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ABSTRACT

Inspired by the software industry’s practice of offering different editions or versions
of a product tailored to specific user groups or use cases, we propose a novel task,
namely, training-free editioning, for text-to-image models. Specifically, we aim
to create variations of a base text-to-image model without retraining, enabling the
model to cater to the diverse needs of different user groups or to offer distinct
features and functionalities. To achieve this, we propose that different editions of a
given text-to-image model can be formulated as concept subspaces in the latent
space of its text encoder (e.g., CLIP). In such a concept subspace, all points satisfy a
specific user need (e.g., generating images of a cat lying on the grass/ground/falling
leaves). Technically, we apply Principal Component Analysis (PCA) to obtain the
desired concept subspaces that correspond to specific user needs or requirements
from a representative text embedding. Projecting the text embedding of a given
prompt into these low-dimensional subspaces enables efficient model editioning
without retraining. Intuitively, our proposed editioning paradigm enables a service
provider to customize the base model into its “cat edition” (or other editions)
that restricts image generation to cats, regardless of the user’s prompt (e.g., dogs,
people, etc.). This introduces a new dimension for product differentiation, targeted
functionality, and pricing strategies, unlocking novel business models for text-to-
image generators. Extensive experimental results demonstrate the validity of our
approach and its potential to enable a wide range of customized text-to-image
model editions across various domains and applications.

1 INTRODUCTION

Recent advances in text-to-image models (Zhang et al., 2023b; Rombach et al., 2022; Ramesh
et al., 2021; Saharia et al., 2022; Nichol et al., 2021; Betker et al., 2023; Gu et al., 2022) have
revolutionized visual content creation, enabling users to create highly realistic images from natural
language descriptions. However, as these models become more widely adopted, service providers
face challenges in monetizing them and tailoring offerings to diverse customer needs. In the software
industry, providers overcome this by offering product editions or versions tailored to specific user
segments, e.g., Home Edition, Professional Edition, Enterprise Edition. In this work, we propose a
novel task, namely, training-free editioning (Fig. 1), and apply this strategy to text-to-image models.

While it may seem straightforward, editioning is a challenging task as it requires preventing users
from bypassing access controls. For example, as Fig. 2 shows, the naive solution of sensitive word
filtering does not work as users can easily evade it using descriptive prompts that are difficult to filter.

Our core idea is creating model variations without retraining to cater to different customer needs
or offer distinct features, formulating editions as concept subspaces within the embedding space of
the model’s text encoder. Our concept subspace encapsulates points satisfying a user requirement
(i.e., concept), e.g., cat images with specific choices of backgrounds. Technically, we apply Principal
Component Analysis (PCA) to text embeddings corresponding to a given concept and retain principal
components capturing key variations to obtain a low-dimensional subspace for that concept within
the original embedding space. Then, we achieve training-free editioning of text-to-image models by
projecting the embeddings of input prompts into these subspaces.

Crucially, our approach allows service providers to efficiently customize the base model into targeted
“editions” satisfying diverse customer needs without costly retraining. This leverages the pre-trained
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“a robot staying 
on grass.”

Base Model
($20/month)

Boy 
Edition

($2/month)

Car
Edition

($3/month)

Bus
Edition

($4/month)

Cat
Edition

($6/month)

Dog
Edition

($5/month)

Man 
Edition

($1/month)

Figure 1: Illustration of Text-to-Image Model Editioning. Our method can create variations (e.g.,
Boy Edition, Cat Edition) of a base text-to-image model without retraining, enabling them to cater to
the diverse needs of different user groups or to offer distinct features and functionalities.

model’s capabilities while enabling fine-grained control over outputs. Providers can create tailored
editions for different verticals, user types, or functionality tiers - e.g. a “cat edition” restricting
outputs to cat images regardless of the input prompt (e.g., dogs, people). This unlocks innovative
product strategies like freemium models with basic free editions versus feature-rich premium paid
editions, enforcing content filters, specialty domains, or custom functionality per edition. Rather than
offering an open-ended general tool, our paradigm shifts text-to-image models towards a customizable
product portfolio optimized for commercial deployment. Service providers gain flexibility to create
an offering tailored to their customer base, introducing novel business models beyond simply vending
the base model. This empowers profitably serving diverse market needs while monetizing their AI
assets through product differentiation and pricing opportunities better matched to consumer segments.
Extensive experiments validate our method’s ability to create purposeful model customizations across
various domains and applications. Our contributions include:

• We introduce a novel task called “training-free editioning” for text-to-image models, which
aims to create customized variations or editions of a base model without expensive retraining.

• We propose a novel method to achieve training-free editioning by formulating different
model editions as concept subspaces within the text embedding space of the base model,
leveraging Principal Component Analysis (PCA) to obtain low-dimensional subspaces
capturing desired concepts.

• Extensive experiments across various domains demonstrate the effectiveness of our approach
in creating purposeful model customizations suited for different user groups and applications.
We highlight the business potential of training-free editioning in enabling service providers
to offer differentiated product editions, innovative pricing strategies, and tailored solutions
optimized for commercial deployment.

2 RELATED WORK

Text-to-Image Synthesis. Driven by the success of deep generative models, text-to-image syn-
thesis has become a rapidly evolving field in computer vision and machine learning that aims to
generate realistic images from textual descriptions. One of the pioneering works in this field is
AlignDRAW (Mansimov et al., 2015), which introduced an attention-based approach that gener-
ates images by drawing a sequence of patches on the canvas based on an input caption. While
this method represented a promising step forward, the generated images often lacked coherence
and failed to accurately reflect the input textual descriptions. The advent of generative adversarial
networks (GANs) ushered in a new era of text-to-image synthesis techniques. Text-conditional
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Our Method 
(Cat Edition)

A metallic figure with glowing eyes moves with 
precise, mechanical motions, emitting a soft 
whirring sound. (Robot)

A small, fluffy creature with bright eyes, 
wagging tail, and playful, energetic 
movements. (Dog)

A tall figure with broad shoulders stands 
confidently, deep lines etched on a 
focused face. (Man)

Sensitive Word 
Filtering (Cat Edition)

Descriptive
Prompt

Figure 2: Sensitive word filtering fails as a naive solution. Users can easily bypass the access
control and generate images beyond the edition (middle) by using descriptive prompts (top) that
evade detection by sensitive word filtering methods. In contrast, our method successfully enforces
access control (bottom).
GANs (Reed et al., 2016) were among the first to leverage the adversarial training framework for
this task. Subsequently, methods like StackGAN (Zhang et al., 2017), AttnGAN (Xu et al., 2018),
and ControlGAN (Li et al., 2019) demonstrated improved performance by incorporating attention
mechanisms and hierarchical architectures. Despite their notable achievements, these GAN-based
approaches often struggled to maintain high consistency, resolution, and diversity in the generated
images, falling short of meeting the demanding requirements of real-world applications. A significant
breakthrough in text-to-image synthesis emerged with the introduction of large-scale datasets and
transformer-based models. OpenAI’s DALL-E (Ramesh et al., 2021) pioneered the use of vast text-
image pairs, enabling the generation of high-quality images from textual descriptions. Building upon
this success, Parti (Yu et al., 2022) further demonstrated the potential of scaling up data and models
for improved text-to-image generation performance. Nevertheless, thanks to their stable training
and flexible conditioning (e.g., text, image, and other modalities), diffusion models (Rombach et al.,
2022) have dominated the state-of-the-art solutions for text-to-image synthesis.

Diffusion Models. Diffusion models are a class of deep generative models that have recently
demonstrated remarkable performance in generating high-quality samples across various applications.
These models are parameterized Markov chains trained using variational inference to generate
samples that match the data distribution after a finite number of iterations (Sohl-Dickstein et al., 2015;
Ho et al., 2020). Diffusion implicit models (Song et al., 2020), which are based on a class of non-
Markovian diffusion processes, lead to the same training objective as traditional diffusion models, but
can produce high-quality samples more efficiently. A representative framework for training diffusion
models in the latent space is Stable Diffusion, a scaled-up version of the Latent Diffusion Model
(LDM) (Rombach et al., 2022). Thanks to its flexibility allowing for multi-modal control signals
(including text), Stable Diffusion has captivated the imagination of many users and dominated the
field, especially in the open-source community. For example, Gal et al. (2022) proposed a novel
approach to create variations of a given “concept” by representing it with a single word embedding;
Prompt-to-prompt (Hertz et al., 2022) focuses on manipulating the attention maps corresponding to
the text embeddings for editing images in pre-trained text-conditioned diffusion models; Null-text
inversion (Mokady et al., 2023) proposed performing Denoising Diffusion Image Model (DDIM)
inversion on the input image with related prompts into the latent space of a text-guided diffusion
model, enabling intuitive text-based image editing. These efforts, while effective, have focused
primarily on extending the technical power and usability of the text-to-image (diffusion) model,
whose business model is still immature.

To bridge this gap, we propose a novel task called training-free editioning for text-to-image models,
which aims to create customized variations or editions of a base model without expensive retraining.
This enables service providers to offer differentiated product editions, innovative pricing strategies,
and tailored solutions optimized for commercial deployment.

3 DEFINITION OF TRAINING-FREE EDITIONING

Definition 1. Given a trained general-purpose text-to-image model M , let C = {c1, c2, ..., cn} be
a list of n concepts (textual) to be editioned on, p be an input prompt to M , we denote the image
synthesized by M but editioned on C as:

I = M(p | C), (1)
where I is restricted to only containing concepts in C.

3
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3.1 DIFFERENCES WITH IMAGE EDITING AND CONCEPT ERASING

Editioning vs. Editing. Task-wise, text-to-image editing (Kawar et al., 2023; Rombach et al.,
2022; Hertz et al., 2022; Brooks et al., 2023; Mokady et al., 2023; Tumanyan et al., 2023; Yang
et al., 2023; Couairon et al., 2022) works at the aspect/image-level, which typically refers to the
process of modifying or manipulating specific aspects of an existing image based on a text prompt or
instructions while leaving irrelevant aspects of it unchanged, e.g., inpainting, outpainting, or style
transfer. In contrast, the proposed text-to-image editioning task works at the model-level, which
aims to customize the behavior of the text-to-image model itself to cater to specific user needs or
functionalities. Methodology-wise, since editing works at the aspect/image-level, its key challenge is
to disentangle the target aspect of an image that needs to be edited from the rest, e.g., by manipulating
the attention maps of a given image (Xu et al., 2023; Ju et al., 2023; Li et al., 2023; Hertz et al., 2022;
Mokady et al., 2023). On the contrary, our editioning task is performed at the model level, so its
main challenge lies in controlling the model’s behavior, e.g., by manipulating the model’s text/image
embedding space.

Editioning vs. Concept Erasing. Task-wise, our editioning and concept erasing can be viewed as
complementary tasks, where our editioning aims to retain concept(s) C from a model and concept
erasing aims to remove C from the model. Methodology-wise, existing concept erasing meth-
ods (Gandikota et al., 2023; Kumari et al., 2023; Gandikota et al., 2024; Liu et al., 2023; Huang et al.,
2023; Yildirim et al., 2023; Zhang et al., 2023a; Kim et al., 2023) primarily focus on fine-tuning model
weights. In contrast, our approach does not involve any training and concentrates on manipulating
the model’s text/image embedding space directly. The choice of such distinct methodologies stems
from the observation that C typically constitutes a relatively small subset compared to the entire set
of concepts learned by the model. Consequently, for concept erasing, removing C can be achieved
through a minor perturbation of the model weights. However, for our editioning task, retaining C and
dropping all other concepts would necessitate a significant modification, akin to retraining the entire
model from scratch.

4 METHOD

Addressing Definition 1, we propose a novel approach, namely Concept Subspace Projection,
which achieves M(p | C) by projecting the embedding vector of p to a concept subspace SE(C)
defined by C. Specifically, let E and G be the text encoder and generator of M , respectively, i.e.,
M(·) = G(E(·)), SE = Rd be the d-dimensional embedding space of E , we have:

E(p | C) = PRSE(C)(E(p)) (2)

where PRx(y) denotes the projection of y on x, SE(C) = RdC ⊂ SE denotes the dC-dimensional
concept subspace specified by concepts C, dC < d. In this way, we create the C-edition of M as the
concept space SE(C) and have:

I = M(p | C) = G(E(p | C)) = G(PRSE(C)(E(p))) (3)

4.1 CLIP-BASED CONCEPT SUBSPACE PROJECTION

Recognizing that CLIP (Radford et al., 2021) dominates the implementation of E in state-of-the-art
text-to-image models (Zhang et al., 2023b; Rombach et al., 2022; Ramesh et al., 2021; Saharia et al.,
2022; Nichol et al., 2021; Betker et al., 2023; Gu et al., 2022), we follow this common practice and
develop our method in the CLIP embedding space. Thanks to CLIP’s use of cosine similarity for
comparing text and image embeddings, we hypothesize that (please see Sec. 5.3 for an empirical
justification):
Conjecture 1. For CLIP encoders, the text embeddings in concept subspaces SE(C) corresponding
to different C are on a thin hypersphere shell centered at the origin.

Concept Subspace Creation. Based on Conjecture 1, the concept subspace SE(C) accommodating
the hypersphere shell can be characterized by a set of (orthogonal) vectors radiating from the origin.
To obtain such vectors, we propose applying Principal Component Analysis (PCA) to a substantial
sample of E(pC) embeddings DC = [E(p1C), E(p2C), ..., E(pmC )]:

VC = PCA(DC) (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(2) a dog sits on the floor next to a 
chair.

(1) a dog wearing a top had and a tie.

(n) …dog …

…

PCA

Projection

CLIP
Text 

Encoder

Concept Dataset 𝑫𝒅𝒐𝒈

CLIP
Text 

Encoder

(a) Concept subspace creation

(b) Concept subspace projection

Diffusion
Model

Text embedding Space Text embedding Space

Text embedding Space

෠𝑉𝐶 𝑘

෠𝑉𝐶 𝑘

Text embedding Space

෠𝑉𝐶 𝑘
“a brown stuffed 
teddy bear wearing 
a bow tie.”

(3) a dog is leaping up to catch a toy.

Dataset

(1) small breakfast on a plate with 
fruits, bagels, and yogurt.

(2) people are looking at a decorative 
cake with long candles.

(3) a dog is leaping up to catch a toy.

…

Figure 3: Overview of our concept subspace creation (top) and projection (bottom).

where pC denotes a prompt that contains only the concepts in C, VC denotes the principal axes
ranked by descending principal values. Then, we define:

V̂C(k) = VC [0 : k] (5)

as the basis of subspace SE(C), where k is selected according to a 95% threshold of explained
variance. Please see Sec. 5.4 for more details.

Magnitude-compensated Projection. With V̂c(k), we define the projection function PR as:

PRSE(C)(E(p)) = η · V̂c(k) · V̂c(k)
T · E(p) (6)

where η = ||E(p)||
||V̂c(k)·V̂c(k)T ·E(p)|| is a parameter to compensate for the loss of magnitude during the

projection. Note that we omit the centering step for simplicity, since the PCA subspace is also
approximately centered at the origin (Conjecture 1).

Figure 4: 13k components yield a cumulative ex-
plained variance ratio of 99.9+%.

Efficient Computation. Guided by the clas-
sic manifold hypothesis (Brown et al., 2022)
that assumes the existence of low-dimensional
representations of high-dimensional data, we
apply PCA to a substantial random sample of
CLIP text embeddings to reduce the dimension-
ality of the original CLIP embedding space from
77× 768 = 59, 136 to 13, 000. This “compres-
sion” significantly improves computational ef-
ficiency by roughly (59, 136/13, 000)2 ≈ 20.7
times for the computation of covariance matrix
in PCA (bottleneck), without sacrificing the per-
formance (Fig. 4). Thus, unless specified other-
wise, we employ the 13,000-dimensional reduced space as the CLIP text embedding space in our
experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

As mentioned above, our method consists of two steps: i) performing a low-loss dimensionality
reduction to obtain an “efficient” CLIP embedding space of 13,000 dimensions; ii) creating concept
spaces and projecting the embeddings of input prompts to them using the method proposed in Sec. 4.
To implement them, we created the following datasets:
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Table 1: CLIP score (softmax probability) of the images generated by our concept subspace projection,
and their corresponding “ground truth” prompts (i.e., those accurately describing the image content).

Concept Subspace Animal Vehicle Human
Dog Cat Tiger Car Bus Truck Boy Girl Man

Clip Score 0.9594±0.1702 0.9105±0.2304 0.8803±0.2556 0.9020±0.2473 0.8943±0.2508 0.9270±0.1905 0.8953±0.2484 0.8543±0.2906 0.8808±0.2646

Table 2: Evaluating the image synthesis capability of our concept space projection method using
FID and IS scores. Ours: for each concept subspace, we take its evaluation dataset and generate
their corresponding 4,000 images using the proposed concept space projection; SD: for each concept
subspace, we replace the subject of the prompts used in “Ours” with the concept of the subspace and
generate 4,000 images using Stable Diffusion v1.4 (Rombach et al., 2022)). SD’: different sets of
4,000 images generated in the same way as “SD”.

Dog Cat Tiger Car Bus Truck Boy Girl Man Mean

FID Ours vs. SD 14.982 38.236 34.845 14.317 32.921 21.789 14.350 14.215 16.125 20.405
SD vs. SD’ 6.723 6.143 2.390 6.239 3.093 3.887 9.977 10.035 11.081 6.619

IS Ours 10.150 4.012 2.754 5.820 4.102 3.850 9.500 9.550 11.300 6.870
SD 8.600 2.600 1.200 4.400 2.250 2.000 8.800 8.900 10.600 5.600

CLIP Dimensionality Reduction Dataset (Dall). CoCo 2017 Dataset (TY Lin) contains thousands
of image and caption pairs. We randomly selected a subset of 160,000 captions from it and embedded
them with CLIP to create the dataset Dall for the dimensionality reduction in creating the 13, 000-
dimension “efficient” CLIP embedding space.

Concept Datasets. Since subjects are usually of the most interest to users performing text-to-image
synthesis and editing tasks, without loss of generality, we focus on the concepts of subjects in our
experiments. Therefore, except Dall mentioned above, we create our concept datasets by extracting
all captions in the CoCo 2017 dataset that contain certain subjects (e.g., Dcat is the union of all
CoCo 2017 captions containing “cat” as their subjects). Note that we remove captions with pronouns
(e.g., ’that’, ’this’) as subjects as they have no specific meanings. We created 9 such datasets in our
experiments, including i) Animals: Dcat, Ddog, and Dtiger; ii) Vehicles: Dcar, Dbus, and Dtruck; iii)
Human: Dboy, Dgirl, and Dman.

Concept Subspaces Creation and Evaluation. We follow the method detailed in Sec. 4.1 to create
our concept subspaces, e.g., SE(cat) and SE(dog), using their corresponding concept datasets, e.g.,
Dcat and Ddog, respectively. In addition, given a concept subspace SE(∗), we construct its evaluation
dataset by randomly selecting 1,000 captions from Dall whose subjects are not ∗.

Evaluation Metrics. We use i) CLIP scores (Hessel et al., 2021) to measure the consistency between
an image generated by our method and its corresponding prompt (before and after our content
subspace projection); ii) Fréchet Inception Distance (FID) (Heusel et al., 2017) and Inception Score
(IS) to measure the image synthesis ability of the base model and its editions created by our method.

5.2 EFFECTIVENESS OF CONCEPT SUBSPACE PROJECTION FOR TEXT-TO-IMAGE MODEL
EDITIONING

5.2.1 QUANTITATIVE RESULTS

Editioning Accuracy. We use the CLIP score (probability) (Hessel et al., 2021) to measure the
editioning accuracy of our method, with 0 indicating low accuracy and 1 indicating high accuracy.
Specifically, given a concept space S (e.g., cat edition SE(cat)) created using D (e.g., Dcat) defined
in Sec. 5.1, for each input prompt p in its evaluation dataset, we compute the softmax probability of: i)
the CLIP score between the images I generated using the projected prompts and their corresponding
“ground truth” prompts p̂, i.e., replacing the corresponding concept in p with that of D (e.g., in the
cat edition SE(cat), for the randomly selected prompt, the subject concept can be exchange into
“cat”); ii) the CLIP score between I and p. Since the sum of the two probabilities is 1, we report the
former in Table 1, which demonstrates that our concept subspace projection accurately restricts the
generation to the concept of S (all scores are high).
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Table 3: Cosine similarities between the input prompt, its projected version, and its “replaced” version.
The “replaced” version refers to the text embedding of the prompt created by replacing the subject
component in the input prompt (e.g., “dog”) with that of the concept word in the concept subspace
(e.g., “cat”) being projected onto. The input prompts used are from the corresponding evaluation
dataset.

d(input, replace) d(project, replace) d(input, replace) d(project, replace)

SE(dog) 0.1985±0.0687 0.1674±0.0601 SE(truck) 0.2376±0.0728 0.1975±0.0497
SE(cat) 0.2114±0.0683 0.1785±0.0611 SE(boy) 0.1899±0.0792 0.1733±0.0796
SE(tiger) 0.2384±0.0743 0.2197±0.0540 SE(girl) 0.1953±0.0785 0.1751±0.0603
SE(bus) 0.2525±0.0796 0.2693±0.0676 SE(man) 0.1782±0.0738 0.1963±0.0742
SE(car) 0.2172±0.0713 0.1623±0.0456 Mean 0.2132 0.1932

(b)(a)

Boy

Edition

Base

Model

Dog

Edition

Base

Model

Car

Edition

Base

Model

(c) (d) (e) (f)

Figure 5: Images generated by different prompts when using different editions of the Stable Diffusion
v1.4 model. The input prompts are: (a) a street sign reading give way next to a road. (b) a baby plays
with an adult-sized tie put on him. (c) a bear walks along a fence on a plain. (d) a brown cow lays in
the grass on a hill. (e) the fire hydrant is shooting water into the street. (f) a birthday cake replicates a
demolition scene with candles.

Image Synthesis Capability. We use the FID and IS scores to measure the image synthesis capability,
with reference to those of the base model, i.e., Stable Diffusion (SD) v1.4 (Rombach et al., 2022). As
Table 2 shows, the FID scores of our method are worse than those of SD but our IS scores are higher,
indicating that our method generates similarly high quality but less diverse images than SD.

Similarity between Text Embeddings. To further characterize our content subspace projection, we
compute the cosine similarities between the input prompt, its projected version, and its “replaced”
version, where the “replaced” version refers to the text embedding of the prompt created by replacing
the subject component in the input prompt (e.g., “dog”) with that the concept word of the concept
subspace (e.g., “cat”) being projected onto. As Table 3 shows, the projected embeddings maintain
similar distances to the “replaced” ones as input prompts, suggesting that our method operates
throught a different mechanism than naive replacement.

5.2.2 QUALITATIVE RESULTS

Editioning Accuracy. As Fig. 5 shows, we achieved a high editioning accuracy as the target concept
(i.e., subject) of the input prompt is restricted to the concept subspace while other concepts (e.g.,
behavior and background) remain unchanged.

Image Synthesis Capability. As Fig. 6 shows, the images generated using our concept subspace
projection are of similarly high quality and diversity to those generated by the base model directly.

5.3 PROPERTIES OF CLIP CONCEPT SUBSPACES

Distance to Origin. As Fig. 7 shows, we plot the histogram of the distances of text embeddings to
the origin for each concept dataset and the Coco 2017 dataset. It can be observed that for all datasets,
the distances are around 250 with small standard deviations, which justifies our Conjecture 1.
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Dog

Edition

Base

Model

Edition

(a)

Truck

Edition

Base

Model

(b)

Boy

Edition

Base

Model

(c)

Figure 6: Different images generated by the same prompt when using different editions of the Stable
Diffusion v1.4 model. The input prompts are: (a) a kitty all cozy sleeping on a bed. (b) a skier moves
down the slope with trees in the background. (c) a boat travels through the water near the mountains.

Figure 7: Distances of text embeddings to the origin. We randomly selected 2,000 prompts from each
concept dataset and the Coco 2017 dataset to calculate the distances of samples to the origin. The
mean and standard deviation values of the distances are shown in the legend.

Semantic Directions in Concept Subspace. As Fig. 8 shows, we observed that the principal
components of each concept subspace also have semantic meanings. In addition, the content of the
image remains restricted to its corresponding conceptual subspace (edition).

Concept Subspace Interpolation. As Fig. 9 shows, our concept subspace also allows for linear
interpolation between projected text embeddings.

8
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Negative Positive

A dog sitting on grassGround Grassy

A boy sitting on chairWater House

Dog 

Edition

Boy 

Edition

A bus racing across riverWaterless Watery

Bus 

Edition

Figure 8: Images generated by moving text embeddings (the input prompt is shown in the middle)
along the directions of principal components (PC). Row 1: PC #7; Row 2: PC #14; Row 3: PC #0.

Cat 

Edition

a truck exploring with desk a girl exploring under the sky

Girl 

Edition

a cat sleeping on chair a bus sitting besides desk

Car 

Edition

a truck staying through  garden a boy racing over river

Figure 9: Linear interpolation between projected text embeddings. The input prompts are shown at
the bottom. The words in red denote the subject to be restricted to the edition given on the left.

Table 4: Choice of k (Eq. 5) by 99% explained variance ratio for each concept subspace.

Dog Cat Tiger Car Bus Truck Boy Girl Man

# of Principal Components 44 39 23 43 15 42 49 62 64

9
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Our Method 
(Dog Edition)

A metallic figure with glowing eyes moves with 
precise, mechanical motions, emitting a soft 
whirring sound. (Robot)

A majestic, striped predator with a 
muscular build, keen eyes, and a 
commanding presence.(Tiger)

A tall figure with broad shoulders stands 
confidently, deep lines etched on a 
focused face. (Man)

Sensitive Word 
Filtering (Dog Edition)

Descriptive
Prompt

Figure 10: Sensitive word filtering fails as a naive solution. Users can easily bypass the access
control and generate images beyond the edition (middle) by using descriptive prompts (top) that
evade detection by sensitive word filtering methods. In contrast, our method successfully enforces
access control (bottom).

Table 5: Computational costs of our method. E.S.: Embedding Space; (·)d: (·) dimension.

Original CLIP E.S (59, 136d) Our Reduced E.S (13, 000d)
7h 23min 7s ± 23s 1min 11s ± 12s

(a) Concept subspace creation

Text Embedding Concept Space Projection Diffusion Generation
72ms ± 34ms 21ms ± 8ms 5s 322ms ± 1s 483ms

(b) Image generation (inference)

5.4 CHOICE OF k FOR EACH CONCEPT SUBSPACE

As Table 4 shows, empirically, we choose k (Eq. 5) for each concept subspace by the threshold of
99% explained variance ratio of that subspace.

5.5 SENSITIVE WORD FILTERING FAILS AS A NAIVE SOLUTION

To further justify the motivation and usefulness of our approach, in Fig. 2 and Fig. 10, we show that
the naive solution of sensitive word filtering fails to enforce effective access control and can be easily
bypassed by users, whereas our method successfully prevents such bypasses.

5.6 COMPUTATIONAL COSTS

As shown in Table 5, our method is highly efficient, with its time cost (21ms) being negligible
compared to the image synthesis time (around 5 seconds) of Stable Diffusion. Moreover, the dimen-
sionality reduction employed by our method (i.e., from 59,136 to 13,000 dimensions) significantly
reduces the time required to create a concept subspace from around 7 hours to around 1 minutes.

All experiments in our work are conducted on a workstation with an 12th-gen Intel Core i7-12700
CPU, an Nvidia RTX 4090 24G GPU, 64GB memory and a 1TB hard disk.

6 CONCLUSION

Inspired by software editioning, we propose training-free “editioning” of text-to-image models by
identifying concept subspaces within the latent space of their text encoders (e.g., CLIP). These
subspaces, obtained via applying Principal Component Analysis (PCA) on representative text embed-
dings, correspond to specific concepts like “cat”, “dog”, “boy”. Projecting the text embedding of a
given prompt into these low-dimensional subspaces enables efficient model customization without
retraining. This unlocks novel business models, such as offering restricted “cat editions” that only
generate cat images regardless of subjects in input prompts, enabling new product differentiation and
pricing strategies.
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A RESULTS ON STABLE DIFFUSION V1.5

As shown in Table 6 and Fig. 11, our method also generalizes to Stable Diffusion v1.5 and achieves
similarly high CLIP scores and editioning accuracy.

Table 6: CLIP score (softmax probability) of the images generated by our concept subspace projection,
and their corresponding “ground truth” prompts (i.e., those accurately describing the image content).

Concept Subspace Animal Vehicle Human
Dog Cat Tiger Car Bus Truck Boy Girl Man

Clip Score 0.9275±0.1794 0.9019±0.2510 0.8939±0.2645 0.9104±0.2834 0.8893±0.2632 0.8882±0.2619 0.8916±0.2816 0.8603±0.2903 0.8819±0.2910

(b)(a)

Cat

Edition

Base

Model

Truck

Edition

Base

Model

Man

Edition

Base

Model

(c) (d) (e) (f)

Figure 11: Images generated by different prompts when using different editions of the Stable Diffusion
v1.5 model. The input prompts are: (a) a mini train travels through a large garden. (b) a zebra stands
in his habitat in captivity. (c) a child snowboarding down a hill in the snow. (d) a row of blue and
white train cars. (e) a kitten sits facing an open black laptop. (f) a zebra that is standing in a field.

B CONCEPT SUBSPACES OF “VERB” AND “OBJECT”

Following a similar experimental setup used for “subject” in the main paper, we show that the
proposed method can also be applied to “verb” and “object”. As shown in Table 7, Fig. 12, Fig. 13,
our method can also accurately restrict the generation to the concept subspace.

Jumping

Edition

Base

Model

Running

Edition

Base

Model

Smiling

Edition

Base

Model

(b)(a) (c) (d) (e) (f)

Figure 12: Concept Subspaces of < verb >. Images generated by different prompts when using
different editions of the Stable Diffusion v1.4 model. The left clarifies the different editions of the
object and the base model. The input prompts are: (a) a person crouches low to ski over snowy
ground. (b) a dog lying on the ground at sunny day. (c) the girl is sleeping on the sofa. (d) cat stays
on the grass with a tree behind it. (e) a young man in a blue shirt admires his tie. (f) a young man
stops to look at his electronic device.
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Table 7: CLIP score (softmax probability) of the images generated by our concept subspace projection,
and their corresponding “ground truth” prompts (i.e., those accurately describing the image content).

Concept Subspace Verb Objective
jumping running smiling Table Grass Leaves

Clip Score 0.8494±0.2232 0.8843 0.2142 0.8196±0.2737 0.8299±0.2978 0.8929±0.2596 0.8558±0.2885

Table

Edition

Base

Model

Grass

Edition

Base

Model

Leaves

Edition

Base

Model

(b)(a) (c) (d) (e) (f)

Figure 13: Concept Subspaces of < object >. Images generated by different prompts when using
different editions of the Stable Diffusion v1.4 model. The left clarifies the different editions of the
object and the base model. The input prompts are: (a) a car drives through on the road. (b) a dog
lying on the ground at sunny day. (c) a boy in shirt flying a kite on beach. (d) a brown bear walks
lazily along the dirt. (e) a cat lazily lay on the table. (f) the boy wearing a blue sweater sleeping on
the chair.

C EFFECTIVENESS OF OUR MAGNITUDE-COMPENSATED PROJECTION

Distances of Text Embeddings to the Origin after Naive Projection. To demonstrate the necessity
of our magnitude-compensated projection (Eq. 6), we show that the distances indeed reduce after
naive projections (Fig. 14).

Qualitative Comparison. As Fig. 15 shows, without our magnitude-compensated projection (i.e.,
naive projection), the generated images suffer from severe distortions, which further demonstrates the
effectiveness of our magnitude-compensated projection.

Figure 14: Distances of text embeddings to the origin after naive projection. We randomly selected
2,000 prompts from the evaluation dataset of a given concept space S and naively projected them to
S. The mean and standard deviation values of the distances are shown in the legend.

D LIMITATIONS

Our work is a first step toward the new task of “Training-free Editing of Text-to-image Models”. As
such, it is constrained by the number of concepts in the editions. Nonetheless, we believe that our
approach is a solid step forward and will inspire the community for subsequent innovations.
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Our 

Projection

Naive 

Projection

Boy Edition Dog Edition Truck Edition

(b)(a) (c) (d) (e) (f) (g) (h) (i)

Figure 15: Comparison of images generated using naive projection and our magnitude-compensated
projection. All images are generated with editions of the Stable Diffusion v1.4 model. The editions
are shown at the top. The input prompts are: (a) a light colored bull stands in a field. (b) a kitty all
cozy sleeping on a bed. (c) a horse gazes into the distance. (d) a cat sits at the ready in a mostly empty
station. (e) a light colored bull stands in a field. (f) a bear gazes into the sky. (g) a horse running on
the dirt path. (h) a bear walks down a trail in the forest. (i) a car stops in the middle of the road.
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