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Abstract

Human-translated text displays distinct fea-001
tures from naturally written text in the same002
language. This phenomena, known as transla-003
tionese, has been argued to confound the ma-004
chine translation (MT) evaluation. Yet, we find005
that existing work on translationese neglects006
some important factors and the conclusions are007
mostly correlational but not causal. In this008
work, we collect CAUSALMT, a dataset where009
the MT training data are also labeled with010
the human translation directions. We inspect011
two critical factors, the train-test alignment012
(whether the human translation directions in013
the training and test sets are aligned), and data-014
model alignment (whether the model learns in015
the same direction as the human translation di-016
rection in the dataset). We show that these two017
factors have a large causal effect on the MT018
performance, in addition to the test-model mis-019
alignment highlighted by existing work on the020
impact of translationese in the test set. In light021
of our findings, we provide a set of suggestions022
for MT training and evaluation.1023

1 Introduction024

MT has long been concerned with the artifacts in-025

troduced by translationese, the human-translated026

text that is systematically different from natu-027

rally written text in the same language, or orig-028

inal text (Toury, 1980; Gellerstam, 1986; Toury,029

1995; Baker, 1993; Baroni and Bernardini, 2006).030

For a translation system translating from language031

X to language Y , there can be two types of test032

data: sentences that originated in language X and033

are human-translated into language Y (denoted as034

X
H−→Y ), and sentences that originated in language035

Y and human-translated into language X (denoted036

as Y H−→X). The main concern raised by this dis-037

tinction of the two sets is whether the reported038

performance on a mixed test set truly reflects the039

1Our code and data will be open-sourced after acceptance.
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Figure 1: Three different factors illustrate the impact of
translationese on MT performance. Previous work fo-
cuses on how translationese in the test set (Factor 1) in-
flates BLEU score and makes it favor some translation
systems over others. Our work investigates the causal
effect of the other two key factors, the train-test align-
ment (Factor 2; i.e., whether the training set and the test
set are collected with the same human translation direc-
tion), and data-model alignment (Factor 3; i.e., whether
the dataset collection direction and model translation
direction are the same).

actual translation quality. Previous work in MT has 040

shown that translationese is a confounder in eval- 041

uating translation quality (Lembersky et al., 2012; 042

Toral et al., 2018; Läubli et al., 2018; Freitag et al., 043

2020). 044

Recent studies on causality have also brought 045

to attention the importance of distinguishing the 046

data-model alignment, namely whether the data 047

collection direction is the same as or opposite to 048

the model direction, also known as causal or anti- 049

causal learning (Jin et al., 2021; Veitch et al., 2021; 050

Schölkopf et al., 2012). If the dataset is collected by 051

human annotators who see the inputX and produce 052

an output Y , then learning an X-to-Y model is 053

causal learning, and learning a Y -to-X model is 054

anticausal learning. 055

In this work, we study the artifacts in MT 056
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brought by translationese from the viewpoint of057

causality, specifically, the interaction between the058

data and model direction. We study two factors059

of variation in MT: human translation direction060

(in both the training and the test set) and model061

translation direction. Then, we study the effect of062

translationese in the test set as the test-model align-063

ment problem, and causal/anticausal learning as the064

data-model alignment problem. Further, we iden-065

tify another important factor, the train-test align-066

ment problem, namely, whether the training set and067

the test set are collected with the same human trans-068

lation direction. Given these three factors that influ-069

ence MT performance, we study the interaction in070

Figure 1. While previous work has mainly studied071

the impact of test-model alignment on MT perfor-072

mance (Toral et al., 2018; Graham et al., 2020;073

Edunov et al., 2020), we show that train-test align-074

ment and data-model alignment can also have a075

large causal impact on the MT performance. This076

impact can sometimes even overshadow the effect077

of test-model alignment analyzed in previous work.078

We use causal inference (Pearl, 2009; Peters079

et al., 2017) to analyze the causal effects of these080

key factors on MT performance, beyond previous081

work which is mainly based on correlations (Gra-082

ham et al., 2020). Specifically, our causal analysis083

isolates and controls for other key causal factors in084

translation performance, such as sentence length085

and content.086

We build CAUSALMT, a new dataset on five lan-087

guage pairs labeled with the human translation di-088

rections, and statistically verify that translationese089

tend to be simpler and more verbose, corroborat-090

ing previous observations on translationese (Toury,091

1980; Gellerstam, 1986; Toury, 1995; Baker, 1993).092

Then, we rigorously analyze CAUSALMT, leading093

to the following new insights and contributions:094

C1. Previous work claims that translationese in the095

test set inflates MT model performance and096

thus suggests removing the translationese-to-097

original half of the test set (Toral et al., 2018;098

Zhang and Toral, 2019; Graham et al., 2020;099

Barrault et al., 2019). Our work shows that the100

translationese-to-original half of the test set101

does not necessarily inflate MT performance102

in all cases. In some cases, it can even be more103

challenging than the other half, depending on104

the human translation direction in the training105

corpus. Hence, we suggest still reporting per-106

formance on both test sets, but also reporting107

the training data direction if available. 108

C2. Previous work (Burlot and Yvon, 2018) 109

claims that back translation (BT) (Sennrich 110

et al., 2016) is usually more effective than su- 111

pervised training (ST) (He et al., 2019). Our 112

work shows that BT is not necessarily better 113

than ST in all cases. This result too depends 114

on how the pseudo-parallel corpus aligns with 115

the human translation direction in the test set. 116

We suggest choosing BT or ST depending on 117

this alignment. 118

C3. Previous work claims that BT’s performance 119

improvement is largely reflected on the 120

translationese-to-original half of the test set, 121

but the improvement is very small on the other 122

half (Toral et al., 2018; Freitag et al., 2019). 123

Our work shows that the improvement of BT 124

can be larger on the other half of the test set 125

as well, as long as the pseudo-parallel corpus 126

aligns with the human translation direction in 127

the test set. 128

C4. Our work shows that data-model alignment 129

also has a large causal effect on the MT per- 130

formance, with up to 12.25 BLEU scores after 131

adjusting for other covariates using backdoor 132

adjustment (Pearl, 1995). 133

2 CAUSALMT Dataset 134

To investigate the effect of train-test alignment and 135

data-model alignment, we need to collect transla- 136

tion data in different human translation directions.2 137

2.1 Data Collection 138

To construct our CAUSALMT dataset consisting 139

of a large number of translation pairs labeled with 140

the human translation direction, we use the Eu- 141

roparlExtract toolkit (Ustaszewski, 2019) to filter 142

translation pairs by meta-information (e.g., the tag 143

specifying the original language of the speaker). 144

Specifically, in the EuroParl corpus (Koehn, 2005), 145

we iterate over each transcript that has an origina- 146

tion label and mark a sentence as original text if 147

2Most existing datasets do not distinguish the human trans-
lation direction for the training set (Kolias et al., 2014; Barrault
et al., 2019). Some works train a classifier to identify the hu-
man translation direction (Kurokawa et al., 2009; Riley et al.,
2020), but they are not our ideal choice since this classification
may interact with the domain difference of the two directions
(Rabinovich and Wintner, 2015). Our dataset can be consid-
ered as an extended version of the dataset collected in Jin et al.
(2021), but ours is significantly larger to enable the various
analyses in our study.
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De H−→En En H−→De De H−→Fr Fr H−→De En H−→Fr Fr H−→En En H−→Es Es H−→En Es H−→Fr Fr H−→Es
Training Size 248K 248K 220K 220K 203K 203K 93K 93K 92K 92K
# Words/Sample 22.4/25.5 23.9/22.9 22.6/28.7 30.4/25.4 24.5/28.9 30.5/27.5 24.0/25.7 31.9/31.6 32.4/36.5 30.5/27.9
# Sents/Sample 1.05/1.04 1.02/1.04 1.05/1.86 1.94/1.07 1.03/1.89 1.95/1.05 1.03/1.05 1.08/1.08 1.09/2.18 1.95/1.07
Passive Voice (%) -/12.90 11.48/- -/- -/- 11.70/- -/13.45 11.49/- -/14.94 -/- -/-
Vocab Size 119K/37K 40K/113K 108K/49K 55K/106K 40K/53K 56K/38K 29K/46K 47K/26K 47K/38K 42K/48K
Expansion Factor en:de=1.13 en:de=1.04 fr:de=1.26 fr:de=1.19 fr:en=1.18 fr:en=1.10 es:en=1.06 es:en=1.01 fr:es=1.12 fr:es=1.09

Table 1: Detailed characteristics of the CAUSALMT dataset, including the number of words per sample, number
of sentences per sample, percentage of samples with passive voice, vocabulary size, and the expansion factor. The
expansion factor from language X to language Y (X:Y ) is calculated by the average word count per sample in
language X divided by the average word count per sample in language Y .

the original language of the speaker is the same148

as the language this sentence is in, or otherwise149

mark it as the translated text. After extracting the150

direction-labeled language pairs, we remove all du-151

plicates in the entire dataset. Since our study needs152

to compare training on parallel corpora of the same153

language pair but with two different human trans-154

lation directions, e.g., De H−→En and En H−→De, we155

control the size of the two corpora to be the same156

by downsampling the larger set.157

Among all language pairs we can obtain, we158

keep five language pairs with the largest num-159

ber of data samples. As shown in Table 1, the160

CAUSALMT dataset contains over 200K training161

data for three language pairs and over 90K data for162

the other two language pairs. The development set163

and test set contain 1K and 2K data samples for all164

language pairs in each direction.165

2.2 Dataset Characteristics166

We analyze the characteristics of the CAUSALMT167

dataset in light of how translated text differs from168

naturally written text in the same language.169

Our findings echo with the observations by170

previous work on the distinct features of trans-171

lationese (Toury, 1980; Gellerstam, 1986; Toury,172

1995; Baker, 1993; Baroni and Bernardini, 2006;173

Volansky et al., 2015). For example, translationese174

tends to be simpler and more standardized (Baker,175

1993; Toury, 1995; Laviosa-Braithwaite, 1998),176

such as having a smaller vocabulary and using cer-177

tain discourse markers more often (Baker, 1993,178

1995, 1996). Translationese also tends to be influ-179

enced by the source language in terms of its lexical180

and word order choice (Gellerstam, 1986).181

In the CAUSALMT data, we observe three prop-182

erties. (1) Within each language pair (e.g., Ger-183

man and English), the same language’s transla-184

tionese always has a smaller vocabulary than its185

naturally written text corpus. For example, the186

translationese German in En H−→De has only 113K187

vocabulary, which is 5K smaller than the vocabu- 188

lary of the German corpus in De H−→En. (2) Trans- 189

lationese tends to be more verbose. For each lan- 190

guage pair, we calculate the expansion factor from 191

language X to language Y (X:Y ) as the average 192

word count per sample in language X divided by 193

the average word count per sample in language 194

Y . For example, for each (English, German) trans- 195

lation pair, the number of English words is 1.13 196

times that of German words when English is the 197

translationese (i.e., en:de expansion factor=1.13). 198

On the other hand, the en:de expansion factor is 199

only 1.04 when English is the naturally written 200

text. (3) We use a syntax-based parser to detect 201

the percentage of samples with passive voice in 202

English.3 There is a clear distinction that trans- 203

lationese English tends to use more passive voice 204

than original English, e.g., 14.94% translationese 205

samples in passive voice in the Es H−→En corpus in 206

contrast with 11.49% original English samples in 207

the reverse direction. 208

3 The Overshadowing Effect of 209

Train-Test Alignment 210

The first analysis of this paper aims to expand the 211

existing understanding of the relationship between 212

translationese and MT performance by consider- 213

ingthe effect of the train-test alignment. 214

Previous work observes that the translationese- 215

to-original test set inflates the score. To eval- 216

uate a model with the X-to-Y translation direc- 217

tion, traditionally, the test set is a mixture of two 218

halves, one with the human translation direction 219

X
H−→Y (aligned) and the other Y H−→X (unaligned, 220

or translationese-to-original) (Bojar et al., 2018). 221

Previous studies propose that the unaligned, 222

translationese-to-original test set is easier to trans- 223

late than the other aligned test set because transla- 224

3We use this passive voice checker (only available in En-
glish).
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tionese inputs are easy for the MT model to handle225

(Toral et al., 2018; Zhang and Toral, 2019; Graham226

et al., 2020). The inflated test performance caused227

by translationese has long been speculated (Lem-228

bersky et al., 2012; Toral et al., 2018; Läubli et al.,229

2018), and, recent work has statistically verified230

the correlation (Graham et al., 2020).231

With the previous understanding, some works232

suggest removing the unaligned half of the test233

set (Toral et al., 2018; Zhang and Toral, 2019;234

Graham et al., 2020), which was adopted by the235

2019 WMT shared task (Barrault et al., 2019),236

whereas others suggest keeping both but report237

the performance separately (Freitag et al., 2019;238

Edunov et al., 2020). The motivations from the two239

sides are that in the unaligned half, although its the240

source text being translationese is an easy input to241

the model, its target text being naturally written242

text makes the evaluation more natural.243

This “inflation” depends on train-test align-244

ment. We take a step back from the argument245

on whether the unaligned test set positively or neg-246

atively affects the MT performance evaluation. In-247

stead, we call attention to the fact that, beyond248

the test-model alignment, there can be other fac-249

tors also playing a critical in the MT performance250

evaluation, i.e., the train-test alignment.251

For a given machine translation task to learn the252

X-to-Y translation, there can be two questions: the253

question by previous work is whether we should254

use the test set aligned with the model translation255

direction (T1) or the test set unaligned with the256

model translation direction (T2) to evaluate the257

model fairly, whereas the question answered by258

our work is which training data should be used to259

achieve the best performance.260

Our analysis aims to obtain causal conclusions261

on how intervening on the train-test alignment af-262

fects the MT performance. Therefore, we control263

all other possible confounders. For each language264

pair, we control the total training data size to be the265

same4 when varying the portion of data in two di-266

rections. We also enumerate all other possible inter-267

ventions, such as varying the model in two model268

translation directions and reporting performance269

on two different halves of the test set with two hu-270

4A side benefit of controlling the training data size is that
our experiments can help answer what the best nature (i.e.,
human translation direction) of the training data given a fixed
annotation or computation budget is. We leave the space
for future work to increase the total training set size with all
available training data in both directions.

De-to-En Translation En-to-De Translation
α% T1 (de, en∗)T2 (de∗, en) α% T1 (en, de∗)T2 (en∗, de)
0% 24.68 35.86 0% 21.24 26.27

25% 28.98 35.40 25% 25.60 25.44
50% 30.86 34.53 50% 27.29 24.70
75% 31.52 31.92 75% 27.82 23.23
100% 31.33 27.07 100% 28.94 20.32

De-to-Fr Translation Fr-to-De Translation
α% T1 (de, fr∗) T2 (de∗, fr) α% T1 (fr, de∗) T2 (fr∗, de)
0% 24.37 36.44 0% 18.85 22.62

25% 28.60 36.21 25% 24.30 22.88
50% 28.87 34.06 50% 25.91 22.10
75% 30.11 32.42 75% 27.41 20.94
100% 30.45 27.65 100% 27.79 18.68

En-to-Fr Translation Fr-to-En Translation
α% T1 (en, fr∗) T2 (en∗, fr) α% T1 (fr, en∗) T2 (fr∗, en)
0% 31.74 38.09 0% 31.91 40.74

25% 36.64 37.84 25% 35.94 38.69
50% 38.00 36.83 50% 37.36 37.51
75% 39.00 36.10 75% 39.11 36.61
100% 39.74 33.88 100% 40.27 33.01

En-to-Es Translation Es-to-En Translation
α% T1 (en, es∗) T2 (en∗, es) α% T1 (es, en∗) T2 (es∗, en)
0% 31.74 38.09 0% 31.91 40.74

25% 36.64 37.84 25% 35.94 38.69
50% 38.00 36.83 50% 37.36 37.51
75% 39.00 36.10 75% 39.11 36.61
100% 39.74 33.88 100% 40.27 33.01

Es-to-Fr Translation Fr-to-Es Translation
α% T1 (es, fr∗) T2 (es∗, fr) α% T1 (fr, es∗) T2 (fr∗, es)
0% 37.32 46.25 0% 39.16 41.60

25% 40.60 46.43 25% 41.81 40.64
50% 41.94 45.57 50% 43.48 39.66
75% 42.39 43.88 75% 45.13 39.03
100% 42.46 40.00 100% 45.42 37.56

Table 2: BLEU scores of all five language pairs on train-
ing sets mixed by α% X

H−→Y and (1 − α%) Y
H−→X

data, where the mixture rate α = 0, 25, 50, 75, 100. We
always use T1 to denote the test set aligned with the
model direction, and T2 to denote the unaligned one.
For readability, we use ∗ to denote the translationese
language. For example, “(de, en∗)” means original Ger-
man and translated English pairs.

man translation directions. We also control that all 271

translation models use the same Transformer archi- 272

tecture (Vaswani et al., 2017) by fairseq (Ott et al., 273

2019), with experimental details in Appendix C. 274

We report the experiment results of how inter- 275

vening the train-test alignment affects the MT per- 276

formance in BLEU scores (Papineni et al., 2002) 277

in Table 2. The main takeaways are as follows: 278

(1) It is not always the case that, for the same 279

model, the unaligned test set T2 yields higher/more 280

inflated results than the aligned test set T1. When 281

the training data has 75–100% aligned training sam- 282

ples, performance reported on T2 is, in most cases, 283

no longer larger than that on the other half. With 284
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such training data, usually, T1 inflates the BLEU285

score more.286

(2) The train-test alignment can have an over-287

shadowing effect over the artifacts introduced by288

the translationese-to-original test set, since no mat-289

ter which test set we use, the more train-test align-290

ment, the higher the performance reported on T1291

than T2 is. Specifically, as we vary the portion of292

the aligned training data from 0 to 100%, the perfor-293

mance on T1 keeps increasing, the performance on294

T2 keeps decreasing. Additionally, if the training295

data is an equal mix or has about 0–50% samples296

aligned with the model translation direction, then,297

in many cases, T2 is higher than T1, which might298

explain the previous observations that T2 inflates299

the BLEU score (Toral et al., 2018; Graham et al.,300

2020). To account for another possible interpreta-301

tion such as the domain shift between the training302

and test sets, we also conduct an additional eval-303

uation using the newstest2014 test sets, which do304

not share any domain similarity with our training305

sets, but still support our observation (in Appendix306

Table 5).307

Hence, the two constructive suggestions for fu-308

ture work is to (1) still report on both test sets, and309

also the training data direction if available, and (2)310

if the model will be evaluated only on one type of311

the test sets, then try to train on as many training312

data in the same direction as possible.313

We should use monolingual data in the original314

language of the test set. With the intuition that315

the train-test alignment is a crucial factor for MT316

performance, we also look into its implications on317

semi-supervised learning.318

Given additional monolingual data, a common319

question in MT is what type of monolingual data320

to use, and the accompanying question, whether321

to use self-training (ST) for the source language322

monolingual corpus (He et al., 2019; Yarowsky,323

1995) or back-translation (BT) for the target lan-324

guage monolingual corpus (Bojar and Tamchyna,325

2011; Sennrich et al., 2016; Poncelas et al., 2018).326

We reframe the question as “with unlimited mono-327

lingual data from both languages, but limited com-328

putation resources, which data (together with the329

corresponding semi-supervised learning method)330

should we choose?”331

In previous work, BT is the most widely used332

technique (Bojar et al., 2018; Edunov et al., 2018;333

Ng et al., 2019; Barrault et al., 2019, p. 15), and is334

reported to outperform ST (Burlot and Yvon, 2018).335

English-to-French (en-to-fr) Translation
Test 1 (en, fr∗) Test 2 (en∗, fr)

Sup. on Equal Mix 16.16 16.65
+ ST (en, fr∗∗) +2.04 (Aligned) +1.74
+ BT (en∗∗, fr) +1.91 +2.45 (Aligned)

French-to-English (fr-to-en) Translation
Test 1 (fr, en∗) Test 2 (fr∗, en)

Sup. on Equal Mix 18.39 15.09
+ ST (fr, en∗∗) +2.64 (Aligned) +2.24
+ BT (fr∗∗, en) +2.17 +3.26 (Aligned)

English-to-German (en-to-de) Translation
Test 1 (en, de∗) Test 2 (en∗, de)

Sup. on Equal Mix 10.59 8.80
+ ST (en, de∗∗) +1.92 (Aligned) +1.60
+ BT (en∗∗, de) +1.86 +2.25 (Aligned)

German-to-English (de-to-en) Translation
Test 1 (de, en∗) Test 2 (de∗, en)

Sup. on Equal Mix 11.99 13.46
+ ST (de, en∗∗) +2.28 (Aligned) +1.25
+ BT (de∗∗, en) +1.99 +3.72 (Aligned)

Table 3: Performance on the en-fr and en-de test sets
of newstest2014. There are two test sets for each task,
where ∗ marks the translated language. We use an equal
mixture of supervised data in two human translation di-
rections (“Sup. on Equal Mix”). Both ST and BT gener-
ate pseudo-parallel data (marked by ∗∗), with which we
find that aligned directions between the test set and the
pseudo-parallel data lead to larger performance gain.

Another line of previous work inspects the perfor- 336

mance gain by BT. Some argue that BT is helpful 337

mostly on the test set aligned with the model (Toral 338

et al., 2018; Freitag et al., 2019; Edunov et al., 2020, 339

Appendix A Table 7) but not the unaligned test set, 340

while others show that BT improves performance 341

on both test sets (Edunov et al., 2020). 342

We re-inspect the two previous lines of work, 343

and find (1) BT does not always outperform ST, 344

especially when ST can make use of the monolin- 345

gual data in the original language of the test set (to 346

produce pseudo-aligned training data), and (2) the 347

performance gain by BT is not always larger on the 348

unaligned test set, but depends on the model direc- 349

tion, especially when BT generates pseudo-aligned 350

training data with the test set. 351

We implement BT by Edunov et al. (2020), and 352

ST by He et al. (2019). To fairly compare the per- 353

formance of ST vs. BT, for each language pair 354

X and Y , we split half both training corpora into 355

X
H−→Y -Half1, X H−→Y -Half2, Y H−→X-Half1, and 356

Y
H−→X-Half2. We construct the supervised train- 357

ing data as an equal mix (i.e., α=50) combining 358

X
H−→Y -Half1 and Y H−→X-Half1. The development 359

data is the combination of both development sets, 360

which is also an equal mix. 361

To train ST or BT, we use the second halves of 362
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the training data only as the monolingual corpora.363

For example, if the translation task is English-to-364

German translation, ST generates a pseudo-parallel365

corpus with original English paired with machine-366

translated pseudo-German, which we denote as367

(en, de∗∗). For readability, we mark the machine-368

translation direction with ST and BT by ∗∗ and the369

human translation direction by ∗.370

Our hypothesis is that the machine-translated371

text pairs (en, de∗∗) will also show similar proper-372

ties as the human-translated training data (en, de∗).373

Specifically, the more the pseudo-training data is374

aligned with the test set, the higher performance375

the semi-supervised learning method will achieve.376

This is confirmed by the experiment results in Ta-377

ble 3, where, across all settings, no matter which378

semi-supervised learning method is used, when the379

pseudo-training data has the same translation di-380

rection as the test set, the resulting performance is381

generally higher. The experiments conducted on382

CAUSALMT test sets also generally show the same383

trend, and, due to the space limit, we include the384

results in the Appendix Table 6.385

4 Causal Effect of Data-Model386

Alignment387

The second contribution of this work is to inspect388

how much another factor, the data-model align-389

ment, causally affects the MT performance. For-390

mally, our research question is that, for a given391

translation task X-to-Y , considering an equal mix392

of the test set, does the human translation direction393

of the training data still matter? If so, how large is394

the effect, and is it language-/task-dependent?395

In this section, we will use causal inference to396

isolate the effect of data-model alignment from397

other possible confounders and discuss its effect in398

different languages and translation tasks.399

Our previous experiments show that data-400

model alignment correlates with MT perfor-401

mance. Our first step is to verify whether data-402

model alignment is a cause for MT performance.403

One motivation is that in our previous experiment404

results in Table 2, for each translation task, there is405

a clear difference between the causal learning and406

anticausal learning model. We present the differ-407

ence in the correlation (“Corr”) column of Table 4,408

referring to the fact that this observation is about409

how the data-model alignment correlates with MT410

performance on the given CAUSALMT dataset.411

We denote this correlation as P (perf|aligned)412

Data-Model Alignment

Sentence Length MT Performance

Content

Hidden Confounder
(e.g., Nature of EuroParl)

Figure 2: Causal graph about how the data-model align-
ment affects MT performance.

between the performance perf and the data-model 413

alignment aligned, which is distinct from the 414

causal relationship P (perf|do(aligned)) of how 415

the performance will change when intervening on 416

the data-model alignment, where the do-operator 417

formulates the intervention on a variable by do- 418

calculus (Pearl, 1995) in causal inference. 419

Formulating the causal effect. Since the true 420

causal effect we want is P (perf|do(aligned)) in- 421

stead of just the correlation, we first need to con- 422

sider what might interfere with the relationship be- 423

tween data-model alignment and MT performance. 424

The main additional factors we need to control for 425

are shown in the causal graph in Figure 2. We make 426

the assumption that it is very likely that the two cor- 427

pora of different human translation directions also 428

vary by sentence lengths and the distribution of 429

content (Bogoychev and Sennrich, 2019) due to 430

a hidden confounder (i.e., a common cause) such 431

as the nature of EuroParl. Note that since our re- 432

search question is about which training data to use 433

given a translation task, the data-model alignment 434

is equivalent to the human translation direction of 435

the training data, as the model translation direction 436

is fixed. 437

We aim to estimate the causal effect of the data- 438

model alignment (i.e., causal vs. anticausal learn- 439

ing) aligned on the translation performance perf , 440

while adjusting for other important factors others 441

(sentence lengths and topics).5 We formulate the 442

average treatment effect (ATE) as follows: 443

ATE = P (perf|do(aligned = 1))

− P (perf|do(aligned = 0)) ,
(1) 444

where the operator do(aligned = 0 or 1) means 445

to intervene on the data-model alignment to be 0 446

5Note that there are two notions of causality here, one
is the treatment we are interested in, namely the data-model
direction alignment, known as causal vs. anticausal learning,
and the other is the meta-level causality we are interested in,
namely how much the data-model direction alignment (as a
binary variable) causally affect the translation performance.
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English-to-German (en-to-de) Translation German-to-English (de-to-en) Translation
T1 (en, de∗) T2 (en∗, de) Cau. – Ant. Corr T1 (de, en∗) T2 (de∗, en) Cau. – Ant. Corr

Cau. (en, de∗) 21.88 28.77 +3.13 +1.75
Cau. (de, en∗) 31.70 28.68 -1.89 -2.14

Ant. (en∗, de) 25.33 22.19 Ant. (de∗, en) 26.35 35.92
French-to-German (fr-to-de) Translation German-to-French (de-to-fr) Translation

T1 (fr, de∗) T2 (fr∗, de) Cau. – Ant. Corr T1 (de, fr∗) T2 (de∗, fr) Cau. – Ant. Corr
Cau. (fr, de∗) 18.36 25.45 +5.57 +5.0

Cau. (de, fr∗) 32.25 29.98 -3.58 -2.71
Ant. (fr∗, de) 20.46 17.78 Ant. (de∗, fr) 28.07 37.74

French-to-English (fr-to-en) Translation English-to-French (en-to-fr) Translation
T1 (fr, en∗) T2 (fr∗, en) Cau. – Ant. Corr T1 (en, fr∗) T2 (en∗, fr) Cau. – Ant. Corr

Cau. (fr, en∗) 33.77 37.42 +1.43 +2.53
Cau. (en, fr∗) 42.60 37.34 -0.14 -0.65

Ant. (fr∗, en) 37.67 32.09 Ant. (en∗, fr) 38.05 42.03
Spanish-to-English (es-to-en) Translation English-to-Spanish (en-to-es) Translation

T1 (es, en∗) T2 (es∗, en) Cau. – Ant. Corr T1 (en, es∗) T2 (en∗, es) Cau. – Ant. Corr
Cau. (es, en∗) 37.79 33.64 +12.25 +0.63

Cau. (en, es∗) 39.04 33.68 +3.50 +3.79
Ant. (es∗, en) 21.69 25.24 Ant. (en∗, es) 30.76 34.96

French-to-Spanish (fr-to-es) Translation Spanish-to-French (es-to-fr) Translation
T1 (fr, es∗) T2 (fr∗, es) Cau. – Ant. Corr T1 (es, fr∗) T2 (es∗, fr) Cau. – Ant. Corr

Cau. (fr, es∗) 37.09 43.40 +5.84 +2.22
Cau. (es, fr∗) 41.67 41.57 -2.74 -1.11

Ant. (fr∗, es) 38.45 36.20 Ant. (es∗, fr) 39.36 46.62

Table 4: BLEU scores of causal learning (Cau.) vs. anticausal (Ant.) directions after topic control. We calculate
the ATE by taking each model’s average performance on T1 and T2, and comparing how much causal models
outperform anticausal models. In comparison, we show the correlation (Corr), which is the difference by directly
comparing the results of causal and anticausal model without topic control in Table 2.

(i.e., anticausal learning) or 1 (i.e., causal learning).447

This formulation of ATE is about how much the448

model performance perf will differ if intervening449

the data-model alignment to be 0 or 1.450

Given the causal graph in Figure 2, the ATE451

in Eq. (1) can be calculated by conditioning on452

the set of variables others which blocks the back-453

door paths (Pearl, 1995) between aligned and perf .454

(others fits the backdoor criterion (Pearl, 1993) in455

that the sentence lengths and content block all non-456

directed paths from aligned to perf , and neither457

is a descendant of any node on the directed path458

from aligned to perf .) An intuitive interpretation459

can be that when we directly look at the correla-460

tion between the data-model alignment and MT461

performance, it might also be due to that differ-462

ent corpora have different distributions of sentence463

lengths and content. Therefore, we need to con-464

trol the sentence lengths and content so that the465

performance difference will be solely due to the466

data-model alignment.467

Formally, the ATE using the do-notation can468

be calculated by conditioning on the others.469

Specifically, we integrate over the distribution of470

P (others), and calculate the difference in the con-471

ditional probability distribution P (perf|aligned =472

1, others = Z) − P (perf|aligned = 0, others =473

Z) of perf given the data-model alignment value474

aligned conditioned on the other key variables475

others for each of its possible value Z, as shown476

in Eq. (2): 477

ATE =

∫
Z
[(P (perf|aligned = 1, others = Z)

− P (perf|aligned = 0, others = Z))P (Z)]

(2)

478

= EZ [perf|aligned = 1, others = Z]

− EZ [perf|aligned = 0, others = Z] .

(3)

479

Finally, we estimate it by comparing the ex- 480

pected values of the model performance perf given 481

aligned = 0 or 1 over all possible values of others, 482

as shown in Eq. (3). 483

Causal effect estimation by matching. To esti- 484

mate the ATE in Eq. (3), the intuition is that we 485

need to take care of the covariates in others so 486

that the aligned setting and the unaligned setting 487

are comparable. We follow the covariate matching 488

method in causal inference (Rosenbaum and Ru- 489

bin, 1983; Iacus et al., 2012) and the adjustment in 490

the high-dimensional setting of text (Roberts et al., 491

2020; Veitch et al., 2020). Specifically, matching 492

is a method in causal inference to subsample the 493

treated (i.e., the aligned corpus with the model di- 494

rection) and control samples (i.e., the unaligned 495

corpus with the model direction) so that the covari- 496

ates of interest are matched. 497

We aim to match subsets of the causal and an- 498

ticausal datasets so that the two sets have similar 499

7



distributions of sentence lengths and content. In our500

implementation, we match pairs of samples, one501

from the causal corpus and the other from the an-502

ticausal corpus, where we constrain them to share503

similar contents and similar sentence lengths. We504

include our experimental details of the matching505

process, and quality check of the matched distribu-506

tions in Appendix E.1.507

Based on the matched datasets that control for508

the sentence lengths and contents, we calculate509

ATE as the differences of MT performance of mod-510

els trained on the two directions of the new datasets.511

Causal effect results. As shown in the results512

in Table 4, we can have three observations: (1)513

The data-model alignment is a clear cause for MT514

performance. The causal effect (ATE) of data-515

model alignment on MT performance can be up to516

12.25 BLEU scores, for example, in the Spanish-517

to-English translation task. (2) The ATE varies by518

language and translation tasks. For the English-519

Spanish language pair, both translation directions520

get higher BLEU scores if the models are trained521

in the causal learning direction. For other lan-522

guage pairs, the data-model alignment can some-523

times have a distinct positive impact and can also524

sometimes have a negative impact. (3) The results525

of correlation (Corr) analysis are, in most cases,526

smaller than that of the causal analysis by ATE.527

This indicates that the correlation analysis neglects528

other important factors such as the sentence length529

and content, which might also be reflected in the530

overall correlation. The causal analysis is a more531

appropriate method to isolate the influence of the532

data-model alignment.533

5 Limitations and Future Work534

We list the limitations of the study and correspond-535

ing future work directions: (1) The current study536

mainly looks into clear cases of causal or anticausal537

learning, but there can potentially be a third case538

where both languages are translated from a third539

language, as pointed out in Riley et al. (2020, Fig-540

ure 1), which is worth exploring for future work.541

(2) Due to financial budgets, we did not use human542

evaluation in addition to the BLEU scores, which is543

reported to be more reflective of the real translation544

quality (Edunov et al., 2020). We could also po-545

tentially add perplexity scores, although that could546

vary language to language and also not necessarily547

fair across the original and translationese language.548

(3) The experiments on the train-test alignment549

could be extended since real-world MT systems do 550

not need to be limited to trade-offs between train- 551

ing data in two directions, so there could be future 552

work exploring what the best way to make use of 553

the unaligned training data is. 554

6 Related Work 555

Linguistic studies have long observed the distinct 556

properties of translationese from text originally au- 557

thored in the same language (Toury, 1980; Geller- 558

stam, 1986; Baker, 1993; Toury, 1995). Recent 559

work in MT identifies that the translationese-to- 560

original portion of the test sets (i.e., test sets un- 561

aligned with the model direction) being statistically 562

significantly easier (Graham et al., 2020), echoing 563

with many previous observations (Toral et al., 2018; 564

Lembersky et al., 2012; Läubli et al., 2018) and 565

thus some suggest to exclude this portion from fu- 566

ture test sets (Toral et al., 2018; Zhang and Toral, 567

2019; Graham et al., 2020; Barrault et al., 2019). 568

Based on this speculated inflation of MT per- 569

formance due to the translationese in the test set, 570

further work inspects what previous conclusions 571

about the effectiveness of MT models should be 572

recalibrated. Some discover that models with BT 573

mostly improve on the inflated test set but not the 574

other more challenging portion (Toral et al., 2018; 575

Freitag et al., 2019; Edunov et al., 2020, Appendix 576

A Table 7) and raises concerns that BT is not as 577

effective as expected. Others argue that BT can still 578

improve on both test sets (Edunov et al., 2020). 579

Our work differs from all previous work in that 580

we bring in two new important factors when consid- 581

ering how translationese affects MT performance, 582

namely the train-test alignment, and data-model 583

alignment. Moreover, beyond the correlation-based 584

analysis in previous papers (Graham et al., 2020; 585

Edunov et al., 2020), we conduct causal infer- 586

ence (Pearl, 2009; Peters et al., 2017) to contribute 587

causal insights on how translationese affects MT. 588

7 Conclusion 589

In conclusion, this work proposed two critical fac- 590

tors for MT performance the train-test alignment 591

and data-model alignment. With strict controls for 592

other confounders, we estimated the causal effect 593

size of each factor on MT performance, and pro- 594

vided suggestions for future study in MT, such as 595

using more training data in the aligned direction 596

and paying attention to whether the nature of the 597

translation task is causal or anticausal. 598
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Ethical Considerations599

This research mainly focuses on translation using600

the EuroParl (Koehn, 2005) corpus, which is widely601

adopted in the community. There is no data privacy602

issues or bias against certain demographics with re-603

gard to this dataset. The potential use of this study604

is to improve future MT practice in terms of both605

evaluation and training. Most conclusions in this606

study are language-agnostic and potentially help607

MT in all language pairs, although due to the limi-608

tation of available data, the study mainly uses the609

relatively rich-resource languages, English, Ger-610

man, French, and Spanish. There is a possibility611

that the findings of the study will need to be further612

adjusted for low-resource or languages with a very613

different nature than the studied ones, which we614

strongly encourage future work to explore.615
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Ondřej Bojar and Aleš Tamchyna. 2011. Improving 664
translation model by monolingual data. In Proceed- 665
ings of the Sixth Workshop on Statistical Machine 666
Translation, pages 330–336, Edinburgh, Scotland. 667
Association for Computational Linguistics. 668

Franck Burlot and François Yvon. 2018. Using mono- 669
lingual data in neural machine translation: a system- 670
atic study. In Proceedings of the Third Conference 671
on Machine Translation: Research Papers, pages 672
144–155, Brussels, Belgium. Association for Com- 673
putational Linguistics. 674

Efim A Dinic. 1970. Algorithm for solution of a prob- 675
lem of maximum flow in networks with power esti- 676
mation. In Soviet Math. Doklady, volume 11, pages 677
1277–1280. 678

Sergey Edunov, Myle Ott, Michael Auli, and David 679
Grangier. 2018. Understanding back-translation at 680
scale. In Proceedings of the 2018 Conference on 681
Empirical Methods in Natural Language Processing, 682
pages 489–500, Brussels, Belgium. Association for 683
Computational Linguistics. 684

Sergey Edunov, Myle Ott, Marc’Aurelio Ranzato, and 685
Michael Auli. 2020. On the evaluation of machine 686
translation systems trained with back-translation. In 687
Proceedings of the 58th Annual Meeting of the Asso- 688
ciation for Computational Linguistics, pages 2836– 689
2846, Online. Association for Computational Lin- 690
guistics. 691

Markus Freitag, Isaac Caswell, and Scott Roy. 2019. 692
APE at scale and its implications on MT evaluation 693
biases. In Proceedings of the Fourth Conference on 694
Machine Translation (Volume 1: Research Papers), 695
pages 34–44, Florence, Italy. Association for Com- 696
putational Linguistics. 697

Markus Freitag, David Grangier, and Isaac Caswell. 698
2020. Bleu might be guilty but references are not 699
innocent. In Proceedings of the 2020 Conference on 700
Empirical Methods in Natural Language Processing 701
(EMNLP), pages 61–71. 702

Martin Gellerstam. 1986. Translationese in swedish 703
novels translated from english. Translation studies 704
in Scandinavia, 1:88–95. 705

9

https://www.jbe-platform.com/content/books/9789027285874-z.64.15bak
https://www.jbe-platform.com/content/books/9789027285874-z.64.15bak
https://www.jbe-platform.com/content/books/9789027285874-z.64.15bak
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://proceedings.neurips.cc/paper/2001/hash/296472c9542ad4d4788d543508116cbc-Abstract.html
http://arxiv.org/abs/1911.03362
http://arxiv.org/abs/1911.03362
http://arxiv.org/abs/1911.03362
http://arxiv.org/abs/1911.03362
http://arxiv.org/abs/1911.03362
https://doi.org/10.18653/v1/W18-6401
https://doi.org/10.18653/v1/W18-6401
https://doi.org/10.18653/v1/W18-6401
https://aclanthology.org/W11-2138
https://aclanthology.org/W11-2138
https://aclanthology.org/W11-2138
https://doi.org/10.18653/v1/W18-6315
https://doi.org/10.18653/v1/W18-6315
https://doi.org/10.18653/v1/W18-6315
https://doi.org/10.18653/v1/W18-6315
https://doi.org/10.18653/v1/W18-6315
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/2020.acl-main.253
https://doi.org/10.18653/v1/2020.acl-main.253
https://doi.org/10.18653/v1/2020.acl-main.253
https://doi.org/10.18653/v1/W19-5204
https://doi.org/10.18653/v1/W19-5204
https://doi.org/10.18653/v1/W19-5204
https://www.aclweb.org/anthology/2020.emnlp-main.5.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.5.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.5.pdf


Clark Glymour, Kun Zhang, and Peter Spirtes. 2019.706
Review of causal discovery methods based on graph-707
ical models. Frontiers in Genetics, 10:524.708

Yvette Graham, Barry Haddow, and Philipp Koehn.709
2020. Statistical power and translationese in ma-710
chine translation evaluation. In Proceedings of the711
2020 Conference on Empirical Methods in Natural712
Language Processing (EMNLP), pages 72–81, On-713
line. Association for Computational Linguistics.714

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio715
Ranzato. 2019. Revisiting self-training for neural716
sequence generation. CoRR, abs/1909.13788.717

David Heckerman, Christopher Meek, and Gregory718
Cooper. 1999. A bayesian approach to causal dis-719
covery. Computation, causation, and discovery,720
19:141–166.721

Matthew Honnibal and Ines Montani. 2017. spaCy 2:722
Natural language understanding with Bloom embed-723
dings, convolutional neural networks and incremen-724
tal parsing. To appear.725

Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard726
Schölkopf, and Clark Glymour. 2018. Generalized727
score functions for causal discovery. In Proceed-728
ings of the 24th ACM SIGKDD International Confer-729
ence on Knowledge Discovery & Data Mining, KDD730
2018, London, UK, August 19-23, 2018, pages 1551–731
1560. ACM.732

Stefano M Iacus, Gary King, and Giuseppe Porro. 2012.733
Causal inference without balance checking: Coars-734
ened exact matching. Political analysis, 20(1):1–24.735

Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews,736
and Enrico Santus. 2019. IMaT: Unsupervised text737
attribute transfer via iterative matching and transla-738
tion. In Proceedings of the 2019 Conference on739
Empirical Methods in Natural Language Processing740
and the 9th International Joint Conference on Natu-741
ral Language Processing (EMNLP-IJCNLP), pages742
3097–3109, Hong Kong, China. Association for743
Computational Linguistics.744

Zhijing Jin, Julius von Kügelgen, Jingwei Ni, Tejas745
Vaidhya, Ayush Kaushal, Mrinmaya Sachan, and746
Bernhard Schoelkopf. 2021. Causal direction of747
data collection matters: Implications of causal and748
anticausal learning for NLP. In Proceedings of the749
2021 Conference on Empirical Methods in Natural750
Language Processing, pages 9499–9513, Online and751
Punta Cana, Dominican Republic. Association for752
Computational Linguistics.753

Philipp Koehn. 2005. Europarl: A parallel corpus for754
statistical machine translation. In Proceedings of755
Machine Translation Summit X: Papers, pages 79–756
86, Phuket, Thailand.757

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris758
Callison-Burch, Marcello Federico, Nicola Bertoldi,759
Brooke Cowan, Wade Shen, Christine Moran,760
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra761
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A Reproducibility, License, and933

Copyright934

We open-source our codes and datasets, which935

are both uploaded to the submission system. In936

our data, we include all three variations: the full937

CAUSALMT dataset, the split used for the semi-938

supervised learning experiments, and the subset939

after matching the contents and sentence lengths.940

In our codes, we include all commands with hyper-941

parameters to help future work to reproduce our942

results.943

The codes and data are under MIT license. Note944

that the EuroParl dataset has no copyright restric-945

tion, according to its official website.6946

B Linguistic Property Analysis947

We also open-source the codes to calculate the lin-948

guistic properties of our dataset in Table 1. We949

use the Python library Stanza7 (Qi et al., 2020) to950

tokenize the sentences when calculating the num-951

ber of sentences per sample. For speed concerns,952

we use NLTK8 (Bird et al., 2009) to tokenize the953

words and count the vocabulary. We use the Python954

library spaCy9 (Honnibal and Montani, 2017) to955

calculate the passive voice ratio and punctuation956

per sample.957

C Implementation Details958

C.1 Preprocessing959

To prepare the text for the models, we follow the960

preprocessing scripts of fairseq (Ott et al., 2019).10961

Specifically, we use the Moses tokenizer (Koehn962

et al., 2007),11 the default byte pair encoding (BPE)963

size of 40K subwords, and remove sentence pairs964

that of larger than 1.5 length ratio from the training965

set.966

C.2 Evaluation Script967

We use the fairseq-generate script12 to calculate the968

BLEU score (Papineni et al., 2002) of each transla-969

tion model, with beam width of 5, BPE removed,970

detoknized by moses.971

6https://www.statmt.org/europarl/
7https://stanfordnlp.github.io/stanza/
8https://www.nltk.org/
9https://spacy.io/

10https://github.com/pytorch/fairseq/
11https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

12https://github.com/pytorch/fairseq/
blob/main/fairseq_cli/generate.py

C.3 Model Details 972

We use the sequence-to-sequence Transformer 973

model (Vaswani et al., 2017) implemented by the 974

fairseq library (Ott et al., 2019). Specifically, we 975

use a six-layer Transformer, a label smoothing 976

of 0.1, a weight decay of 0.0001, a dropout of 977

0.3, 4000 warming updates, and a learning rate of 978

0.0005. All results are reported by a single run but 979

a fixed random seed. 980

For the semi-supervised learning, we implement 981

the BT model following Edunov et al. (2020) to 982

use the Facebook-FAIR system of the WMT’19 983

news shared translation task.13 All the hyperparam- 984

eters are the same as the supervised system, with a 985

learning rate of 0.0007 on both the supervised train- 986

ing data and the generated pseudo-parallel corpus. 987

We implement the ST model by He et al. (2019) 988

following their script,14 and also keep the hyperpa- 989

rameters the same as the supervised model. 990

C.4 Training Details 991

We train the supervised learning model and each 992

step in the semi-supervised learning scripts for 993

1000 epochs. We select the model with the best 994

performance on the development set and report the 995

final evaluation results on the test set. 996

All experiments are run on NVIDIA RTX2080 997

GPUs. Each supervised learning experiment takes 998

around 32 GPU hours, and each semi-supervised 999

learning experiment takes about 128 GPU hours. 1000

D Additional Experimental Results 1001

D.1 Effect of Train-Test Alignment on 1002

Supervised Learning 1003

To inspect the influence of train-test alignment on 1004

the MT performance, we conduct all experiments 1005

on our CAUSALMT test sets and also the standard 1006

newstest2014 test sets. For the supervised learn- 1007

ing performance, we list the performance on the 1008

CAUSALMT test sets in the main paper in Table 2, 1009

and list the additional performance on the new- 1010

stest2014 test sets in Table 5. 1011

For better visualization of the trends, we also pro- 1012

vide line plots of the same experimental results in 1013

Table 2. Specifically, we plot the results of German- 1014

English translation in Figure 3a using our previous 1015

13https://github.com/pytorch/fairseq/
tree/main/examples/backtranslation

14https://github.com/jxhe/
self-training-text-generation/blob/
master/self_train.sh

13

https://www.statmt.org/europarl/
https://stanfordnlp.github.io/stanza/
https://www.nltk.org/
https://spacy.io/
https://github.com/pytorch/fairseq/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
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https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/pytorch/fairseq/blob/main/fairseq_cli/generate.py
https://github.com/pytorch/fairseq/blob/main/fairseq_cli/generate.py
https://github.com/pytorch/fairseq/tree/main/examples/backtranslation
https://github.com/pytorch/fairseq/tree/main/examples/backtranslation
https://github.com/jxhe/self-training-text-generation/blob/master/self_train.sh
https://github.com/jxhe/self-training-text-generation/blob/master/self_train.sh
https://github.com/jxhe/self-training-text-generation/blob/master/self_train.sh


de-to-en Translation en-to-de Translation
α% T1 (de, en∗)T2 (de∗, en) α% T1 (en, de∗)T2 (en∗, de)
0% 14.21 19.10 0% 11.18 15.49
25% 15.71 18.69 25% 12.69 14.29
50% 16.77 18.17 50% 13.30 14.33
75% 16.91 16.27 75% 13.38 13.16

100% 16.02 12.91 100% 13.28 10.68
en-to-fr Translation fr-to-en Translation

α% T1 (en, fr∗) T2 (en∗, fr) α% T1 (fr, en∗) T2 (fr∗, en)
0% 16.61 21.33 0% 16.34 23.26
25% 18.56 20.95 25% 18.81 23.31
50% 20.45 21.66 50% 19.75 23.20
75% 21.19 21.05 75% 21.09 22.01

100% 21.43 19.30 100% 20.02 19.78

Table 5: Effect of train-test alignment on the en-fr and
en-de test sets of newstest2014.

experiment results in Table 2. We also include the1016

diagram of all five language pairs in Figure 3b.1017

In Figure 3a, we use lines with the same darkness1018

of color for the same model trained on different1019

data directions. Results show that the data-model1020

alignment matter significantly. Taking the German-1021

to-English translation models (- - - and —), the1022

two data directions can cause up to 4.53 difference1023

in BLEU scores. In the current figures, we also1024

see that the data direction with a smaller expansion1025

factor is a better training corpus than the other one.1026

We use the same line type (dashed or solid) for1027

models trained on the same data. Using the same1028

data, the performance of the two different direc-1029

tions of models cannot be compared directly be-1030

cause the target language is different, causing the1031

BLEU calculation to be different.1032

D.2 Effect of Train-Test Alignment on1033

Semi-Supervised Learning1034

For the semi-supervised learning performance, we1035

show the performance on the newstest2014 test sets1036

in Table 3 in the main paper, and performance on1037

the test sets of CAUSALMT in Table 6. Note that1038

the decrease of ST performance on En-Es and Es-Fr1039

pairs is possible because ST is more sensitive to the1040

quality of the model learned on the supervised data,1041

and these language pairs have a smaller training1042

data size of 90K compared with 200K+ data for all1043

the other language pairs.1044

E Implementation Details for Causal1045

Inference1046

E.1 Matching for Causal effect estimation1047

Implementation Details of Matching For each1048

sentence in the aligned corpus, we select its most1049
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(a) Translation performance between German and English on
different mixtures of training sets combining α%X

H−→Y data
and (1 − α%) Y

H−→X data, where α = 0, 25, 50, 75, 100.
Note that there are four settings between German and En-
glish, by varying two different data origins (X H−→Y data =

De H−→En or En H−→De) and two different translation task direc-
tions (German-to-English (De-En) translation or English-to-
German (En-De) translation).
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(b) Translation performance between all five language pairs
on different mixtures of training sets combining α%X

H−→Y
data and (1− α%) Y

H−→X data, where the mixture rate α =
0, 25, 50, 75, 100.

similar match in the unaligned corpus. We want 1050

pairs of samples with similar content and sentence 1051

lengths. Empirically, we limit the sentence length 1052

ratio of each matched pair to be no larger than 1.1 1053

and the content to have a cosine similarity larger 1054

than 0.7, following the threshold to match a content- 1055

similar pseudo-parallel corpus in Jin et al. (2019). 1056

To perform the matching, we use Dinic’s maximal 1057

matching algorithm (Dinic, 1970). 1058

To calculate the content-wise similarity of a pair 1059

of samples, we represent each sentence by the sen- 1060

tence BERT embedding (Reimers and Gurevych, 1061

2019). In case of multiple languages as candidates 1062

to match the sentence embeddings in, we set a pri- 1063
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German-to-English (de-to-en) Translation
Test 1 (de, en∗) Test 2 (de∗, en)

Sup. on Equal Mix 25.52 29.02
+ ST (de, en∗∗) +3.25 (Aligned) +2.59
+ BT (de∗∗, en) +0.97 +2.67 (Aligned)

English-to-German (en-to-de) Translation
Test 1 (en, de∗) Test 2 (en∗, de)

Sup. on Equal Mix 23.76 21.48
+ ST (en, de∗∗) +1.39 (Aligned) +1.44
+ BT (en∗∗, de) -0.63 +0.51 (Aligned)

German-to-French (de-to-fr) Translation
Test 1 (de, fr∗) Test 2 (de∗, fr)

Sup. on Equal Mix 25.42 30.10
+ ST (de, fr∗∗) +1.79 (Aligned) +1.23
+ BT (de∗∗, fr) +0.35 +1.69 (Aligned)

French-to-German (fr-to-de) Translation
Test 1 (fr, de∗) Test 2 (fr∗, de)

Sup. on Equal Mix 21.89 18.60
+ ST (fr, de∗∗) +2.46 (Aligned) +2.09
+ BT (fr∗∗, de) +1.07 +0.87 (Aligned)

English-to-French (en-to-fr) Translation
Test 1 (en, fr∗) Test 2 (en∗, fr)

Sup. on Equal Mix 35.64 36.19
+ ST (en, fr∗∗) +2.04 (Aligned) +1.89
+ BT (en∗∗, fr) +0.13 +1.33 (Aligned)

French-to-Englih (fr-to-en) Translation
Test 1 (fr, en∗) Test 2 (fr∗, en)

Sup. on Equal Mix 34.35 33.75
+ ST (fr, en∗∗) +1.76 (Aligned) +2.28
+ BT (fr∗∗, en) +0.43 +1.89 (Aligned)

English-to-Spanish (en-to-es) Translation
Test 1 (en, es∗) Test 2 (en∗, es)

Sup. on Equal Mix 33.65 34.01
+ ST (en, es∗∗) -0.10 (Aligned) -0.75
+ BT (en∗∗, es) +0.36 +1.04 (Aligned)

Spanish-to-English (es-to-en) Translation
Test 1 (es, en∗) Test 2 (es∗, en)

Sup. on Equal Mix 35.00 33.82
+ ST (es, en∗∗) -0.46 (Aligned) -0.41
+ BT (es∗∗, en) +0.63 +1.77 (Aligned)

Spanish-to-French (es-to-fr) Translation
Test 1 (es, fr∗) Test 2 (es∗, fr)

Sup. on Equal Mix 38.30 40.40
+ ST (es, fr∗∗) +0.58 (Aligned) +0.83
+ BT (es∗∗, fr) +1.00 +2.01 (Aligned)

French-to-Spanish (fr-to-es) Translation
Test 1 (fr, es∗) Test 2 (fr∗, es)

Sup. on Equal Mix 40.61 38.55
+ ST (fr, es∗∗) -0.84 (Aligned) -1.09
+ BT (fr∗∗, es) -0.14 +0.12 (Aligned)

Table 6: Performance analogous to Table 3 but on our
CAUSALMT test sets.

oritization order of “En>De>Fr>Es” for sentence1064

embedding matching.1065

Note that since the set of factors to control is in1066

a high-dimensional vector space, it is less realis-1067

tic to use other common matching methods such1068

as propensity score stratification and matching, as1069

pointed out by Roberts et al. (2020).1070

Quality Check We check the quality of the1071

matched corpora. First, we list the statistics of the1072

new corpora in Table 8, and analyze its linguistic1073

properties in Table 7.1074

More importantly, we check whether the co-1075

variates are well controlled. Taking the German-1076

Figure 4: Distribution of sentence lengths after match-
ing, using the German-English language pair as an ex-
ample.

Figure 5: Distribution of different topics after match-
ing, using the German-English language pair as an ex-
ample.

English language pair as an example, we plot 1077

the distributions of sentence lengths across the 1078

De H−→En and En H−→ De corpora in Figure 4 and 1079

the distributions of topics after learning an Latent 1080

Dirichlet Allocation (LDA) topic model (Blei et al., 1081

2001) in Figure 5. We also list some example 1082

matched samples in English in Table 9. 1083

E.2 Confirming the Causal Graph by Causal 1084

Discovery 1085

To check our causal graph assumption, we first 1086

verify whether data-model alignment is a cause for 1087

MT performance using causal discovery. 1088

We use the causal discovery algorithm, fast 1089

causal inference (FCI) (Spirtes et al., 2000a), to 1090

verify that the data-model alignment causally af- 1091

fects the translation performance, conditioned on 1092

other factors such as the sentence length and topics. 1093

FCI is the most appropriate causal inference 1094

method for this analysis since there might ex- 1095

ist hidden confounders that affect the MT perfor- 1096

mance, which normal causal discovery methods 1097

such as score-based methods (Heckerman et al., 1098

1999; Huang et al., 2018) and other constraint- 1099
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De H−→En En H−→De De H−→Fr Fr H−→De En H−→Fr Fr H−→En En H−→Es Es H−→En Es H−→Fr Fr H−→Es
# Words/Sample 21.05/23.82 23.82/22.64 23.81/30.09 29.19/24.39 25.40/29.76 28.02/25.33 26.69/28.18 27.14/26.96 30.59/34.33 33.45/30.39
# Sents/Sample 1.032/1.031 1.020/1.041 1.041/1.925 1.902/1.056 1.033/1.949 1.872/1.040 1.028/1.053 1.070/1.057 1.076/2.100 2.088/1.068
Sent Expansion Factor en:de=1.00 en:de=0.98 fr:de=1.85 fr:de=1.80 fr:en=1.88 fr:en=1.80 es:en=1.02 es:en=1.01 fr:es=1.95 fr:es=1.96
Passive Voice (%) -/0.1128 0.1036/- -/- -/- 0.1073/- -/0.1185 0.1155/- -/0.1256 -/- -/-
# Punctuation/Sample 3.04/2.83 2.63/3.04 3.45/6.04 6.43/3.35 2.82/5.89 6.16/3.11 2.93/2.71 3.07/3.12 3.42/7.02 7.44/3.50
# Syllables/Word 2.002/1.744 1.755/2.059 1.988/1.553 1.546/2.068 1.758/1.562 1.55/1.78 1.760/2.022 2.01/1.78 2.010/1.567 1.544/2.030
Flesch Reading Ease 31.90/35.22 33.78/29.30 35.25/46.30 46.1/28.0 31.93/45.80 49.91/31.09 30.55/50.22 51.94/30.05 48.82/43.26 42.04/46.87
MATTR 58.93/52.68 53.31/60.58 59.32/52.77 52.89/61.74 53.19/52.55 52.32/53.38 53.90/54.91 53.90/52.33 53.60/51.85 52.29/54.84
Lexical Density 49.15/49.24 49.91/50.75 48.86/55.30 55.21/50.82 49.99/55.18 55.16/50.28 50.24/49.76 48.88/49.56 48.72/55.02 55.14/50.01
Vocab Size 58K/22K 23K/56K 78K/37K 39K/71K 22K/31K 31K/21K 19K/31K 29K/16K 32K/26K 29K/34K

Table 7: Detailed characteristics of the matched dataset.

Human Trans. Dir. Train Dev Test
De H−→En 107K 1K 2K
En H−→De 107K 1K 2K
De H−→Fr 133K 1K 2K
Fr H−→De 133K 1K 2K
En H−→Fr 87K 1K 2K
Fr H−→En 87K 1K 2K
En H−→Es 47K 1K 2K
Es H−→En 47K 1K 2K
Es H−→Fr 50K 1K 2K
Fr H−→Es 50K 1K 2K

Table 8: Dataset statistics for five language pairs after
matching. Each language pair has data from two hu-
man translation directions (Human Trans. Dir.), e.g.,
De H−→En and En H−→De.

based algorithms like Peter-Clark (PC) algorithm1100

(Spirtes et al., 2000b, §5.4.2, pp. 84–88) cannot1101

handle (Glymour et al., 2019). FCI gives asymptot-1102

ically correct results in the presence of confounders,1103

and outputs Markov equivalence classes, i.e., a set1104

of causal structures satisfying the same conditional1105

independences.1106

Given a language pair X and Y , we generate1107

eight sets of experiment results, by varying the two1108

training directions, two test directions, and two1109

model directions. We extract the test samples of1110

all eight experiments, and since each test set is 2K,1111

there are 16K samples in total. On the 16K samples,1112

besides keeping the label of their data-model align-1113

ment, translation performance in BLEU, we also1114

calculate the other factors such as the test-model1115

alignment, train-test alignment, source sentence1116

length, and the topic vector by topic modeling on1117

all the training data of the language pair X and Y .1118

We run the FCI algorithm using the causal-learn1119

Python package15 over all the variables of interest.1120

The implementation details are in the Appendix.1121

15https://github.com/cmu-phil/
causal-learn

Corpus Matched Sample
En H−→De However, I have one or two points.
De H−→En Let me make some comments on specific points.

En H−→De That greater urgency has been recognised in the
Council suggestion that we should have an in-
tergovernmental conference beginning next year,
something which we subscribe to.

De H−→En From our perspective, it is now urgently necessary
that the Council also accepts this proposal, so
that the negotiations can commence as soon as
possible.

En H−→De I agree that the European Union needs an inte-
grated, coherent and consistent European energy
policy that maintains Europe’s competitiveness,
safeguards our environmental objectives and en-
sures our security of supply.

De H−→En We want a European Union that is strong, effec-
tive and democratic, and all those who want to
make it no more than a free trade zone within
Europe will have a fight on their hands.

Table 9: Examples of matched samples between the
En H−→De and De H−→En corpora.

The resulting causal graph on the German- 1122

English language pair is in Figure 2. The results 1123

confirm our hypothesis that the data-model align- 1124

ment (causal vs. anticausal direction) does have 1125

a causal effect on the BLEU score, together with 1126

other factors such as the sentence length and topics. 1127
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