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Abstract

Large-Language-Models (LLMs) are arguable the biggest breakthrough in artificial
intelligence to date. Recently, they have come to the public Zeitgeist with a surge of
media attention surrounding ChatGPT, a large generative language model released
by OpenAl which quickly became the fastest growing application in history. This
model achieved unparalleled human-Al conversational skills, and even passed
various mutations of the famous Turing test which measures if Al systems have
achieved general intelligence. Naturally, the world at large wants to utilize these
systems for various applications, but in order to do-so in truly sensitive domains,
the models must often be regulatable in order to be legally used. In this short paper,
we propose one approach towards such systems by forcing them to reason using
a combination of (1) human-defined concepts, (2) Case-Base Reasoning (CBR),
and (3) counterfactual explanations. All of these have support in user testing
that they are understandable and useful to practitioners of Al systems, moreover
counterfactuals have been argued as compliant with the GDPR. We envision this
approach will be able to provide more transparent LLMs for text classification
tasks and be fully regulatable and auditable.

1 Introduction

Perhaps the most important breakthrough in recent ML research is that of Large-Language-Models
(LLMs) [34], these systems have seemingly mastered the nuances of human conversation and
have even been shown to closely follow some of the semantic rules innate to human language
understanding [32]. However, these systems cannot escape the same core issue that underlines most
neural network architectures, in that they are black-boxes with no obvious interpretable decision-
making process, making it impossible to trust them in practice for any sensitive application [29]. To
combat this, Explainable Al (XAI) has become a vast research field [28} [16} 9} [13]], with massive
potential to e.g. make models auditable, debug self-driving cars, and calibrate appropriate trust
between humans and Al in high stakes scenarios [31]. However, to date there is no convincing
example of XAl being used to make regulatable LL.Ms, a deficit we address in this short paper. In
doing so, we hope to stimulate an interesting conversation surrounding this topic.

Our core motivation lies in the fact that many institutions require their employees (and by extension
their models) to use specific concepts in sensitive decisions, but due to the black-box nature of LLMs,
there is absolutely no way to verify this is actually happening [29,[18]]. Hence, we posit that in order
to be auditable and regulatable, we must force these models to use specific human-defined concepts
in their inference process. Moreover, they need to be used in an understandable way, which further
motivates our usage of Case-Based Reasoning (CBR) to visualize the usage of these concepts, which
has shown to be understandable by end-users [17} 21} 136], useful to help decision making [7]], and
preferred as as form of explanation over other popular approaches [[10]]. To the best of our knowledge,
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this idea to force the usage of human-defined concepts in CBR is a novel research direction, and
moreover it is seen as one of the grand challenges of XAI [30].

2 Related Work

XALI has been prominent in every area of Machine Learning (ML) [9} [16 [13} [25]], but to date, there
has been somewhat of a void in natural language processing. To stay relevant, we limit our discussion
here to work which uses concepts, CBR, or causality (for counterfactual explanations). Moreover,
we focus on classification-based XAl methods which are “interpretable by design” (as opposed to
post-hoc explanations [28, 2]]), since we believe this will likely be a necessary prerequisite for making
them regulatable [29, 37].

Concept-based XAI methods for LLMs strive to use “human understandable concepts” in their
inference process [22]. In LLMs, the idea is to typically learn “black-box” concepts automatically
via text rationales [5], and have humans label what they are once the system in trained. Once this
is done, the concepts are typically fed into a linear model to produce an interpretable prediction.
Notable work in this area was completed by Bouchacourt & Denoyer [3], but it suffers from poor
performance. Antognini & Faltings [1] proposed CONRAT, a similar method which used multiple
concepts in its decisions, and is reported to perform better in terms of accuracy. In contrast to these
approaches, we propose to (1) get humans to define the important concepts a-priori, and (2) visualize
these concept-based explanations with CBR, so that they are more understandable and guaranteed to
be legally compliant.

CBR for interpretable LLMs is a fairly new idea, it strives to use real examples from the training
data directly in inference, so that explanations may be parsed as e.g. “I think this test instance is
class c, because it is similar to this training instance which was also class c”. Notable work in
this area can be traced back to Ming et al. [26], but their approach only works for recurrent neural
networks. Das et al. [8] proposed ProtoTEx, which classifies test instances with reference to learned
prototypes (i.e., examples). Notably however, this work uses whole training examples for similarity,
rather than concepts or sentences which would give more detail. Van Aken et al. [33] built upon this
by proposing ProtoPPatient, which works for multi-label classification. However, once again, all of
these methods cannot get humans to define the important concepts to be used in the CBR process.

With regards to causality [27], it is argued that counterfactual explanations are GDPR compliant [35]],
and causality is likely necessary to guarantee good counterfactuals [27, [13]]. Counterfactuals show an
imagined alternative to the current situation in which the user’s classification changes with e.g. “if
you double your medication, your chest pain will likely dissapear”. In tabular data, causality has
largely been implemented with structural causal models (SCMs) [[12} [15} [14]], but to the best of our
knowledge, using SCMs for explanations has not been attempted in LLMs (or even deep learning in
general). In this work, we aim to accomplish this by training the LLM to identify the presence of
human-defined concepts, and then use these as features in the inference process. By doing this, we
can use the SCM to generate a counterfactual explanation.

Perhaps the most closely related work to what we propose here is that of Kenny et al. [20]. Specifically,
the authors propose to explain a deep reinforcement learning agent by “wrapping” its encoder with
an interpretable prototype layer, where each prototype represents a human-friendly concept, but the
authors note the networks are prone to over-fitting, most likely because they only use a single example
to represent each concept. We build upon this work by (1) collecting a large human-annotated dataset
for each concept to avoid over-fitting, (2) adding an SCM to allow counterfactual explanations, and
(3) adapting the framework for LLMs. With regards to point (3), this is important as Kenny et al. [20]
only worked with “whole” cases for explanations, whilst in our case with LLMs we are breaking each
case down into individual sentence embeddings (see Figure[I)), which is a far more intricate learning
process.

3 Proposed Method

In the model shown in Figure m a test instance, x, is mapped to a latent representation, z, via the
original encoder network: z = fenc (). This vector z can then be further subdivided into a separate
embedding z; for each sentence in the input text, giving a set of embeddings Z € {z;}_,. This set
is then passed into e.g. the first transformation h; to measure each sentence’s similarity to all the
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Figure 1: Proposed Framework: First, a test instance x is encoded by the LLM into sentence
embeddings z;. Then, each z; is passed through every transformation h; ; and has its similarity
measured to the labelled examples of each concept. The sentence which activates most for each
concept outputs a similarity score, which will be high if they are very similar (such as the first
sentence and the concept of “History of Hypertension”), and low if they are not similar at all (e.g., the
last sentence didn’t activate any concept notably). Note again each concept is a collection of labelled
examples for each concept. The similarity feature vector is then classified with e.g. a linear model
(not pictured above). If desired, the SCM can also be used to generate a counterfactual explanation.

labelled examples of the concept. The maximum similarity score is then used as the feature value for
the concept. Moreover, this labelled example used to calculate the maximum similarity score can also
be used as the explanation for classifying that particular concept by saying e.g. “I think this sentence
has the concept ‘History of Hypertension’ because it is very similar to this labelled example [...show
example to user...] stored for this concept”.

3.1 Training Procedure

Each concept is represented by a set of “prototypical cases”, which in practice are human defined
examples of the concept that must be annotated (or perhaps generated/clustered if labelled examples
are difficult to acquire); in general, the more there are, the better the results should be. So, after
each transformation h, there are a set of labelled examples of the concept, and the distance of the
embedding z; to the closest example is used in the similarity function to output a similarity score for
that concept (but in the figure we simply write the concept description — e.g. “History of Hypertension”
for simplicity and clarity). The training process may be summarized as:

1. Identify the human-friendly concepts in the domain desired for the model to use in its
decisions.

2. Acquire a labelled dataset of these concepts (note this may be Al generated or clustered).

3. Forward Pass: Pass the sentence embeddings of x into the first h;, alongside human
annotated examples, and find the sentence in « which is most similar to one of the annotated
examples. Repeat this for all i; to get a similarity output for all concepts, and run the feature
values through an output model (e.g., a linear one) to get a prediction.

4. Train this either (1) end-to-end, or (2) as a fine-tuning process using a pre-trained LLM
encoder (either frozen or not).

Notably, this will require passing a large amount of labelled data through the network at each iteration
(i.e., the normal training data and concept data), which may causes memory issues, but this can be
circumvented by limiting the amount of labelled concept data each forward pass to a subset of the
data (which should also act as a form of regularization).

Another more pressing issue, is that if we constrain the model to use specific concepts, it may
compromise performance. There are several things to consider here: Firstly, just because a model



is less accurate, it doesn’t mean it’s actually worse, the better model could be relying on spurious
correlations. Secondly, if the defined concepts are high-level, they may be general enough to not
compromise performance, likewise if they are very specific, it may overly constrain the model.
Thirdly, alongside the human-defined concepts, we could also learn a black-box concept, which is
trained as a residual to maintain performance [38]], although this would require manually labelling of
this concept post-training by observing instances in this area of the function.

3.2 Explanations

Due to the “interpretable-by-design” nature of the model, it is very straightforward to offer both
causal and counterfactual explanations.

Causal Explanation These explanations are naturally generated by the models inference process
due to it using CBR. For example, to explain the classification of e.g. the concept “History of
Hypertension™ in the first sentence, you may say “I think the first sentence shows the patient
has a history of hypertension, because it is similar to a sentence in a previous patient [...show
example...] who also had this”. This explanation process can be repeated to explain the classification
of all concepts. This CBR-type explanation shows why the model identified the presence of the
concept [24] |16, 6], in that it is essentially saying “This sentence is similar to this labelled example,
hence I think they are the same concept”. Moreover, because the concepts are human-defined, they
are interpretable and should (in many domains) make the model more regulatable. Finally, as these
are then passed through an output linear model, the final prediction is interpretable.

Counterfactual Explanation Importantly, due to the SCM, a counterfactual may also be generated
which could e.g. modify the feature chest pain, whilst automatically (thanks to the SCM) mutating
causally dependent features; for example it may say “If you got rid of your chest pain, it would also
remove part of your depression”. Note that the concept of “recent chest pain” is causally linked to
“prior history of mental health issues”, so altering the former affects the latter, which is the point
of having the SCM (i.e., to generate only plausible counterfactuals). Notably, this wouldn’t require
actually generating new text, which would help with plausibility [23| [19]].

3.3 Preliminary Results

The proposed framework has been tested using entire test instances (i.e, “cases”) as labelled concepts
in a sensitive domain for which interpretability is criticalﬂ Results showed that the interpretable
model had the same accuracy as black-box counterparts, and delivered CBR explanations which
generally aligned with domain experts about what constituted “similar looking” in the domain.
Current tests are examining the potential of the framework to use individual sentences as concepts
rather than the whole instance, early signs indicate this is promising. Lastly, we are working with
domain experts to build SCMs by hand which can generate counterfactual explanations.

4 Discussion

For the past ten years at large, the public has grown particularly weary of big tech companies and
governments increasingly monitoring their personal lives with (often) unsolicited data harvesting.
The most notable example to combat this and win back the public trust was the famous General Data
Protection Regulation (GDPR) which attempted to regulate ML in Europe. However, this far from
solved the problem, and there are a host of new regulation laws coming in 2023 [39], with even the
head of the company behind ChatGPT recently stating that ML should be tighter regulated [L1]. As
explanation is usually seen as a vital part of regulation [4], designing interpretable LLMs makes sense
as a step forward here. In this short paper, we have proposed (and begun to test) a basic framework
for LLMs which should allow them to be largely regulatable. We welcome feedback, comments,
and criticisms from the community, and hope to stimulate an interesting discussion surrounding this
pressing topic.

'Note that due to funding and legal constraints the authors are not permitted to discuss this further, but the
domain in question is irrelevant to the purpose of this paper.
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