and understanding of
uncertainty. Scientific models operate with varying degrees of uncertainty due to the complexity and novelty
of data (Schwaller et al., 2021; Raghavan et al., 2023; Choudhary et al., 2022; Schleder et al., 2019; Chen
et al., 2025; Guo et al., 2024a; Huang et al., 2024b; Liang et al., 2024b; Chen et al., 2024e); quantifying
this uncertainty helps researchers decide how much weight to place on predictions. For instance, in drug
discovery, confidence scores in AI-proposed molecules allow researchers to prioritize compounds with the
highest predicted efficacy for experimental verification (Nigam et al., 2021; Borkakoti & Thornton, 2023; Zeng
et al., 2022; Le et al., 2024). In addition, validation against empirical data is equally crucial. A robust feedback
loop, where AI-generated hypotheses or predictions are iteratively tested, refined, and tested again, builds
confidence in model outputs. This is especially relevant in fields like materials science, where new molecular
structures proposed by AI must align with known databases and principles before they are synthesized (Shu
et al., 2020; Bickel et al., 2023; Zeni et al., 2023). Furthermore, interpretability (Medina-Ortiz et al., 2024;
Gangwal & Lavecchia, 2024) also plays a significant role in establishing trust; understanding the factors
driving a model’s decisions allows scientists to assess the biological, chemical, or physical plausibility of the
results. For example, a protein-structure-predicting model that provides interpretable explanations enables
researchers to judge the biological feasibility of each proposed structure. Therefore, trust in AI for science is
collaborative; humans must critically assess AI outputs, using these models to augment rather than replace
their expertise.

Furthermore, although generative models offer unprecedented speed in generating scientific data and hy-
potheses, balancing this rapid pace with rigorous safety and ethical standards is essential. Frameworks for
responsible innovation can guide both swift exploration and meticulous verification. This often involves
phased deployment (Elemento et al., 2021; Kaur et al., 2023; Miotto et al., 2018; Van Valen et al., 2016),
where AI outputs are gradually introduced alongside ongoing checks for accuracy, safety, and compliance.
Implementing and enforcing ethical constraints within model designs is also critical. For example, in chemical
research (Gromski et al., 2019), automated filters that identify and discard potentially hazardous outputs
can prevent the generation of unsafe compounds, thereby achieving a necessary balance between innovative
discovery and safety. Experimental validation and peer review remain indispensable as safeguards. Even in
accelerated research workflows, it is imperative to incorporate stages for thorough validation, ensuring that any
AI-generated findings undergo rigorous testing before being widely applied. This hybrid approach—combining
the speed and creativity of AI with the scrutiny of human oversight—enables rapid iteration while ensuring
that only reliable outputs reach critical applications. In particular, generative models are also utilized to
guide humans in conducting proper experimental operations and enforcing safety-related decision-making
(Zhou et al., 2024c; Ramos et al., 2024; Boiko et al., 2023). Regulatory and institutional oversight further play
a role in maintaining this balance by defining standards and evolving in response to technological advances.

Addressing these key questions reveals that trust in generative models within scientific domains is multidimen-
sional. Through transparency, validation, ethical compliance, and a collaborative human-AI approach, these
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models can advance scientific discovery responsibly. Achieving a balance between innovation and caution
will allow us to harness the potential of generative models while upholding the precision, safety, and ethical
standards integral to scientific progress.

B.3 Trustworthiness Concerns in Robotics and Other Embodiment of Generative Foundation Models

The development of LLMs and VLMs has greatly improved robots’ capabilities of natural language processing
and visual recognition. However, integrating these models into real-world robots comes with significant risks
due to their limitations. LLMs and VLMs can produce errors from language hallucinations and visual illusions
(Guan et al., 2023), which may raise safety concerns (Wu et al., 2024b; Robey et al., 2024), particularly when
their outputs influence the robot’s physical actions and interaction with the real-world environment.

In the context of AI’s physical embodiment, safety refers to a robotic system’s ability to perform tasks
efficiently and reliably while preventing unintended harm to humans or the environment. Such harm can
result from unexpected, out-of-distribution inputs, response randomness, hallucinations, confabulations, and
other related issues. Safety can be compromised in two main aspects: reasoning and planning, and robot’s
physical actions.

Reasoning and Planning. The embodied agent can exhibit ambiguity in decision-making or overconfidence
in prediction, leading to poor decisions, including collisions and unsafe maneuvers. For instance, Azeem et al.
(2024) found that LLM-driven robots can enact discrimination, violence, and unlawful actions, underscoring
the need for systematic risk assessments to ensure safe deployment. Additionally, if the robot fails to identify
hazards, it may proceed without considering potential risks, resulting in actions that could harm people,
damage objects, or disrupt its surroundings. For instance, Mullen et al. (2024) emphasize the importance of
proactively identifying potential risks, presenting the SafetyDetect dataset, which trains embodied agents to
recognize hazards and unsafe conditions in home environments. Their approach utilizes LLMs and scene
graphs to model object relationships, enabling anomaly detection and promoting safer decision-making during
planning.

Robot’s Physical Actions. On the other hand, even with proper and safe planning, improper actions by
the robot can still pose risks during human-robot interaction. For example, if a Visual-Language-Action
(VLA) model (Ma et al., 2024d; Guruprasad et al., 2024) generates inaccurate high-level actions or controls
motion with excessive force and speed, it could accidentally harm nearby individuals or damage surrounding
objects. Moreover, inference latency and efficiency issues can further compromise the robot’s responsiveness
and overall safety.

In summary, failures in reasoning and planning compromise safety by leading to unsound decisions, while
errors in physical actions pose direct risks to safe interaction with the environment and humans. Ensuring
safety in physical embodiment requires robust strategies that keep both cognitive and physical behaviors
controlled, responsive, and adaptable to unpredictable factors.

B.4 Trustworthiness of Generative Foundation Models in Human-AI Collaboration

The dynamics of human-AI collaboration bring significant opportunities to enhance productivity and decision-
making, but they also raise fundamental questions about trust, ethics, and accountability. Central to these
collaborations are GenFMs, which serve as the building blocks for many advanced AI systems. As humans
and AI systems work together to achieve shared goals, it becomes imperative to address the challenges that
arise when blending human intuition and creativity with machine intelligence. This section explores critical
concerns surrounding trust calibration, ethical alignment, and accountability in such collaborations.

Trust Calibration. One of the most persistent challenges in human-AI collaboration is determining when
and to what extent AI systems, particularly generative foundation models, can be trusted. This process,
known as trust calibration, is critical to striking a balance between overtrusting and undertrusting AI
outputs. However, achieving effective trust calibration is complicated by users’ limited understanding of
how GenFMs function. Opaque marketing claims, incomplete documentation, and the inherent complexity
of GenFMs exacerbate this gap, leaving even researchers grappling with the “black box” nature of these
models, where decision-making processes remain inscrutable despite efforts to decode them (Chen et al.,
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2024a; Bhardwaj et al., 2024; Slobodkin et al., 2023). As a result, users may overtrust AI—relying on its
recommendations uncritically—or undertrust it, disregarding valuable insights (Jiang et al., 2024; He et al.,
2023a; Elshan et al., 2022). Addressing these trust imbalances requires improving the transparency and
interpretability of GenFMs. Key strategies for trust calibration include providing explanations for GenFMs
predictions, detailing their limitations, and exposing the uncertainty inherent in their outputs (Cheng et al.,
2024; Shi et al., 2024a; Brahman et al., 2024; Zhang et al., 2024b). For example, methods such as verbalized
confidence scores, consistency-based approaches, and uncertainty estimation can help users understand when
GenFMs outputs are reliable (Lin et al., 2022; Tian et al., 2023; Zhao et al., 2024; Wang et al., 2023d).
Explainability mechanisms should be intuitive and accessible, enabling users to gauge when the GenFMs’
guidance aligns with their context and expertise (Mitchell et al., 2019; Ehsan et al., 2024). By fostering a
nuanced understanding of GenFMs behavior, trust calibration empowers users to effectively and confidently
leverage the valuable insights AI can provide, promoting trustworthy human-AI collaboration.

Error Attribution and Accountability. A major challenge in human-AI collaboration is determining
responsibility when errors occur. As GenFMs become more complex and are integrated into critical decision-
making processes, understanding the source of errors—whether they stem from GenFMs, the user, or a
combination of both—has become increasingly difficult. The opaque nature of many GenFMs, coupled with
limited documentation and insufficiently explained model behaviors, further complicates error attribution.
Users and stakeholders may either unfairly blame GenFMs for failures, neglecting human oversight responsi-
bilities, or conversely, fail to hold GenFMs accountable for flawed outputs (Walker-Munro & Assaad, 2022;
Ryan et al., 2023; Qi et al., 2024; Miller, 2023). To address these challenges, fostering accountability requires
developing mechanisms to trace errors back to their root causes. Strategies such as fine-grained model audits
(Mökander, 2023), detailed logging of decision pathways (Staron et al., 2024), and context-aware explanations
(Rauba et al., 2024) can illuminate where and why errors occurred. Additionally, embedding clear disclaimers
about GenFMs’ limitations and including accountability frameworks in system design can help delineate the
boundaries of responsibility between human operators and AI systems (Ryan et al., 2023; U.S. Government
Accountability Office, 2021; Brahman et al., 2024). For example, error-aware interfaces can visually represent
AI decision pathways, flagging potential issues in model logic or data inputs. By offering structured and
intuitive explanations, these interfaces encourage critical engagement and guide users toward resolution
(Cabrera et al., 2021; Glassman et al., 2024). By creating transparent and actionable mechanisms for error
attribution, systems can foster a culture of shared responsibility. This not only encourages users to remain
critically engaged but also builds trust in AI by ensuring errors are addressed in a systematic and accountable
manner. Ultimately, such approaches promote robust and ethical human-AI collaboration, even in complex
or high-stakes scenarios.

B.5 The Potential and Peril of LLMs for Application: A Case Study of Cybersecurity

The integration of LLMs into cybersecurity operations represents a paradigm shift in the field’s technical
capabilities and threat landscape. Recent evaluation frameworks like SWE-bench (Jimenez et al., 2024) and
Cybench (Zhang et al., 2024a) have demonstrated potential in automated security testing, establishing new
paradigms for assessing LLM capabilities across cryptography, web security, reverse engineering, and forensics
(Hu et al., 2020; Yang et al., 2024a; Wang et al., 2024b; Meng et al., 2024; Deng et al., 2023a; Ma et al., 2024b;
Ullah et al., 2024; Artificial Intelligence Cyber Challenge, 2024). However, this technological advancement
presents a double-edged sword. The advent of LLMs enhances the accessibility to cybersecurity defenses but
also introduce potential vectors for adversarial exploitation. As demonstrated by OpenAI’s recent threat
intelligence reports (OpenAI, 2024c), AI models have already become targets for malicious exploitation, with
over 20 state-linked cyber operations and deceptive networks attempting to weaponize these systems in 2024
alone. The capabilities that make LLMs powerful tools for security professionals also create unprecedented
challenges in the hands of malicious actors: First, their advanced code analysis capabilities could dramatically
accelerate zero-day exploit discovery (Fang et al., 2024; Shen et al., 2024; Ristea et al., 2024), potentially
overwhelming traditional security response mechanisms. Second, their natural language processing prowess
enables the automation of highly sophisticated social engineering attacks (Falade, 2023; Charfeddine et al.,
2024) such as phishing. Third, their ability to generate and modify code could lead to more advanced malware
that adapts in real-time to evade detection systems (Madani, 2023; Usman et al., 2024).
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These challenges in cybersecurity offer crucial lessons that parallel similar concerns across multiple domains.
In the realm of disinformation, LLMs can also generate highly convincing synthetic content at unprecedented
scale. Recent studies have documented sophisticated disinformation campaigns leveraging LLMs to create
coordinated networks of artificial personas and targeted messaging (Institute, 2024). In academia, the issues
extend beyond simple academic integrity violations (of Chicago, 2024) to fundamental questions about
research validity. Cases of fraudulent research reporting (Májovskỳ et al., 2023) demonstrate how LLMs
can be misused to generate seemingly legitimate scientific papers. Similarly, in sensitive research areas
such as genetic engineering (Sandbrink, 2023) and pharmaceutical development (Anibal et al., 2024), LLMs
can accelerate both beneficial and potentially harmful research directions, just as they can expedite both
defensive and offensive capabilities in cybersecurity. These cross-domain challenges underscore a universal
truth revealed by the cybersecurity case study: the need for comprehensive governance frameworks that
can adapt to rapidly evolving AI capabilities while maintaining robust safeguards against misuse. Such
frameworks must balance the imperative of scientific advancement with responsible innovation, particularly
given the emergence of autonomous agent architectures that leverage external tool integration.

The governance challenges revealed through both cybersecurity and broader domain analyses point to
fundamental gaps in our ability to harness LLMs’ potential while mitigating their risks. While leading
organizations have established initial frameworks - including Microsoft’s AI Security Framework (Microsoft,
2023), Google’s AI Principles and Security Standards (Google, 2023), and OpenAI’s Usage Guidelines (OpenAI,
2023) - these represent only preliminary steps toward comprehensive governance. As noted by Anthropic
(Anthropic, 2023), current generative foundation models cannot anticipate users’ ultimate intentions or
subsequent actions, necessitating broader governance frameworks that transcend domain-specific boundaries.
Looking ahead, several critical research directions emerge. First, there is an urgent need to develop domain-
agnostic detection systems that can identify potentially harmful LLM-generated content (Wu et al., 2023; Rieck
& Laskov, 2007) - whether it manifests as malicious code in cybersecurity, synthetic content in disinformation
campaigns, or fraudulent submissions in academic research. Second, advancing adaptive defense mechanisms
represents a crucial frontier, requiring self-evolving defense systems that can automatically update their
protective measures based on emerging threat patterns. Such adaptive systems may incorporate reinforcement
learning techniques for continuous policy optimization and federated learning approaches for distributed
threat response while maintaining system stability. Third, establishing robust red-teaming frameworks will be
essential for proactive security, encompassing systematic vulnerability assessment methodologies, quantifiable
security metrics for model evaluation, etc.

B.6 Trustworthiness of Unlearning Application in Generative Foundation Models

Despite the recent progress in unlearning methods for LLMs and VLMs (Yao et al., 2024; Zhang et al., 2024d),
significant challenges remain in ensuring their robustness and reliability. A key set of limitations includes the
lack of reliable metrics to evaluate whether unlearning has truly occurred, vulnerability to relearning attacks,
and the impact of quantization on forgetting effectiveness.

Evaluation. A persistent and fundamental challenge in the domain of machine unlearning is the lack
of robust, multidimensional metrics capable of reliably verifying whether genuine forgetting has occurred.
Existing approaches (Maini et al., 2024; Ma et al., 2024c; Shi et al., 2024b) attempt to simulate this verification
by synthesizing proxy datasets, either through generating artificial data or curating examples that are not
part of the original training set. These models are then fine-tuned to unlearn this synthetic data. While these
methods allow for controlled experimentation, they introduce a key limitation: the synthesized data often
falls outside the original training distribution, and thus may not accurately mirror the behavioral patterns
or knowledge encoded in the pre-training phase. As a result, success in unlearning on such synthetic data
might not translate to effective forgetting of real-world knowledge. To address this, methods like WMDP (Li
et al., 2024b) and RWKU (Jin et al., 2024b) propose evaluating forgetting on real data points that were
likely learned during pretraining. These benchmarks attempt to surface real-world memorization or factual
knowledge that may pose privacy risks or legal challenges. However, the evaluation metrics commonly used in
these benchmarks—such as ROUGE-L recall score for likelihood variation or multiple-choice accuracy—may
fail to capture the full spectrum of what it means to forget. These scalar metrics often overlook semantic
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generalization, contextual recall, and the model’s ability to rephrase or rederive forgotten facts through
indirect reasoning.

Relearning Attacks. Even when models appear to have forgotten specific information, they often remain
vulnerable to relearning attacks—scenarios in which small-scale auxiliary fine-tuning can reintroduce previously
unlearned data with surprising efficiency. This raises serious concerns about the durability and integrity of
unlearning. In a recent study, Fan et al. (2025a) explored the underlying cause of such fragility and identified
a strong correlation between unlearning robustness and optimization sharpness. Sun et al. (2025) demonstrate
that even seemingly benign publicly available data—unrelated to the original unlearned content—can act as
a trigger to “jog” the model’s parameters back toward their pre-unlearning state. This suggests that the
internal representations tied to forgotten knowledge may still persist in model, vulnerable to reactivation
under the right conditions.

Impact of Quantization. Another underappreciated yet critical threat to the reliability of unlearning is the
impact of model compression, particularly quantization. Zhang et al. (2024g) were the first to demonstrate
that quantization can inadvertently re-expose knowledge that was intended to be forgotten. This phenomenon
exposes a deep and often overlooked trade-off: compression techniques that aim to preserve utility may
unintentionally undermine the durability of forgetting. To mitigate this, emerging research is required to
explore quantization-resistant unlearning strategies, such as embedding-aware regularization, robust loss
formulations, and precision-invariant memory suppression techniques. These methods aim to ensure that
forgetting persists across compression levels, not just in high-fidelity training environments.

C Details of Broad Impacts of Trustworthiness: From Individuals to Society and
Beyond
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Figure 8: The impact of trustworthiness in different domains.

As shown in Figure 8, the trustworthiness of generative models has profound implications that span from
individual impacts to broader societal consequences (Wach et al., 2023), influencing various aspects of
education (Chiu, 2023), economic structures (Chui et al., 2023), and social dynamics (Baldassarre et al., 2023).
At the individual level, the influence of generative models is particularly significant, as these technologies
interact directly with personal experiences, privacy, and decision-making processes. When generative models
produce biased outputs, they reflect societal stereotypes and reinforce harmful norms, particularly affecting
marginalized individuals. For instance, when language models perpetuate gender or racial biases in their
responses, this can contribute to microaggressions and reinforce negative self-perceptions, thus affecting an
individual’s mental health and social integration.

Privacy concerns further illustrate the critical need for trustworthy generative models (Novelli et al., 2024;
Chen & Esmaeilzadeh, 2024). The capacity of these models to memorize and replicate training data poses
significant risks to individual privacy. Instances where models inadvertently reveal sensitive information,
such as personal identifiers or private conversations, highlight the inadequacy of current privacy safeguards
in training processes. These violations can lead to unauthorized exposure of personal data, resulting in
emotional distress, legal complications, and a broader erosion of trust in these models.

The interaction between individuals and generative models also raises concerns about overreliance and
misplaced trust (Kim et al., 2024). Generative models, particularly those with highly conversational interfaces,
can create an illusion of authority and reliability that is not always warranted. Users may inadvertently accept
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machine-generated outputs as factual, especially when under time constraints or lacking the expertise to
evaluate the information presented critically. This overreliance can lead to significant personal consequences,
such as making health, financial, or educational decisions based on inaccurate or biased information.

Beyond individual impacts, the trustworthiness of generative models has broader societal implications,
particularly in the domains of misinformation, academic (Liang et al., 2024a; Geng & Trotta, 2024; Geng
et al., 2024), and systemic inequality (Korinek, 2023). On a societal scale, generative models have become
potent tools for generating and disseminating misinformation, complicating the public’s ability to discern
credible information from fabricated content (Huang & Sun, 2023). The proliferation of machine-generated
misinformation, such as deepfakes and fake news (Lyu, 2024), undermines public trust in media and information
sources, posing a significant threat to democratic processes and social cohesion (Chen & Shu, 2023). The
challenge lies not only in the models’ capacity to produce misleading content but also in the growing difficulty
of detecting and mitigating such outputs, which can erode societal trust in legitimate information channels.

The amplification of social inequities through untrustworthy generative models further underscores their
broad societal impact. When these models perpetuate biases, they do not merely reflect the prejudices
embedded in their training data but actively contribute to the reinforcement of systemic discrimination
(Anderljung et al., 2023). For example, biased models used in hiring, legal, or financial decision-making can
exacerbate existing disparities, disproportionately affecting marginalized communities (Bukar et al., 2024).
These impacts extend beyond the individuals directly affected, perpetuating cycles of inequality that are
deeply embedded in societal structures. Moreover, Zeng et al. (2024a) emphasize the societal risks brought
by generative models, including Disrupting Social Order, Deterring Democratic Participation, and so on.

Economic disruptions caused by generative models also have significant societal repercussions. As generative
models increasingly automate tasks across various industries (e.g., software development (Qian et al., 2024),
artistic creation (Carrillo et al., 2023; Somepalli et al., 2023)), there is growing concern about job displacement
and the broader implications for the labor market (Eloundou et al., 2023). While generative models can
enhance productivity and drive innovation, they also threaten to displace workers, particularly in roles that
involve routine or easily automated tasks.

Lastly, the environmental impact of generative models cannot be overlooked. The training and deployment of
large-scale generative models (e.g., GPT-4) require substantial computational resources, leading to significant
carbon emissions that contribute to climate change (Li et al., 2023b; Luccioni et al., 2024). The environmental
footprint of these models represents a collective societal burden, emphasizing the need for more sustainable
practices.

In conclusion, the trustworthiness of generative models is a critical factor that shapes their impact on both
individuals and society. Ensuring that generative models are developed and deployed in ways that prioritize
fairness, transparency, and accountability is essential to harnessing their potential for positive impact while
minimizing the risks they pose to individuals and society as a whole.

Acknowledging these inherent limitations does not diminish the value of trustworthiness benchmarks. Rather,
it emphasizes the importance of transparency in benchmark design and implementation. When a benchmark
adopts specific ethics-related interpretations, it inevitably aligns with certain ethical approaches while
potentially diverging from others. By being transparent about the ethical assumptions and definitions,
benchmarks can provide valuable insights. Such transparency allows stakeholders to make informed decisions
about which benchmarks best align with their goals, contributing to more meaningful evaluations of AI
systems.

D Notation Table

In this section, we present the notations used throughout the paper to formally describe the key challenges in
GenFMs.

Item Description
I Input space
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Item Description
O Output space
H(z) ∈ {0, 1} True harmfulness indicator of content z
S(z) = 1[H(z) = 0] Safety indicator (1 if z is benign)
fθ : I → [0, 1] Learned score approximating Pr[H(x) = 1 | x]
τ ∈ (0, 1) Threshold for binarizing fθ(x)
Ĥ(x) = 1[ fθ(x) > τ ] Predicted harmfulness
dsim(x, x′) Semantic-distance metric
ε > 0 Similarity threshold (dsim < ε)
Rin Input-side worst-case risk sup

x,x′∈I
dsim(x,x′)<ε

∣∣Ĥ(x) − Ĥ(x′)
∣∣

δ Policy budget: upper bound on Rin
g : I → O Model generation function
y = g(x) = (disclaimer, ỹ) Raw model output (with disclaimer)
ϕ Function that strips disclaimers: ϕ(g(x)) = ỹ
D (Unknown) distribution over inputs x
Rout(g, ϕ) = Ex∼D[ H(ϕ(g(x))) ] Effective output-side risk
{Refusehard, Refusesoft, Comply} Allowed reply types
T (g, x) ∈ {0, 1, 2} Encodes selected reply type for input x
UX(gt(x)) User-utility of the t-th reply
λH Weight on expected harmfulness E[H(gt(x))]
λux Weight on user utility UX(gt(x))
H, B Distributions of harmful vs. benign queries
R(x) = 1[ g(x) = rej ] Refusal indicator (1 if model refuses)
help(g(x)) = 1[reply is attacker-useful] Attacker-helpfulness indicator
A(x) = (1 − R(x)) help(g(x)) Attacker-useful indicator (1 if nonrefusal helpful)
TPR = Prx∼H[R(x) = 1] True-positive refusal rate
Udev(g) = TPR − λ Prx∼B[R(x) = 1] Developer’s utility
Uatk(g) = Prx∼H[A(x) = 1] Attacker’s utility (helpful-answer success rate)
ASRnr = Prx∼H[R(x) = 0] Non-refusal success rate
S = (M, G, X ) Complex system: ({Mi}, DAG, input space)
M = {Mi}N

i=1 Set of N submodels
G = (V, E) DAG of dependencies among submodels
X System input space
paG(i) Outputs of parent nodes of i in G
yi ∼ Pθi(· | paG(i)) Output distribution of submodel Mi

ui Per-stage utility of submodel Mi

Upath(S) = Ex∼D[ uend(Downstream(x)) ] Path-level utility of system S
Mmod Set of modalities (e.g. text, image, audio)
σ(Mi) Modality signature of Mi

Cm,n(o(m), o(n)) = cos⟨fm(o(m)), fn(o(n))⟩ Coherence proxy between modality outputs
τ Per-edge evaluation cost in G
|E| Number of edges in G
d̄ Average in-degree in G
Ceval = τ |E| = Θ(τNd̄) Total evaluation cost
J (S) = α Upath(S) + β Csys(S) − γ R(S) Composite trustworthiness objective
Csys(S) System-wide coherence measure
R(S) System-level risk aggregation
f Generation function (generic model)
δ Natural perturbation applied to input x
C(·, ·) Consistency function (e.g. cosine, BLEU)
R = Ex,δ[ C(f(x), f(x + δ)) ] Robustness under natural noise
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