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ABSTRACT

Large language models (LLMs) prompted with text and audio represent the state
of the art in various auditory tasks, including speech, music, and general audio,
showing emergent abilities on unseen tasks. However, these capabilities have yet
to be fully demonstrated in bioacoustics tasks, such as detecting animal vocaliza-
tions in large recordings, classifying rare and endangered species, and labeling
context and behavior—tasks that are crucial for conservation, biodiversity mon-
itoring, and the study of animal behavior. In this work, we present NatureLM-
audio, the first audio-language foundation model specifically designed for bioa-
coustics. Our carefully curated training dataset comprises text-audio pairs span-
ning a diverse range of bioacoustics, speech, and music data, designed to address
the challenges posed by limited annotated datasets in the field. We demonstrate
successful transfer of learned representations from music and speech to bioacous-
tics, and our model shows promising generalization to unseen taxa and tasks. Im-
portantly, we test NatureLM-audio on a novel benchmark (BEANS-Zero) and it
sets the new state of the art (SotA) on several bioacoustics tasks, including zero-
shot classification of unseen species. To advance bioacoustics research, we also
open-source the code for generating training and benchmark data, as well as for
training the model
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Figure 1: Overview of NatureLM-audio

1 INTRODUCTION

Bioacoustics, the study of sound production and reception in animals, aims to understand animal
behavior (Fischer et al., 2013), monitor biodiversity (Stowell, 2022), and model the mechanisms of
sound production and reception used in animal communication (Bradbury & Vehrencamp, 1998).
It plays a vital role in conservation and ecological research, as animal vocalizations provide criti-
cal insights into ecosystem health, species interactions, and population dynamics. By enabling the
detection of endangered species and tracking migration patterns, bioacoustic research directly con-
tributes to biodiversity monitoring and conservation efforts (Rutz et al., 2023; Stevens et al., 2024).
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In recent years, machine learning has taken on an increasingly pivotal role in bioacoustic research.
Beyond its applications in large-scale ecological monitoring, machine learning has also opened up
new frontiers in the study of animal communication, enabling discoveries like the ability of mar-
mosets (Oren et al., 2024), dolphins (King & Janik, 2013), and elephants (Pardo et al., 2024) to use
specialized vocalizations to label their conspecifics. Yet, because of obvious data collection and an-
notation difficulties, these studies often rely on strongly labeled small datasets (Stowell, 2022) and
thus require careful statistical analysis to measure the significance of results and avoid over-fitting.
At the same time, large volumes of unannotated bioacoustics data are recorded daily, particularly
through passive acoustic monitoring (PAM, Dufourq et al. (2021)) or citizen science platforms e.g.
Xeno-canto (Vellinga & Planqué, 2015)). There is thus a growing need for machine learning tools
capable of performing tasks such as detection, classification, and annotation on these data at scale.
The recent successes of large scale artificial intelligence models in various domains (e.g. natural
language processing, vision, games) also point to the possibility of leveraging these huge volumes
of raw data to learn accurate and generalizable representations of bioacoustics signals (Ghani et al.,
2023; Boudiaf et al., 2023).

Existing bioacoustics machine learning models are typically designed for specific species or
tasks (Dufourq et al., 2021; Kahl et al., 2021; Cauzinille et al., 2024), showing limited general-
izability beyond their predefined scope. Many traditional studies rely on small datasets focused on a
few species and individuals, validating results through statistical measures despite over-fitting risks.
Newer models such as BirdNET (Kahl et al., 2021) and Perch (Ghani et al., 2023) perform well in
specific tasks such as bird classification but require training of a classifier specific to each target taxa.
Instead, we propose a single foundation model that works across taxa. Recently, self-supervised and
audio-language contrastive models, AVES (Hagiwara, 2023) and BioLingual (Robinson et al., 2024),
have exhibited notable results on bioacoustics benchmarks, though they remain constrained by their
training paradigms (discriminative and contrastive, respectively), which restrict the range of tasks
they can address.

In recent years, foundation models, which learn patterns in large amounts of broad data (generally
via self-supervision), have shown promising performance across a wide range of tasks (Bommasani
et al., 2021). While transformer-based large language models (LLMs) are currently the most promi-
nent examples, other architectures, such as diffusion models (Kingma et al., 2021), are also emerging
as foundation models in some domains. These models’ ability to handle unseen tasks, perform in-
context learning, and respond to prompts positions them as a compelling alternative to traditional
machine learning methods, which often rely on laboriously annotated data, expensive computational
resources, and often-lacking machine learning expertise.

While multimodal large language models (LLMs), particularly vision-language models (VLMs),
have been explored for biodiversity and conservation research (Miao et al., 2024), there is rela-
tively little effort dedicated to building and investigating large audio-language models (LALMs)
for bioacoustics. LALMs have shown significant promise in processing human speech (Rubenstein
et al., 2023; Wang et al., 2024; Wu et al., 2023a; Zhang et al., 2024), music (Gardner et al., 2023;
Agostinelli et al., 2023), and general audio tasks (Tang et al., 2024; Chu et al., 2024; Gong et al.,
2023), and they hold the potential to bring transformative advancements to bioacoustics as well.

In this paper, we present NatureLM-audio, an audio-language foundation model specifically de-
signed for bioacoustics tasks, including classification, detection, and captioning. To the best of our
knowledge, NatureLM-audio is the first model of its kind. Inspired by the cross-taxa transfer ob-
served in previous research, such as between human and gibbons (Cauzinille et al., 2024) and birds
and whales (Ghani et al., 2023), we incorporate speech and music tasks into the training process. We
show that representations learned from these domains successfully transfer to animal vocalizations,
demonstrating generalization across species. Importantly, we augment an already existing animal
sounds classification and detection benchmark, BEANS (Hagiwara et al., 2023), with additional
tasks such as call-type prediction, lifestage classification, captioning, and individual counting. With
these, we test cross-domain learning capabilities of the model and zero-shot transfer to unseen taxa
and tasks. We name this new benchmark BEANS-Zero. Unlike existing bioacoustics benchmarks
such as Perch (Ghani et al. (2023) for bird detection) and BirdSet (Rauch et al. (2024) for bird clas-
sification), we do not focus solely on birds and we go beyond species classification. Additionally,
the prompts and the audio are described in natural language in our dataset. This has the potential to
accelerate the research in LALMs.
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Our contributions are thus as follows:

• Model: We introduce NatureLM-audio, to the best of our knowledge, the first audio-
language foundation model for bioacoustics with carefully curated training datasets
comprising of animal vocalization, human speech, and music.

• Domain transfer We show that the model transfers beyond the species originally trained
on and demonstrate its zero-shot capability on unseen taxa and species.

• Task transfer We test our model on a novel benchmark (BEANS-Zero) that goes beyond
species classification and even includes a completely unseen task (individual counting). For
the first time, we show positive transfer from speech and music data to bioacoustics tasks.

2 RELATED WORK

Most prior work on audio-language models has focused on human speech processing. For example,
models like SpeechGPT (Zhang et al., 2023), Speech-LLaMA (Wu et al., 2023a), AudioLM (Bor-
sos et al., 2023), AudioPaLM (Rubenstein et al., 2023), AudioGPT (Huang et al., 2023), SpiRit-
LM (Nguyen et al., 2024), and SpeechLM (Zhang et al., 2024) mostly focus on building language
models that can perceive and produce human speech. Such models may be fine-tuned for down-
stream bioacoustics tasks requiring expensive computational resources and expertise. Instead, our
model shows promising generalization to unseen species and tasks.

Recently, more generic language models with audio perception capabilities have been released.
Pengi (Deshmukh et al., 2023) uses an audio encoder and a text encoder mapped onto an LLM
to solve audio-to-text tasks. SALMONN (Tang et al., 2024) uses dual audio encoders and integrates
Q-Former (Li et al., 2023) to improve the handling of speech and general audio inputs. Qwen-
audio (Chu et al., 2023) adopts a multi-task learning approach with the introduction of the Speech
Recognition with Timestamp (SRWT) task. LTU (Gong et al., 2023) builds an open-ended question-
answer dataset and uses curriculum learning strategies to enhance its generalization capabilities.
Similar multimodal language models have been proposed for music, such as MU-LLaMA (Liu et al.,
2023) and LLark (Gardner et al., 2023). Recent foundation models such as AVES (Hagiwara, 2023)
and BioLingual (Robinson et al., 2024) have exhibited notable results on bioacoustic tasks, although
their training paradigms and architectures restrict the range of tasks they can address.

Although animal sounds and vocalizations are often part of generic audio datasets, such as Au-
dioSet (Gemmeke et al., 2017) and audio caption datasets (Kim et al., 2019; Mei et al., 2023),
these datasets are often too general and lack the fine-grained details necessary for tasks like species
classification, behavior analysis, or monitoring in ecology and bioacoustics. As a consequence,
LALMs trained on these datasets produce at best generic labels e.g., ‘bird’ and not the name of
the species. We address this limitation by proposing an open multi-task diverse training set and a
LALM, NatureLM-audio, that offers robust representations for bioacoustics.

While there are specific bioacoustics benchmarks like BIRB (Hamer et al., 2023) for bird vocal-
ization retrieval and BEANS (Hagiwara et al., 2023) for classification/detection, the field of bioa-
coustics has yet to see the development of dedicated benchmarks similar to those in human speech
and music, such as Dynamic-SUPERB (Huang et al., 2024) or AIR-Bench (Yang et al., 2024). This
leaves a gap for advancing the evaluation of bioacoustics models, particularly in zero-shot learning
and task generalization.

With this work, we aim to bridge these gaps by introducing NatureLM-audio, a model specifically
designed for bioacoustics tasks, and enhancing bioacoustic benchmarks to assess cross-species and
cross-task generalization, introducing BEANS-Zero.

3 METHODS

3.1 TRAINING DATASET CREATION

To train an audio-text model for bioacoustics, we compile a diverse dataset of text-audio pairs (Ta-
ble 1). The data is collected through a combination of prompting on existing audio datasets, creating

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Taska Dataset # Hours # Samples

CAP WavCaps (Mei et al., 2023) 7568 402k
CAP AudioCaps (Kim et al., 2019) 145 52k
CLS NSynth (Engel et al., 2017) 442 300k
CLS LibriSpeechD (Edwards et al., 2018) 156 16k
CLS, DET, CAP Xeno-canto (Vellinga & Planqué, 2015) 10416 607k
CLS, DET, CAP iNaturalist (iNaturalist) 1539 320k
CLS, DET, CAP Watkins (Sayigh et al., 2016) 27 15k
CLS, DET Animal Sound Archive (Museum für Naturkunde Berlin) 78 16k
DET Xeno-canto-detection (Vellinga & Planqué, 2015) 2749 670k
DET Sapsucker Woods (Kahl et al., 2022a) 285 342k
DET Sierra Nevada (Kahl et al., 2022b) 61 22k
DET University of Hawai’i at Hilo (Navine et al., 2022) 94 34k

Table 1: Training tasks and datasets a CLS: classification, DET: detection, CAP: captioning

Caption the audio,
using the common name for any animal species

The sound of a Swamp Sparrow trilling twice
with a brief gap in between.

Which of these, if any, are present in the audio recording?
Long-billed Wren, Eurasian Wren, None Eurasian Wren

Audio Input

Detection

Captioning

Task Text Instruction Text Output

Which of these is the focal species in the audio?
Bachman's Sparrow, Grey Shrikethrush, Unicolored Jay Grey ShrikethrushClassification

Figure 2: Examples of training instances

new LLM-generated text labels, and mixing new, procedurally-augmented audio data. The data is
comprised of bioacoustic audio, general audio, speech, and music datasets. Figure 2 shows some
examples of instances used for training NatureLM-audio.

3.1.1 BIOACOUSTIC DATA

Species Classification: We curate existing large-scale bioacoustic archives into a common format.
We process Xeno-Canto (Xeno-canto), iNaturalist (iNaturalist), Animal Sound Archive (Museum
für Naturkunde Berlin), and Watkins (all-cuts, Sayigh et al. (2016)) into a common format. Specif-
ically, we handle differences in common name and scientific name across datasets by joining all
datasets to the GBIF taxonomy backbone (GBIF Secretariat, 2023). We then prompt the model to
predict either the scientific or common name of the focal species, or the scientific or common names
of all species in the recording. This requires the model to generate the common name or scientific
name of the species directly. In many cases, we may know an animal vocalization is one of a subset
of species—for example, based on location. To allow for this, we also generate prompts with a set of
options injected into the question. For thirty percent of prompts, we sample ”random” negatives by
selecting from all common names or scientific names in our dataset. For the remaining prompts, we
randomly choose an ancestor level of either family, order, or phylum, and sample ”hard” negatives
with the same ancestor as the correct species. The number of negatives is chosen randomly from
one up to a maximum of thirty-five. To avoid data leakage during evaluation, we exclude a set of
held-out species as well as the cbi data used in BEANS-Zero.

Species Detection: We use the same datasets as for species classification, but prompt the model
to ask whether the recording contains one of a set of options, or ‘None’. Options are sampled in
the same way as for classification, with a mix of random and hard negatives. In fifty percent of
prompts, the correct species is not included in the set of options, with a correct answer of ‘None’.
We additionally prompt

To help bridge the gap between focal train recordings and noisy soundscape recordings common
at inference, we also generate a noise-augmented detection training set from Xeno-canto. We use
per-channel energy normalization (PCEN Lostanlen et al. (2018)) as a form of noise-gate for bird
vocalization activity detection. Then, we separate each detected segment into four stems using the
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4-stem Bird-MixIT source separation model (Denton et al., 2022). Because the separation model
may over-separate sources and does not label stems with source names, we use the YAMNet model
(Howard et al., 2017) trained on the AudioSet dataset (Gemmeke et al., 2017) to select solely the
stems with high probability on the AudioSet animal classes (with ids between 67 to 131). Cor-
respondingly, for each stem we take the maximum probability across the classes, we average the
values across the time frames, and we sum the stems with values higher than 0.5.

Because Xeno-Canto comprises mostly focal recordings, we account for the covariate shift in sound-
scapes by adding noise—audio that does not contain animal vocalizations, speech, or music. The
noise samples are extracted from the following datasets: boat engine sounds from ShipsEar (Santos-
Domı́nguez et al., 2016), Deepship (Irfan et al., 2021) and Orcalab (Poupard et al., 2020), non-
animal, non-music sound classes from FSD50K (Fonseca et al., 2021) and Urbansound (Salamon
& Jacoby, 2014), and all the classes from TUT2016 (Mesaros et al., 2016), IDMT (Abeßer et al.,
2021), Demand (Thiemann et al., 2013), and Wham noise (Wichern et al., 2019). The noise is
added programmatically, using random files at a random signal-to-noise ratio (SNR) sampled from
a uniform distribution ranging from −5dB to 10dB.

In addition, we used soundscape recording datasets from Sapsucker Woods (SSW, Kahl et al.
(2022a)), Sierra Nevada (SNE, Kahl et al. (2022b)), and the University of Hawai’i at Hilo (UHH,
Navine et al. (2022)) for detection tasks. Following the approach used in the detection datasets from
BEANS, we split the audio into 10-second windows with a 5-second overlap, and treated it as a
multi-label classification problem. Species with more than 100 occurrences were selected as target
labels, while species with fewer occurrences were grouped into an “other” class.

Captioning: We use the AnimalSpeak (Robinson et al., 2024) dataset for bioacoustic captioning.
AnimalSpeak combines bioacoustic datasets into a language-model-captioned audio-text dataset.
However, due to scale, the large segment of AnimalSpeak from Xeno-Canto was not captioned with
a language-model, and used only templated captions. We further process Xeno-Canto with Gemini-
1.0-pro (Gemini Team, 2024) following the same method used to create AnimalSpeak, and use these
LLM-generated captions in addition to the original captions.

Call-type and Lifestage: We include multiple new bioacoustic tasks which can be expressed based
on the Xeno-Canto metadata. Specifically, predicting the life stage of birds, predicting call-types,
and differentiating between calls and songs. Compared to species classification alone, included in
existing datasets, the ability to perform these tasks at scale could significantly enhance the precision
of ecological monitoring and behavior studies.

3.1.2 GENERAL AUDIO

We include WavCaps (Mei et al., 2023) and AudioCaps (Kim et al., 2019) for general audio caption-
ing. We observe that, in the creation of WavCaps, some recordings originally had metadata relevant
to bioacoustics and specific species. However, these were lost in the general-domain captioning,
producing captions which are too generic for our purpose. We detect these cases by processing the
original metadata, and re-process the metadata prompting Gemini-1.0-pro to produce bioacoustic
captions. We include these new bioacoustic captions in addition to the original captions.

3.1.3 MUSIC

Pitch, timbre qualities of animal vocalizations, the number of animals in a recording are often key
acoustic features used by biologists to classify context and behavior. We use NSynth 2.3.3 (Engel
et al., 2017) to create a set of tasks that may help bioacoustics downstream tasks. We generate text
prompts for pitch detection in Hz, instrument name, and velocity, ranging 0 to 1. Additionally, we
use the timbre ‘qualities’ labels to create text descriptions for each audio. For instance, if the sound
is ‘distorted,’ we generate descriptions such as ‘This sound has a distinctive crunchy sound and
presence of many harmonics.’ or ‘This sound is distorted’. Moreover, we create synthetic mixtures
by layering one to three different instruments. In this case we generate, two task: predicting the
number of instruments and identifying the instrument names.
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Taska Dataset Description # Sizeb # Labels (type)

CLS esc50 generic sound 400 50 (sound type)
CLS watkins marine mammals 339 31 (species)
CLS cbi birds 3620 264 (species)
CLS humbugdb mosquito 1859 14 (species)
DET dcase birds & mammals 13688 20 (species)
DET enabirds birds 4543 34 (species)
DET hiceas cetaceans 1485 1 (species)
DET rfcx birds & frogs 10406 24 (species)
DET gibbons gibbons 18560 3 (call type)

CLS unseen-cmn birds etc. 931 300 (species)
CLS unseen-sci birds etc. 931 300 (species)
CLS lifestage birds 493 3 (stage)
CLS call-type birds 15439 2 (call/song)
CAP captioning birds etc. 29002 (open-ended)
CLS zf-indv zebra finches 2346 4 (# of indv.)

Table 2: Evaluation tasks and datasets of BEANS-Zero. a CLS: classification, DET: detection,
CAP: captioning. b The numbers of samples for classification and captioning, and the number of
5-second “chunks” for detection (see Section 3 for more details)

3.1.4 SPEECH

We use the speech diarization dataset based on LibriSpeech (Edwards et al., 2018), which contains
synthetic mixtures of two or three speakers. We use this to derive the number of speakers task, which
we believe has interesting applications for monitoring individuals if transferred to bioacoustics.

3.2 EVALUATION DATA: THE BEANS-ZERO BENCHMARK

One contribution of this work is a new benchmark for bioacoustics: BEANS-Zero (Table 2). With
BEANS-Zero, we go beyond traditional species classification, introducing tasks such as call-type
prediction, lifestage classification, captioning, and individual counting (which is not seen during
training). To build this set of tasks, we first used the test portion of the benchmark BEANS (Hagi-
wara et al., 2023) for evaluating our models on common bioacoustics datasets and tasks, which
include:

• esc50 (Piczak, 2015): Generic environmental audio classification with 50 labels.

• watkins (Sayigh et al., 2016): Marine mammal species classification with 31 species.

• cbi (Howard et al., 2020) Bird species classification with 264 labels from the Cornell Bird
Identification competition hosted on Kaggle.

• humdubdb (Kiskin et al., 2021) Mosquito wingbeat sound classification into 14 species.

• dcase (Morfi et al., 2021) Mammal and bird detection from DCASE 2021 Task 5: Few-
shot Bioacoustic Event Detection (20 species)

• enabirds (Chronister et al., 2021) Bird dawn chorus detection with 34 labels.

• hiceas (Center, 2022) Minke whale detection from the Hawaiian Islands Cetacean and
Ecosystem Assessment Survey (HICEAS) (1 label).

• rfcx (LeBien et al., 2020): Bird and frog detection from the Rainforest Connection
(RFCx) data with 24 species.

• gibbons (Dufourq et al., 2021): Hainan gibbon detection with 3 call type labels.

We also include novel bioacoustics datasets including:

• unseen-cmn: 300 species held out from AnimalSpeak (Robinson et al., 2024) with com-
mon (English) names. For a dataset of medium difficulty, we hold out species at random
whose genus is reasonably well-represented in the training set (at least 100 recordings.)

• unseen-sci: same recordings as above, but predicted with scientific (Latin) names
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• lifestage: Predicting the lifestage of birds across many species. Newly curated from
Xeno-canto (Xeno-canto).

• call-type: Classifying song-vs. call across multiple species of birds. Newly curated
from Xeno-canto (Xeno-canto).

• captioning: Captioning bioacoustic audio on AnimalSpeak (Robinson et al., 2024)
• zf-indv (Elie & Theunissen, 2016): Counting the number of zebra finch individuals

Some of these tasks, in particular captioning of bioacoustic audio, are previously unstudied. Cap-
tioning allows for automatic generation of descriptive annotations of animal sounds, enhancing our
understanding of species behaviors and communication patterns. Improvements in other new tasks,
such as cross-species lifestage and call-type prediction, would allow finer-grained ecological moni-
toring at scale.

For evaluation, we use accuracy for classification, macro-averaged F1 for detection, and SPIDEr (Liu
et al., 2017) for captioning. We opt for F1 instead of mean average precision (mAP), which is
originally used in BEANS for detection, as F1 is better suited for generative models, whereas mAP
assumes a smooth ranking of candidates, which is less appropriate for evaluating generative tasks.

3.3 NATURELM-AUDIO ARCHITECTURE

Our model follows a generic audio-to-text architecture used in prior works, such as
SALMONN (Tang et al., 2024), Qwen2-audio (Chu et al., 2024), and LTU (Gong et al., 2023),
which are large audio-language models trained on paired audio-text data for tasks including speech,
music, and general audio events. Figure 1 provides an overview of the NatureLM-audio architecture.

Specifically, NatureLM-audio first encodes the audio input via an audio encoder, in this case
BEATs (Chen et al., 2023), which has achieved SotA on multiple audio tasks. To connect the
BEATs embeddings with the LLM we use a Q-Former (Li et al., 2023) applied at the window level
as proposed in SALMONN (Tang et al., 2024). Similarly to the existing LALMS we use an LLM to
produce text, in this case Llamma 3.1-8b (Dubey et al., 2024), which is fine-tuned with LoRA (Hu
et al., 2022). The parameters of the LLM (except for the adapter layers) remain frozen during
training, while the audio encoder and Q-Former are unfrozen. The model takes an audio a and an
instruction x as its input, and produces a text sequence x<t as the output. The model is trained
under the loss function:

h = fW (Encoder(a)) (1)

z = pQφ (q,h) (2)

L = −
∑

log pLM
θ (x<t|z,x) (3)

where Encoder is the pretrained BEATs (Chen et al., 2023) audio encoder, fW is a function that
converts consecutive W audio frames into a window, pQφ is the Q-Former model with trainable
parameters φ that converts a window into a sequence of text representations z using query q, and
pLM
θ is the pretrained LLM with trainable parameters θ.

3.4 TRAINING METHOD

Our training method is heavily motivated by curriculum learning (Soviany et al., 2021) where ma-
chine learning algorithms start with simpler, easy to learn instances and gradually shift to more
difficult ones, as done in other audio foundation models (Tang et al., 2024; Gong et al., 2023). We
train in the following two stages:

• Stage 1 (Perception Pretraining): We pretrain the model exclusively on the task of focal
species classification, classifying vocalizations of thousands of animal species. Species
classification is highly deterministic, allowing opportunity to learn a robust connection
between language and audio. We also choose to train on this task individually as it is
foundational to other tasks in bioacoustics.

• Stage 2 (Generalization Fine-tuning): In the second stage, we introduce a variety of bioa-
coustic and other tasks that build on the robust classification performance of the first stage.
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Model esc50 watkins cbi humbugdb dcase enabirds hiceas rfcx gibbons

LLM w/o audio 0.020 0.041 0.005 0.073 0.000 0.001 0.210 0.000 0.013
SALMONN 0.320 0.041 0.004 0.090 0.005 0.004 0.097 0.002 0.005
Qwen2-audio 0.307 0.041 0.004 0.070 0.005 0.004 0.097 0.002 0.005
BioLingual 0.600 0.257 0.705 0.085 0.036 0.109 0.429 0.004 0.018
NatureLM-audio 0.635 0.646 0.755 0.073 0.052 0.279 0.390 0.039 0.003

Table 3: Main zero-shot results on BEANS-Zero. We used accuracy for classification, and F1 for
detection tasks. The best and the second best metrics are highlighted and underlined per each dataset

This includes detection, captioning, lifestage prediction, and call-type prediction. We also
include speech and music data in this second stage, hoping to transfer to bioacoustic tasks.

We trained from scratch (i.e., random initialization of the Q-Former and LoRA) rather than fine-
tuning existing models or checkpoints, such as SALMONN’s. This allows for more flexibility in
terms of choosing the latest LLM, with the most knowledge of animal species, and the most relevant
architectural components (e.g. excluding memory-heavy parts of current LALMs such as the speech
encoder Whisper (Radford et al., 2022)).

4 EXPERIMENTS

4.1 TRAINING AND EVALUATION DETAILS

We train our model on the full curated training set (Section 3.1). To assess the model’s generalization
we created hold-out splits for Xeno-canto, iNaturalist, Animal Sound Archive, and Watkins datasets,
used solely for benchmarking.

We initialize the audio encoder weights using an existing BEATs checkpoint 1 and fully fine-tune it.
For Llama, we start from Llama-3.1-8B-Instruct and fine-tune all attention layers with LoRA (rank:
64, alpha: 64, dropout: 0.1).

We train with our two proposed stages. In both stages we use a linear warmup, cosine scheduler,
peak learning rate of 9.0 × 10−5, and a batch size of 64. We decode using beam search with two
beams, a repetition penalty of 1.0, and a length penalty of 1.0.

We consider several inference methods depending on the task type. Species-classification tasks
involve single-label prediction: we prompt the model to output the species name from the recording.
To handle the case where the LLM outputs text which is not an allowed label, we match to the
closest label according to the Levenshtein distance. We choose the Levenshtein distance for its
simplicity and because species names, in particular Latin names, have high character-overlap with
related names. We note this may not be optimal for general audio classification.

For multilabel detection tasks, we range from detecting a large number of species to only a single
species, depending on the dataset. When detecting only a few species (ten or less), we include the
options in the prompt. Otherwise we prompt the model to predict all species in the audio window,
if any. In both cases, the model outputs all detected species, or ‘None’. We discard detections with
low character-overlap with the allowed labels.

Our baselines include CLAP-like models (Wu et al., 2023b), which cannot naively perform multil-
abel detection. To handle this, we create a negative “template” for each detection task, as proposed
in (Miao et al., 2023). We consider each label a detection positive for CLAP if the audio is more
similar to the label than to the negative template in the CLAP model’s embedding space.

4.2 SPECIES CLASSIFICATION AND DETECTION

Table 3 shows the main results measured on the BEANS-Zero species classification and detec-
tion datasets. Our baselines include an LLM (the original Llama-3.1-8B-Instruct model without
fine-tuning, Dubey et al. (2024)) without audio input, SALMONN (Tang et al., 2024), BioLin-
gual (Robinson et al., 2024), and Qwen2-audio (Chu et al., 2024). All baselines are evaluated in

1BEATs iter3 plus AS2M finetuned on AS2M cpt2.pt

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

cbi dcase-bird enabirds

BirdNET 0.609 0.035 0.490
Perch 0.744 0.035 0.164
NatureLM-audio 0.755 0.088 0.279

Table 4: Comparison with bird vocalization models

unseen-cmna unseen-scib

Supervised SotA 0.547 0.614

NatureLM-audio 0.116 0.196
baseline (CLAP) 0.034 0.004

Table 5: Generalization to unseen species in terms of classification accuracy for: a common (En-
glish) names and b latin/scientific names

the same way as NatureLM-audio. As shown in the table, the outputs from the LLM without au-
dio input, SALMONN, and Qwen2-audio are largely random on the bioacoustic datasets, failing to
properly interpret the input audio or follow the instructions. In contrast, NatureLM-audio achieved
state-of-the-art zero-shot performance on 6 out of 9 datasets, and delivered competitive results on
the remaining tasks from the BEANS-Zero benchmark. We observe that for some of those three
remaining tasks, our current training data contains little signal, for example on humbugdb (Kiskin
et al., 2021) which classifies species by mosquito wingbeat sounds not generated by a vocal tract. We
also note that performance of baselines on the general audio auxiliary dataset ESC50 (Piczak, 2015)
may be reduced by the use of the Levenshtein distance, as our pipeline is optimized for bioacoustic
tasks.

We also compared NatureLM-audio with bird vocalization classification models, namely Bird-
NET (Kahl et al., 2021) and Perch (Ghani et al., 2023), to evaluate the zero-shot capabilities of
our model. We compare on the subset of BEANS-Zero classifying or detecting exclusively bird
species, plus the portion of DCASE with bird species. The results are presented in Table 4. Since
both BirdNET and Perch were trained in a supervised manner on datasets that significantly overlap
with our bird evaluation datasets, this is not a fully fair comparison, and their performance should be
considered as topline results. Nevertheless, our model demonstrated strong zero-shot bird vocaliza-
tion classification capabilities. In particular, we achieve a new SotA for the cbi dataset, classifying
vocalizations of hundreds of birds, and achieve competitive results with the bird-specific models on
both detection tasks.

4.3 GENERALIZING TO UNSEEN SPECIES

We further evaluate the model’s ability to generalize to completely unseen taxa using the newly
added datasets in BEANS-Zero. They consist of recordings of held-out species from Xeno-canto,
iNaturalist, Animal Sound Archive, and Watkins. As a topline, we compare against BioLingual,
which has seen these species in training and serves only as an indicator of fully supervised classi-
fication performance. As baselines, we consider a theoretical random baseline of 0.3% accuracy
(with 300 classes, random chance yields an accuracy of 1

300 ≈ 0.3%) and CLAP-LAION (Elizalde
et al., 2023), a general-domain audio model which, similar to our model, is unlikely to have seen
these species during training. We compare the performance when predicting common as well as
scientific names.

Our model significantly outperforms the random baseline, demonstrating generalization to com-
pletely unseen species. Specifically, on the unseen species test set, our model achieves an accuracy
of 19.6%, which is substantially higher than the random baseline of 0.3%. This indicates that the
model has learned generalizable features that extend beyond the species it was trained on. Addi-
tionally, our model outperforms the CLAP-LAION baseline, further emphasizing its ability to gen-
eralize. Our model in particular excels when predicting with scientific (Latin) names (unseen-sci),
which have consistent hierarchical structure it may learn to exploit.
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lifestage call-type captioning zf-indv

SotA 0.676 0.499 0.009 0.225
NatureLM-audio 0.763 0.810 0.494 0.383

Table 6: Results on BEANS-Zero novel bioacoustics tasks. We report accuracy for classification,
and SPIDEr (Sharif et al., 2018) for captioning. SotA is SALMONN for captioning and Biolingual
for the remaining tasks.

4.4 NOVEL BIOACOUSTIC TASKS

We evaluate the model’s abilities beyond species prediction with several bioacoustic tasks newly
added to BEANS-Zero, which have, to the best of our knowledge, not been studied at a cross-
species level. We additionally include zf-indv, a completely unseen task counting the number
zebra finches in a recording (Elie & Theunissen, 2016). We compare against BioLingual (Robinson
et al., 2024) for discriminative tasks and SALMONN (Tang et al., 2024) for captioning. On each of
these tasks, our model sets the state-of-the-art.

4.5 ABLATION ON SPEECH AND MUSIC

To investigate the impact of speech and music on downstream task performance, we run an ablation
on stage-2 training with and without speech and music data. We train both stage-2 models for 200k
steps, and evaluate their ability to perform the unseen task of counting zebra-finch individuals in a
recording. The model trained with speech scores .379 on this task, similar to our full model. The
model trained without speech scores an accuracy of .243, approximately random, and qualitatively
predicts a single speaker for every recording. This result suggests the ability to count vocalizing
birds transfers from human speech and music, for which our training data includes counting human
speakers in a recording. We include the ablation performance on all tasks in the Appendix, as shown
in Tables 7 and 8.

5 CONCLUSION

We presented NatureLM-audio, the first audio-language foundation model specifically designed for
bioacoustics, demonstrating its potential to address critical tasks such as classifying and detecting
animal vocalizations, and decoding context, call types, and individuals across species. By lever-
aging a carefully curated dataset spanning bioacoustics, speech, and music data, NatureLM-audio
sets the new state-of-the-art on multiple tasks, including zero-shot classification of unseen species.
Moreover, our model demonstrates positive transfer across both domain and tasks, performing well
on a novel benchmark (BEANS-Zero), which includes new bioacoustic tasks such as captioning and
individual counting. To further accelerate research and the development of more robust models in
the field, we have open-sourced the code for generating both training and benchmarking data.

We plan to extend this work by incorporating more diverse tasks and datasets, improving the text-
based LLM backbone with bioacoustic-specific texts, and enhancing the model’s multilingual capa-
bilities. Additionally, we aim to introduce new modalities, such as motion and image data, leading
to models like NatureLM-motion and NatureLM-image. Lastly, we will explore the model’s gen-
erative abilities, enabling it to produce audio tokens for tasks such as animal sound generation and
audio denoising.

While NatureLM-audio offers significant potential for advancing biodiversity monitoring and con-
servation, several ethical concerns must be addressed. First, there is a potential bias towards bird
vocalizations due to the overrepresentation of bird datasets, which could limit the model’s effective-
ness in other domains. Second, the model’s ability to detect and classify endangered species could
be misused for illegal activities such as poaching, posing a threat to wildlife. Finally, unintended
consequences on animal behavior and ecology must be considered, particularly when deploying
LLMs, known for their issues including hallucinations and biases (Kuan et al., 2024). These sys-
tems may interfere with the behavior of the species being studied, and the long-term ecological
impact of widespread passive monitoring is still unknown. Careful deployment and responsible use
are essential to mitigate these risks.
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and Vincent Dumoulin. BIRB: A generalization benchmark for information retrieval in bioacous-
tics, 2023. URL https://arxiv.org/abs/2312.07439.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1002/rse2.201
https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1002/rse2.201
https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c
https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.07439


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Addison Howard, Holger Klinck, Sohier Dane, Stefan Kahl, and Tom Denton. Cornell Birdcall Iden-
tification. https://kaggle.com/competitions/birdsong-recognition, 2020.
URL https://kaggle.com/competitions/birdsong-recognition. Accessed
2023-06-01.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Chien-Yu Huang, Ke-Han Lu, Shih-Heng Wang, Chi-Yuan Hsiao, Chun-Yi Kuan, Haibin Wu,
Siddhant Arora, Kai-Wei Chang, Jiatong Shi, Yifan Peng, Roshan Sharma, Shinji Watanabe,
Bhiksha Ramakrishnan, Shady Shehata, and Hung yi Lee. Dynamic-SUPERB: Towards a dy-
namic, collaborative, and comprehensive instruction-tuning benchmark for speech, 2024. URL
https://arxiv.org/abs/2309.09510.

Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, Yi Ren, Zhou Zhao, and Shinji Watanabe. AudioGPT:
Understanding and generating speech, music, sound, and talking head, 2023. URL https:
//arxiv.org/abs/2304.12995.

iNaturalist. iNaturalist. https://www.inaturalist.org/. URL https://www.
inaturalist.org/. acccessed 2023-05-01.

M Irfan, Z Jiangbin, S Ali, M Iqbal, Z Masood, and U Hamid. Deepship: An underwater acous-
tic benchmark dataset and a separable convolution based autoencoder for classification. Expert
Systems with Applications, 183:115270, 2021.

Stefan Kahl, Connor M. Wood, Maximilian Eibl, and Holger Klinck. BirdNET: A deep learning
solution for avian diversity monitoring. Ecological Informatics, 61:101236, 2021. ISSN 1574-
9541. doi: 10.1016/J.ECOINF.2021.101236.

Stefan Kahl, Russell Charif, and Holger Klinck. A collection of fully-annotated soundscape record-
ings from the Northeastern United States, September 2022a. URL https://doi.org/10.
5281/zenodo.7079380.

Stefan Kahl, Connor M. Wood, Philip Chaon, M. Zachariah Peery, and Holger Klinck. A collec-
tion of fully-annotated soundscape recordings from the Western United States, September 2022b.
URL https://doi.org/10.5281/zenodo.7050014.

Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. AudioCaps: Generat-
ing captions for audios in the wild. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
119–132, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1011. URL https://aclanthology.org/N19-1011.

Stephanie L King and Vincent M Janik. Bottlenose dolphins can use learned vocal labels to address
each other. Proceedings of the National Academy of Sciences, 110(32):13216–13221, 2013.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Ivan Kiskin, Marianne E. Sinka, Adam D. Cobb, Waqas Rafique, Lawrence Wang, Davide Zilli,
Benjamin Gutteridge, Theodoros Marinos, Yunpeng Li, Emmanuel Wilson Kaindoa, Gerard F
Killeen, Katherine J. Willis, and S. Roberts. HumBugDB: a large-scale acoustic mosquito dataset.
In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021)
Track on Datasets and Benchmarks, 2021.

13

https://kaggle.com/competitions/birdsong-recognition
https://kaggle.com/competitions/birdsong-recognition
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2309.09510
https://arxiv.org/abs/2304.12995
https://arxiv.org/abs/2304.12995
https://www.inaturalist.org/
https://www.inaturalist.org/
https://www.inaturalist.org/
https://doi.org/10.5281/zenodo.7079380
https://doi.org/10.5281/zenodo.7079380
https://doi.org/10.5281/zenodo.7050014
https://aclanthology.org/N19-1011


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chun-Yi Kuan, Wei-Ping Huang, and Hung-yi Lee. Understanding sounds, missing the questions:
The challenge of object hallucination in large audio-language models. 2024.

Jack LeBien, Ming Zhong, Marconi Campos-Cerqueira, Julian P. Velev, Rahul Dodhia, Juan Lavista
Ferres, and T. Mitchell Aide. A pipeline for identification of bird and frog species in tropical
soundscape recordings using a convolutional neural network. Ecological Informatics, 59:101113,
2020. ISSN 1574-9541. doi: https://doi.org/10.1016/j.ecoinf.2020.101113. URL https://
www.sciencedirect.com/science/article/pii/S1574954120300637.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Shansong Liu, Atin Sakkeer Hussain, Chenshuo Sun, and Ying Shan. Music Understanding LLaMA:
Advancing text-to-music generation with question answering and captioning. arXiv preprint
arXiv:2308.11276, 2023.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and Kevin Murphy. Improved image cap-
tioning via policy gradient optimization of SPIDEr. In 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 873–881, 2017. doi: 10.1109/ICCV.2017.100.

Vincent Lostanlen, Justin Salamon, Mark Cartwright, Brian McFee, Andrew Farnsworth, Steve
Kelling, and Juan Pablo Bello. Per-channel energy normalization: Why and how. IEEE Sig-
nal Processing Letters, 26(1):39–43, 2018.

Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D Plumb-
ley, Yuexian Zou, and Wenwu Wang. WavCaps: A ChatGPT-assisted weakly-labelled audio
captioning dataset for audio-language multimodal research. arXiv, 2023. doi: 10.48550/arXiv.
2303.17395.

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Tut database for acoustic scene classi-
fication and sound event detection. In 2016 24th European Signal Processing Conference (EU-
SIPCO), pp. 1128–1132. IEEE, 2016.

Zhongqi Miao, Benjamin Elizalde, Soham Deshmukh, Justin Kitzes, Huaming Wang, Rahul Dodhia,
and Juan M. Lavista Ferres. Zero-shot transfer for wildlife bioacoustics detection. Research
Square, 2023. URL https://doi.org/10.21203/rs.3.rs-3180218/v1.

Zhongqi Miao, Yuanhan Zhang, Zalan Fabian, Andres Hernandez Celis, Sara Beery, Chunyuan
Li, Ziwei Liu, Amrita Gupta, Md Nasir, Wanhua Li, Jason Holmberg, Meredith Palmer, Kait-
lyn Gaynor, Rahul Dodhia, and Juan Lavista Ferres. New frontiers in AI for biodiversity re-
search and conservation with multimodal language models. EcoEvoRxiv, 2024. URL https:
//ecoevorxiv.org/repository/view/7477/.

Veronica Morfi, Inês Nolasco, Vincent Lostanlen, Shubhr Singh, Ariana Strandburg-Peshkin, Lisa F.
Gill, Hanna Pamula, David Benvent, and Dan Stowell. Few-shot bioacoustic event detection: A
new task at the DCASE 2021 challenge. In Detection and Classification of Acoustic Scenes and
Events 2021, 2021.

Museum für Naturkunde Berlin. Animal sound archive. https://doi.org/10.15468/
0bpalr. Accessed via gbif.org 2023-05-09.

Amanda Navine, Stefan Kahl, Ann Tanimoto-Johnson, Holger Klinck, and Patrick Hart. A collection
of fully-annotated soundscape recordings from the Island of Hawai’i, September 2022. URL
https://doi.org/10.5281/zenodo.7078499.

Tu Anh Nguyen, Benjamin Muller, Bokai Yu, Marta R. Costa-jussa, Maha Elbayad, Sravya Popuri,
Paul-Ambroise Duquenne, Robin Algayres, Ruslan Mavlyutov, Itai Gat, Gabriel Synnaeve, Juan
Pino, Benoit Sagot, and Emmanuel Dupoux. SpiRit-LM: Interleaved spoken and written language
model, 2024. URL https://arxiv.org/abs/2402.05755.

14

https://www.sciencedirect.com/science/article/pii/S1574954120300637
https://www.sciencedirect.com/science/article/pii/S1574954120300637
https://doi.org/10.21203/rs.3.rs-3180218/v1
https://ecoevorxiv.org/repository/view/7477/
https://ecoevorxiv.org/repository/view/7477/
https://doi.org/10.15468/0bpalr
https://doi.org/10.15468/0bpalr
https://doi.org/10.5281/zenodo.7078499
https://arxiv.org/abs/2402.05755


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Guy Oren, Aner Shapira, Reuven Lifshitz, Ehud Vinepinsky, Roni Cohen, Tomer Fried, Guy P.
Hadad, and David Omer. Vocal labeling of others by nonhuman primates. Science, 385(6712):
996–1003, 2024. doi: 10.1126/science.adp3757. URL https://www.science.org/doi/
abs/10.1126/science.adp3757.

Michael A Pardo, Kurt Fristrup, David S Lolchuragi, Joyce H Poole, Petter Granli, Cynthia Moss,
Iain Douglas-Hamilton, and George Wittemyer. African elephants address one another with indi-
vidually specific name-like calls. Nature Ecology & Evolution, pp. 1–12, 2024.

Karol J. Piczak. ESC: Dataset for environmental sound classification. In Proceedings of the 23rd
Annual ACM Conference on Multimedia, pp. 1015–1018. ACM Press, 2015. ISBN 978-1-4503-
3459-4. doi: 10.1145/2733373.2806390. URL http://dl.acm.org/citation.cfm?
doid=2733373.2806390.

M Poupard, P Best, M Ferrari, P Spong, H Symonds, J-M Prévot, T Soriano, and H Glotin. From
massive detections and localisations of orca at orcalab over three years to real-time survey joint
to environmental conditions. In e-Forum Acusticum 2020, pp. 3235–3237, 2020.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision, 2022. URL https://arxiv.
org/abs/2212.04356.

Lukas Rauch, Raphael Schwinger, Moritz Wirth, René Heinrich, Jonas Lange, Stefan Kahl, Bern-
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1. Spice Imperial Pigeon

2. African Pitta

3. New Zealand White-fronted Tern

4. Hume’s Treecreeper

5. Brown-rumped Bunting

6. Fiery Minivet

7. Forest Wood Hoopoe

8. Ash-breasted Tit-Tyrant

9. Verreaux’s Coua

10. Legge’s Hawk-Eagle

11. Red-winged Pytilia

12. Rufous-winged Tanager

13. Forbes-Watson’s Swift

14. Blue-chinned Sapphire

15. Moss Frog

16. White-headed Mousebird

17. Tawny-breasted Parrotfinch

18. Ring-tailed Pigeon

19. Pink-backed Pelican

20. Alpine Leaf-Warbler

21. Barred Owlet-nightjar

22. Laurel Pigeon

23. Siberian Blue Robin

24. Yellow-naped Amazon

25. Blue-cheeked Bee-eater

26. Red-knobbed Imperial Pigeon

27. Eurasian Hobby

28. Red-collared Widowbird

29. Northern Red Bishop

30. Shelley’s Greenbul

31. Snowy-crowned Robin-Chat

32. Cape Bunting

33. White-crowned Pigeon

34. Sad Flycatcher

35. Asian Dowitcher

36. White-crowned Starling

37. Yellowish White-eye

38. African Silverbill

39. Korean Brown Frog

40. Grey-fronted Honeyeater

41. Red-legged Grasshopper

42. Cook’s Robber Frog

43. White-fronted Plover

44. Grey-bellied Squirrel

45. Olive-headed Greenbul

46. Sooty Babbler

47. Large Green Pigeon

48. Red-fronted Rosefinch

49. Bar-breasted Piculet

50. American Black Swift

51. Eurasian Stone-curlew

52. Red-necked Buzzard

53. Streaky-headed Seedeater

54. Rufous Fieldwren

55. Tawny-collared Nightjar

56. Panamanian Flycatcher

57. Black-capped Rufous-Warbler

58. Orange-spotted Bulbul

59. Pere David’s Snowfinch

60. Northern Cassowary

61. Yellow-tinted Honeyeater

62. Eastern Tree Frog

63. Frances’s Sparrowhawk

64. Sulawesi Swiftlet

65. Gosling’s Apalis

66. Eurasian tawny owl

67. Yellow-legged Flyrobin

68. Red-faced Pytilia

69. Double-collared Crescentchest

70. Malagasy Coucal

71. Mountain Bamboo Partridge

72. Zenaida Dove

73. Velvety Black Tyrant

74. Green White-eye

75. Western Rosella

76. Gray Parrot

77. Crested Kingfisher

78. Sunda Owlet

79. Giant Weaver

80. Cape Verde Storm Petrel

81. Rufous-vented Laughingthrush

82. Horned Parakeet

83. Bernier’s Teal

84. Sperm Whale

85. Ornate Forest toad

86. Rock Petronia

87. Western Cape Bunting

88. Green Dark Bush-cricket

89. Rufous-cheeked Laughingthrush

90. Scintillant Hummingbird

91. Rufous-webbed Brilliant

92. Handsome Fruiteater

93. Verreaux’s Tree Frog

94. Western Black-tailed Rattlesnake

95. Sunda Cuckooshrike

96. Black-crowned Waxbill

97. Whistling Tree Frog

98. Cinderella Waxbill

99. Tawny-backed Fantail

100. Blue-cheeked Flowerpecker

101. Adamawa Turtle Dove

102. Violet-necked Lory

103. Western Orphean Warbler

104. Pacific Robin

105. Black-banded Fruit Dove

106. Black Noddy

107. White-tipped Grasshopper

108. Rusty-necked Piculet

109. Citrine Canary-flycatcher

110. Melancholy Woodpecker

111. La Selle Thrush

112. Cassin’s Hawk-Eagle

113. Red-winged Wood Rail

114. Eastern Bristlebird

115. Common Blue-cheeked Bee-eater

116. Grey Cuckooshrike

117. Mottled Duck

118. Bismarck Whistler

119. Black-capped Apalis

120. Indian Skimmer

121. Little Black Cormorant

122. Vaillant’s Frog

123. Amazonian Inezia

124. Great Grebe

125. Chestnut-backed Sparrow-Lark

126. Sumba Jungle Flycatcher

127. Tepui Toucanet

128. Elegant Forest Tree Frog

129. Black Guan

130. Pied-winged Swallow

131. Indian Nuthatch

132. McConnell’s Spinetail

133. Nepal House Martin

134. Providence Petrel

135. Grey-bellied Shrike-Tyrant

136. Black-necked Grebe

137. Venezuelan Bristle Tyrant

138. Donaldson Smith’s Sparrow-Weaver

139. Blyth’s Kingfisher

140. Sunset Lorikeet

141. European Golden Plover

142. Biak Monarch

143. Banasura Laughingthrush

144. D’Arnaud’s Barbet

145. Tepui Tinamou

146. Lafresnaye’s Piculet

147. Fischer’s Turaco

148. Christmas White-eye

149. Sooty-capped Hermit

150. Rufous-winged Cisticola

151. Versicolored Barbet

152. Cobb’s Wren

153. Black-headed Rufous Warbler

154. Green-throated Mountaingem

155. Knob-billed Fruit Dove

156. Red-eyed Firetail

157. Short-tailed Emerald

158. Sooty Bushtit

159. Bougainville Crow

160. Blue Chaffinch

161. White-winged Scoter

162. Grey-banded Mannikin

163. Giant Antpitta

164. Collared Inca

165. Chilean Skua

166. Rufous-browed Tyrannulet

167. Tanimbar Megapode

168. Thekla Lark

169. Rufous-bellied Euphonia

170. Bannerman’s Sunbird

171. Crescent Honeyeater

172. Grey-headed Lovebird

173. Madagascar Snipe

174. Fork-tailed Storm Petrel

175. Armenian Gull

176. Fan-tailed Gerygone

177. Superb Pitta

178. Great White Pelican

179. Huanren Frog

180. Blood-breasted Flowerpecker

181. Margaret’s Batis

182. Russet-winged Schiffornis

183. Socotra Cormorant

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

184. Golden-crowned Emerald

185. Juan Fernandez Petrel

186. Sri Lanka Thrush

187. Golden-winged Sparrow

188. Cream-breasted Fruit Dove

189. Spectacled Tetraka

190. Moluccan Woodcock

191. Yellow-billed Spoonbill

192. Grant’s Wood Hoopoe

193. White-fronted Tern

194. Pectoral-patch Cisticola

195. Band-tailed Guan

196. Cameroon Greenbul

197. Eurasian Spoonbill

198. Dusky Babbler

199. Pink Robin

200. Brown Skua

201. Southern Tchagra

202. Great Hornbill

203. Tacarcuna Wood Quail

204. African Wolf

205. Western Cattle Egret

206. Sumatran Woodpecker

207. Eastern Grass Owl

208. Ayacucho Thistletail

209. Philippine Hawk-Eagle

210. Purple-crowned Fairywren

211. Black-faced Babbler

212. Kolombangara Monarch

213. White-browed Treecreeper

214. Emerald Green Tree Frog

215. Cameroon Sunbird

216. Orange-winged Pytilia

217. Tawny Fish Owl

218. Rufous Chatterer

219. White-throated Tapaculo

220. South American Common Toad

221. Cape Streaky-head Seedeater

222. Heuglin’s Masked Weaver

223. Dusky White-eye

224. Little Woodpecker

225. Crimson Topaz

226. Glaucous Tanager

227. Ash-throated Casiornis

228. Spotted Wood Owl

229. Atiu Swiftlet

230. Rose-throated Tanager

231. Black-capped Lory

232. Red-breasted Paradise Kingfisher

233. Cinnamon-sided Hummingbird

234. Black Tinamou

235. Striated Wren-Babbler

236. Red-breasted Paradise-Kingfisher

237. Bumpy Rocket Frog

238. Brown Falcon

239. Venezuelan Sylph

240. White-bridled Finch

241. Grey-headed Piprites

242. Western Green Toad

243. South Moluccan Pitta

244. Bornean Black Magpie

245. Western Alpine Mannikin

246. European Herring Gull

247. Cebu Flowerpecker

248. Western Tree Cricket

249. Yellow-knobbed Curassow

250. Flame-throated Sunangel

251. Bare-faced Bulbul

252. Western Grasswren

253. Rufous-vented Chachalaca

254. Pacific Gull

255. Little Sparrowhawk

256. Fine-spotted Woodpecker

257. African Black Swift

258. Pulitzer’s Longbill

259. Fast-calling tree cricket

260. bow-winged grasshopper

261. Eirunepe Snouted Tree Frog

262. Caspian Plover

263. Pugnosed Tree Frog

264. Crowned Chat-Tyrant

265. Fire-tailed Sunbird

266. Scaly Babbler

267. Rufous-breasted Warbling Finch

268. Ivory-backed Woodswallow

269. Two-banded Puffbird

270. Buru Golden Bulbul

271. Dusky Gerygone

272. White-breasted Whistler

273. Blackbird

274. Bar-bellied Woodcreeper

275. Socotra Sparrow

276. Grey-bellied Bulbul

277. Cinnamon Tanager

278. Cuban Bullfinch

279. Eye-ringed Flatbill

280. Sooty Antbird

281. Chilean Tinamou

282. China-Muntjak

283. Yellow Rail

284. Luzon Hornbill

285. Everett’s White-eye

286. Seram Boobook

287. Bali Myna

288. Green-backed Woodpecker

289. Southern Spotless Crake

290. Choco Tinamou

291. Black-bellied Malkoha

292. Grey-backed Sparrow-Lark

293. Winchell’s Kingfisher

294. Maranon Pigeon

295. Violet Wood Hoopoe

296. Grey-hooded Sunbird

297. Common Grasshopper Warbler

298. Tanimbar Starling

299. Southern Variable Pitohui

300. Fairy Tern

301. Carunculated Fruit Dove

302. Erect-crested Penguin

303. California Gull

304. Pallas’s Rosefinch

305. Great Gray Owl

306. Kenrick’s Starling

307. Brown-winged Parrotbill

308. Green-breasted Bushshrike

309. Green-backed Whistler

310. Fernando Po Batis

311. Chestnut Teal

312. Black Flying Fox

313. Olive-colored White-eye

314. Yellow-headed Amazon

315. Northern Sooty Woodpecker

316. White-lored Antpitta

A.2 SPEECH+MUSIC ABLATION: FULL RESULTS

Model esc50 watkins cbi humbugdb dcase enabirds hiceas rfcx gibbons

base 0.513 0.676 0.702 0.101 0.060 0.257 0.101 0.044 0.010
no-speech-or-music 0.505 0.687 0.705 0.054 0.047 0.259 0.053 0.034 0.010

Table 7: Zero-shot classification and detection results on BEANS-Zero. Base model was trained on
all stage-2 training tasks, while no-speech-or-music is an ablation removing both speech and music
tasks from training data. We used accuracy for classification, and F1 for detection tasks.
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Model unseen-cmn unseen-sci lifestage call-type captioning zf-indv

base 0.104 0.189 0.661 0.853 0.483 0.379
no-speech-or-music 0.100 0.164 0.700 0.835 0.484 0.243

Table 8: Zero-shot results on new tasks introduced in BEANS-Zero. Base model was trained on
all stage-2 training tasks, while no-speech-or-music is an ablation removing both speech and music
tasks from training data. We report accuracy for classification, and SPIDEr (Sharif et al., 2018) for
captioning.
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