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ABSTRACT

Regional weather forecasting is a critical problem for localized climate adaptation,
disaster mitigation, and sustainable development. While machine learning has
shown impressive progress in global weather forecasting, regional forecasting
remains comparatively underexplored. Existing efforts often use different datasets
and experimental setups, limiting fair comparison and reproducibility. We introduce
IndiaWeatherBench, a comprehensive benchmark for data-driven regional weather
forecasting focused on the Indian subcontinent. IndiaWeatherBench provides a
curated dataset built from high-resolution regional reanalysis products, along with
a suite of deterministic and probabilistic metrics to facilitate consistent training
and evaluation. We establish strong baselines by adapting state-of-the-art global
models, including FourCastNet, Pangu-Weather, GraphCast, and Stormer, to the
regional domain. To enable this adaptation, we propose two simple yet effective
boundary conditioning strategies: boundary forcing and coarse-resolution condi-
tioning. We conducted a thorough empirical evaluation of these baselines under
different settings and metrics, complemented by a case study on predicting extreme
heatwaves in India. While focused on India, we designed IndiaWeatherBench to
be easily extensible to other geographic regions. We will open-source all raw and
preprocessed datasets, model implementations, and evaluation pipelines to promote
accessibility and future development in regional weather forecasting research.

1 INTRODUCTION

The increasing frequency, intensity, and impact of extreme weather events such as heatwaves,
floods, cyclones, and droughts underscore the urgent need for accurate and actionable weather
forecasts in a changing climate. These forecasts are especially critical at the regional and local
level, where governments, businesses, and communities make day-to-day decisions that depend on
reliable forecasts. Traditionally, weather and climate modeling have relied on numerical methods,
which simulate the evolution of the atmosphere by solving complex systems of partial differential
equations over discretized spatial grids (Lynch, 2008; Bauer et al., 2015). While these numerical
weather prediction (NWP) models have become indispensable tools in modern meteorology, they
face persistent limitations of significant computational cost and challenges in accurately representing
local geographical features and subgrid-scale processes (Stensrud, 2009).

In recent years, machine learning (ML) has emerged as a powerful alternative or complement to
traditional physics-based models. Leveraging large-scale reanalysis datasets and advances in deep
learning architectures, data-driven approaches have demonstrated impressive performance in various
forecasting tasks – from nowcasting (Ravuri et al., 2021; Sønderby et al., 2020; Andrychowicz et al.,
2023), medium-range weather forecasting (Weyn et al., 2020; Rasp & Thuerey, 2021; Keisler, 2022;
Pathak et al., 2022b; Bi et al., 2022; Lam et al., 2023; Nguyen et al., 2023c; Chen et al., 2023b;a; Price
et al., 2024), to climate downscaling (Baño Medina et al., 2020; Liu et al., 2020; Nagasato et al., 2021;
Rodrigues et al., 2018; Sachindra et al., 2018; Vandal et al., 2019) and emulation (Kochkov et al.,
2023; Watson-Parris et al., 2022; Yu et al., 2023). These models offer significantly faster inference and
increasingly competitive skill scores, especially when trained on high-quality historical data. However,
much of this progress has been concentrated at the global scale, largely driven by the availability
of standardized, accessible benchmarks such as WeatherBench (Rasp et al., 2020), WeatherBench
2 (Rasp et al., 2023), and ChaosBench (Nathaniel et al., 2024). These benchmarks have played a
pivotal role in establishing reproducible baselines, unified metrics, and community-wide leaderboards,
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catalyzing rapid progress in model development. In contrast, regional weather forecasting remains
comparatively underexplored in the ML community, despite its importance to real-world climate
adaptation and policy planning. Moreover, regional meteorological agencies often maintain higher-
quality and higher-resolution datasets than global reanalysis systems due to their focused data
assimilation over limited geographic areas, which presents a promising opportunity for more accurate,
fine-grained forecasting (Kaiser-Weiss et al., 2019). Yet existing regional forecasting efforts often rely
on bespoke datasets, varying spatial resolutions, and inconsistent evaluation protocols (Oskarsson
et al., 2023; Pathak et al., 2024; Qin et al., 2024). As a result, models are trained and tested in
incompatible settings, making fair comparison difficult and limiting the development of future
methods. The lack of a unified framework for regional forecasting represents a significant bottleneck
to scientific progress and real-world deployment in climate-sensitive regions.

To bridge this gap, we introduce IndiaWeatherBench, a comprehensive and open benchmark for
data-driven regional weather forecasting focused on the Indian subcontinent. We chose India as our
region of interest not only for its immense societal relevance – home to over 1.4 billion people whose
lives are closely tied to weather-sensitive sectors such as agriculture, water management, and disaster
preparedness, but also for the scientific challenges it poses. The Indian region features extraordinary
climatic diversity, ranging from arid deserts and high mountains to tropical rainforests and monsoon
coasts, creating highly heterogeneous and dynamic weather patterns that are difficult to capture using
coarse global models. To support robust model development in this complex setting, we built Indi-
aWeatherBench upon the IMDAA (Ashrit et al., 2020) regional reanalysis dataset that provides 12-km
spatial resolution and hourly observations tailored to Indian monsoon dynamics. IndiaWeatherBench
offers a preprocessed version of IMDAA with 20 years of multi-channel atmospheric states at 6-hour
intervals, standardized train-validation-test splits, and a diverse suite of evaluation metrics for both
deterministic and probabilistic settings. To establish strong and diverse baselines, we implement a
broad range of advanced architectures, including Graphcast (Lam et al., 2023), Pangu-Weather (Bi
et al., 2022), FourCastNet (Pathak et al., 2022b), and Stormer (Nguyen et al., 2023c), along with
various boundary conditioning strategies and training objectives.

While geographically focused on India, IndiaWeatherBench is designed to be modular and extensible
to other regions and datasets. All data preprocessing pipelines, model implementations, and evaluation
code are fully open-sourced to foster transparency, reproducibility, and broad community participa-
tion. By providing the first standardized and reproducible testbed for regional ML-based weather
forecasting over India, IndiaWeatherBench aims to accelerate the development of high-resolution and
accurate models for high-impact, regional-scale weather prediction.

2 RELATED WORK

Deep learning for weather forecasting Deep learning has rapidly transformed weather forecasting
by providing accurate and efficient solutions across a range of prediction tasks. Models such as
Pangu (Bi et al., 2022), Graphcast (Lam et al., 2023), and Stormer (Nguyen et al., 2023c) have
surpassed traditional numerical systems like the IFS in medium-range forecasting, while others
like MetNet (Sønderby et al., 2020) and NowcastNet (Zhang et al., 2023) have pushed the state of
the art in nowcasting. These advances span a diverse set of architectures, including convolutional
models (Rasp & Thuerey, 2021), graph neural networks (Keisler, 2022), and Transformers (Pathak
et al., 2022a; Nguyen et al., 2023a; Chen et al., 2023c;a). Probabilistic forecasting has also gained
traction through methods based on ensembles (Kochkov et al., 2024; Lang et al., 2024) and generative
models (Price et al., 2024; Oskarsson et al., 2024; Couairon et al., 2024), which improve the modeling
of uncertainty and extreme weather events. These advances have been fueled by open-source datasets
and benchmarks. WeatherBench (Rasp et al., 2020; 2023) introduced a benchmark for global medium-
range forecasting, with well-defined metrics and a public leaderboard. Subsequent efforts like
ChaosBench (Nathaniel et al., 2024) and SubseasonalClimateUSA (Mouatadid et al., 2024) extended
this work to subseasonal-to-seasonal prediction. Beyond benchmarks, software libraries such as
ClimateLearn (Nguyen et al., 2023b) and Scikit-downscale (Hamman & Kent, 2020) have further
streamlined the development of ML models by offering tools for data access, preprocessing, training,
and evaluation. Despite progress, most of these efforts have centered on global forecasting.

Regional weather forecasting efforts Regional forecasting has recently gained growing interest
within the machine learning community. Hi-LAM (Oskarsson et al., 2023) was among the first to
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adapt global models like Graphcast (Lam et al., 2023) to the limited-area setting by incorporating
boundary forcing and introducing a hierarchical multi-scale graph structure designed for regional
prediction. Diffusion-LAM (Oskarsson et al., 2023) extends this framework by employing denoising
diffusion models to capture probabilistic uncertainty in regional forecasts. More recent works such
as YingLong-Weather (Xu et al.) and MetMamba (Qin et al., 2024) leverage transformer-based and
Mamba (Gu & Dao) architectures, respectively, and apply boundary forcing in a similar fashion to Hi-
LAM and Diffusion-LAM. Another complementary line of work incorporates global context directly,
conditioning the regional model on coarse-resolution global reanalyses or operational forecasts to
improve boundary coherence (Nipen et al., 2024; Pathak et al., 2024).

Despite these advances, there remains a lack of standardization across datasets, model inputs, and
evaluation protocols, which limits fair comparison. Specifically, Hi-LAM, Diffusion-LAM, and Nipen
et al. (2024) are trained on MEPS (Müller et al., 2017), a regional dataset covering parts of Scandinavia
and the Baltics; YingLong-Weather and Stormcast utilize the HRRR dataset (Dowell et al., 2022;
James et al., 2022) over the U.S.; and MetMamba uses ERA5 cropped to a regional domain. The
most relevant prior effort to ours is BharatBench (Choudhury et al., 2024), which curated a version of
IMDAA for regional forecasting over India. However, it supports only coarse (1.08◦) resolution, and
does not include strong baselines or standardized evaluations.

3 DATASET DETAILS

3.1 RAW DATA SOURCES

IndiaWeatherBench is built upon the Indian Monsoon Data Assimilation and Analysis (IMDAA)
reanalysis dataset (Ashrit et al., 2020), a high-resolution regional reanalysis developed through
collaboration between the Indian Ministry of Earth Sciences (MoES), the UK Met Office, and the
India Meteorological Department (IMD). IMDAA was designed specifically to support improved
understanding and forecasting of the Indian summer monsoon, one of the most complex and eco-
nomically consequential weather systems. IMDAA employs a 4D-Var data assimilation system
integrated within the Met Office Unified Model (UM), which ingests a wide array of observational
data including satellite and conventional sources. The full raw dataset includes over 57 meteorolog-
ical variables across 63 vertical pressure levels, spans the period from 1979 to 2018 (extended to
2020), and offers hourly data at a spatial resolution of 0.12◦ (approximately 12km), making it one
of the highest-resolution publicly available reanalysis datasets for the Indian subcontinent. The fine
spatial and temporal granularity of IMDAA makes it a valuable resource for machine learning-based
forecasting methods, which demands dense, high-quality training data.

Despite its scientific value, the raw IMDAA dataset presents several challenges for machine learning
researchers. First, the data is huge, spanning several terabytes, and downloading the data from its orig-
inal site (https://rds.ncmrwf.gov.in/) is non-trivial, requiring manual access procedures
and resulting in slow transfer speeds. Second, the raw data is stored in formats and conventions de-
signed for meteorological analysis, making it difficult to integrate directly into modern ML pipelines.
Third, the dataset lacks standard preprocessing infrastructure required for ML workflows such as
data normalization and predefined train-validation-test splits, complicating reproducibility and model
comparison. To make the dataset more accessible, IndiaWeatherBench provides a curated and
standardized subset of IMDAA optimized for machine learning applications.

3.2 INDIAWEATHERBENCH CURATED DATA

The IndiaWeatherBench benchmark includes a curated and preprocessed version of IMDAA that
focuses on a spatial domain ranging from 6◦N to 36.72◦N latitude and from 66.6◦E to 97.25◦E
longitude, corresponding to a 256 × 256 grid at the native 0.12◦ resolution. This area covers the
entirety of the Indian subcontinent and surrounding ocean basins that influence monsoon dynamics.
We reduce the size of the original data by temporally subsampling the raw data to 6-hour intervals (00,
06, 12, 18UTC), following the practice in WeatherBench 2 (Rasp et al., 2023). IndiaWeatherBench
includes 20 years of data, spanning from 2000 to 2019, which we divide into three non-overlapping
splits: training (2000–2017), validation (2018), and test (2019), corresponding to approximately
26,500, 1,500, and 1,500 samples, respectively. IndiaWeatherBench includes a total of 43 distinct
channels grouped into three categories: single-level variables, pressure-level variables at seven
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Table 1: List of variables included in IndiaWeatherBench, grouped by type. Pressure-level variables
are provided at seven vertical levels: 50, 250, 500, 600, 700, 850, and 925 hPa.

Category Variables
Single-level variables TMP (2m temperature)

UGRD (10m U wind), VGRD (10m V wind)
APCP (Total precipitation)
PRMSL (Mean sea level pressure)
TCDCRO (Total cloud cover)

Pressure-level variables TMP_prl (Temperature)
HGT (Geopotential height)
UGRD_prl (U wind), VGRD_prl (V wind)
RH (Relative humidity)

Static fields MTERH (Terrain height)
LAND (Land cover)

vertical levels (50, 250, 500, 600, 700, 850, and 925hPa), and static fields. Table 1 shows the full list
of variables available in IndiaWeatherBench. One year of data has a size of 16 GB.

To support a variety of machine learning workflows, IndiaWeatherBench supports two data formats:
Zarr and HDF5. The Zarr version preserves the full dataset structure in a cloud-friendly, array-based
format compatible with tools like Xarray, enabling convenient filtering, slicing, and visualization
across multiple variables and dimensions. This format is well-suited for scientific analysis and
prototyping. However, since Zarr stores each variable as a separate chunked array, reading multiple
variables at arbitrary time steps can be inefficient. To address this, IndiaWeatherBench also provides
a more ML-optimized HDF5 version. In this format, the dataset is pre-split into train, val, and test
directories, with each file corresponding to a single time step and containing all available variables.
This structure enables fast and selective loading of individual samples, reduces memory overhead,
and supports efficient batching and parallel data pipelines. The HDF5 format is compatible with
conventional data loaders and offers fine-grained control over variable selection and spatial subsetting,
making it the preferred choice for deep learning.

4 REGIONAL FORECASTING BASELINES

We formulate regional weather forecasting as the task of learning a function Fθ that maps historical
regional weather states and auxiliary information to future forecasts over the region. Let Xt ∈
RV×H×W denote the high-resolution regional weather state at time t, where H ×W is the spatial
resolution of the grid and V is the number of meteorological variables. The forecasting model takes
as input a history of past states Xt−h:t over a window of length h, along with auxiliary inputs St−h:t,
and predicts the next future state Xt+1:

Fθ : (Xt−h:t, St−h:t) −→ X̂t+1. (1)

The auxiliary input S provides additional context about the broader atmospheric state beyond the
interior regional domain. This information is necessary since regional models only observe a limited
area of the full weather system and may otherwise produce inconsistent or inaccurate forecasts due to
missing external influences. In practice, S can include high-resolution data at the boundaries of the
domain or coarser-resolution forecasts from a global model, which we will present in more detail in
Section 4.1. To generate longer forecasts, we apply the model autoregressively, repeatedly feeding
back the predicted state X̂t+1 as input in the next step until we reach the target lead time.

4.1 BOUNDARY CONDITIONING STRATEGIES

To account for the influence of atmospheric dynamics outside the regional domain, we explore
two distinct boundary conditioning strategies for regional forecasting. The first strategy, known as
boundary forcing, incorporates high-resolution data at the spatial boundaries of the region. In this
approach, the auxiliary information St represents the surrounding pixels that lie just outside the region
of interest at each time step t. We can wrap these boundary values St around the current regional
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state Xt to provide a single input to the model with better continuity of meteorological fields across
domain edges. This method is commonly used in existing data-driven methods (Oskarsson et al.,
2023; Larsson et al., 2025; Xu et al.) and aligns well with numerical weather prediction practices.
However, it requires the boundary information to be available at the same spatial resolution as the
regional model. In operational settings, this is only feasible if a global forecasting model exists at
high resolution, an assumption that may not hold for many regions due to computational cost.

The second strategy conditions the model on coarse-resolution global forecasts from existing opera-
tional systems (e.g., IFS, GFS, Graphcast) (Nipen et al., 2024; Pathak et al., 2024). In this approach,
St is a lower-resolution view of the global atmospheric state, which is cropped to the region of interest
with possibly surrounding pixels. We then interpolate the coarse-resolution input St to match the grid
size of Xt and concatenate them to form a single input to the model. This setup enables learning-based
fusion of interior and global context, allowing the model to account for synoptic-scale drivers while
preserving fine-scale variability. This strategy is highly applicable in real-world deployments, where
coarse global forecasts are readily available but high-resolution boundary values are not. However, it
requires the forecasting model to effectively integrate information from two distinct sources – interior
history and external global context, which can increase model complexity and training difficulty.

We note that in an operational setting, the auxiliary input St would typically be provided by a global
forecasting model. However, to simplify the benchmark setup and isolate the influence of the global
model, we use the ground-truth weather state for St during training and evaluation. This means using
the true boundary pixel values in the case of boundary forcing, and the true low-resolution global
state in the case of coarse-resolution conditioning.

4.2 NEURAL NETWORK ARCHITECTURES

We establish a strong set of baselines in IndiaWeatherBench, spanning convolutional, transformer,
and graph neural network architectures. Note that for Stormer and Graph-based models, we only use
their architectures and not their pretrained models.

UNet The UNet architecture was originally developed for biomedical image segmentation (Ron-
neberger et al., 2015). The model has a symmetric encoder-decoder structure with skip connections to
retain spatial information across different scales. UNet has proven effective in dense prediction tasks
in computer vision, making it a simple yet strong baseline for high-resolution regional forecasting.

Transformer-based models We consider three state-of-the-art transformer architectures: FourCast-
Net (Pathak et al., 2022b), Pangu-Weather (Bi et al., 2022), and Stormer (Nguyen et al., 2023c). The
three architectures differ mainly in the embedding layer and the transformer backbone. FourCastNet
and Pangu-Weather both use a simple linear patch embedding layer, while Stormer employs a cross-
attention embedding module that captures non-linear interactions between different input variables.
For the transformer backbone, FourCastNet uses Adaptive Fourier Neural Operator (AFNO) (Guibas
et al., 2021) that interleaves channel and spatial mixing, whereas Pangu-Weather uses a 3D version of
Swin transformer (Liu et al., 2022), and Stormer uses a standard transformer backbone.

Graph-based models We include GraphCast, a graph neural network model originally developed for
global weather forecasting (Lam et al., 2023). Graphcast encodes atmospheric states onto the nodes
of a multi-scale mesh graph, where each node represents a spatial location and each edge captures
spatial interactions. The graph is constructed by merging multiple levels of icosahedral meshes,
allowing the model to propagate information over both short and long distances. This multi-scale
structure enables GraphCast to capture meteorological phenomena across a wide range of spatial
scales. The Hierarchical Graph Neural Network (Hi) (Oskarsson et al., 2023) extends Graphcast by
replacing the merged mash with a level-wise hierarchy. By connecting different mesh resolutions
through vertical edges, Hi allows more structured and directional information flow from fine to coarse
and vice versa. This hierarchical design reduces artifacts observed in Graphcast and enhances the
model’s ability to integrate local details with broader spatial context, making it especially suitable for
regional forecasting tasks (Oskarsson et al., 2023).

4.3 TRAINING OBJECTIVES

In this benchmark, we adopt a dynamics learning formulation, where the model learns to predict the
increment between future and current states ∆Xt+1 = Xt+1 −Xt rather than directly outputting
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the next state Xt+1. During evaluation, we can obtain the actual next-state forecast by adding the
predicted increment to the initial condition: X̂t+1 = Xt + ∆̂Xt+1. This formulation follows the
practice in state-of-the-art models like GraphCast and Stormer, and has proven more effective than
next-state prediction. IndiaWeatherBench supports both deterministic and probabilistic forecasting.

Deterministic prediction For deterministic forecasting, we minimize the latitude-weighted mean
squared error between the predicted and ground-truth state increments. Let θ denote the model
parameters and ∆Xt+1 the true increment. The loss is defined as:

Ldeter(θ) =
1

V HW

V∑
v=1

H∑
i=1

W∑
j=1

L(i)
∥∥∥∆̂Xvij

t+1 −∆Xvij
t+1

∥∥∥2
2
, (2)

where L(i) = cos(lat(i))
1
H

∑H
i′=1

cos(lat(i′))
is a weighting function based on the latitude of row i to account for

the non-uniformity of gridding the spherical globe.

Probabilistic modeling. To model the uncertainty in regional dynamics, we adopt denoising diffusion
models from the EDM (Elucidated Diffusion Model) framework (Karras et al., 2022). These models
learn the conditional distribution pθ(∆Xt+1 | Xt−h:t, St−h:t) by reversing a predefined noising
process. During training, we corrupt the true increment ∆Xt+1 with Gaussian noise and train the
model to predict the clean signal from its noisy version using a score-based objective:

Lprob(θ) = Et,ϵ

[∥∥∥ϵ− ϵ̂θ(∆X
(s)
t+1, Xt−h:t, St−h:t)

∥∥∥2
2

]
, (3)

where ∆X
(s)
t+1 is the noisy increment at noise level s, and ϵ is the injected noise. The model learns to

denoise ∆X
(t)
t+1 by estimating the noise ϵ̂θ from the conditioning inputs. During inference, forecasts

are generated by sampling from the learned distribution using a reverse-time stochastic differential
equation (SDE). The EDM framework enables automatic tuning of sampling hyperparameters and
offers strong mode coverage for complex weather dynamics.

Together, these two training paradigms provide complementary capabilities: deterministic models are
fast and interpretable, while diffusion-based models provide calibrated probabilistic forecasts that are
essential for downstream risk-sensitive applications.

4.4 EVALUATION METRICS

To comprehensively assess model performance, we evaluate both the point prediction accuracy and
the probabilistic calibration of forecasts. Our benchmark supports four primary evaluation metrics:
Root Mean Square Error (RMSE), Anomaly Correlation Coefficient (ACC), Continuous Ranked
Probability Score (CRPS), and Spread/Skill Ratio (SSR). We detail these metrics in Appendix C.2.

5 EXPERIMENTS

We conduct extensive experiments to demonstrate the capabilities and flexibility of IndiaWeather-
Bench as a benchmark for regional weather forecasting. We train and evaluate four representative
architectures – UNet, Stormer, GraphCast, and Hi, under different boundary conditioning strategies
and training objectives. Our evaluation covers both overall forecasting accuracy and performance
under extreme weather conditions. Due to space constraints, we focus on the deterministic forecasting
results in the main text and defer the discussion of probabilistic forecasting results to Appendix D.4.
We additionally compare deep learning baselines with climatology in Appendix D.2.

Boundary conditioning details. For the boundary forcing strategy, we use a 10-pixel-wide boundary
around the regional domain at each time step. These boundary values are extracted from the ground
truth and wrapped around the interior regional state Xt to form a single input tensor. For the
coarse-resolution conditioning strategy, we use ERA5 (Hersbach et al., 2020) data as the external
low-resolution input during training. Specifically, for each time step, we crop ERA5 to cover the
Indian region, resulting in a 124× 124 grid, and then bilinearly interpolate it to match the 256× 256
resolution of IndiaWeatherBench. We use the same set of variables for both the regional and ERA5
inputs and concatenate them along the channel dimension. At test time, we also consider replacing
ERA5 with global forecasts from IFS to mimic an operational setting.

6
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Figure 1: Performance of baselines with boundary forcing across 9 key variables.

Training and evaluation details. We constrain the total parameter count of each baseline model to
between 25M and 35M to ensure a fair comparison across architectures. Please refer to Appendix C.1
for the complete hyperparameters of the baselines. We train all models using a consistent set of 39
input channels, which includes temperature at 2 meters, the u and v components of wind at 10 meters,
mean sea level pressure, and five pressure-level variables – geopotential height, temperature, u-wind,
v-wind, and relative humidity, each provided at seven vertical levels. We follow the standard data
splits defined in Section 3.2, and train each model for 100 epochs with a batch size of 32. We use
AdamW (Kingma & Ba, 2014) optimizer with a base learning rate of 2e− 4, using a 10-epoch linear
warmup, followed by a cosine decay schedule for the remaining 90 epochs. For model selection, we
evaluate the validation loss after each training epoch and use the model with the lowest validation loss
for testing. We use RMSE as the evaluation metric, and refer readers to Appendix D.3 for additional
metrics. We keep the same training and evaluation setting across all experiments.

5.1 BENCHMARK RESULTS

Figure 1 shows that under the boundary forcing setting, Stormer and Graphcast achieve the best
overall performance across most variables and lead times, consistent with their strong performance in
global weather forecasting. On the other hand, FCN and Pangu-Weather lag behind, indicating that
prior results in global forecasting may not directly translate to the regional setting. Hi, despite being
proposed as an improved hierarchical extension of Graphcast, underperforms its predecessor across
all variables. UNet performs competitively and is often within a small margin of the top performers.
While not designed specifically for weather forecasting, its simplicity and robustness make it a strong
baseline for high-resolution regional prediction.

In contrast, Figure 2 shows that under coarse-resolution conditioning, the ranking of methods shifts
significantly1. Most notably, Stormer becomes the worst-performing model, with forecasting error

1We ran into numerical instabilities with FCN, and thus did not include it in this setting.
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Figure 2: Performance of baselines with coarse-resolution conditioning across 9 key variables.
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Figure 3: Comparison of the two types of global data used for coarse-resolution conditioning.

growing rapidly over time across all variables. We hypothesize that this degradation stems from an
incompatibility between Stormer’s input tokenization scheme and the coarse-resolution conditioning
strategy. Specifically, we interpolate the global ERA5 input to the same spatial resolution as the
regional data and concatenate it along the channel dimension. Stormer then tokenizes this combined
input into patches, such that each token blends high-resolution regional context with upsampled
coarse global input. This mixing of incompatible spatial scales within each token likely disrupts the
attention mechanism, leading to poor generalization.

In the above experiment, we used the future ground-truth ERA5 data as the coarse-resolution
conditioning for the model during rollout, which is not realistic in an operational setting. To simulate
a real-world scenario, we replaced the ERA5 data with forecasts from the Integrated Forecasting
System (IFS) (Wedi et al., 2015). As shown in Figure 3, this change leads to a slight degradation in
performance for all models, which is expected due to the distribution shift between ERA5 reanalysis
and IFS forecasts. Crucially, the performance gap is small, demonstrating that our coarse-resolution
conditioning strategy is robust for operational deployment.
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Figure 4: 5-day temperature forecasts of different models initialized at 12UTC, 2019-05-25.

5.2 EXTREME WEATHER EVENTS

We evaluate the performance of different models during a record-breaking heatwave event in India
that occurred from May 25 to June 1, 2019. Figure 4 visualizes the 5-day temperature forecasts from
different models initialized at 12:00 UTC on May 25 and evaluated at 12:00 UTC on May 30. While
all models roughly capture the spatial pattern of surface temperature, there are notable differences in
accuracy and bias. Hi appears to produce the most realistic forecast, closely matching the ground truth
over Central and Northern India. Graphcast underestimates the temperature, particularly in Central
India. In contrast, Stormer overestimates the temperature in large parts of the domain, producing
overly hot forecasts that deviate from observed values.
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Figure 5: Avg. predicted and reference tem-
perature in Central India from 05-25 to 06-01.

These trends are consistent in Figure 5, which shows
the average predicted temperature over Central India
compared to the reference data at 12UTC for each
day between May 25 and June 1. Stormer and UNet
exhibit a strong warm bias throughout the period,
consistently overshooting the observed temperature,
while Graphcast shows a persistent cold bias. No-
tably, Hi tracks the temporal trend of the observed
temperature well and maintains a small error across
the forecast horizon, highlighting its potential ad-
vantage in predicting extreme events. These results
demonstrate that extreme events pose unique chal-
lenges and that model behavior can vary substantially
under rare conditions.

6 CONCLUSION

We introduced IndiaWeatherBench, a standardized dataset and benchmark for regional weather
forecasting over India. Built on the high-resolution IMDAA reanalysis, IndiaWeatherBench provides
a curated, ML-ready dataset along with diverse baselines spanning convolutional, transformer, and
graph-based architectures. Our benchmark supports multiple boundary conditioning strategies and
training objectives, enabling systematic comparisons under standard and extreme weather conditions.

Limitations and Future Work The current benchmark results do not include evaluation on precipi-
tation, an important variable for weather forecasting. Future work can extend IndiaWeatherBench
along three axes: (1) data – by incorporating more regional domains in addition to India, (2) models –
by including more advanced approaches specialized to regional forecasting, and (3) evaluations – by
supporting targeted metrics and validation protocols for precipitation, an important aspect of weather
forecasting for India.
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A LICENSES AND TERMS OF USE

We developed IndiaWeatherBench using the data from IMDAA, which belongs to the NCMRWF,
Ministry of Earth Science, Government of India. IMDAA is available under the CC BY-NC-SA 4.0
license (https://rds.ncmrwf.gov.in/privacy).

B BROADER IMPACTS

IndiaWeatherBench aims to advance the scientific and practical capabilities of regional weather
forecasting, with a specific focus on high-impact and climate-sensitive regions such as India. Accurate
regional forecasts are crucial for agriculture, disaster preparedness, water resource management,
and public health, especially in countries with large populations and vulnerable infrastructure. By
standardizing datasets, baselines, and evaluation protocols, IndiaWeatherBench enables reproducible
research, lowering the barrier for broader participation in atmospheric science from the machine
learning community. We encourage responsible and open use of this benchmark, and we release all
code and data under permissive licenses to foster accessibility and transparency.

C BENCHMARK DETAILS

C.1 BASELINE ARCHITECTURE DETAILS

For reproducibility and fair comparisons across architectures, we kept the parameter count of each
architecture from 30 to 35 million. Table 2, 3, 4, 5 show the exact hyperparameters we used for each
architecture.

Table 2: Default hyperparameters of UNet

Hyperparameter Meaning Value

Hidden channels Base number of hidden channels 64
Channel multipliers Channel multipliers per resolution stage [1, 2, 4]
Blocks per level Number of convolutional blocks per level 2
Use mid attention Use attention in the bottleneck False

Table 3: Default hyperparameters of GraphCast

Hyperparameter Meaning Value

Hidden size Hidden dimension for node features 512
MLP layers Number of layers in node MLP 1
Processor layers Number of graph message-passing layers 16
Aggregation type Aggregation method for messages Sum

Table 4: Default hyperparameters of Hierarchical GraphCast

Hyperparameter Meaning Value

Hidden size Hidden dimension for node features 128
MLP layers Number of layers in node MLP 1
Processor layers Number of graph message-passing layers 16

Table 5: Default hyperparameters of Stormer

Hyperparameter Meaning Value

Patch size Size of image patches 2
Hidden size Embedding dimension 512
Depth Number of transformer layers 8
Attention heads Number of self-attention heads 8
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C.2 EVALUATION METRICS

IndiaWeatherBench supports 4 standard metrics: Root Mean Square Error (RMSE) and Anomaly
Correlation Coefficient (ACC) for forecast accuracy, and Continuous Ranked Probability Score
(CRPS) and Spread/Skill Ratio (SSR) for probabilistic forecast calibration. In all metrics below,
we denote X and X̃ as the ground truth and forecast, respectively. We use H and W to denote the
latitude and longitude dimensions, respectively. We present the metrics for a single data point and a
single variable.

Root Mean Square Error (RMSE). RMSE is a standard metric for point forecasting that measures
the average squared difference between the predicted and true values. To account for the uneven
surface area of latitude-longitude grids, we apply latitude weighting:

RMSE =

√√√√ 1

H ×W

H∑
i=1

W∑
j=1

L(i)
(
X̃i,j −Xi,j

)2

, (4)

where L(i) is a latitude-based weighting function proportional to cos(ϕi), and ϕi is the latitude of
grid row i. RMSE captures the overall forecast accuracy at each grid point.

Anomaly Correlation Coefficient (ACC). ACC evaluates the spatial correlation between forecast
anomalies and ground-truth anomalies with respect to a climatological mean:

ACC =

∑
i,j L(i)X̃

′

i,jX
′

i,j√∑
i,j L(i)X̃

′2
i,j

∑
i,j L(i)X

′2
i,j

, (5)

where X̃
′
= X̃ − C and X

′
= X − C, with C denoting the climatology computed as the temporal

mean of the ground truth over a fixed historical window. We refer to Appendix D.2 for details on
climatology calculation.

Continuous Ranked Probability Score (CRPS). CRPS measures the quality of probabilistic fore-
casts by quantifying the distance between the predicted cumulative distribution function (CDF) and
the ground-truth observation. Following prior work, we use the following formulation:

CRPS = Ex∼pθ
[|x−X|]− 1

2
Ex,x′∼pθ

[|x− x′|] , (6)

where pθ is the model’s predictive distribution. The first term captures forecast error, while the second
term penalizes overdispersion. We note that both terms are latitude-weighted by L(i), which we omit
in the formulation for simplicity. Lower CRPS values indicate better-calibrated forecasts.

Spread/Skill Ratio (SSR). SSR compares ensemble spread to forecast skill. A well-calibrated
ensemble should have a spread that matches its error. We first compute the average ensemble spread:

Spread =

√√√√ 1

H ×W

H∑
i=1

W∑
j=1

L(i)Varm[Xi,j ] (7)

where Varm denotes the variance in the ensemble dimension. We then define SSR as:

SSR =
Spread

RMSEens
, (8)

where RMSEens is the RMSE of the ensemble mean. An SSR close to 1 indicates a well-calibrated
ensemble, while values significantly above or below 1 indicate over- or underdispersion.

D ADDITIONAL RESULTS

D.1 COMPARING DIFFERENT BOUNDARY CONDITIONING STRATEGIES

Figure 6 compares the performance of different baselines when using the two boundary conditioning
strategies. UNet, Graphcast, and Hi perform comparably or slightly better with coarse-resolution
conditioning relative to boundary forcing, but Stormer degrades noticeably. These results align
with our main results, and emphasize the importance of aligning architectural design with boundary
conditioning strategy, since what works well under one setup may fail under another.
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Figure 6: Comparison of the two boundary conditioning strategies with different architectures across
3 key variables at 72-hour lead time.
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Figure 7: RMSE of deep learning baselines with boundary forcing vs persistence and climatology.

D.2 MAIN RESULTS WITH CLIMATOLOGY AND PERSISTENCE

We compare the deep learning methods with climatology and persistence, two simple baselines com-
monly used in weather forecasting, to better evaluate their forecast skills. We calculate climatology
by taking the mean value of each time across the training set and predicting that to be the forecast for
the test year 2019. This means that for a particular day and time (e.g., December 4, 6:00 UTC), the
forecast is the mean of 18 values for the years 2000-2017 for that date and time.

D.3 ADDITIONAL METRICS

Figures 9 and 10 show the ACC score of the 4 deep learning baselines with two different boundary
conditioning strategies.
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Figure 8: RMSE of deep learning baselines with coarse conditioning vs persistence and climatology.

D.4 PROBABILISTIC FORECASTING

In addition to deterministic forecasting, IndiaWeatherBench also supports probabilistic forecasting
with diffusion models. We followed the diffusion formulation in Graphcast, which we refer to the
original paper (Lam et al., 2023) and Karras et al. (2022) for more details. We trained the diffusion
model using the same training and optimization details as the deterministic models. After training,
we sampled from the model using DPMSolver++2S (Lu et al., 2022) with sampling hyperparameters
specified in Table 6.

Table 6: Noise schedule hyperparameters

Name Notation Value, sampling Value, training

Number of ensemble members N 50 –
Maximum noise level σmax 80 88
Minimum noise level σmin 0.03 0.02
Shape of noise distribution ρ 7 7
Number of noise levels N 20 20
Stochastic churn rate Schurn 2.5 2.5
Churn maximum noise level Smax 80 80
Churn minimum noise level Smin 0.75 0.75
Noise level inflation factor Snoise 1.05 1.05

Given limited time and resources, we only benchmark UNet and Stormer with boundary forcing for
probabilistic forecasting. Figures 11 and 12 show the performance of the two models using CRPS and
SSR as the metric, respectively. The SSR score shows that the model is under-dispersive in almost all
variables except for TMP, with Stormer being more severe. Future work can explore various ways to
improve the probabilistic framework, including but not limited to better diffusion training, adding
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Figure 9: ACC of deep learning baselines with boundary forcing vs persistence and climatology.
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Figure 10: ACC of deep learning baselines with coarse conditioning vs persistence and climatology.

random noise to the initial conditions to improve dispersion, or using the ERA5 Ensemble of Data
Assimilations (EDA) (Isaksen et al., 2010) for initial conditions.
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Figure 11: CRPS performance of UNet+diffusion with boundary forcing for probabilistic forecasting.
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Figure 12: SSR performance of UNet+diffusion with boundary forcing for probabilistic forecasting.
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