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Abstract

The modeling of samples of distributions is a major challenge since distributions do
not form a vector space. While various approaches exist for univariate distributions,
including transformations to a Hilbert space, far less is known about the multivari-
ate case. We utilize a transformation approach to map multivariate distributions to
a Hilbert space via a Wasserstein slicing method that is invertible. This approach
combines functional data analysis tools, such as functional principal component
analysis and modes of variation, with the facility to map back to interpretable
distributions. We also provide convergence guarantees for the Hilbert space repre-
sentations under a broad class of such transforms. The method is illustrated using
joint systolic and diastolic blood pressure data.

1 Introduction

Data that consist of multivariate distributions are becoming increasingly available. Instances of
such data encompass anthropometric data distributions [24], stock price data distributions [19] and
distributions of temperatures in climate modeling. Analyzing distributional data presents distinctive
challenges, as they do not form a vector space, rendering conventional methods designed for vector
and functional data inapplicable.

For data that correspond to samples of univariate distributions, invertible global transformations
such as the log quantile density transform and log hazard transform have been employed to map
distributions to a Hilbert space L2 [35]. While various maps were proposed to embed metric spaces
into a Hilbert space, starting with Schoenberg’s kernel embedding [43, 44] and also including the
centered log-ratio transformation [23, 30, 24], these maps are generally not 1:1 and therefore not
invertible. However, invertibility is crucial as functional principal component analysis or regression
in Hilbert space involves elements that can be located anywhere in the Hilbert space. To get back
to the original distribution space, which is a must for interpretability and visualization, therefore
requires invertibility of the map.

Another example of such a non-invertible embedding for the Wasserstein space of univariate distribu-
tions is to use Riemannian type log maps to map densities to tangent bundles. The resulting tangent
spaces, are Hilbert spaces, where the development of principal component analysis [5] and regression
models [12] is straightforward, however the reverse exp map is not defined on the entire Hilbert
space but only on a convex cone and this poses a major problem, as only ad hoc solutions such as
projecting elements outside the invertibility cone on the cone are available. Statistical regression
models targeting univariate distributions as responses and Euclidean predictors can be implemented
with Fréchet regression [36], where also other distribution-to-distribution regression models with
viable implementations have been proposed [16, 49].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



While these approaches have been developed for univariate distributions, multivariate distributional
data have been less investigated; while kernel embeddings are still available, the invertibility problem
remains. For regression with multivariate distributions, [34] introduce a regression model but its scope
is limited to the case of multivariate Gaussian distributions, while [17] provides some theoretical
results for a more general settings for an optimal transport map regression approach in analogy to the
case of univariate distributions [16]. Another approach utilizes a Bayes Hilbert space over bivariate
domains to model a time series of copula probability density functions [19], further developed for
bivariate distributional data through spline representations for bivariate densities in the Bayes Hilbert
space [24]. The Bayes Hilbert space proposals do not offer theoretical support and also do not
address the estimation of densities from available random samples that they generate. Wasserstein
geodesic principal component analysis represents variability among probability measures along
geodesics in Wasserstein space, offering closed-form solutions for the case of Gaussian distributions
and neural-network approximations for more general scenarios. However, it lacks an explicit inverse
map and does not guarantee invertibility for non-Gaussian distributions [45].

Our goal in this paper is to extend the univariate log quantile density and log hazard transformation
method [35] to the case of multivariate distributions. Then functional data analysis methodology, in-
cluding functional principal component analysis (FPCA), functional modes of variation and functional
regression can be applied in the Hilbert space into which the distributions are mapped. The densities
corresponding to the Hilbert space representations are then obtained through a regularized inverse
map [9]. Theoretical results regarding the convergence of these representations in density space are
derived under regularity conditions, drawing strength from known results for FPCA and addressing
the complexities introduced by the transformations. Given that multivariate distributions are often
not fully observed and need to be recovered from random samples generated by the underlying
distributions, we also consider the challenges introduced by the estimation step.

2 Preliminaries

2.1 Univariate Density Transformation

Let G = {g ∈ C0(Z) : g > 0,
∫ 1

0
g(z)dz = 1} be the space of strictly positive densities on a

common compact interval Z . Without loss of generality, assume the support for the univariate
density function is Z = [0, 1]. [35] propose a family of transformations ψ : G → L2(S) that
satisfy assumptions (L1)-(L3) that are listed in Appendix A. These transformations map continuous
univariate densities to a new space L2(S), where S is a compact interval.

Here we focus on the log quantile density (LQD) transformation, while the log hazard transformation
is another prominent example for this class of transformations and is reviewed in Appendix D.
Choosing S = [0, 1], the LQD transformation ψQ : G → L2(S) is given by

ψQ(g)(s) = − log
(
g(G−1(s)

)
, s ∈ S, (1)

where G(z) =
∫ z

0
g(u)du is the cumulative distribution function and G−1 is the corresponding

quantile function supported on S. The inverse of a continuous function φ on S can be written as
exp{−φ(Gφ(z))}, where G−1

φ (s) =
∫ s

0
eφ(u)du. Since G−1

φ (1) is not fixed, a boundary adjustment
guarantees that the inverse will be a density on Z = [0, 1] [37],

ψ−1
Q (φ)(z) = αφ exp{−φ (Gφ(z))}, G−1

φ (s) = α−1
φ

∫ s

0

eφ(u)du,

where αφ =
∫ 1

0
eφ(u)du. The LQD transformation is an element of a family of a larger class of

univariate density transformations; however, similar transformations are currently not available for
multivariate density functions. We fill this gap by introducing a generalized multivariate transforma-
tion in Section 3.2, which will be illustrated with examples based on multivariate extensions of the
LQD transformation.

2.2 Density Slicing Transformation

To connect multivariate and univariate distributions, we use the Radon transform R [40], which is an
integral transform that takes an integrable p-dimensional function and maps it to an infinite set of
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integrals over hyperplanes in Rp. Let θ be a unit vector in Θ = {z ∈ Rp, ∥z∥2 = 1} and z an element
in R. We denote affine hyperplanes by lz,θ = {x ∈ Rp : ⟨x, θ⟩ = z} and select an orthonormal
basis {θ, e1, ..., ep−1} in Rp such that ⟨θ, ej⟩ = 0 and ⟨ej , el⟩ = δjl, for j, l = 1, ..., p− 1. We then
define the p-dimensional Radon transform R through the integral over lz,θ as follows,

R(f)(θ, z) =

∫
Rp−1

f

zθ + p−1∑
j=1

sjej

 ds1 · · · dsp−1, for θ ∈ Θ and z ∈ R, (2)

where f is a p-dimensional multivariate density function supported on D.

The inverse Radon transform has undergone thorough investigation, both theoretically and numerically
[1, 22, 31]. The commonly used method to reconstruct the original multivariate distribution from its
Radon transform ϕ is through the filtered back-projection given by

R−1 (ϕ) (x) =
1

2(2π)p

∫
Θ

∫
R
J (ϕ(θ, ·)) (v)eir⟨θ,x⟩|v|p−1dvdθ, (3)

where the Fourier transform is J (g)(v) =
∫
R g(u)e

−iuvdu for all v ∈ R. There are cases where
Radon transforms are bona fide probability densities, while the inverse is not, such as the Wigner
quasi-probability distribution in quantum state tomography [2]. Moreover, the inverse map R−1 is
not continuous, and small reconstruction errors in R(f) can be magnified [15]. To address this, a
regularized inverse [15, 25, 9] using a filter function in the Fourier domain is commonly applied,

Ř−1
τ (ϕ) (x) =

1

2(2π)p

∫
Θ

∫
R
J (ϕ(θ, ·)) (v)eir⟨θ,x⟩|v|p−11|v|≤τdvdθ. (4)

Note that the regularization parameter τ balances approximation accuracy and the continuity of the
inverse map [9]. As this regularized inverse is not guaranteed to be a multivariate density function,
normalization is applied to map the resulting L1 function into the multivariate density space F via

R−1
τ (ϕ) (x) =

{∣∣Ř−1
τ (ϕ)(x)

∣∣ / ∫
D

∣∣Ř−1
τ (ϕ)(x)

∣∣ dz if
∫
D

∣∣Ř−1
τ (ϕ)(x)

∣∣ dx > 0,

1/|D| otherwise.
(5)

Here |D| represents the Lebesgue measure of D which is the domain of the multivariate density
function f . Note that the Radon transform and its inverse are part of a generalized slicing transform
family, for which an explicit invertible embedding between multivariate and sliced univariate densities
was introduced in [9], where further details can be found.

3 Multivariate Density Transformation

3.1 Assumptions for Multivariate Densities

By convention, C0 denotes the set encompassing all continuous functions while C1 denotes the set
consisting of all continuously differentiable functions. Let ∥ · ∥2 be the L2 metric and ∥ · ∥∞ be the
uniform metric for measurable functions. Throughout, C0, C1, . . . represent various constants, and
their dependency on pertinent quantities ϱ will be denoted by writing C0(ϱ), C1(ϱ), . . . .

We assume that the multivariate distributions that we consider have density functions and that their
common support is D ⊂ Rp, where

(D1) The support set D ⊂ Rp is compact and convex.

Denote the space of strictly positive multivariate density functions on Rp with compact support D by

F =

{
f(x) ∈ L1(Rp) : f(x) > 0,

∫
Rp

f(x)dx = 1, support(f) = D, f satisfies (F1)
}
.

(F1) For all f ∈ F , there exists a constant M0 > 0 such that max{∥f∥∞, ∥1/f∥∞} ≤M0 and for a
κ ≥ p+ 1, f is continuously differentiable of order κ on D ⊂ Rp and has uniformly bounded partial
derivatives.
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Figure 1: Scheme for the Radon Log Quantile Density (RLQD) transformation for the bivariate case:
Slicing the bivariate density function along each projection (represented by an angle) through the
Radon transform, followed by the slice-wise log quantile density transform.

3.2 Multivariate Density Transformation

We introduce multivariate density transformations Ψ : F → L2(Θ× S) from multivariate density
functions to a Hilbert space as follows. Let ψ,ψ−1 be the generalized univariate density transforma-
tion and its inverse reviewed in Section 2.1, then

Ψ(f)(θ, s) = ψ (R(f) (θ, ·)) (s), for (θ, s) ∈ Θ× S, f ∈ F . (6)
By using the regularized inverse of the Radon transform, the regularized inverse can be defined for
any continuous function ζ as

Ψ−1
τ (ζ)(x) = R−1

τ

((
ψ−1(ζ(θ, ·)

)
(z)
)
(x). (7)

A concrete example is the Radon log quantile density (RLQD) transformation ΨQ,

ΨQ(f)(θ, s) = ψQ (R(f) (θ, ·)) (s) = − log
(
R(f)(θ,R−1

θ (s)
)
, for (θ, s) ∈ Θ× S, f ∈ F , (8)

where Rθ(z) =
∫ z

0
R(f)(θ, u)du is the cumulative distribution function along z when fixing the first

argument θ and R−1
θ (s) is the corresponding sliced quantile function supported on [0, 1]. The inverse

map can be defined for any continuous function ζ as

Ψ−1
Q,τ (ζ)(x) = R−1

τ

(
ψ−1
Q (ζ(θ, ·)) (z)

)
(x). (9)

The steps defining the RLQD transformation are visualized in Fig. 1.

For the theoretical analysis of these transformations we require certain smoothness and regularity
conditions. We show that when the univariate density transformation ψ satisfies assumptions (L1)-
(L3) in the Appendix , the corresponding multivariate density transformation Ψ according to (6)
satisfies the four smoothness properties (T1)-(T4) in Appendix A.

4 Representations for Transformed Distributions

4.1 Metric for Multivariate Distributions

Let B(D) be the Borel σ-algebra on D. We focus on random probability distributions on (D,B(D))
and each probability distribution is characterized by a density function with respect to Lebesgue
measure. While classical metrics such as L1, L2, L∞ or total variation metric [14] are commonly
used, recent work has emphasized the Fisher–Rao [13, 50] and Wasserstein metrics [18, 32, 26] for
samples of distributional data. The 2-Wasserstein distance between two densities is defined as

d2W (f1, f2) = inf
µ∈Π(f1,f2),
(Z1,Z2)∼µ

E(∥Z1 − Z2∥2), for all f1, f2 ∈ F .
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Here Z1 and Z2 are random variables on Rp, and Π(f1, f2) is the space of joint probability measures
on D ×D with marginal densities f1 and f2. For one-dimensional distributions, the 2-Wasserstein
metric corresponds to the L2 distance between their quantile functions,

d2W (g1, g2) =

∫ 1

0

(
G−1

1 (s)−G−1
2 (s)

)2
ds, for all g1, g2 ∈ G,

whereG−1
1 , G−1

2 are the corresponding quantile functions of g1, g2. Obtaining the Wassestein distance
for the multivariate distribution involves intricate algorithms and does not have an analytic solution
[39, 38]. An alternative approach is the sliced Wasserstein distance [7]. It offers a computationally
more efficient solution compared to the conventional Wasserstein distance and is defined as

d2SW (f1, f2) =

∫
θ∈Θ

d2W (R(f1)(θ, ·),R(f2)(θ, ·)) dθ, for all f1, f2 ∈ F , (10)

where the Radon transform R is introduced in (2).

4.2 Transformed Distribution Representations

Suppose the random densities are generated as f ∼ F where F is a probability measure on F .
Applying the transformation in Section 3 yields a random element in the Hilbert space X := Ψ(f) ∈
L2(Θ × S), which corresponds to the realization of a stochastic process. This enables functional
data analysis [47] and linear representations in the Hilbert space L2, with results mapped back to the
density space via the regularized inverse Ψ−1

τ that was introduced in (9).

Denote the mean function of the process X by ν(θ, s) = E (X(θ, s)) and the covariance function by
H(θ1, s1, θ2, s2) = Cov (X(θ1, s1), X(θ2, s2)), where the eigenfunctions of the covariance operator
associated with the kernel H are denoted by {γk(θ, s)}∞k=1 and their corresponding eigenvalues by
{λk}∞k=1. The transformed process can be represented through the Karhunen-Loève expansion [27]

X(θ, s) = ν(θ, s) +

∞∑
k=1

χkγk(θ, s), (θ, s) ∈ Θ× S, (11)

with the principal components χk =
∫
Θ×S(X(θ, s)− ν(θ, s))γk(θ, s)dθds. This expansion exhibits

an optimality characteristic where the initial K terms constitute the K-dimensional representation
of X(s, t) that minimizes the unexplained variance. Empirical estimators of ν̂, Ĥ, γ̂k, λ̂k, χ̂k can be
obtained based on the sample of transformed processes [4, 20, 3, 47]. For extensions to multivariate
functional data, including product and marginal FPCA, see [11, 10].

Truncating the Karhunen-Loève expansion to the first K components yields an L2-optimal approxi-
mation; with judicious choice of K it captures a pre-specified fraction of the variation,

XK(θ, s) = ν(θ, s) +

K∑
k=1

χkγk(θ, s), (θ, s) ∈ Θ× S. (12)

To interpret the contribution of each principal component in the original density space, we extend the
notion of univariate transformation modes of variation [35] to the multivariate setting. Specifically,
we compute modes of variation in the transformed L2 space and map them back to the density space
via the regularized inverse. The k-th transformation mode of variation is defined as a family of
functions indexed by α ∈ R,

mk (x, α, τ) = Ψ−1
τ

(
ν + α

√
λkγk

)
(x). (13)

The data application in Section 8 demonstrates that transformation modes of variation play an
important role in understanding the effect of each principal component.

5 Estimation

In practice, random densities {fi}ni=1 are often not fully observed and one has only have observations
generated by each of these densities. In this more realistic case, a preliminary density estimation step
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is needed, which is described in Appendix F. If the random densities fi are estimated by a kernel
density estimator f̂i through (31), the corresponding sample mean and variance are based on the new
transformed sample {X̌i}ni=1 = {Ψ(f̂i)}ni=1,

ν̂(θ, s) =
1

n

n∑
i=1

X̌i(θ, s), Ĥ(θ1, s1, θ2, s2) =
1

n

n∑
i=1

X̌i(θ1, s1)X̌i(θ1, s2)− ν̂(θ1, s1)ν̂(θ2, s2).

(14)

Another application of Mercer’s theorem implies

Ĥ(θ1, s1, θ2, s2) =

∞∑
k=1

λ̂kγ̂k(θ1, s1)γ̂k(θ2, s2), (15)

where λ̂k and γ̂k are estimated eigenvalues and eigenfunctions of the covariance operator associated
with the covariance function Ĥ . The principal components χik are estimated as

χ̂ik =

∫
Θ

∫
S

(
X̌i(θ, s)− ν̂(θ, s)

)
γ̂k(θ, s)dθds (16)

and the plugin estimator for the transformation modes of variation (13) is

m̂k (x, α, τ) = Ψ−1
τ

(
ν̂ + α

√
λ̂kγ̂k

)
(x). (17)

Selection of tuning parameter K and τ are further discussed in Appendix E.

6 Asymptotic Convergence

In this section we establish asymptotic properties of the empirical estimators proposed in Section 5.
A key feature in the convergence rate is the spacing between eigenvalues, where we define

σk = min
1≤j≤k

(λj − λj+1). (18)

for any integer k. For the ith distribution, we assume there are Ni independent observations
available to estimate the density function f̂i in (31), with details in the Appendix. The lower bound
N(n) = min1≤i≤nNi is relevant for the overall asymptotic convergence rate. For the following
result, we require that the sample size per distribution is large enough so that the effect of density
estimation can be neglected when deriving the asymptotic rates. Specifically, we require

(E1) limn→∞N(n)/nr ≥ c for some r > 1 + p/4, where c > 0 is a constant and p denotes the
dimension of the domain of the densities.

Convergence analysis of the representations is presented in Appendix G. For the following, we require
an additional assumption (S1) which imposes restrictions on the eigencomponents. It reflects typical
assumptions of exponentially or polynomially declining eigenvalues.

(S1) The sequence K = K(n) of approximating K-representations is such that σ−1
K λ−1

K n−1/2 =
O(1). With C4 as in (T5) in Appendix A , we use the following bound to derive the convergence of
transformation modes of variation, where for a fixed constant α0 > 0,

S(τ,K) = max
1≤k≤K

sup
|α|≤α0

C4

(
τ, ∥Xk,α∥∞, ∥∂Xk,α(θ, s)/∂s∥∞, d∞

(
Xk,α, X̂k,α

))
, (19)

= O

(
τp max

1≤k≤K

{
e6∥γk∥∞∥∂γk(θ, s)/∂s∥∞e2d∞(Xk,α,X̂k,α)

})
,

with Xk,α = ν + α
√
λkγk and X̂k,α = ν̂ + α

√
λ̂kγ̂k. Under (S1), we have d∞

(
Xk,α, X̂k,α

)
=

Op(1). When K is fixed, ∥Xk,α∥∞ and ∥∂Xk,α(θ, s)/∂s∥∞ can be uniformly bounded, implying
S(τ,K) = Op(τ

p). When K = K(n) → ∞, the convergence of S(τ,K) requires bounded-
ness of ∥Xk,α∥∞ and ∥∂Xk,α(θ, s)/∂s∥∞, which is implied by the boundedness of ∥γk∥∞ and
∥∂γk(θ, s)/∂s∥∞. The following result provides the rate of convergence of the estimated transfor-
mation modes of variation in (17) to the true modes in (13), uniformly over the parameter |α| ≤ α0

and for any constant α0 > 0.
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Theorem 1. Under assumptions (D1), (F1), (T1)-(T4), (E1), (K1)-(K2), for fixed K and α0,
mk(x, α, τ) and m̂k(x, α, τ) as per (13) and (17),

max
1≤k≤K

sup
|α|≤α0

dSW (mk(x, α, τ), m̂k(x, α, τ)) = Op(τ
pn−1/2).

If we assume K = K(n) → ∞ satisfies (S1), then

max
1≤k≤K(n)

sup
|α|≤α0

dSW (mk(x, α, τ), m̂k(x, α, τ))

= Op(τ
p max
1≤k≤K

{e6∥γk∥∞∥∂γk(θ, s)/∂s∥∞}σ−1
K n−1/2),

where τ, γk, σK are as in equations (4), (11) and (18).
Corollary 1. When assuming exponential decay for the eigenvalues, i.e., λk = ce−θk for some
constants c, θ > 0, with K(n) = ⌊ 1

4θ log(n)⌋ → ∞, Theorem 1 provides that

max
1≤k≤K(n)

sup
|α|≤α0

dSW (mk(x, α, τ), m̂k(x, α, τ)) =

Op(τ
p max
1≤k≤K

{e6∥γk∥∞∥∂γk(θ, s)/∂s∥∞}n−1/4).

We also present the convergence rate of the truncated density estimator in 25. See G for additional
asymptotic convergence results in the Appendix.
Theorem 2. Under assumptions (D1), (F1), (T1)-(T5), (E1), (K1)-(K2), assume exponentially
decaying eigenvalues λk = ce−θk for some constants c and θ. With K(n) = ⌊ 1

3θ log(n)⌋ → ∞,

max
1≤i≤n

dSW

(
fi(·), f̂i(·,K, τ)

)
= Op

(
τ−(κ−p) + τpn−1/6

)
,

and choosing τ ∼ n1/6k leads to

max
1≤i≤n

dSW

(
fi(·), f̂i(·,K, τ)

)
= Op

(
n−(κ−p)/6k

)
.

7 Experiments

We illustrate our methods by comparing the performance of three approaches: (1) Directly applying
FPCA and modes of variation to estimated densities viewed as elements of L2, ignoring density
constraints [48]. The resulting functions are truncated to their positive part and renormalized to
ensure valid densities; (2) Performing PCA in the tangent space (TPCA) of the Bures–Wasserstein
manifold of covariance operators at a reference density and maps the resulting components back to
the density space via the exponential map [29] and (3) the proposed RLQD method, which takes the
constraints into account and where K-component approximations as well as modes of variation are
guaranteed to reside in the density space and additional adjustments are not necessary,

We conducted Monte Carlo experiments under two simulation settings: (A) random bivariate normals
and (B) mixtures of two bivariate normals. Details of the data generation process appear in Table
1. In both settings, we generate 50 random densities, each from latent parameters, and sample 200
observations per density. As evaluation criterion we use the fraction of variance explained V̂K/V̂∞
as defined in Section E, where a higher fraction of variance explained for the same choice of K
reflects better representations. Boxplots depicting the fraction of variance explained with respect to
the sliced Wasserstein distance for FPCA and RLQD approaches are in Figure 4. It is clear that in
these settings the proposed RLQD method performs the best throughout in comparison with both
the standard FPCA approach and the tangent FPCA approach. The advantage of RLQD becomes
particularly evident beyond the first two modes, where FPCA’s explained variance plateaus and TPCA
yields diminishing returns. In contrast, RLQD continues to capture meaningful higher-order variation,
demonstrating stronger structural representation and efficiency with fewer retained components.

We further visualize the modes of variation for the first two principal components under Setting A in
Figures 2 and 3. Under the Gaussian assumption, both the proposed RLQD transformation and the
classic FPCA exhibit similar patterns of variation. Specifically, the first mode primarily captures the
overall intensity or concentration of the density around the mean, whereas the second mode reflects a
rotational change in the orientation of the joint distribution.
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Table 1: Simulation settings for bivariate normal and mixture distributions.

Setting Random components Resulting density

A

µi ∼ U [−0.2, 0.2] {Xij}200j=1 ∼ N (µi,Σi)
ρi ∼ U [0.4, 0.8] truncated on [−2, 2]2

log(s1i) ∼ U [−0.3, 0.3] i = 1, . . . , 50
log(s2i) ∼ U [−0.3, 0.3]

Σi =

(
s21i s1is2iρi

s1is2iρi s22i

)

B

µ1,i, µ2,i ∼ U [−0.2, 0.2] {Xij}200j=1 ∼ 1
2N (µ1,i,Σ1,i)

ρ1,i, ρ2,i ∼ U [0.4, 0.8] + 1
2N (µ2,i,Σ2,i),

log(s1,1i), log(s2,1i) ∼ U [−0.3, 0.3] truncated on [−2, 2]2

log(s1,2i), log(s2,2i) ∼ U [−0.3, 0.3] i = 1, . . . , 50

Σ1,i =

(
s21,1i s1,1is1,2iρi

s1,1is1,2iρi s21,2i

)
Σ2,i =

(
s22,1i s2,1is2,2iri

s2,1is2,2iri s22,2i

)

gamma2,−2 gamma2,−1 gamma2,0 gamma2,1 gamma2,2
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Figure 2: Proposed RLQD transformation modes of variation as per 13 for Setting A
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Figure 3: Classic FPCA Modes of variation for Setting A

8 Data Illustrations

We analyze blood pressure data from the Baltimore Longitudinal Study of Aging (BLSA)
https://www.blsa.nih.gov/. The dataset comprises 16,715 bivariate measurements (SBP, DBP) for
approximately 2,800 individuals, with the number of visits per individual ranging from 1 to 26 and
ages spanning from 17 to 75. For each age group, we estimate joint two-dimensional densities using
a kernel density estimator. The estimator is applied over 51 equidistant grid points in each direction,
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Figure 4: Boxplots show the fraction of variance explained (via sliced Wasserstein distance) across
100 simulations. Each row represents a different setting, with varying component numbers K. Larger
values indicate that a higher fraction of variation is explained and are preferred. The proposed RLQD
approach is compared with unconstrained FPCA and tangent PCA for densities.

covering the domains [50, 205] for SBP and [40, 125] for DBP with Gaussian kernel and bandwidths
hSBP = 24 and hDBP = 15. The fitted densities (Figure 7 in the Appendix B) show a clear positive
correlation between SBP and DBP, along with increasing variability at older ages, highlighting the
need for low-dimensional representations that capture these distributional shifts.

Using the RLQD approach with K = 2 components, we achieve strong dimension reduction while
explaining 87% of the variance in sliced Wasserstein distance as shown in Figure 8 of the Appendix.
The corresponding transformation modes of variation in Figure 5 provide insight into principal
patterns of change. The predominant mode of variation in the top row reflects a horizontal mean
shift coupled with increasing variance, primarily in systolic blood pressure. This suggests that the
primary source of variation is a shift in the mean and increased variance of systolic blood pressure.
The second mode of variation highlights changes in the variation of diastolic blood pressure and
in the covariance structure between diastolic and systolic blood pressures. The first two FPCA
components explain 70% and 11%. Under a standard threshold of 85% cumulative variance, RLQD
requires only 2 components for effective dimension reduction, whereas FPCA requires at least 3.
The eigenfunctions and modes of variation produced by FPCA typically resemble Gaussian-shaped
perturbations around the mean as presented in Figure 9 of the Appendix, which can be restrictive
when modeling data with inherent skewness or non-Gaussian features. In contrast, RLQD captures
more flexible, non-Gaussian modes that better reflect the underlying distributions. For example,
the blood pressure data exhibit clear asymmetry, with a noticeable skew toward lower pressure
levels. This is statistically confirmed by Mardia’s test [28] for multivariate normality: both skewness
(3063.39) and kurtosis (42.75) statistics are highly significant (p-values < 0.001), indicating a strong
departure from multivariate normality. These findings demonstrate that RLQD not only provides
more informative components with fewer dimensions but also produces representations that are more
faithful to the structural properties of complex real-world distributions.
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Figure 5: Transformation modes of variation as per (13) for bivariate blood pressure distributions.
The first row illustrates the action of the first mode of variation m1 and the second row that of the
second mode of variation m2 as the values of α are varied from −2 to 2 as per (17).

One can also use the K-component representations—here with K = 2, yielding bivariate score
vectors—to characterize evolving blood pressure patterns. Local linear smoothing of the scores
against age is shown in Figure 6, using a Gaussian kernel with bandwidth 6, selected via leave-one-
out cross-validation. The first score, χ1, associated with γ1, shows an increasing trend with age,
suggesting rising blood pressure variation and increased diastolic pressure in older individuals. The
second score, χ2, linked to γ2, increases until midlife then declines, indicating that diastolic pressure
peaks in midlife. An additional case study on temperature data in the United States is provided in
Appendix H.
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Figure 6: Blood pressure data score smoothing. Local linear smoothing of the score representations
along age. Left: Smoothed first scores χ1 versus age. Right: Smoothed second scores χ2 against age.

9 Conclusion and Limitations

This work presents a transformation-based framework for the functional analysis of multivariate
distributions. By combining Radon slicing with univariate log quantile density transforms, we map
multivariate densities into a Hilbert space where classical FDA tools such as FPCA and modes of
variation become applicable. The regularized inverse transform ensures that the structure of the
original density space is preserved. While not the focus of this paper, we note that this framework
facilitates distributional regression once vectorized representations are obtained. Limitations include
the dependence on accurate density estimation from finite samples that is subject to the curse of
dimensionality and the need for a regularization parameter.
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paper’s contributions and scope?
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Justification: The abstract and introduction accurately summarize the paper’s key contribu-
tions and are consistent with the scope and content presented in the main text.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 9 for limitations
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Justification: We present three main theorems: one in Section 6 of the main paper and two
in Appendix G. All are accompanied by detailed proofs in Section J.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Section 5 of the main paper and Section E of the Appendix for
the choice of tuning parameters.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided along with the submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 5 of the main paper and Section E of the Supplement
for the estimation details. Code is also provided along with the submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars is provided in Section 7 of the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section I we use and execution time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents foundational research that is not directly linked to specific
applications, and therefore a discussion of societal impacts is not applicable.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or datasets with a high risk
of misuse. It focuses on theoretical and methodological contributions rather than deployable
systems.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in the paper, including datasets and code, are properly
cited with references to the original sources. The licenses and terms of use for these assets
are explicitly stated, and their usage complies with the specified terms. Version information
and URLs are included where applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods and contributions of this research do not involve the use of
large language models (LLMs) in any important, original, or non-standard way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Assumptions

The univariate transformation ψ is required to satisfy the following assumptions (L1)-(L3), where we
denote the L2 and uniform metrics as d2 and d∞, respectively.

(L1) Let g1, g2 ∈ G with g1 differentiable and ∥g′1∥∞ <∞. Set

D̃0 ≥ max (∥g1∥∞, ∥1/g1∥∞, ∥g2∥∞, ∥1/g2∥∞, ∥g′1∥∞) .

There exists a const C̃0 depending only on D̃0 such that

d2(ψ(g1), ψ(g2)) ≤ C̃0d2(g1, g2), d∞(ψ(g1), ψ(g2)) ≤ C̃0d∞(g1, g2).

(L2) Assume g ∈ G is differentiable with ∥g′∥∞ < ∞ and D̃1 is a constant bounded below by
max (∥g∥∞, ∥1/g∥∞, ∥g′∥∞) . Then ψ(g) is differentiable and there exists a constant C̃1 > 0

depending only on D̃1 such that

∥ψ(g)∥∞ ≤ C̃1, ∥ψ(g)′∥∞ ≤ C̃1.

(L3) Assume φ1, φ2 are continuous functions, where φ1 is differentiable on S with ∥φ′
2∥∞ < ∞.

There exist constants c, C̃2, C̃3 > 0 where C̃2 (∥φ1∥∞, ∥φ′
1∥∞) ≤ ce6∥φ1∥∞∥∂φ1(θ, s)/∂s∥∞ and

C̃3 (d∞(φ1, φ2)) ≤ ce2d∞(φ1,φ2), such that

d2
(
ψ−1(φ1), ψ

−1(φ2)
)
≤ C̃2C̃3d2(φ1, φ2),

where C̃2 and C̃3 are increasing in their respective arguments.

The multivariate transformation Ψ is required to satisfy the following assumptions (T1)-(T5).

(T1) There exists a constant C1 such that

d2 (Ψ(f1),Ψ(f2)) ≤ C1d2(f1, f2), d∞ (Ψ(f1),Ψ(f2)) ≤ C1d∞(f1, f2), for all f1, f2 ∈ F .

(T2) For all f ∈ F , Ψ(f)(θ, s) is continuous and has a continuous partial derivative with respect to s
with a constant C2 such that

∥Ψ(f)∥∞ ≤ C2, ∥∂Ψ(f)(θ, s)/∂s∥∞ ≤ C2, |Ψ(f)(θ1, s)−Ψ(f)(θ2, s)| ≤ C2∥θ1 − θ2∥2.

(T3) An inverse transformation Ψ−1 exists such that Ψ−1 ◦Ψ(f) = f for all f ∈ F .

(T4) There exists a sequence of approximating inverses Ψ−1
τ , τ → ∞, and a constant C3 = C3(τ) ≤

cτ−(κ−p) for a constant c, such that

d∞
(
Ψ−1

τ ◦Ψ(f), f
)
≤ C3, for all f ∈ F ,

where C3 is decreasing to 0 as τ → ∞.

(T5) Let ζ1, ζ2 : Θ× S → R be continuous functions, where ζ1 has a continuous partial derivative
∂ζ1(θ, s)/∂s. There exist constants c, C4 > 0 with

C4 = C4 (τ, ∥ζ1∥∞, ∥∂ζ1(θ, s)/∂s∥∞, d∞(ζ1, ζ2)) ≤ cτp∥∂ζ1(θ, s)/∂s∥∞e6∥ζ1∥∞e2d∞(ζ1,ζ2),

such that

d∞
(
Ψ−1

τ (ζ1),Ψ
−1
τ (ζ2)

)
≤ C4d2 (ζ1, ζ2) ,

where C4 is increasing in each of its four arguments.

Assumptions (T1) and (T2) ensure the continuity and the boundedness of the forward transformation,
while assumption (T3) guarantees invertibility on the image space Ψ(F). Note that Ψ(F) is not
guaranteed to cover the entire C0 space and the inverse transformation Ψ−1 is only defined on the
image space Ψ(F). A sequence of approximating inverses Ψ−1

τ is provided in assumption (T4) and
(T5) and is used to map L2 elements back to F . Note that the regularization parameter τ controls the
approximation accuracy and the roles of ζ1 and ζ2 in assumption (T5) could be reversed.
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B Additional Figures
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Figure 7: Fitted kernel density surfaces for bivariate blood pressure data for selected age groups.
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Figure 8: Reconstructed two-dimensional blood pressure distributions using the proposed RLQD
approach, with sliced Wasserstein variance explained of 0.87—0.73 from the first component and
0.14 from the second. The two-dimensional representations capture most of the variation in the
original density space and enable substantial dimension reduction.
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Figure 9: Modes of variation of the first two components by using standard FPCA approach

C Reconstruction of the L2 process

Proposition 1. Assume (D1), (F1) and (T2)-(T5). Let f ∈ F and ζ be a continuous function on
L2(Θ× S). Then

dSW (f,Ψ−1
τ ◦ ζ) = O (C3 + C4d2 (Ψ(f), ζ)) , as τ → ∞.

Here, C3, C4, and Ψ are defined as per assumptions (T4)-(T5) and in equation (6).
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This bound indicates that by approximating the transformed density within the transformed L2

space, one can obtain a consistent reconstruction of the multivariate density through the regularized
inverse map Ψ−1

τ introduced in (9), where the rate of convergence can be further specified as in the
Proposition.

D Radon Log Hazard and Log Quantile Density Transformations

We review here an additional specific univariate density transformation, the log hazard transformation
[35]. We adopt the assumption that has been made in Section 2, namely that the support for a
univariate density function is Z = [0, 1]. As hazard functions diverge at the right endpoint 1 of the
support of the distribution, we consider quotient spaces by equating densities that are equal on a
subdomain S = [0, 1υ], where 1υ = 1 − υ for some 0 < υ < 1. The log hazard transformation
ψH : G → L2(S) is expressed as follows:

ψH(g)(s) = log

{
g(s)

1−G(s)

}
, s ∈ S, (20)

whereG(s) =
∫ s

0
g(z)dz is the cumulative distribution function. The inverse of a continuous function

φ on S is

ψ−1
H (φ)(z) =

{
exp

{
φ(z)−

∫ z

0
eφ(u)du

}
for z ∈ [0, 1υ],

υ−1 exp
{
−
∫ 1υ
0
eφ(u)du

}
for z ∈ [1υ, 1].

Employing the Radon transform R as defined in (2), the Radon log hazard transformation (RLH)
ΨH is

ΨH(f)(θ, s) = ψH(R(f)(θ, ·))(s) = log

{
R(f)(θ, s)

1−Rθ(s)

}
, (21)

where Rθ(s) =
∫ s

−∞ R(f)(θ, u)du is the cumulative distribution function along R(f)(θ, ·), fixing
the first argument at θ.

Corollary 2. For C3, C4 as in assumption (T4)-(T5), when using the RLH transform ΨH as
per (21), it holds that C3(τ) ∼ τ−(κ−p) and C4 (τ, ∥ζ1∥∞, ∥∂ζ1(θ, s)/∂s∥∞, d∞(ζ1, ζ2)) ∼
τpe2∥ζ1∥∞ed∞(ζ1,ζ2) as τ → ∞.

Similarly, for Radon log quantile density (RLQD) transformation, we have

Proposition 2. If (D1), (F1) and (L1)-(L3) hold, assumptions (T1)-(T5) are satisfied for the
multivariate density transformation Ψ in (6). When using the RLQD transformation ΨQ

as per (8), we have C3(τ) ∼ τ−(κ−p) and C4 (τ, ∥ζ1∥∞, ∥∂ζ1(θ, s)/∂s∥∞, d∞(ζ1, ζ2)) ∼
τp∥∂ζ1(θ, s)/∂s∥∞e6∥ζ1∥∞e2d∞(ζ1,ζ2).

The following corollary follows directly from Corollary 2 and Theorem 1.

Corollary 3. When assuming exponentially decaying eigenvalues, λk = ce−θk for some constants
c, θ > 0, with K(n) = ⌊ 1

4θ log(n)⌋ → ∞, it holds that

max
1≤k≤K(n)

sup
|α|≤α0

dSW (mk(x, α, τ), m̂k(x, α, τ)) = Op

(
τp max

1≤k≤K

{
e2∥γk∥∞

}
n−1/4

)
.

Furthermore, if the eigenfunctions correspond to the trigonometric basis, then

max
1≤k≤K(n)

sup
|α|≤α0

dSW (mk(x, α, τ), m̂k(x, α, τ)) = Op

(
τpn−1/4

)
.

E Estimation and Selection of Tuning Parameter

We discuss the empirical estimation in Section 5. We now present the population version to provide a
complete formulation and to facilitate the proofs.
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Suppose we have a sample of independent random densities {fi}ni=1 ∼ F. Writing Xi = Ψ(fi),
empirical sample mean and variance are

ν̃(θ, s) =
1

n

n∑
i=1

Xi(θ, s), H̃(θ1, s1, θ2, s2) =
1

n

n∑
i=1

Xi(θ1, s1)Xi(θ1, s2)− ν̃(θ1, s1)ν̃(θ2, s2).

(22)

Mercer’s theorem implies that the spectral decomposition of H̃ leads to

H̃(θ1, s1, θ2, s2) =

∞∑
k=1

λ̃kγ̃k(θ1, s1)γ̃k(θ2, s2), (23)

where λ̃k and γ̃k are empirical eigenvalues and eigenfunctions of the covariance operator with the
covariance kernel H̃ .

In terms of the selection of tuning parameter, By selecting the first K components in the expansion
(11) and applying the regularized inverse transformation, the truncated representations can be obtained
through

fi(x,K, τ) = Ψ−1
τ

(
ν +

K∑
k=1

χikγk

)
(x), (24)

with estimated version

f̂i (x,K, τ) = Ψ−1
τ

(
ν̂ +

K∑
k=1

χ̂ikγ̂k

)
(x). (25)

A simple and often well-working approach for the selection of the tuning parameter K can be based
on the fraction of variance explained in the density space. To implement this method, we need to first
define the sliced Wasserstein Fréchet mean with respect to the metric dSW , which is

f⊕ = arginf
q∈F

E
(
dSW (f, q)2

)
, (26)

with empirical estimates f̂⊕ = argminq∈F n
−1
∑n

i=1 d
2
SW (f̂i, q). We note that f⊕ and f̂⊕ might be

sets with more than one element. Further results regarding the sliced Wasserstein distance and sliced
Wasserstein barycenter can be found in [38, 6, 7]. To quantify the variance explained in the density
space, we use the Fréchet variance

V∞ = E
(
dSW (f, f⊕)

2
)
, (27)

which is unique irrespective of whether the Fréchet mean is unique or not. Its empirical estimate is
V̂∞ = 1

n

∑n
i=1 dSW (f̂i, f̂⊕)

2. The variance explained by the K component representation is

VK = V∞ − E
(
dSW (f, fK,τ )

2
)
, (28)

where fK,τ = Ψ−1
τ (ν +

∑K
k=1 χkγk) is the truncated representation of the density process. This

variance explained is estimated by V̂K = V̂∞ − 1
n

∑n
i=1 dSW

(
f̂i(·), f̂i (·,K, τ)

)2
. Control of the

tuning parameter τ is implemented by adjusting the sampling rate in the density domain, which
determines the Nyquist frequency—the highest frequency representable without aliasing. This
Nyquist frequency directly sets the cutoff for the regularized inverse Radon transform, thus controlling
the level of smoothing in the reconstructed density [25, 41].

The fraction of variance explained is the ratio VK/V∞, with estimated ratio V̂K/V̂∞. The choice
of K is then the smallest K that explains a fraction of variance above a given threshold ϑ with
0 < ϑ < 1, formally

K∗ = argmin
K

{
K :

VK
V∞

> ϑ

}
, (29)

with plug-in estimator

K̂∗ = argmin
K

{
K :

V̂K

V̂∞
> ϑ

}
. (30)

Here the default choices of ϑ are ϑ = .95 or ϑ = .9.
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F Random Distribution Estimation

We assume that the multivariate distributions we are dealing with are well-defined and have density
functions on fixed domains, which might be unknown but encompass a fixed known domain D. The
domain D is as in assumption (D1) and is determined either by prior knowledge or selected by the
user in practical scenarios. Our focus is on distributions truncated to the common domain D and we
presume that these truncated distributions are well-defined with density functions on D. Similar to
the preliminary density estimation step as in Section S.3 of [9], we assume that there exists ϵ > 0
such that Dϵ =

⋃
z∈D B(z, ϵ) belongs to the domain of all underlying multivariate distributions,

where B(z, ϵ) is a ball with radius ϵ centered at z. This assumption guarantees that boundary effects
can be ignored in the density estimation step. The continuous differentiability assumption (F1) is
extended to (F1′) below. Additional assumptions (P1), (K1), (K2) are also listed below.

(F1′) There exists a constant M0 > 0 and an integer κ ≥ p + 1 such that for all f ∈ F , the
density function f is the density of a truncated distribution on the domain D, where the original
distribution has a domain Df with Df ⊃ Dϵ and a density fDf

that is defined on Df . It holds that
max{∥fDf

∥∞, ∥1/fDf
∥∞} ≤M0 on Dϵ and that fDf

is continuously differentiable of order k on
Dϵ, with uniformly bounded partial derivatives. The target distributions with densities f are the
truncated versions of the fDf

on D, so that for all z ∈ D one has f(z) = fDf
(z)/

∫
D
fDf

(u)du.

(P1) N(n) = min1≤i≤nNi ≥ cnr, where Ni is the number of random observations for the i-th
distribution, and the constants satisfy r > 1 + p/4 and c > 0.

(K1) The kernel function K as per (31) is a probability density function that has compact support and
is a symmetric, bounded and k times continuously differentiable function (without loss of generality,
the support is assumed to be contained in the unit cube of Rp).

(K2) For some A > 0 and ω > 0, the class of functions Ib = {K
(
z−·
b

)
, z ∈ Rp, b > 0} satisfies

sup
P
M
(
Ib, L2(P), ε∥F∥L2(P)

)
≤
(
A

ε

)ω

,

where M(T, d, ε) denotes the ε-covering number of the metric space (T, d), F is the envelope
function of Ib and the supremum is taken over the set of all probability measures on Rp. The
quantities A and ω correspond to the Vapnik-Cervonenkis (VC) characteristic of K.

Note that assumption (P1) ensures that the L2 convergence of the multivariate density is faster than
the parametric rate n−1/2 while assumptions (K1)-(K2) are standard to derive the L2 and uniform
convergence of the multivariate density estimator. Let µDf

be a random probability distribution
with density function fDf

that satisfies (F1’), from which random observations W1, ...,WN are
independently sampled. A standard kernel estimator f̌ is then applied to estimate fDf

, and its
truncated version f̂ is employed to estimate the density f , which is the distribution µDf

truncated to
the domain D.

f̌(x) =
1

Nhp

N∑
j=1

K
(
x−Wj

h

)
, f̂(x) = f̌(x)

/∫
D

f̌(u)du , x ∈ D ⊂ Rp. (31)

The following proposition is a direct consequence of Propositions S2 and S3 in [9].

Proposition 3. Assume (D1), (F1′) and (K1). Choosing h ∼ N− 1
p+4 , the kernel density estimator f̂

in (31) satisfies

sup
f∈F

E

[
d2

(
f̂ , f

)2∣∣∣∣f] = O
(
N−4/p+4

)
. (32)

If we assume further (K2), for any δ > 0,

sup
f∈F

P
(
d∞

(
f̂ , f

)
> N− 2

p+4+δ
∣∣∣f) = o(1) as N → ∞. (33)
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Proposition 3 indicates the convergence rate of the proposed density estimator based on the observation
sample size N from the random distribution. The following proposition provides an enhanced form
of uniform convergence for the multivariate kernel density estimator under assumption (P1), which is
essential for establishing uniform convergence of the representation in the L2 space.
Proposition 4. Assume (D1), (F1′), (K1), (K2) and (P1). For any R > 0, δ > 0,

n sup
f∈F

P
(
d∞

(
f̂ , f

)
> RN− 2

p+4+δ
)
= o(1) as n→ ∞. (34)

G Additional Asymptotic Convergence Analysis

Convergence analysis of the representations of the process is presented as follows.

Theorem 3. Under assumptions (F1), (T1)-(T2), (E1) and (K1)-(K2), and with ν̂, Ĥ , λ̂k, γ̂k as per
(14) and (15), for the k-th component of the eigen-expansion,

d2 (ν, ν̂) = Op

(
n−1/2

)
, d∞ (ν, ν̂) = Op

((
log(n)

n

)1/2
)
,

d2

(
H, Ĥ

)
= Op

(
n−1/2

)
, d∞

(
H, Ĥ

)
= Op

((
log(n)

n

)1/2
)
,∣∣∣λk − λ̂k

∣∣∣ = Op

(
n−1/2

)
,

d2 (γk, γ̂k) = σ−1
k Op

(
n−1/2

)
,

d∞ (γk, γ̂k) = Op

(
λ−1
k σ−1

k n−1/2
)
.

Furthermore, if the eigenfunctions correspond to the trigonometric basis, then ∥γk∥∞ = O(1) and
∥∂γk(θ, s)/∂s∥∞ = O(k), so that,

max
1≤k≤K(n)

sup
|α|≤α0

dSW (mk(x, α, τ), m̂k(x, α, τ)) = Op(τ
p log(n)n−1/4).

The following additional assumptions impose additional restrictions on the eigencomponents. They
are satisfied for eigenvalue sequences with exponential decay and are needed to show convergence of
the K-representations to the target densities in Theorem 4. Both conditions involve a sequence of
included components K = K(n) with K → ∞ as n→ ∞.

(S2)
(∑K

k=1 λ
−1
k σ−1

k

)
n−1/2 = O(1).

(S3)
(∑K

k=1 λ
−1
k

) (∑
k>K λk

)
= O(1).

The following bound is essential,

R(τ) = max
1≤k≤K

max
1≤i≤n

C4

(
τ, ∥Xi∥∞, ∥∂Xi(θ, s)/∂s∥∞, d∞

(
Xi, X̂ik

))
(35)

= O

(
τp max

1≤k≤K,1≤i≤n
e2d∞(Xi,X̂ik)

)
. (36)

Here ∥Xi∥∞ and ∥∂Xi(θ, s)/∂s∥∞ are bounded, as per (T2). The convergence of d∞
(
Xi, X̂ik

)
can be decomposed into two parts, the convergence of d∞

(
Xik, X̂ik

)
and that of d∞ (Xi, Xik).

Both are Op(1), using assumptions (S2), respectively, (S3).

The convergence rate of the truncated density estimator in (25) is as follows.
Theorem 4. Under assumptions (D1), (F1), (T1)-(T5), (E1), (K1)-(K2), if K(n) → ∞ satisfies
conditions (S2)-(S3), then

max
1≤i≤n

dSW

(
fi(·), f̂i(·,K, τ)

)
= Op

τ−(κ−p) + τp

n−1/2
K∑

k=1

σ−1
k +

( ∞∑
k>K

λk

)1/2
 .
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Under exponentially decaying eigenvalues, one can derive convergence rates that depend on the
dimensionality of the domain and the growth behavior of the regularization parameter τ . These rates
are obtained for specific choices of K and τ , as stated in Theorem 2, which follows as a corollary of
Theorem 4.

H Temperature Data Case Study

Our second data illustration involves analyzing maximum and minimum temperature data obtained
from the National Centers for Environmental Information, with raw data conveniently accessible at
https://www.ncdc.noaa.gov/. This extensive dataset comprehensively covers weather observations
spanning the entirety of the United States. We focus on climate stations positioned at major inter-
national airports within the 44 largest U.S. cities, since the quality of the data from airport weather
stations is superior compared to other general weather stations due to the obvious relevance of weather
conditions for the operation of aircraft. The temporal scope of our investigation spans from January 1,
2020, to December 31, 2020, capturing a comprehensive spectrum of climatic conditions throughout
the year 2020. In preliminary data processing, we converted the min/max daily temperature into
bivariate vectors (min,range), where range=max-min temperature for each day. This simple linear
transformation yields bivariate data that are equivalent to the original data but avoids the somewhat
awkward triangular support set of the original (min/max) data.

Utilizing kernel density estimation, as illustrated in Figure 10, with a Gaussian density kernel and
bandwidth set at 20 for the maximum temperature and 10 for the temperature range, we obtain
estimated densities as depicted in Figure 11. Here we utilize five-dimensional representations.
Dimension reduction is achieved by employing only five components to represent the infinite-
dimensional space while explaining a fraction of variance with respect to the sliced Wasserstein
distance that exceeds 0.85.
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Figure 10: Observed smoothed densities for a few randomly selected airport weather stations.
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Figure 11: Fitted density surfaces for a few airports with sliced Wasserstein fraction of variance
explained at level 0.85 with five components, where the first component contributes 0.41 and the
second 0.18.

The first two transformation modes of variation are shown in Figure 12 while scores related to
eigenfunctions are presented in Figure 13 and 14. The first model of variation reflects both the
intensity of variation in the underlying distribution and the average level of temperature range. A
lower score of the first eigenfunction indicates reduced variation and a lower temperature range,
while a higher score corresponds to amplified variation, particularly in maximum temperature, and
an overall higher temperature range. The second mode of variation reflects the shape of the joint
distribution. For smaller scores it reflects a flatter joint distribution, where the temperature range
exhibits a lower overall variation and a weaker correlation with the maximum temperature, while
higher scores are associated with a more positive correlation between the temperature range and
maximum temperature and is accompanied by increased overall variation in the temperature range.
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Figure 12: Transformation modes of variation as per (13) for bivariate temperature distributions.
The first row corresponds to the first mode of variation and the second row to the second mode of
variation, for α varying from −2 to 2 as per (17).
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Figure 13: Visualization of the scores for the first eigenfunction.
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Figure 14: Visualization of the scores corresponding to the second eigenfunction.

Take San Jose and Portland. Both have positive scores for the second eigenfunction, indicating
a higher correlation between temperature range and maximum temperature. Nevertheless, San
Jose’s variance is smaller, attributable to its negative score for the first eigenfunction, in contrast to
Portland’s positive score On the other side of the spectrum, New York exhibits a negative score for
the second eigenfunction, resulting in a flattened shape of the joint distribution. This pattern reflects a
weak association between the temperature range and the maximum temperature, accompanied by
a lower overall variation in the temperature range. San Jose and Portland’s increased correlation
between temperature range and maximum temperature likely is due to regional factors, such as
maritime influence due to their proximity to the Pacific Ocean, resulting in temperature amplitudes
that are relatively smaller in winter compared to summer. New York’s weakened association and
flatter distribution is also likely linked to its specific geography with relatively little variation in the
temperature range.
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I Computation Resources

All data analyses were performed on a MacBook Pro with an Apple M1 chip and 16GB RAM, running
R version 4.3.1 (2023-06-16) under macOS Big Sur. The full analysis for the BLSA dataset and the
temperature dataset (presented in the Appendix) each took approximately 5 minutes to complete.

J Proofs

J.1 Proof of Proposition 3

Proof of Proposition 3 follows directly from the proofs of Propositions S2 and S3 in [9].

J.2 Proof of Proposition 4

Denote the density fDf
on the domain D as f̃ = fDf

1D. We first show that for any R > 0, δ > 0,

n sup
f∈F

P
(
d∞

(
f̌ , f̃

)
> RN− 2

p+4+δ
∣∣∣f) = o(1) as N → ∞.

By the triangle inequality,

d∞

(
f̌ , f̃

)
≤ d∞

(
f̌ , E(f̌)

)
+ d∞

(
E
(
f̌
)
, f̃
)
.

From equation (S.19) in [9] we find

sup
x∈D

sup
f∈F

∣∣∣f̃(x)− E
(
f̌(x)

)∣∣∣ = O(h2).

By Proposition 9 in [42], there exist constantsL1 andL2, which depend only on the VC characteristics
of K in (K2), such that for any R > 0 and sequences aN , Lh = O(h2),

P
(
d∞(f̌ , f̃) > RaN

∣∣∣f) ≤ P
(
d∞
(
f̌ , E

(
f̌
))
> RaN

∣∣f)+ P
(
d∞

(
E
(
f̌
)
, f̃
)
> RaN

∣∣∣f)
≤ L1 exp{−L2Nh

pR2a2N}+ I{Lh > RaN},

where I is the indicator function. Let aN = N−2/(p+4)+δ for any δ > 0, and h ∼ N− 1
p+4 . Thus

sup
f∈F

P
(
d∞

(
f̌ , f̃

)
> RaN

∣∣∣f) ≤ L1 exp{−L2R
2N2δ}.

Under assumption (P1), N(n) ∼ nr, for a constant r > 1 + p/4, therefore

n sup
f∈F

P
(
d∞

(
f̌ , f̃

)
> RaN

∣∣∣f) ≤ nL1 exp{−L2R
2n2δr} = o(1) as n→ ∞.

Next, we show the convergence of the truncated density f̂ , where the target is f(x) =

f̃(x)/
∫
D
f̃(u)du, x ∈ D. Note that when N is large enough we have∫

D

f̃(u)du ≥ |D|
M0

,

∫
D

f̌(u)du ≥ |D|
2M0

,

whence

d∞

(
f̂ , f

)
≤ d∞

(
f̌(x)∫

D
f̌(u)du

,
f̃(x)∫

D
f̌(u)du

)
+ d∞

(
f̃(x)∫

D
f̌(u)du

,
f̃(x)∫

D
f̃(u)du

)

≤ 2M0

|D|
d∞(f̌ , f̃) +

2M3
0

|D|
d∞(f̌ , f̃).

It follows that for any R > 0andδ > 0,

n sup
f∈F

P
(
d∞

(
f̂ , f

)
> RN− 2

p+4+δ
∣∣∣f) = o(1) as n→ ∞.
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J.3 Proof of Proposition 2

Lemma 1. Under (D1) and (F1), there exists a constant A such that,

sup
f∈F

|R(f)(θ1, s)−R(f)(θ2, s)| ≤ A∥θ1 − θ2∥2, for all θ1, θ2 ∈ Θ.

Proof of Lemma 1. We first show the result for p = 2. Write θ(α) = (cosα, sinα)T ∈ S1 where
α ∈ [0, 2π] and x = (x1, x2)

T ∈ R2. Let Π∆ be the two-dimensional rotation operator that employs
the angle ∆ and fΠ∆

= f(Π∆ ◦ x). Note that for all z,

R(fΠ∆)(θ(α), z) = R(f)(θ(α+∆), z).

Calculating the derivative with respect to α,

R(f)(θ(α+∆), z)−R(f)(θ(α), z) = R(fΠ∆
− f)(θ(α), z). (37)

Note that the two-dimensional rotation operator can be represented as a rotation matrix,

Π∆ ◦ x =

(
cos∆ − sin∆
sin∆ cos∆

)
◦
(
x1
x2

)
=

(
x1 cos∆− x2 sin∆
x1 sin∆ + x2 cos∆

)
(38)

Then,

fΠ∆
(x1, x2)− f(x1, x2) = f(x1 cos∆− x2 sin∆, x1 sin∆ + x2 cos∆)− f(x1, x2)

=
∂f

∂x1
(x∗1, x

∗
2)(x1(cos∆− 1)− x2 sin∆)

+
∂f

∂x2
(x∗1, x

∗
2)(x1 sin∆ + x2(cos∆− 1),

where x∗1 = (1− c0)x1 + c0(x1 cos∆− x2 sin∆) and x∗2 = (1− c0)x2 + c0(x1 sin∆+ x2 cos∆)
for a c0 ∈ (0, 1). Thus,

lim
∆→0

fΠ∆
(x1, x2)− f(x1, x2)

∆
= −x2

∂f

∂x1
(x1, x2) + x1

∂f

∂x2
(x1, x2). (39)

Combining (37) and (39), we have

∂R(f(x1, x2))

∂α
(θ(α), z) = lim

∆→0

R(f(x1, x2))(θ(α+∆), z)−R(f(x1, x2))(θ(α), z)

∆

= lim
∆→0

R (fΠ∆
(x1, x2)− f(x1, x2)) (θ(α), z)

∆

= R
[(
x1

∂f

∂x2
− x2

∂f

∂x1

)
(x1, x2)

]
(θ(α), z).

Under (D1) and (F1), there exists a constant A0 such that∣∣∣∣∂R(f)

∂α
(θ(α), z)

∣∣∣∣ ≤ A0.

Let θ1 = θ(α1) and θ2 = θ(α2) ∈ S2, α1, α2 ∈ [0, 2π], where we note that ∥θ1 − θ2∥2 =
|2 sin((α1 − α2)/2)| ≳ |α1 − α2| when |α1 − α2| → 0. Thus, for any θ1, θ2 ∈ S1, z ∈ R, f ∈ F ,

|R(f)(θ1, z)−R(f)(θ2, z)| ≤ A0|α1 − α2| ≲ 2A0∥θ1 − θ2∥2, as ∥θ1 − θ2∥2 → 0.

Next, we provide the proof for p = 3.
Let α ∈ [0, 2π], β ∈ [0, π], θ(α, β) = (sinβ cosα, sinβ sinα, cosβ)T ∈ S2
and x = (x1, x2, x3)

T ∈ R3. Noting that

∂R (f(x1, x2, x3))

∂α
(θ(α, β), z)

= −(sinα sinβ)R
[
∂f

∂x1
(x1, x2, x3)

]
(θ(α, β), z) + (cosα sinβ)R

[
∂f

∂x2
(x1, x2, x3)

]
(θ(α, β), z)
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∂R (f(x1, x2, x3))

∂β
(θ(α, β), z)

= −(sinα cosβ)R
[
∂f

∂x1
(x1, x2, x3)

]
(θ(α, β), z) + (cosα cosβ)R

[
∂f

∂x2
(x1, x2, x3)

]
(θ(α, β), z)

− (sinβ)R
[
∂f

∂x3
(x1, x2, x3)

]
(θ(α, β), z),

under (D1) and (F1), there exists a constant A0 such that∣∣∣∣∂R(f)

∂α
(θ(α, β), z)

∣∣∣∣ ≤ 2A0| sinβ|,
∣∣∣∣∂R(f)

∂β
(θ(α, β), z)

∣∣∣∣ ≤ 3A0.

Let θ1 = θ(α1, β1) and θ2 = θ(α2, β2) ∈ S3, α1, α2 ∈ [0, 2π] and β1, β2 ∈ [0, π]. Since ∥θ1 −
θ2∥2 =

√
2− 2 (sinβ1 sinβ2 cos(α2 − α1) + cosβ1 cosβ2) ≳ | sinβ1||α2−α1|+ |β2−β1| when

∥θ2 − θ1∥2 → 0, for any θ1, θ2 ∈ S2, z ∈ R, f ∈ F , as ∥θ1 − θ2∥2 → 0,

|R(f)(θ1, z)−R(f)(θ2, z)| ≤ 2A0| sinβ1||α2 − α1|+ 3A0|β2 − β1|
≲ ∥θ2 − θ1∥2.

Following these arguments, it is clear how the proof can be extended to the multivariate case when
p > 3, and we omit the details.

The analytical tools in Section 2.2 provide the following property for the sliced density function,
which implies that the sliced univariate density function adheres to the domain assumption (A1) in
[35]. This observation is basic for our subsequent exploration of multivariate density transformation.

Lemma 2. Under assumptions (D1) and (F1), R(f)(θ, ·), f ∈ F , is κ-differentiable, κ ≥ p+1, and
there exists a constant C0 such that

sup
f∈F

∥R(f)∥∞ < C0, sup
f∈F

∥1/R(f)∥∞ < C0, sup
f∈F

∥∥∥∥∂κR(f)

∂z
(θ, z)

∥∥∥∥
∞
< C0.

Proof of Lemma 2. From assumption (F1) which states that the density f is uniformly bounded above
and below, it follows that

∥R(f)∥∞ ≤M0|D|, ∥1/R(f)∥∞ ≤M0|D|,

where |D| represents the Lebesgue measure of the domain set D. From (S1) in [9] and assumption
(F1), there exists an constant C0 ≥M0|D| such that∥∥∥∥∂kR(f)

∂z
(θ, z)

∥∥∥∥
∞

≤ C0.

Note that the constant C0 is chosen independently of the function f , which completes the proof of
the proposition.

Proof of Proposition 2. Denote the slice-wise density transformation ψ̃ as

ψ̃(h)(θ, s) = ψ(h(θ, ·))(s), h ∈ R(F)

and the slice-wise inverse transformation ψ̃−1 as

ψ̃−1(ζ)(θ, z) = ψ−1(ζ(θ, ·))(z), ζ ∈ Ψ(F). (40)

The multivariate density transformation in (6) is Ψ(f)(θ, s) = ψ̃ ◦ R(f)(θ, s). From assumption
(D1) and Proposition 2 in [9], for any f1, f2 ∈ F , there exists a constant A1 such that

d2 (R(f1),R(f2)) ≤ A1d2(f1, f2),

d∞ (R(f1),R(f2)) ≤ A1d∞(f1, f2).
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Furthermore, from Proposition 2, there exists a constant A2 such that

∥R(f)∥∞ ≤ A2, ∥1/R(f)∥∞ ≤ A2,

∥∥∥∥∂R(f)(θ, z)

∂z

∥∥∥∥
∞

≤ A2, for all f ∈ F .

From (L1), for any f1, f2 ∈ F , there exists a constant A3 such that

d2

(
ψ̃ ◦ R(f1), ψ̃ ◦ R(f2)

)
=

(∫
θ∈Θ

∫
u∈S

(
ψ̃ ◦ R(f1)(θ, u)− ψ̃ ◦ R(f2)(θ, u)

)2)1/2

≤
(∫

θ∈Θ

A2
3d

2
2 (R(f1)(θ, ·),R(f2)(θ, ·))

)1/2

= A3d2(R(f1),R(f2)).

Similarly,

d∞

(
ψ̃ ◦ R(f1), ψ̃ ◦ R(f2)

)
≤ A3d∞(R(f1),R(f2)),

which proves the existence of C1 = A1A3 in (T1). Furthermore from (L2), there exists a constant A4

such that

sup
f∈F

∥∥∥(ψ̃ ◦ R
)
(f)
∥∥∥
∞

≤ A4, sup
f∈F

∥∥∥∥∥∥
∂
(
ψ̃ ◦ R

)
(f)

∂z
(θ, z)

∥∥∥∥∥∥
∞

≤ A4.

From Lemma 1 and (L1), it follows that there also exists a constant A5 such that for any f ∈ F ,

sup
s

∣∣∣(ψ̃ ◦ R
)
(f)(θ1, s)−

(
ψ̃ ◦ R

)
(f)(θ2, s)

∣∣∣ ≤ C̃0 sup
z

|R(f)(θ1, z)−R(f)(θ2, z)|

≤ C̃0A5∥θ1 − θ2∥2.

This shows the existence of C2 in (T2). Assumption (T3) is supported by the inverse transformation
formula (40) and the injectivity of the Radon transform on rapidly decreasing functions, as established
in Theorem 2.4 of [21]. The regularized inverse (7) is Ψ−1

τ = R−1
τ ◦ ψ̃. From Corollary 1 of [9],

there exists a constant depending on C3(τ) = O(τ−(κ−p)) as τ → ∞ such that

d∞(Ψ−1
τ ◦Ψ(f), f) = d∞

(
R−1

τ ◦ ψ̃−1 ◦ ψ̃ ◦ R(f), f
)

= d∞
(
R−1

τ ◦ R(f), f
)

≤ C3(τ),

which shows the existence of C3 in (T4). Furthermore, there exists a constant A6(τ) = O(τp) as
τ → ∞, such that

d∞
(
Ψ−1

τ (ζ1),Ψ
−1
τ (ζ2)

)
= d∞

(
R−1

τ ◦ ψ̃−1(ζ1),R−1
τ ◦ ψ̃−1(ζ2)

)
≤ A6(τ)d2

(
ψ̃−1(ζ1), ψ̃

−1(ζ2)
)
. (41)

From assumption (L3), there exist constants A7(∥ζ1∥∞, ∥∂ζ1(θ, s)/∂s∥∞) and A8(d∞(ζ1, ζ2)),

d2(ψ̃
−1(ζ1), ψ̃

−1(ζ2)) =

(∫
θ∈Sp−1

∫
z

(
ψ−1(ζ1(θ, ·))(z)− ψ−1(ζ2(θ, ·))(z)

)2)1/2

≤
(∫

θ∈Sp−1

A2
7A

2
8d2 (ζ1(θ, ·), ζ2(θ, ·))

2

)1/2

= A7A8d2(ζ1, ζ2). (42)

Combining (41) and (42), we have

d∞(Ψ−1
τ (ζ1),Ψ

−1
τ (ζ2)) ≤ A6(τ)A7(∥ζ1∥∞, ∥∂ζ1(θ, s)/∂s∥∞)A8(d∞(ζ1, ζ2))d2(ζ1, ζ2),
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which proves the existence of C4 = A6A7A8 in (T5). From Proposition 2 of [35], when using the
LQD transformation ψQ,

A7 = O
(
∥∂ζ1(θ, s)/∂s∥∞e6∥ζ1∥∞

)
, A8 = O

(
e2d∞(ζ1,ζ2)

)
.

Thus, when using the RLQD transformation ΨQ, we have

C4(τ, ∥ζ1∥∞, ∥∂ζ1(θ, s)/∂s∥∞, d∞(ζ1, ζ2)) ∼ τp∥∂ζ1(θ, s)/∂s∥∞e6∥ζ1∥∞e2d∞(ζ1,ζ2).

For the LH transformation ψH ,

A7 = O
(
e2∥ζ1∥∞

)
, A8 = O

(
ed∞(ζ1,ζ2)

)
.

Thus, when using the RLH transformation ΨH , we have

C4(τ, ∥ζ1∥∞, ∥∂ζ1(θ, s)/∂s∥∞, d∞(ζ1, ζ2)) ∼ τpe2∥ζ1∥∞ed∞(ζ1,ζ2).

J.4 Proof of Proposition 1

Proof. From assumption (T2),

∥Ψ(f)∥∞ ≤ C2, ∥∂sΨ(f)(θ, s)/∂s∥∞ ≤ C2.

From the fact that f ∈ F and ζ is a continuous function on L2(Θ× S),

d∞ (Ψ(f), ζ) ≤ ∥Ψ(f)∥∞ + ∥ζ∥∞ <∞.

Thus

C4 (τ, ∥Ψ(f)∥∞, ∥∂Ψ(f)(θ, s)/∂s∥∞, d∞(Ψ(f), ζ)) <∞.

From assumption (T5),

d∞
(
Ψ−1

τ (Ψ(f)),Ψ−1
τ (ζ)

)
≤ C4d2 (Ψ(f), ζ) ,

and from assumption (T4),

d∞
(
f,Ψ−1

τ (Ψ(f))
)
≤ C3.

Then

d∞
(
f,Ψ−1

τ (ζ)
)
≤ C3 + C4d2 (Ψ(f), ζ) .

From Assumption (D1), we have

d2
(
f,Ψ−1

τ (ζ)
)
≤ C3 + C4d2 (Ψ(f), ζ) .

From Lemma S3 in [9] and assumption (D1), it follows that

dSW

(
f,Ψ−1

τ (ζ)
)
= O (C3 + C4d2 (Ψ(f), ζ)) .

J.5 Proof of Theorem 3

Lemma 3. Assume (T2) and let ν̃ as per (22), then

d∞(ν̃, ν) = Op

(
(log n/n)

1/2
)
. (43)

Proof of Lemma 3. As S ⊂ R is a compact interval, one can find a grid TS = {s1, ..., sa} with
|TS | = O(n) such that for any s ∈ S, there exists a point sm ∈ TS satisfying |s − sm| < 1/n.
Similarly, one can find a set TΘ = {θ1, ..., θb} such that for any θ ∈ Θ, there exists a point θm ∈ TΘ
satisfying ∥θ − θm∥2 < 1/n. The size of the set |TΘ| is determined by the covering number
of Θ. From Lemma 5.7 and Example 5.8 in [46], one can choose TΘ such that its size satisfies
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|TΘ| = O(np). Forming the product of TS and TΘ leads to the grid T = TΘ × TS on Θ × S with
|T | = O(np+1).

From the smoothness assumption in (T2),

sup
θ∈Θ,s∈S

|ν̃(θ, s)− ν(θ, s)| = sup
θ,s∈T

|ν̃(θ, s)− ν(θ, s)|+O(1/n).

Under (T2), ∥Xi(θ, s)∥∞ ≤ C2. Applying Bernstein inequality for a fixed (θ, s) ∈ T , for any
R > 0,

P

(
|ν̃(θ, s)− ν(θ, s)| ≥ R

(
log(n)

n

)1/2
)

= P

(∣∣∣∣∣ 1n
n∑

i=1

Xi(θ, s)− ν(θ, s)

∣∣∣∣∣ ≥ R

(
log(n)

n

)1/2
)

≤ 2 exp

(
− 3(n log n)R2

6nC2
2 + 2C2R(n log n)1/2

)
.

Then

P

(
sup
θ,s∈T

|ν̃(θ, s)− ν(θ, s)| ≥ R

(
log(n)

n

)1/2
)

≤ 2np+1 exp

(
− 3(n log n)R2

6nC2
2 + 2C2R(n log n)1/2

)
= 2np+1−R∗

, (44)

where R∗ = 3R2

6C2
2+2C2R(logn/n)1/2

. For a fixed dimension p, choose a large enough R such that
R∗ > p+ 1. Then

sup
θ∈Θ,s∈S

|ν̃(θ, s)− ν(θ, s)| = Op

((
log n

n

)1/2
)
. (45)

Proof of Theorem 3. Assumption (T2) implies that E∥X∥22 < ∞. Denote by ν̃, G̃ the population
mean function and covariance function as per (22). Using Theorems 3.9 and 4.2 in [8], it follows that

d2(ν, ν̃) = Op(n
−1/2), d2(G, G̃) = Op(n

−1/2).

From Proposition 3,

sup
f∈F

E
[
d2
(
f, f̌

)2∣∣∣f] = O
(
N− 4

p+4

)
.

The convergence rate of d2(ν̃, ν̂) is

P ({d2(ν̃, ν̂) > RN− 2
p+4 }) ≤ P

(
1

n

n∑
i=1

d2(Xi, X̌i) > RN− 2
p+4

)

≤
1
n

∑n
i=1E(d2(Xi, X̌i))

RN− 2
p+4

≤
1
n

∑n
i=1

√
E
(
d2(Xi, X̌i)2

)
RN− 2

p+4

≤
1
n

∑n
i=1 C1

√
E
(
d2(fi, f̌i)2

)
RN− 2

p+4

= O

(
1

R

)
,

which indicates that d2(ν̃, ν̂) = Op(N
− 2

p+4 ), then d2(ν, ν̂) = Op(n
−1/2 +N− 2

p+4 ). Similarly, we
have d2(H, Ĥ) = Op(n

−1/2 +N− 2
p+4 ). In terms of uniform convergence, Lemma 3 provides the

uniform convergence for ν̃ and similarly for H̃ ,

d∞(ν̃, ν) = Op

((
log n

n

)1/2
)
, d∞(H̃,H) = Op

((
log n

n

)1/2
)
.
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From Proposition 3, for any R > 0, δ > 0,

P
(
d∞(ν̃, ν̂) > RN− 2

p+4+δ
)
≤ n max

1≤i≤n
P (d∞(fi, f̌) > C−1

1 RN− 2
p+4+δ)

= o(1).

Thus d∞(ν̂, ν) = Op

((
logn
n

)1/2
+N− 2

p+4+δ

)
and similarly,

d∞(Ĥ,H) = Op

((
logn
n

)1/2
+N− 2

p+4+δ

)
. Based on Lemma (4.2) and (4.3) of [8], it follows that

|λk − λ̂k| = Op(n
−1/2 +N− 2

p+4 ),

d2(γk, γ̂k) = σ−1
k Op(n

−1/2 +N− 2
p+4 ).

In terms of the uniform convergence rate of γk, employing the techniques in Lemma 1 of [33] and
the proof of Corollary 1 of [47],

d∞

(
λ̂kγk, λ̂kγ̂k

)
≤ d∞

(
λkγk, λ̂kγ̂k

)
+ d∞

(
λkγk, λ̂kγk

)
≲ d∞

(
H, Ĥ

)
+ d2 (γk, γ̂k) ∥H∥∞ +

∣∣∣λk − λ̂k

∣∣∣ ∥γk∥∞.
Thus,

d∞ (γk, γ̂k) = Op

(
λ−1
k σ−1

k n−1/2
)
.

J.6 Proof of Theorem 1

Lemma 4. Under (D1), (F1) and (T2), there exists a constant C such that

∥ν∥∞ ≤ C, ∥∂ν(θ, s)/∂s∥∞ ≤ C, (46)

∥γk∥∞ ≤ Cλ−1
k , ∥∂γk(θ, s)/∂s∥∞ ≤ Cλ−1

k . (47)

Proof of Lemma 4. The derivation of (46) follows directly from (T2). Note that

γk(θ, s) = λ−1
k

∫
Θ×S

H(θ, s, α, t)γk(α, t)dαdt.

(T2) and the fact that ∥γk∥2 = 1 then imply (47).

Proof of Theorem 1. Assume K is fixed. Then from Lemma 4,

∥Xk,α∥∞ ≤ ∥ν∥∞ + α0

√
λ1∥γk∥∞ ≤ C

(
1 + α0

√
λ1λ

−1
K

)
. (48)

Similarly,

∥∂Xk,α(θ, s)/∂s∥∞ ≤ C
(
1 + α0

√
λ1λ

−1
K

)
. (49)

Employing Theorem 3,

d∞(Xk,α, X̂k,α) ≤ d∞(ν, ν̂) + α0

(√
λ̂1d∞(γk, γ̂k) + ∥γk∥∞

∣∣∣∣√λk −
√
λ̂k

∣∣∣∣)
= Op(σ

−1
K λ−1

K n−
1
2 ).

Here we use the fact that∣∣∣∣√λk −
√
λ̂k

∣∣∣∣ = |λk − λ̂k|
√
λk −

√
λ̂k

∼ λ
− 1

2

k |λk − λ̂k|, as n→ ∞.
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For the L2 convergence,

d2(Xk,α, X̂k,α) ≤ d2(ν, ν̂) + α0

(√
λ1d2(γk, γ̂k) +

∣∣∣∣√λk −
√
λ̂k

∣∣∣∣)
= Op(σ

−1
K n−1/2).

From assumption (T4),

d∞ (mk(α,Ψ, τ), m̂k(α,Ψ, τ))

≤ C4(τ, ∥Xk,α∥∞, ∥∂Xk,α(θ, s)/∂s∥∞, d∞(Xk,α, X̂k,α))d2(Xk,α, X̂k,α).

Case 1: When K is fixed,

max{∥Xk,α∥∞, ∥∂Xk,α(θ, s)/∂s∥∞, d∞(Xk,α, X̂k,α)} = Op(1).

Writing S(τ,K) as per (19), by (T5) it follows that S(τ,K) = O(τp). Thus

d∞ (mk(α,Ψ, τ), m̂k(α,Ψ, τ)) = Op(τ
pn−

1
2 ).

From Lemma S3 in [9] and assumption (D1),

dSW (mk(α,Ψ, τ), m̂k(α,Ψ, τ)) = Op(τ
pn−

1
2 ).

Case 2: When K = K(n) → ∞,

d∞(Xk,α, X̂k,α) = Op(1).

From assumption (T5), (48) and (49),

d∞ (mk(α,Ψ, τ), m̂k(α,Ψ, τ))

≤ C4

(
τ, ∥Xk,α∥∞, ∥∂Xk,α(θ, s)/∂s∥∞, d∞(Xk,α, X̂k,α)

)
σ−1
K n−1/2

= Op

(
τp max

1≤k≤K

{
e5∥γk∥∞∥∂γk(θ, s)/∂s∥∞

}
σ−1
K n−1/2

)
.

From Lemma S3 in [9] and assumption (D1),

dSW (mk(α,Ψ, τ), m̂k(α,Ψ, τ)) = Op

(
τp max

1≤k≤K

{
e5∥γk∥∞∥∂γk(θ, s)/∂s∥∞

}
σ−1
K n−1/2

)
.

J.7 Proof of Theorem 4

Lemma 5. Note that under assumption (S3),

d∞(X,XK) = Op(1).

Proof of Lemma 5. Recall that XK(θ, s) = ν(θ, s)+
∑K

k=1 χkγk(θ, s) and let ZK = X −XK . For
the k-th principal component χk =

∫
Θ×S X(θ, s)γk(θ, s)dθds ≤ C2 from the assumption (T2). We

first show that the process ZK is Lipschitz continuous,

|ZK(θ1, s1)− ZK(θ2, s2)| ≤ LK (∥θ1 − θ2∥2 + |s1 − s2|) ,

where Lk = O(
∑K

k=1 λ
−1
k ). From assumption (T2),

|X(θ1, s1)−X(θ2, s2)| ≤ |X(θ1, s1)−X(θ2, s2)|+ |X(θ1, s1)−X(θ2, s2)|
≤ C2 (∥θ1 − θ2∥2 + |s1 − s2|) .

Similarly,

|ν(θ1, s1)− ν(θ2, s2)| ≤ C2 (∥θ1 − θ2∥2 + |s1 − s2|) ,
|H(θ1, s1, α, t)−H(θ2, s2, α, t)| ≤ 2C2 (∥θ1 − θ2∥2 + |s1 − s2|) .
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Expanding the eigenfunction γk(θ, s) = λ−1
k

∫
Θ×S H(θ, s, α, t)γk(α, t)dαdt,

|γk(θ1, s1)− γk(θ2, s2)| ≤ λ−1
k

∫
Θ×S

(H(θ1, s1, α, t)−H(θ2, s2, α, t)) γk(α, t)dαdt

≤ 2C2λ
−1
k (∥θ1 − θ2∥2 + |s1 − s2|) .

Then

|XK(θ1, s1)−XK(θ2, s2)| ≤ |ν(θ1, s1)− ν(θ2, s2)|+
K∑

k=1

|χk| |γk(θ1, s1)− γk(θ2, s2)|

≤ C2

(
1 + 2C2

K∑
k=1

λ−1
k

)
(∥θ1 − θ2∥2 + |s1 − s2|) ,

whence

|ZK(θ1, s1)− ZK(θ2, s2)| ≤ C2

(
2 + 2C2

K∑
k=1

λ−1
k

)
(∥θ1 − θ2∥2 + |s1 − s2|)

≤ LK (∥θ1 − θ2∥2 + |s1 − s2|) ,

where LK = O(
∑K

k=1 λ
−1
k ). Similar to Lemma 1 in [35], it follows that

∥ZK∥∞ ≤ 2max
(
|Θ|−1/2|S|−1/2∥ZK∥2, L1/3

K ∥ZK∥2/32

)
. (50)

Regarding the L2 norm of ZK ,

E
(
∥ZK∥22

)
=

∫
Θ×S

E (X −XK)
2
dθds

=

∫
Θ×S

E

(∑
k>K

χkγk

)2

dθds

=
∑
k>K

λk.

Then

∥ZK∥22 = ∥X −XK∥22 = Op

(∑
k>K

λk

)
. (51)

Combining (50) and assumption (S3),

d∞ (X,XK) = Op

( K∑
k=1

λ−1
k

∑
k>K

λk

)1/3
 = Op(1).

Proof of Theorem 4. Writing XiK = ν +
∑K

k=1 χikγk and X̂iK = ν̂ +
∑K

k=1 χ̂ikγ̂k, note that
χik =

∫
Θ×S Xi(θ, s)γk(θ, s)dθds and χ̂ik =

∫
Θ×S X̌i(θ, s)γ̂k(θ, s)dθds. By the triangle inequality

and Theorem 3,

|χik − χ̂ik| =
∣∣∣∣∫

Θ×S

(
Xi(θ, s)γk(θ, s)− X̌i(θ, s)γ̂k(θ, s)

)
dθds

∣∣∣∣
≤
∣∣∣∣∫

Θ×S
Xi(θ, s) (γk(θ, s)− γ̂k(θ, s)) dθds

∣∣∣∣+ ∣∣∣∣∫
Θ×S

(
Xi(θ, s)− X̌i(θ, s)

)
γ̂k(θ, s)dθds

∣∣∣∣
≲ d2(γk, γ̂k) + d2(Xi, X̌i)

= Op(σ
−1
k n−1/2).
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Here the last inequality follows from Proposition 3 and assumption (E1). Assumption (S3) and
Lemma 5 imply d∞(XiK , Xi) = Op(1). The triangle inequality and results in Theorem 3 and
Lemma 4 imply

d∞

(
Xi, X̂iK

)
≤ d∞(ν, ν̂) +

K∑
k=1

d∞ (χikγk, χ̂ikγ̂k) + d∞(XiK , Xi)

≤ d∞(ν, ν̂) +

K∑
k=1

(|χik − χ̂ik| ∥γk∥∞ + χ̂ikd∞(γk, γ̂k)) + d∞ (XiK , Xi)

= Op

((
K∑

k=1

σ−1
k λ−1

k

)
n−1/2

)
.

From (S2) and assumption (T2),

max
1≤i≤n

{
∥Xi∥∞, ∥∂Xi(θ, s)/∂s∥∞, d∞

(
Xi, X̂iK

)}
= Op(1).

From assumption (T2) and (T5),

R(τ) = max
1≤k≤K

max
1≤i≤n

C4

(
τ, ∥Xi∥∞, ∥∂Xi(θ, s)/∂s∥∞, d∞

(
Xi, X̂ik

))
= Op(τ

p).

Regarding the L2 convergence,

d2

(
Xi, X̂iK

)
≤ d2(ν, ν̂) +

K∑
k=1

d2 (χikγk, χ̂ikγ̂k) + d2(XiK , Xi)

≤ d2(ν, ν̂) +

K∑
k=1

(|χik − χ̂ik|+ χ̂ikd2(γk, γ̂k)) + d2 (XiK , Xi)

= Op

( K∑
k=1

σ−1
k

)
n−1/2 +

(∑
k>K

λk

)1/2
 .

Here we use (51) from Lemma 5 and d2(XiK , Xi) = Op

((∑
k>K λk

)1/2)
. Using assumptions

(T4) and (T5),

d∞

(
fi(·), f̂i(·,K,Ψ, τ)

)
= d∞

(
Ψ−1 (Xi) ,Ψ

−1
τ

(
X̂iK

))
≤ d∞

(
Ψ−1(Xi),Ψ

−1
τ (Xi)

)
+ d∞

(
Ψ−1

τ (Xi),Ψ
−1
τ (X̂iK)

)
= Op

C3(τ) +R(τ)

( K∑
k=1

σ−1
k

)
n−1/2 +

(∑
k>K

λk

)1/2


= Op

τ−(κ−p) + τp

( K∑
k=1

σ−1
k

)
n−1/2 +

(∑
k>K

λk

)1/2
 .

From Lemma S3 in [9] and assumption (D1),

dSW

(
fi(·), f̂i(·,K,Ψ, τ)

)
= Op

τ−(κ−p) + τp

( K∑
k=1

σ−1
k

)
n−1/2 +

(∑
k>K

λk

)1/2
 .

With eigenvalues λk = ce−θk for some constants c and θ, it follows that
K∑

k=1

σ−1
k ∼

K∑
k=1

eθk ∼ eθK .
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Similarly, ∑
k>K

λk =
∑
k>K

e−θk ∼ e−θK .

Choosing K(n) = ⌊ 1
3θ log(n)⌋,

dSW

(
fi(·), f̂i(·,K,Ψ, τ)

)
= Op

(
τ−(κ−p) + τpn−1/6

)
,

and choosing τ ∼ n1/6k,

dSW

(
fi(·), f̂i(·,K,Ψ, τ)

)
= Op

(
τ−(κ−p)/6k

)
.
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