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ABSTRACT
Ranking is the most important component in a search system. Most
search systems deal with large amounts of natural language data,
hence an e!ective ranking system requires a deep understanding
of text semantics. Recently, deep learning based natural language
processing (deep NLP) models have generated promising results on
ranking systems. BERT is one of the most successful models that
learn contextual embedding, which has been applied to capture
complex query-document relations for search ranking. However,
this is generally done by exhaustively interacting each query word
with each document word, which is ine"cient for online serving
in search product systems. In this paper, we investigate how to
build an e"cient BERT-based ranking model for industry use cases.
The solution is further extended to a general ranking framework,
DeText, that is open sourced and can be applied to various ranking
productions. O#ine and online experiments of DeText on three
real-world search systems present signi$cant improvement over
state-of-the-art approaches.

KEYWORDS
Ranking, Deep Language Models, Natural Language Processing

1 INTRODUCTION
Search systems provide relevant documents to users who are look-
ing for speci$c information through queries. A user receives a list
of ranked documents ordered by search relevance, where ranking
plays a crucial role to model such relevance that directly a!ects con-
sequential user interactions and experience. Most search systems
deal with a large amount of natural language data from queries,
pro$les, and documents. An e!ective search system requires a deep
understanding of the context and semantics behind natural lan-
guage data to power ranking relevance.

Traditional ranking approaches largely rely on word/phrase ex-
act matching features, which has a limited ability to capture con-
textual and deep semantic information. In the recent decade, deep
learning based natural language processing technologies present
an unprecedented opportunity to understand the deep semantics
of natural language data through embedding representation [13].
Moreover, to enhance contextual modeling, contextual embedding
such as BERT [8] has been proposed and extensively evaluated
on various NLP tasks with signi$cant improvements over existing
techniques.

However, promoting the power of BERT in ranking is a non-
trivial task. The current e!ective approaches [6, 18, 22] integrate
BERT as an embedding generation component in the rankingmodel,
with the input a concatenated string of query and document texts.
BERT is then $ne tuned with ranking loss. The inherent transformer
layer [27] in BERT allows direct context sharing between query

words and document words, exploiting the power of contextual
modeling in BERT to the greatest extent, as the query word embed-
dings can incorporate many matching signals in documents. This
approach, in the category of interaction based models [7, 11, 28],
comes with a signi$cant challenge in online serving: a) the heavy
BERT computation on the %y is not a!ordable in a real world
search system; and b) the interaction based structure, as applied
to concatenated query and document, precludes any embedding
pre-computing that can reduce computation.

To enable an e"cient BERT-based ranking model for industry
use cases, we propose to use representation based structure [13, 26].
Instead of applying BERT to a concatenated string of query and
document texts, it generates query and document embeddings in-
dependently. It then computes the matching signals based on the
query and document embeddings. This approach makes it feasible
for pre-computing document embedding; thus, the online system
only needs to do BERT real-time computation for queries. By inde-
pendently computing query and document embeddings, however,
we may lose the enhancement on the direct context sharing be-
tween queries and documents at word-level [22]. This trade-o!
makes it a challenge to develop a BERT-based ranking model that
is both e!ective and e"cient.

In this work, we investigated the BERT-based ranking model
solution with representation-based structure, and conducted com-
prehensive o#ine and online experiments on real-world search
products. Furthermore, we extended the model solution into a gen-
eral ranking framework, DeText (Deep Text Ranking Framework),
that is able to support several state-of-the-art deep NLP components
in addition to BERT. The framework comes with great %exibility
to adapt to various industry use cases. For example, BERT can be
applied for ranking components that have rich natural language
paraphrasing; CNN can be applied when ease of deployment is a
top concern for a speci$c system.

Beyond the ranking framework, we also summarized experience
on developing an e!ective and e"cient ranking solution with
deep NLP technology, and how to balance e!ectiveness and e"-
ciency for industry usage in general. We shared practical lessons of
improving relevance performance while maintaining a low latency,
as well as general guidance in deploying deep ranking models into
search production.

The contribution of this paper is summarized below:

• We developed a representation based ranking solution pow-
ered by BERT and successfully launched it to LinkedIn’s
commercial search engines.

• We extended the ranking solution into a general ranking
framework, DeText, that can be applied to di!erent search

ar
X

iv
:2

00
8.

02
46

0v
1 

 [c
s.I

R]
  6

 A
ug

 2
02

0



CIKM, 2020, Online Guo et al.

products with great %exibility. The code is open sourced for
public usage.1

• We provided practical solutions and lessons on developing
and deploying neural ranker models with deep NLP w.r.t.
balance between e"ciency and e!ectiveness.

2 RELATEDWORK
In this section, we $rst introduce how Deep NLP models extract
text embeddings, discuss their application in ranking, and then
introduce the status of ranking model productionization.

2.1 Deep NLP based Ranking Models
There are two categories of deep NLP based ranking mod-
els: representation based and interaction based models. Repre-
sentation based models learn independent embeddings for the
query and the document. DSSM [13] averages the word embed-
dings as the query/document embeddings. Following this work,
CLSM/LSTM-RNN [20, 26] encodes word order information using
CNN[16]/LSTM[12], respectively. All these three works assume
that there is only one $eld on the document side, and the docu-
ment score is the cosine similarity score of the query/document
embedding. NRM-F [30] adds more $elds in the document side and
achieves better performance. One major weakness of representa-
tion based networks is the failure to capture local lexical matching,
since the text embedding, e.g., a 128 dimensional vector, cannot
summarize all the information in the original text.

To overcome the issue, interaction based models compare each
part of the query with each part of the document. In DRMM [11],
a cosine similarity is computed for each word embedding in the
query and each word embedding in the document. The $nal docu-
ment score is computed based on the pairwise word similarity score
histogram. K-NRM [28] and Conv-KNRM [7] extended DRMM by
kernel pooling and pairwise ngram similarity, respectively. Recently,
BERT [8] has shown superior performance [6, 18, 22] in ranking. It
is considered an interaction based model, since the query string and
document string are concatenated as one sentence, where trans-
former layer [27] compares every word pair in that sentence.

In experiments of previous works, interaction based methods
usually produce better relevance results than representation based
methods, at the cost of longer computation time introduced by the
pairwise word comparison.

2.2 Productionizing Deep Neural Ranker
Commercial search engines have a strict requirement on the serving
latency. Despite better relevance performance, the interaction based
ranking approaches are not scalable due to the heavy interaction
computation. Therefore, to our best knowledge, the representation
based approaches are generally used for production.

With representation based approaches, existing work uses em-
bedding pre-computing, either for documents [23, 29] or for mem-
ber pro$les (personalization) [10]. It requires a huge amount of
hard disk space to store the embedding, as well as a sophisticated
system design to refresh the embeddings when there are any docu-
ment/pro$le changes.

1www.github.com/linkedin/detext

(a) People Search (b) Job Search (c) Help Center

Figure 1: The #rst two #gures show the search result of
"cloud computing" in people search/job search, respectively.
The last #gure shows an example of query "ask for recom-
mendation" in help center search.

Table 1: Summary of three vertical searches.

People Job Help Center

No. of Unique Docs 600M 20M 2,700

3 SEARCH SYSTEMS AT LINKEDIN
There are many search ranking systems at LinkedIn. Figure 1 shows
three examples: people search that retrieves member pro$le docu-
ments; job search that ranks job post documents; and help center
search that returns FAQ documents. The number of unique doc-
uments in each search system is listed in Table 1. In general, the
common part of these ranking systems is to discover the relevant
documents, based on many hand-crafted features. Similar to other
vertical searches such as Yelp or IMDB, the documents at LinkedIn
are semi-structured with multiple $elds. For example, member pro-
$les contain headline, job title, company, etc. In general, the re-
trieval and ranking process needs to be $nished around one or
several hundred milliseconds.

The data from these three search verticals are di!erent in nature.
The queries and documents in help center search are the most
similar to natural language, i.e., the text data is more likely to be
a normal sentence with proper syntax, and majority queries are
paraphrases of the problem that users want to address in help
center search. People search is on the other end of the spectrum:
the queries and documents are mostly entities without grammar;
exact keywords matching such as company names is important. Job
search data lies in between.

4 DETEXT FRAMEWORK FOR BERT-BASED
RANKING MODEL

In this section, we propose a BERT-based ranking framework using
representation-based structure. The framework can be extended
to support other neural network components, such as CNN and
LSTM, for deep natural language processing. Speci$cally, we refer
to the BERT-based ranking model as DeText-BERT, and directly

www.github.com/linkedin/detext
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illustrate the model using the open sourced DeText framework as
shown in Figure 2.

We design the DeText framework to be (1) general and %exi-
ble enough to cover most use cases of ranking modules in search
systems; (2) able to reach a good balance between e"ciency and
e!ectiveness for practical use cases.
4.1 Architecture
As illustrated in Figure 2, given multiple source (queries, user pro-
$les) / target (documents) texts and traditional features, the DeText
framework contains 6 components: Token Embedding Layer, Text
Embedding Layer, Interaction Layer, Traditional Feature Processing,
Multilayer-Perceptron Layer, and Learning-to-rank Layer. Speci$-
cally, DeText-BERT model uses BERT as the text embedding layer.
In the rest of this section, we will illustrate the details of each
component.

Input Text Data. The input text data is generalized as source
and target texts. The source texts could be queries or user pro$les.
The target text could be documents. Both source and target could
have multiple $elds, which is di!erent frommost previous work [13,
20, 26], where only two $elds (query and document) are available.
There are several advantages of using multiple $elds: 1). enable
personalization with text $elds from user pro$les, and 2). achieve
better and more robust results.

Token Embedding Layer. The sequence of text tokens is trans-
formed into an embedding matrix E. For text withm tokens, the
matrix has a size ofd→m, whered is the number of token embedding
dimensions. Depending on the text encoding methods, di!erent
token granularities are used: in CNN/LSTM, the tokens are words;
in BERT, the tokens are subwords [24].

Text Embedding Layer. Under the representation based model
structure, embedding is extracted independently for each text $eld.
The embedding can be generated through various neural network
components for deep natural language processing, such as BERT,
CNN, LSTM, etc. The outcome of this layer is a d-dimensional
embedding vector. More details are discussed in Section 4.3 and 5.2.

Interaction Layer. The interaction between source and target
only happens after the text embedding is generated, which is the key
di!erence of representation based methods from interaction based
methods. Table 2 summarizes the di!erent interaction methods,
whereus /ut is the source/target $eld embedding, respectively. Note
that for every source and target pair, cosine similarity generates
one feature, while the Hadamard product/concatenation generates
many features (a vector).

Table 2: Interaction features.

Cosine similarity u↑
s ut

↓us ↓·↓ut ↓ one feature per source/target pair

Hadamard product uq · ud d features per source/target pair
Concatenation uq ↔ ud d features per text $eld

Traditional Feature Processing. The existing hand-crafted
features, such as personalization features, social networks features,
user behavior features, are usually informative for ranking. To inte-
grate them with deep NLP features, we use standard normalization

and elementwise rescaling [1] to better process the features:

x (1)i =
xi ↗ µ

ω

x (2)i = wx
(1)
i + b

where mean µ and standard deviation ω are pre-computed from
training data, andw and b are learned in the DeText-BERT model.

MLP Layer. Deep features, as the output of the interaction layer,
are concatenated with the traditional features as the $nal features,
followed by a Multilayer-Perceptron (MLP) [19] layer to compute
the $nal document score. The hidden layer in MLP is able to extract
the non-linear correlations of deep features and traditional features.

LTR Layer. The last layer is the learning-to-rank layer that
takes multiple target scores as input. DeText provides the %exibility
of pointwise, pairwise or listwise LTR [3], as well as Lambda rank
[4]. Binary classi$cation loss (pointwise learning-to-rank) can be
used for systems where click probability is important to model,
while pairwise/listwise LTR can be used for systems where only
relative position matters.

4.2 Flexibility of DeText
The DeText framework enables model $exibility to adapt to
demands of di!erent productions, in terms of input data layer
(multiple source/target $elds), text embedding layer (CNN vs
BERT), interaction layer (cosine/hadamard/concat), LTR (point-
wise/pairwise/listwise), etc.

By enhancing the model %exibility, we can optimize the model ef-
fectiveness while maintaining e"ciency. Firstly, representation
based methods are used to bound the time complexity. Secondly, the
%exibility of input data/interaction layer, together with traditional
feature handling, enable us to experiment and develop scalable
neural network models with strong relevance performance.

4.3 DeText-BERT for Ranking
To use BERT in ranking model, we follow the approach of $ne-
tuning on pretrained BERT model [8]: The BERT model is $rstly
pretrained on unsupervised data, and then $ne-tuned in ranking
framework with supervised clickthrough data. To extract the text
embedding, we use the embedding of a special token "[CLS]". The
source/target embedding will later go through the interaction layer
to generate deep features.

Previous work [22] shows that directly training a representation
based BERT ranking model does not yield good results. This is
because the BERT $ne-tuning requires a small learning rate (around
1e-5). Therefore, two optimizers are used in DeText, each with a
di!erent learning rate responsible for a di!erent part of the model.
For example, in our experiments (Section 6.1.4), we set 1e-5 for
BERT components, and 1e-3 for other components. Using this dual
learning rates strategy, a successful representation based ranking
model with BERT can be trained.

In order to reduce the online serving latency and capture domain-
speci$c semantics, we also pretrained a compact BERT model on
LinkedIn’s in-domain data, named as LiBERT. More detailed can be
found in Section 6.1.5.
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Figure 2: The DeText framework. In this #gure, there are two source #elds, and two target #elds.

Retrieval

Ranking (doc pre-computing)                

Index

Query DeText ModelDoc 
Embeddings

Ranked 
Documents

Offline Precomputed 
Embedding Store

(Regularly refreshed)

Doc IDs

Documents

Ranking (two pass ranking)

DeText Model
(2nd pass)

Top k 
Documents

Ranked 
Documents

MLP Model
(1st pass)

Figure 3: Document embedding pre-computing and two-
pass ranking.

4.4 Support CNN for Ranking in DeText
DeText framework can support CNN for deep natural language
processing in the text embedding layer. It is worth noting that we
use word tokens instead of triletters as in prior work [13, 26], since
the latter lifts the computation (by an order of the character length
of words). We follow the previous work [14] to generate the text
embedding from word embedding matrix E. Speci$cally, it uses a
one-dimensional CNN along the sentence length dimension. After
max-pooling, the resulting text embedding vector has f elements,
where f is the number of $lters.

5 ONLINE DEPLOYMENT STRATEGY
The major challenge of deploying deep neural models comes from
serving latency. As shown in Figure 3, two di!erent deployment
strategies, document pre-computing and two pass ranking, are de-
signed for BERT based models and CNN based models, respectively.
They are discussed in detail in the following subsections. Note that
the online deployment strategies only a!ect ranking components;
the document retrieval components stay the same.

5.1 DeText-BERT with Document Embedding
Pre-computing

The multiple transformer layers in BERT is computationally time-
consuming. Since DeText uses the representation based method,
we are able to adopt the document embedding pre-computing ap-
proach for search ranking, as shown in the boxed section (doc
pre-computing) in Figure 3. For o#ine, document embeddings are
pre-computed with BERT and saved in an embedding store, which is
a fast key-value store where key is the document id, and value is the
pre-computed document embedding vectors. The store is refreshed
on a regular basis (e.g., daily). For online, after document candidates
are retrieved from search index, the corresponding document ids
are used to fetch the document embeddings from pre-computed
embedding store. The bene$t of this approach is to have the heavy
BERT online computation only happen on the queries. It can signif-
icantly save online computation time, since the document texts are
much larger than the query texts. In the setting of 10 documents
for one query, the online latency can be reduced from hundreds of
milliseconds to tens of milliseconds with this deployment strategy.

5.2 DeText-CNN with Real-time Inference
DeText-CNN can be adopted with a di!erent online integration
strategy: real-time inference for both sources and targets. Compared
to document embedding pre-computing, real-time inference can
simplify online system design without the need of pre-computing
or refreshing document embeddings. Hence the real-time inference
could be a lightweight solution readily applied for many search
engines. In this paper, we show that real-time inference can be
achieved by (1) choosing a compact DeText structure without hurt-
ing relevance performance too much, and (2) two pass ranking that
reduces 99 percentile (P99) latency.

We $nd that a compact CNN structure with small dimensions
can perform well in our experiments (Table 7). This is mainly be-
cause traditional handcrafted features from the production systems
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Table 3: Online metrics de#nitions.

Metric De#nition

CTR@5 Proportion of searches that received a click at top 5 items
Session Success Rate Proportion of search sessions that received a click. A new

session is created if the user has no activity in help center
search for 30 minutes.

Job Apply Job search metric. Number of job applications from search.
Happy Path Rate Help center search metric. Proportion of users who searched

and clicked a document without using help center search
again in that day, nor creating a ticket.

already contain valuable information for ranking, so that the CNN
model can be focusing on the signals that are missing in the tradi-
tional features.

Even with a simple network, the CNN computation time grows
linearly with the number of retrieved documents. Therefore, we
use a two pass ranking schema to bound the latency (Figure 3, two
pass ranking box). The $rst ranker is a MLP [19] with one hidden
layer without the deep features, which is fast. After ranking, only
the top ranked hundreds of documents are sent to the DeText-CNN
model.2 This two pass ranking framework has several bene$ts: 1).
easy to implement and deploy; 2). the MLP ranker can $lter out a
large amount of irrelevant documents, which provides a relatively
small candidate set with high recall for CNN ranker; and 3). the
latency is bounded since CNN is applied to a small set of candidates.

6 EXPERIMENTS
In this section, we discuss the o#ine and online experiments of
DeText on search ranking tasks in English tra"c.

6.1 Experiment Setting
6.1.1 Datasets. The models are tested on three document ranking
datasets, i.e., people search, job search, and help center search. The
training data is collected from clickthrough data, which are sampled
from 2 month tra"c: 5 million queries for people search, 1.5 million
queries for job search, 340 thousand queries for help center. Both
development and test set have 50 thousand queries for each vertical
from the later month. One query usually has 10 or more documents.
Multiple document $elds are used as the target $elds of DeText:
1). In people search, the documents are the member pro$les; three
pro$le $elds are used: headline, current position, past position. 2).
In job search, the job post title, company name are used. 3). In help
center search, document title and example question (illustrates the
typical question for the document) are used.

6.1.2 Metrics. For both o#ine/online metrics, only relative met-
ric improvement over baseline models instead of absolute values
are presented, due to the company con$dential policy. The online
metrics are de$ned in Table 3.

6.1.3 Baseline Models. The production models are trained with
XGBoost [5]. The hyper-parameters (pairwise vs listwise, num-
ber of trees, etc) are optimized by both manual tuning and auto
hyper-parameter tuning, which are proven e!ective in LinkedIn’s
commercial search engines.

2Note that the top hundreds of documents are in one worker, while the online ranking
is distributed to many workers. Each worker is responsible for retrieving and ranking
the documents on its own shard.

For each vertical search, there are existing hand-crafted tradi-
tional features. These features contain valuable information for the
speci$c search engine veri$ed by both o#ine and online experi-
ments. The features can be categorized into three classes: 1). Text
matching features. It includes not only exact matching features such
as cosine similarity and jaccard similarity, but also semantic match-
ing features, i.e., named entity ids that are obtained by applying
in-house entity linking tools [25]; 2). Personalization features. For
example, in people search, the social network distance between the
searcher and the retrieved pro$les; in job search, the searcher’s title
overlapping with the job post title; and 3). Document popularity
features. For example, in people search, static rank of a member
pro$le; in job search/help center, the clickthrough rate of a job
post/FAQ document, respectively.

6.1.4 DeText Models. Two models are evaluated in this section:
DeText-LiBERT (BERT model pretrained on LinkedIn data) and
Detext-CNN. The default setting of DeText training is introduced
below, unless speci$ed otherwise: 1). Token embedding layer : For
DeText-CNN models, we always pretrain word embedding on the
LinkedIn textual training data with Glove [21], which leads to
comparable or better results than no word pretraining or existing
word embedding trained on out-domain data. For DeText-LiBERT
models, the word embeddings are from a BERT model pretrained
on LinkedIn data. 2). Text embedding layer: For DeText-CNN, the
CNN $lter window size is $xed as 3 for all text $elds (we do not
observe signi$cant gain from using multiple window sizes), and
the number of $lters is $xed as 64. For DeText-LiBERT, the model
structure is described in Section 6.1.5. 3). Interaction layer: The
best combination of "cosine similarity and hadamard" is used for
each dataset. 4). Feature processing layer: Both normalization and
element-wise re-scaling are performed on the traditional features.
5). MLP layer: one hidden layer of size 200. 6). Learning-to-rank
layer : we stick to listwise, since we $nd listwise ranking performs
better (people search and job search) or comparable (help center)
to pairwise ranking.

Regarding training, both DeText-CNN and DeText-LiBERT mod-
els are trained for 2 epochs. Adam optimizer [15] is used with learn-
ing rate 1e-3; for the BERT component, the learning rate is 1e-5.
Each minibatch contains 256 queries with associated documents.

6.1.5 BERT Pretraining on LinkedIn Data. The LinkedIn text data
has many domain-speci$c terms, such as "Pinterest", "LinkedIn",
resulting in a very di!erent vocabulary from Wikipedia, as used by
Google BERT (e.g., BERTBASE) pretraining. Thus, we pretrained a
LiBERT on domain speci$c data, and then $ne tuned the parameters
during DeText-LiBERT training.

In order to reduce model serving latency, we use a smaller archi-
tecture compared to Google’s BERT base model [8]: (6 layers, 512
hidden, 8 heads). The resulting model has 34 million parameters,
1/3 of Google’s BERTBASE model. We also use less data (around
1/5) than BERTBASE model, 685 million words vs 3.3 billion words.
The statistics of LinkedIn data is listed in Table 4. Although LiB-
ERT pretraining is conducted in an unsupervised learning manner,
we collected pretraining data from the time period prior to the
three verticals’ training data collection period, to ensure there is
no potential data leaking bias.
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Table 4: LinkedIn data for BERT pretraining.

Data Source Description # Words

Search queries Query reformulation pairs 204M
Member pro$les Member headlines and summaries 98M

Member position titles and descriptions 105M
Job posts Job titles and descriptions 217M
Help center Queries and doc titles 61M

Table 5: O!line NDCG@10 score percentage lift in three searches
over the production baseline XGBoost. † and ‡ denote statistically
signi#cant improvements at p < 0.05 using a two-tailed t-test over
XGBoost and DeText-CNN, respectively.

Models People Search Job Search Help Center

DeText-MLP ↗0.07% +0.05% +0.15%
DeText-CNN +3.02%† +4.65%† +11.56%†

DeText-LiBERT +3.38%†‡ +6.14%†‡ +13.94%†‡

Table 6: General BERT vs in-domain BERT on NDCG@10.

Model People Search Job Search Help Center

DeText-CNN +3.02% +4.65% +11.56%

DeText-BERTBASE +3.08% +3.60% +13.80%
DeText-LiBERT +3.38% +6.14% +13.94%

6.2 Search Ranking Experiments
6.2.1 O!line Experiments. All the relative percentage lift is calcu-
lated w.r.t the production baseline model.
Overall: Table 5 summarizes the o#ine NDCG percentage lift in
the three search datasets. To understand the impact of deep NLP on
text data, we included one baselinemodel DeText-MLP (DeText with
only MLP and LTR layers on traditional features). Since DeText-
MLP does not use any text embedding, it has comparable results as
XGBoost, which is also observed in previous works [17]. For DeText-
CNN, it consistently outperforms the strong production baseline
model by a large margin. DeText-LiBERT is able to further improve
the NDCG scores. The performance of DeText-CNN/DeText-LiBERT
shows that deep learningmodels are able to capture a lot of semantic
textual matching, hence a necessary complement to the existing
hand-crafted features.

Meanwhile, it is worth noting that in Table 5 deep learning
models achieve the largest improvement on help center, followed
by job search and people search. This is mainly caused by the genre
of the data, as discussed in Section 3: 1). In the help center, there
are many paraphrases of the same scenarios, for example, query
"how to hide my pro$le updates" to FAQ document "Sharing pro$le
changes with your network". 2). In people search, exact matching
is much more important as compared to the other two searches,
for example, if the query contains the company word "twitter",
generally we should not return a member pro$le who works at
"facebook", even though the word embedding of the two companies
could be similar. 3). Job search has less paraphrasing than help
center, but more search exploration compared to people search.
LiBERT vBERTBASE: The impact of pretrained BERT on LinkedIn
data is evaluated and shown in Table 6. In people search and
job search, DeText-LiBERT signi$cantly outperforms google’s
BERTBASE, i.e., DeText-BERTBASE, which should be attributed to

Table 7: Number of CNN #lters in DeText-CNN on NDCG@10.

#Filters People Search Job Search Help Center

64 +3.02% +4.65% +11.56%
128 +3.07% +4.81% +11.94%
256 +3.10% +4.82% +12.37%
512 +3.16% +4.92% +12.74%

Table 8: Text embedding interaction inDeText-CNNonNDCG@10.

Interaction People Job Help Center

cosine +2.67% +4.25% +11.02%
cosine, hadamard +3.02% +4.65% +11.56%
cosine, concat +2.39% +4.62% +10.09%
cosine, hadamard, concat +2.84% +4.73% +11.49%

Table 9: Traditional features for DeText-CNN models on
NDCG@10. The #rst row does not use any traditional features.

Trad-ftr Rescale Norm People Job Help Center

✁ ✁ ✁ ↗4.52% ↗9.98% +11.07%
✂ ✁ ✁ +2.31% +3.17% +11.13%
✂ ✁ ✂ +2.47% +3.44% +11.55%
✂ ✂ ✁ +2.71% +4.49% +11.24%
✂ ✂ ✂ +3.02% +4.65% +11.56%

Table 10: The impact of using multiple #elds. In the single target
#eld setting, the most important #eld is used: headline for people
search and job post title for job search. In this experiment, all the
traditional features are excluded. Note that DeText-CNN with a sin-
gle target #eld is a special version of CLSMmodel [26] that operates
on words.

Model ##elds People Job

DeText-CNN (CLSM on words) single ↗5.20% ↗12.83%
DeText-LiBERT single ↗3.14% ↗10.30%
DeText-CNN multiple ↗4.52% ↗9.98%
DeText-LiBERT multiple ↗2.51% ↗7.20%

the pretraining on in-domain data. In the help center where vo-
cabulary and language are closer to Wikipedia, LiBERT can still
achieve comparable results. It is worth noting LiBERT has only 1/3
of the parameters of BERTBASE.
Limit of CNN: To better understand the trade-o! on DeText-CNN
models w.r.t. e"ciency and e!ectiveness, we experimented with
di!erent numbers of CNN $lters, shown in Table 7. We observed
with a large number of $lters, the gain on people and job search
is relatively small (less than +0.4%). This is probably because the
powerful hand-crafted features on people/job search are already
integrated in the DeText model. Based on the results, we decided
to adopt the CNN model with 64 $lters in production to reduce the
online serving latency.
Text Embedding Interaction: Table 8 shows the impact of di!er-
ent text embedding interaction methods. We used cosine similarity
as a baseline, and gradually added features computed by other in-
teraction methods. The experiments show that using both cosine
similarity and hadamard product features can produce the best or
2nd best results.
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Table 11: Online experiments of DeText-CNN and DeText-LiBERT.

Search Model Metrics Percentage Lift

People search DeText-CNN CTR@5 +1.13%
Session Success Rate neutral

DeText-LiBERT CTR@5 +1.56%
Session Success Rate +0.23%

Job search DeText-CNN CTR@5 +3.16%
Job Apply +0.73%

Help center DeText-CNN Happy Path Rate +15.0%
Session Success Rate +6.1%

DeText-LiBERT Happy Path Rate +26.1%
Session Success Rate +11.1%

Traditional Features:We evaluated the importance of processing
traditional features, as shown in table 9. The $rst row, where no
traditional features are used, proves that the traditional features are
crucial in people/job search to capture social networks and person-
alization signals. In addition, both feature element-wise rescaling
and normalization techniques are helpful; applying them together
yields the best results.
Multiple Fields: Table 10 shows the impact of multiple document
$elds (using all the $elds described in Section 6.1.1). To provide a
dedicated comparison, we excluded the traditional features in this
experiment. The results demonstrate that using multiple document
$elds can signi$cantly improve the relevance performance. This
is a practical solution for many real-world applications, since the
documents in vertical search engines could be semi-structured with
many text $elds containing additional valuable information.

6.2.2 Online Experiments. Weperformed online experiments in the
production environment with model candidates showing promis-
ing o#ine performance. The experiments are conducted with each
model under at least 20% tra"c for more than two weeks, and the
best models are later fully ramped to production. All reported met-
rics are statistically signi$cant (p-value < 0.05) over the production
baseline XGBoost.

For LiBERT models, document embeddings are refreshed daily.
However, in job search, there are many new job postings on an
hourly basis, which requires the embedding precomputing in amore
frequentmanner such as near-line update. Due to the computational
resources and product priority, we leave the online experiment of
DeText-LiBERT on job search to future work.

Table 11 summarizes the experiments of DeText-CNN/DeText-
LiBERT on three search engines. From CTR@5 on people and job
search, we observed a similar trend in online/o#ine metrics: the
improvement on job search is larger than on people search. Fur-
thermore, DeText-LiBERT is consistently better than DeText-CNN
in people search and help center, indicating the importance of con-
textual embedding on capturing deep semantics between queries
and documents in search.

6.2.3 Latency Performance. To better understand the latency per-
formance, the o#ine P99 latency on people search is provided in
Table 12. Similar patterns on job search and help center are ob-
served, and they are not presented due to limited space. For each
worker, there are thousands of documents to score. The CNNmodel

Table 12: The latency at 99 percentile on people search.

Model Deployment Strategy Time

DeText-CNN People all-decoding +55ms
DeText-CNN People two pass ranking +21ms
DeText-LiBERT people doc pre-computing +43ms
DeText-BERTBASE people doc pre-computing +71ms

Table 13: O!line experiments of DeText-CNN on job recommenda-
tion and query auto completion datasets. Both improvements are
statistically signi#cant at p < 0.05.

Tasks Metrics Percentage Lift

Job Recommendation AUC +3.01%
Query Auto Completion MRR@10 +4.72%

in the two pass ranking will score hundreds of documents. All num-
bers are computed by a Intel(R) Xeon(R) 8-core CPU E5-2620 v4 @
2.10GHz machine and 64-GB memory.

We also compared with another variant, all-decoding, that is
to score all the retrieved documents on the %y. By comparing the
$rst two settings in Table 12, it proves two pass ranking is e!ective
at reducing the P99 latency. Meanwhile, the online A/B test does
not show signi$cant relevance di!erence between all-decoding and
two pass ranking strategies.

With the document precomputing strategy, we are able to fully
ramp the DeText-LiBERT models to production within latency
requirements. In addition, we are interested in the LiBERT per-
formance w.r.t. BERTBASE. Our experiments suggest that DeText-
LiBERT is faster than DeText-BERTBASE, due to the smaller model
structure of the former.

6.3 Extension of DeText to Other Tasks
In this section, we show the great potential of applying DeText to
applications beyond search ranking. We conducted extra experi-
ments on two additional ranking tasks: job recommendation and
query auto completion from job search.

For job recommendation, we model the job application probabil-
ity. The input is a tuple of user id, job post id, and whether the user
applied for the job or not. The source $elds are from user pro$les,
including headline, job title, company, and skill. The target $elds
are from job posts, including job title, job company, job skill, and
job country. We used logistic regression as a baseline that is close
to production setting, and evaluated with AUC [9] metrics. For fair
comparison, point-wise ranking (binary classi$cation) is used with
no hidden layer of MLP in DeText. Traditional features are kept the
same as in the baseline model.

For query auto completion, the source $elds are from member
pro$les, including headline, job title, and company; the target is the
completed query. The baseline model is XGBoost with traditional
hand-crafted features. We used the same set of traditional features
in DeText with listwise LTR, and evaluated with MRR@10 [2],
which is the reciprocal of the rank position of the correct answer.

Table 13 shows the o#ine results. DeText outperforms the base-
line models in both tasks by a large margin, indicating that DeText
is %exible enough to be applied in other ranking tasks.
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7 LESSONS LEARNED
We have conducted various experiments on several ranking tasks,
where multiple practical methods are used regarding o#ine rele-
vance, online deployment, latency optimization, etc. In this section,
we summarize the interesting $ndings and practical solutions into
lessons, which could be helpful for both academic and industry
practitioners who apply deep NLP models for ranking tasks.
Deep NLP model performance w.r.t. language genre. Deep
NLP models, especially BERT, are strong at handling paraphras-
ing. Help center is a good $t, since the queries are close to natural
language with rich variation. For people search where queries are
mostly named entities, the improvement of both CNN and BERT is
smaller. Job search lies in between.
Pretraining BERT on in-domain data makes a big relevance
di!erence. The common practice of using BERT is to pretrain on
general domain such as Wikipedia, and then $ne-tune it for a spe-
ci$c task. Our experiments suggest that for vertical search systems,
it is better to pretrain BERT on in-domain data. Table 6 shows that,
with only 1/3 of the parameters of BERTBASE, LiBERT signi$cantly
outperforms BERTBASE on people search and job search, while
reaching a similar performance on help center.
Handling traditional features. Production models are strong
and robust with many hand-crafted traditional features. We ob-
served that 1). after carefully handling these features (Table 9), deep
ranking models can achieve better performance than the produc-
tion models. 2). When combining the traditional features with the
BERT model, di!erent learning rates should be used.
Latency reduction solutions. Latency is one of the biggest chal-
lenges to productionize deep learning models, especially the search
ranking tasks that involve many documents for one search. In this
paper, we present several e!ective solutions:

• For heavy models such as BERT, document pre-computing
can save a large amount of computation. Note that the pre-
requisite is representation based structure.

• With two pass ranking, we can deploy a compact CNN based
ranking model for real time inference in production for both
queries and documents.

• Pretraining a BERT model on in-domain data can maintain
the same level of relevance performance, while signi$cantly
reducing computation.

8 CONCLUSIONS
In this paper, we propose the DeText (deep text) ranking frame-
work with BERT/CNN based ranking model for practical usage in
industry. To accommodate the requirements of di!erent ranking
productions, DeText allows %exible con$guration, such as input
data, text embedding extraction, traditional feature handling, etc.
These choices enable us to experiment and develop scalable neural
network models with strong relevance performance. Our o#ine
experiments show that DeText-LiBERT/DeText-CNN consistently
outperforms the strong production baselines. The resulting models
are deployed into three vertical searches in LinkedIn’s commercial
search engines.
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