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ABSTRACT

Most existing time series forecasting methods assume shared statistical consis-
tencies across variables, such as periodicity. This assumption enforces symmet-
ric modeling with shared encoders, yet real-world datasets often reveal distinct
primary cycles for different variables. To address this gap, we introduce the
Temporal Convolutional Association Block (TCAB), a flexible temporal convo-
lution module that combines the strengths of attention and convolution to enable
efficient asymmetric modeling of temporal and causal relationships. TCAB per-
forms patch-wise equivalent sequence modeling by replacing attention score com-
putation with learnable weights while preserving relative positional information.
Building on TCAB, we propose the Temporal Convolutional Association Network
(TCAN), a framework designed to capture asymmetric long-term dependencies
and causal relationships across variables and patches. Extensive experiments on
seven real-world datasets demonstrate that TCAN consistently outperforms state-
of-the-art methods, validating the effectiveness of TCAB and providing a robust
solution for efficient asymmetric modeling in multivariate time series forecasting.
The code is available at https://anonymous.4open.science/r/TCAN-8F21.

1 INTRODUCTION

Time series forecasting (TSF) has attracted significant attention due to its broad applications in
domains such as finance, traffic, and energy management (Lim & Zohren, [2021} |[Miller et al., 2024;
Sezer et al.,[2020; Jiang et al., 2023 |Deb et al., | 2017). This potential has driven the development of
a wide range of approaches, including mathematical, statistical, and deep learning methods.

Recent advances have primarily focused on modeling long-term temporal dependencies and captur-
ing inter-variable relationships. Transformer- and MLP-based models have achieved notable success
by incorporating domain-specific properties of time series.

Inspired by progress in natural language processing (NLP) and computer vision (CV), more so-
phisticated designs have also been applied to TSF. For instance, temporal convolutional network
(TCN)-based methods currently frame long-term sequence modeling as the challenge of expanding
the effective receptive field (ERF). To address this, extensive efforts have been invested in exploring
state-of-the-art (SOTA) techniques to increase network depth and width (Wang et al., [2023; [Luo
& Wang, 2024; (Cheng et al., 2024). Another research direction contrasts channel independence
(CI) with channel dependence (CD). CI methods (Nie et al., 2023 Zhou et al., 2023)) ignore cross-
variable dependencies and predict each variable separately using multiple heads, while CD methods
explicitly model inter-variable dependencies and employ a shared prediction head to forecast all
variables (Liu et al., [2024; Wu et al., 2023)).

Despite this progress, most studies assume that variables share certain statistical consistencies, such
as periodicity. Under this assumption, they use a single encoder, like a weakly symmetric function,
to jointly model temporal dynamics and inter-variable dependencies, thereby enforcing periodic
alignment across variables. However, as shown in Figure [T} when we apply patch-wise attention
independently to each variable and visualize the weight relationships between the first patch and
the others, the observed periodic patterns contradict this assumption. An alternative strategy is
to model temporal dependencies and causal relationships with independent parameters, which we
term asymmetric modeling to distinguish it from CI. Appendix [A.T|provides further analysis of the
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Figure 1: Visualization of patch-wise attention weights on ETTm1. The input sequence of length
336 is divided into 42 patches, with darker colors representing stronger weights. Independent param-
eter modeling reveals variations in weight magnitudes across rows, reflecting the distinct periodic
patterns of each variable.

primary periods in the datasets and confirms that periodicity differs across datasets and variables,
underscoring the need for asymmetric modeling.

In summary, the central challenge of multivariate time series modeling is to achieve efficient se-
quence modeling while maintaining parameter independence. Two natural perspectives are atten-
tion mechanisms and convolutional cardinality. Attention has been widely adopted in TSF due to
its strong capacity for sequence modeling. In particular, patch-wise attention 2023),
which segments sequences into patches and weights their interactions, has emerged as a robust
baseline. However, attention suffers from high computational cost and sensitivity to positional en-
codings (Chen et all 2021}, [Zhou et al., 2022} Wu et all, 2021} [Xu et al.| 2021). Convolution, on
the other hand, incorporates cardinality by dividing channels into groups and applying independent
convolutions, while inherently encoding relative positional information. This property complements
the limitations of attention 2021). Combining the strengths of both paradigms therefore
offers a promising direction for advancing sequence modeling in TSF.

Building on these insights, we propose a novel framework centered on the Temporal Convolutional
Association Block (TCAB), where the Patch-wise Association Block (PAB) and the Variable-wise
Association Block (VAB) represent two variants of its application. TCAB leverages group convolu-
tion to realize a patch-wise equivalent yet efficient attention mechanism by replacing attention score
computation with learnable weights. This design enables asymmetric modeling of time series. As
shown in Figure [2] TCAB independently processes each variable and captures inter-patch temporal
dependencies at each time step, thereby modeling asymmetric causal relationships and long-term
dependencies across both variables and patches. Based on TCAB, we further develop the Tem-
poral Convolutional Association Network (TCAN), which achieves SOTA performance on seven
real-world datasets. Our main contributions are summarized as follows:

* To the best of our knowledge, this is the first work to reveal that existing TSF approaches rely on
symmetric modeling, such as sharing a single encoder across variables, which conflicts with the
empirical observation that variables in real-world datasets do not share consistent periodicity.

* We propose TCAB, a module that combines the strengths of attention and convolution, retaining
the modeling capacity of attention while supporting asymmetric modeling. Building on TCAB,
we introduce TCAN, which captures asymmetric temporal and causal relationships effectively.

* We conduct extensive experiments on seven real-world datasets, demonstrating the state-of-the-art
performance of TCAN, validating the effectiveness of TCAB, and providing a concrete example
of successful asymmetric modeling.

2 RELATED WORK

2.1 TRANSFORMER-BASED METHODS

In recent years, Transformer-based models have received considerable attention in TSF. We
briefly review several representative approaches. Autoformer (Chen et al} [2021) introduces
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Figure 2: Workflow of TCAB with PAB as an example. Details are provided in the Appendix

auto-correlation mechanisms and moving averages to enhance temporal pattern modeling. FED-
former (Zhou et al, [2022) employs frequency-domain representations with Fourier transforms to
achieve linear computational complexity. PatchTST (Nie et al., |2023)) applies a patching strategy
to strengthen local temporal semantics and reduce attention costs. iTransformer (Liu et al., [2024)
inverts the standard Transformer architecture to better capture latent temporal dependencies. Sim-
pleTM (Chen et al., 2025) improves attention performance through tokenization methods inspired
by signal processing. Transformer-based models have been widely studied, with efforts directed
toward enhancing temporal dependency modeling and reducing the computational cost of attention.

2.2 MLP-BASED METHODS

Research on MLPs has also introduced several innovative perspectives for time series modeling.
DLinear (Zeng et al., [2023) revisits TSF design with a simple but effective linear decomposition.
Koopa (Liu et al., [2023)), grounded in Koopman operator theory (Brunton et al., |2021)), formulates
TSF as a dynamic system identification problem. TimeMixer (Wang et al., [2024)) incorporates fea-
ture pyramid networks into temporal modeling. FITS (Xu et al.| 2024b) applies linear transforma-
tions in the complex frequency domain to extract informative temporal features. These MLP-based
methods demonstrate that even without explicit recurrence or attention, complex temporal dynamics
can be effectively modeled through architectural innovations.

2.3 TCN-BASED METHODS

Table 1: Comparison of time series convolutional models.

Designs SCINet TimesNet MICN ModernTCN ConvTimeNet | Ours
Small Kernel v v 4 X X 4
Non-Gaussian Receptive Field X X X X X v
Asymmetric Modeling X X X X X v

As convolutional architectures continue to evolve, a resurgence of interest has emerged. Several
recent models explore diverse convolutional designs to improve temporal representation learning.
SCINet (Liu et al.,|2022a) abandons causal convolution and achieves temporal feature fusion through
a recursive downsampling—convolution—interaction pipeline. TimesNet (Wu et al.,|2023) adapts 2D
convolutional backbones from CV to learn expressive temporal representations. MICN (Wang et al.}
2023)) employs a multi-scale hybrid decomposition module to jointly model local and global tempo-
ral dependencies. ModernTCN (Luo & Wang|,2024) designs convolutional architectures combining
large kernel convolutions and depthwise separable convolutions (DSC), guided by receptive field
analysis. ConvTimeNet (Cheng et al.,|2024) stacks large kernel and DSC to enable effective multi-
scale temporal modeling.

Unlike most convolutional models that enlarge the ERFs by increasing kernel size or network
depth, TCAN achieves sequence modeling equivalent to attention and supports asymmetric mod-
eling while using only kernels of size one, which leads to non-Gaussian receptive fields. As shown
in Table [T} other models typically rely on larger kernels to aggregate temporal information through
broader Gaussian receptive fields. A proof of the origin of Gaussian receptive fields is provided in
Appendix [C.T] and a detailed comparative analysis between TCAB and DSC is presented in Ap-

pendix
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Figure 3: Overall architecture of TCAN consists of ConvEmbed, PAB, and VAB, which address
temporal relationships and variable relationships respectively.

3 TCAN
In TSF, given historical observations X = [z1,--- ,xr] € RE*M with L time steps and M vari-
ables, we predict the future H time steps Y = {x141,..., 27 g} € REXM  In this paper, we

propose TCAN, which incorporates two TCABs. Technically, it consists of ConvEmbed block, PAB,
and VAB, designed to extract asymmetric temporal and variable relationships, as well as to handle
both local features and global dependencies.

3.1 STRUCTURE OVERVIEW

TCAN, shown in Figure[3] adopts a fully convolutional architecture. To mitigate distribution shifts in
time series data and enhance the extraction of temporal semantics, we apply instance normalization
(IN) and patching, following mainstream studies (Nie et al.,[2023;|Cheng et al., [2024)). ConvEmbed,
PAB, and VAB then work together to progressively capture intra-patch temporal features, inter-patch
temporal patterns, and inter-variable temporal relationships. The detailed workflows of ConvEmbed,
PAB, and VAB are presented in the following subsections.

3.2 CONVEMBED

To avoid explicit position encoding, we introduce the ConvEmbed block based on 1D convolution.
Let the output X € RM*P*D from the Patching layer serve as the input to the ConvEmbed. Here,
M represents the number of variables, P denotes the number of patches after Patching, and D is the
length of the embedded tokens. The above procedure can be formulated as follows:

ConvEmbed(X) = GELU(ConvlD(X)). (1)

Specifically, the kernel size of ConvEmbed is kept consistent with the patch length to ensure in-
formation consistency. Then, ConvEmbed is applied within each patch to extract semantic features
of adjacent time steps and enhance the semantic representation ability of the model. Furthermore,
by sharing semantic extraction patterns across different variables, the model is guided to focus on
common semantic features. Finally, the Gaussian Error Linear Unit (GELU) activation function is
applied to introduce non-linearity between the blocks.
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3.3 TCAB

The TCAB module leverages group convolution to combine inter-group information isolation, a bot-
tleneck structure, and temporal invariance for asymmetric temporal dependency modeling. Taking
PAB as an example, it assigns each variable to a distinct group equal to the number of variables, with
convolutional weights shared only within a variable’s temporal patches. This isolates interactions
across variables and allows each variable to capture its own temporal patterns, providing a solid
foundation for modeling asymmetric long-term dependencies. The workflow of TCAB is given by

TCAB(X) = Drop(Conv1D5(GELU(Conv1D; (X))). ()

PAB The ConvEmbed output, reshaped as X € R(M*P)xD gerves as input to PAB. Designed
to capture periodic variations and global representations, PAB processes X through a grouped one-
dimensional convolution:

Zl = COHV]D(X; Wl), (3)

where W, € RM-dexP>1 with Group = M. This expands to
P
Zﬁm,lhd) — ngm,p,k) _x(m,k,d) + bgm’p), 4)
k=1

where m € [1, M| denotes the group index, P — dy is the channel expansion factor, and Z; €

R(M-dw)xD - Apother convolution then forms a bottleneck structure:
Z = Drop(ConvID(GELU(Z;); W})), 5)
where W}, € RM-Pxdix1 with Group = M. This expands to
dir
Zé"hp:d) — ngm#’:k) . x(m,k,d) + bém)p)7 (6)
k=1

where di — P is the channel compression factor and Zo € RMP)XD  This shows that the
one-dimensional convolution in PAB essentially acts as a patch association block, computing rela-
tionships between local patches within each variable.

Equivalence to Patch-wise Attention PAB is mathematically equivalent to patch-wise attention
logits under relaxed weight constraints. For patch-wise attention, given X € RM*PXD with Q =
K =V = X, the attention score between patches ¢ and j of variable m is

exp ((Q7", K7T")

Al = ) (7N
Lol ew (@)
P
O = AV (8)

J=1

In PAB, after reshaping X to X’ € R'*(MxP)xD 3 orouped one-dimensional convolution is ap-
plied. Each group processes Xy, € R'*P*D with (P, 1) kernels per channel, yielding M x P?
learnable weights Wi € RP. The convolution output is

D
SPy =D WILLXTy ©)
d=1

This derivation shows that PAB generates attention logits through learnable weights without query
key dot products or softmax normalization. Similar approaches appear in dynamic convolutional
attention mechanisms (Wu et al., 2019)), which reinterpret attention scores as convolutional weights.
By omitting softmax, PAB avoids the constraint of mutual exclusivity, allowing the importance of
one patch to increase without diminishing that of others, which is more suitable for TSF.
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VAB Since VAB and PAB share the same modular design, we describe VAB from a tensor per-
spective. Given an input X € RM*P*D we reshape it to X}, € RP>P*M)xD By setting
the number of groups equal to the number of patches, each group convolution processes one patch

across variables X;, € RYXMxD "Each output channel corresponds to (M, 1) kernels, operating on

an input X € R*MXD  This yields P x M? learnable weights that model asymmetric correla-
tions among variables at the same time step, such as the causal asymmetry between temperature and
electricity usage.

VARB is therefore obtained by changing the isolation dimension of TCAB from patches to variables.
Together with PAB, it highlights the flexibility of TCAB as a temporal convolution paradigm
for multivariate time series. Its core value lies in balancing information isolation and associa-
tion within a minimal structure. By using grouped convolutions to decouple data along different
dimensions and bottleneck structures for efficient feature transformation, TCAB preserves temporal
alignment while enabling asymmetric dependency modeling. To ensure temporal invariance and pre-
serve equivalence to attention, TCAB sets both the kernel size and stride to one within the module.
A detailed comparison between TCAB and traditional DSC is provided in Appendix [B.2]

3.4 INSTANCE NORMALIZATION

This technique, recently proposed to mitigate distribution shift between training and testing data,
normalizes each time series instance x(¥) to zero mean and unit standard deviation. Specifically,
each 2(?) is normalized before patching, and the mean and deviation are restored to the output
prediction. Mathematically, this process is formulated as:
Toop iy = ALt T H
Vo +e
Tt41:+H = Te41:¢4+H X VO + €+ [, (11)
where p and o denote the mean and standard deviation of the input window x;_ 41, respectively,

and € is a small constant for numerical stability. This implementation follows the RevIN approach
without learnable affine parameters (Kim et al.| 2021)).

(10)

4 EXPERIMENTS

This section evaluates TCAN on a diverse set of TSF tasks, demonstrating its broad applicability
and effectiveness. In addition to overall evaluation, we conduct a comprehensive ablation study to
quantify the contribution of each individual component within TCAN.

4.1 EXPERIMENTAL SETUP

Datasets We utilized widely adopted, publicly available real-world benchmark datasets, includ-
ing Traffic, Electricity, Weather, and four variants of the ETT dataset (ETThl, ETTh2, ETTml,
ETTm?2). Preprocessing procedures, such as dataset segmentation and standardization, follow the
protocols used in previous works (Liu et al., 2024} Luo & Wang, 2024)).

We carefully selected a set of widely recognized forecasting models as baselines and reran all exper-
iments using their official implementations and provided scriptﬂ The selected baselines include:
(1) Transformer-based methods: PatchTST (Nie et al., 2023)), iTransformer (Liu et al., 2024), Sim-
pleTM (Chen et al.,|2025); (2) Linear-based methods: DLinear (Zeng et al., 2023), FITS (Xu et al.|
2024b)); (3) Convolution-based methods: TimesNet (Wu et al., [2023), MICN (Wang et al., [2023)),
ModernTCN (Luo & Wang, [2024)), ConvTimeNet (Cheng et al., 2024). Performance was evaluated
using Mean Squared Error (MSE) and Mean Absolute Error (MAE).

Implementation Details For all datasets, we conducted a hyperparameter search over the look-
back window length and evaluated various prediction horizons H € {96, 192, 336, 720}. All models
were trained using Adam and each experiment was repeated three times to ensure result stability. All
models were reproduced using their official implementations and recommended hyperparameters.

"Following FITS, we also addressed a longstanding bug in the shared training architecture; details can be
found in their public codebase.
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Table 2: Performance comparison of different models on seven forecasting datasets. Metrics include
MSE and MAE for different time horizons. The best results are highlighted in bold while the second
best are underlined. We provide more detailed results and robustness analysis in Appendix

Method | TCN-based | Transformer-based
Model TCAN ConvTimeNet | ModernTCN MICN TimesNet SimpleTM iTransformer PatchTST
ode (ours) (2025) (2024) (2023) (2023) (2025) (2024) (2023)

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

— | 9 | 0368 0.390 | 0.379 0.399 | 0.381 0.401 | 0.405 0429 | 0423 0.437 | 0.373 0.395 | 0.399 0414 | 0.382 0.405
£ ] 192 | 0405 0413 | 0408 0416 | 0422 0426 | 0.503 0499 | 0.481 0481 | 0426 0.425 | 0435 0.440 | 0414 0.42]
E 336 | 0.424 0427 | 0438 0436 | 0442 0440 | 0476 0.482 | 0.489 0478 | 0469 0.450 | 0457 0456 | 0431 0435

720 | 0433 0455 | 0454 0.464 | 0474 0478 | 0.718 0.642 | 0.532 0.515 | 0.472 0.468 | 0.483 0.489 | 0449 0.466
« | 96 0270 0333 | 0280 0.339 | 0276 0.340 | 0.294 0.356 | 0.378 0.421 | 0.293 0.345 | 0.315 0.366 | 0.276 0.338
£ 192 1 0334 0378 | 0342 0381 | 0343 0.383 | 0.415 0446 | 0409 0439 | 0379 0398 | 0.388 0.409 | 0.339 0.379
E 336 | 0.347 0.396 | 0.371 0407 | 0.359 0407 | 0.564 0.541 | 0.414 0.441 | 0.419 0430 | 0410 0.429 | 0.367 0.399

720 | 0.373 0418 | 0.394 0432 | 0408 0440 | 1.256 0.825 | 0.433 0.457 | 0.424 0443 | 0434 0452 | 0.392 0.430
— | 9 | 0286 0342 | 0.292 0.344 | 0.302 0.353 | 0.305 0.354 | 0.344 0378 | 0324 0364 | 0.303 0356 | 0.293 0.343
E 192 | 0.325 0.361 | 0.331 0.367 | 0.349 0.384 | 0.355 0.393 | 0.361 0.394 | 0360 0.380 | 0.341 0379 | 0.330 0.368
E 336 | 0.360 0.381 | 0.365 0.389 | 0.385 0.403 | 0.384 0.407 | 0.428 0.432 | 0.391 0403 | 0.381 0402 | 0.366 0.392

720 | 0417 0415 | 0433 0423 | 0440 0437 | 0445 0442 | 0462 0.456 | 0.454 0437 | 0443 0438 | 0420 0.425
| 96 | 0160 0.247 | 0.169 0.258 | 0.175 0.261 | 0.188 0.287 | 0.184 0.273 | 0.174 0257 | 0.181 0.269 | 0.165 0.255
E 192 | 0.213  0.288 | 0.224 0.294 | 0226 0.298 | 0.241 0.325 | 0.243 0.309 | 0.238 0.299 | 0.238 0.310 | 0.220 0.292
E 336 | 0.266 0.322 | 0.279 0.330 | 0.277 0.331 | 0.372 0.386 | 0.303 0.350 | 0.294 0.336 | 0.292 0.344 | 0.277 0.329

720 | 0.358 0.381 | 0.362 0.384 | 0.387 0.401 | 0.416 0432 | 0393 0.405 | 0.397 0397 | 0.378 0.398 | 0.369 0.386
5| 96 | 0145  0.194 | 0.156 0.207 | 0.154 0.207 | 0.173  0.241 | 0.170 0228 | 0.154 0201 | 0.165 0.215 | 0.155 0.204
S| 19210188 0.238 | 0.198 0.245 | 0201 0252 | 0.217 0283 | 0215 0264 | 0206 0249 | 0211 0.256 | 0.195 0.241
g 336 | 0.238  0.275 | 0.250 0.287 | 0.248 0.288 | 0.277 0.332 | 0.273 0.302 | 0.264 0289 | 0.259 0.295 | 0.249 0.284

720 | 0312 0.326 | 0.325 0.337 | 0.338 0.346 | 0.315 0.356 | 0.341 0.350 | 0.343 0342 | 0.327 0339 | 0.321 0.335

96 | 0.130 0.228 | 0.132 0.227 | 0.135 0.231 | 0.150 0.261 | 0.176 0283 | 0.146 0240 | 0.131 0.227 | 0.131 0.223
d 192 | 0.149 0.247 | 0.149 0.243 | 0.150 0.243 | 0.173 0.283 | 0.186 0.290 | 0.160 0252 | 0.155 0.250 | 0.149 0.242
@ | 336 | 0.163 0.261 | 0.167 0.261 | 0.166 0.259 | 0.196 0.306 | 0.210 0.308 | 0.174 0267 | 0.166 0264 | 0.167 0.261

720 | 0.189  0.286 | 0.206 0.293 | 0.208 0.298 | 0.302 0.386 | 0.226 0.321 | 0.208 0.296 | 0.222 0.318 | 0.202 0.292
o | 96 | 0385 0265 | 0377 0.265 | 0.397 0278 | 0476 0295 | 0.591 0322 | 0421 0281 | 0356 0.263 | 0.365 0.250
£ | 192 | 0398 0270 | 0396 0272 | 0415 0.287 | 0488 0304 | 0.609 0.328 | 0.442 0.290 | 0.369 0.269 | 0.383 0.258
E 336 | 0411 0.275 | 0409 0.280 | 0.428 0.295 | 0.493 0.295 | 0.621 0.340 | 0.467 0.300 | 0.386 0.277 | 0.397 0.264

720 | 0446 0.301 | 0438 0.294 | 0454 0311 | 0515 0312 | 0.646 0.344 | 0.503 0320 | 0.417 0.291 | 0432 0.285

4.2 MAIN RESULTS

As shown in Table [2] TCAN achieves SOTA performance on most datasets, outperforming MLP-
based, Transformer-based, and Convolution-based models. In particular, TCAN surpasses the best-
performing TCNs, highlighting the effectiveness of TCAB in TSF. Convolutional models with
more complex designs, such as stacked architectures or large kernels, perform poorly on real-world
datasets. This suggests that in TSF, effective convolutional design may be more important than sim-
ply enlarging the receptive field. In contrast, TCAN and PatchTST, both of which adopt patch-wise
attention, show competitive performance. The comparison between TCAN and PatchTST further
demonstrates the benefit of asymmetric modeling, validating the phenomena observed in Figure[I]

TCAN also achieves SOTA results on ECL, yet it underperforms Transformer-based models on the
Traffic dataset, which involves complex spatiotemporal relationships and anomalous events such
as delays and dynamic fluctuations (Xu et al., [2024a). To investigate this gap, we examined the
distribution of extreme values in Table [3land found that Traffic contains substantial outliers in both
frequency and magnitude. Further analysis of Traffic dataset is provided in Appendix [D}

Table 3: Outlier of datasets. the average number and scale of extreme points per window in each
dataset when the Z-Score>6 and the window size is 720.

| Traffic | ECL | Weather | ETThl | ETTh2 | ETTml | ETTm2
Avg. Count | 610.38 | 228 | 398 | 00 | 074 | 00 | 085
Avg Scale | 469372 | 16942 | 65.19 | Nan | 476 | Nan | 538

Two factors help explain this observation. First, metric sensitivity plays a role. MSE emphasizes
outlier modeling, whereas MAE better reflects general modeling capability. On high-dimensional
datasets such as ECL (321 variables) and Traffic (862 variables), TCAN achieves MAE comparable
to the second-best model. Second, outlier handling is important. As shown in Appendix [E.T] the
pattern of MAE being close to the second-best model but MSE showing a larger gap is common
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Figure 4: Analysis of memory usage and time efficiency of the model on the Weather dataset. We
have further provided results comparing additional models in the Appendix El

among non-Transformer networks. This suggests that TCAN is less sensitive to outliers than dot-
product-based attention methods, which tend to assign disproportionately high weights to extreme
values and thereby achieve lower MSE.

To further validate this point, we compared TCAN with PatchTST on the Solar dataset (137 vari-
ables, fewer outliers) in Appendix [E.2] where TCAN outperformed PatchTST. This confirms that
TCAN’s weaker performance on Traffic stems mainly from the abundance of outliers rather than
from increased dimensionality.

4.3 MODEL ANALYSIS

Table 4: Ablation Study on TCAN: We systematically replace or remove components to assess its
feature extraction capability. The average results across all predicted lengths are reported. More
details can be find in the Appendix El

Design | Time ‘ Variable MS]]EETTI;\%[AE ‘ MS\?]Eeatlﬁl;XE MEIECtriT\/IitZE MSErafﬁl\SIAE
TCAN | PAB | VAB | 0331 0381 | 0221 0.258 | 0.158 0.255 | 0.410 0278
Replace | MLPFFN | VAB | 0342 0387 | 0.230 0265 | 0.161 0.258 | 0430 0.291
| ConvFEN | VAB | 0338 0384 | 0231 0266 | 0.158 0256 | 0422 0.287

wo | wio | VAB [0340 0386|0232 0267 | 0160 0257 | 0428 0.290

| PAB | wio | 0338 0385|0224 0260 | 0.165 0259 | 0438 0.295

Ablation study To validate the effectiveness of the TCAN component, we conducted compre-
hensive ablation studies, which involved both component replacement and removal. The results
are presented in Table @] Notably, the TCAN with TCAB broadly achieves optimal performance.
The long-term sequence modeling capability of PAB is particularly influential on low-dimensional
datasets such as ETT and Weather. In contrast, for high-dimensional datasets like ECL and Traffic,
the ability to model inter-variable relationships becomes increasingly crucial.

Furthermore, Table [4] shows that the independent long-term sequence modeling used in PAB out-
performs traditional symmetry modeling such as FFNs, which rely on implicit parameter sharing to
capture long-term dependencies. This result further supports the necessity of adopting asymmetric
modeling in TSF.

Efficiency analysis We compare the running memory and time against the previous SOTA models
in Figure @{a)—(b) under the training phase for various series lengths (ranging from 96 to 1440).
It can be observed that TCAN is not sensitive to the input length and exhibits better efficiency
compared to TCNs and most Transformers. Notably, despite TCAN utilizing multiple encoders, it
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still manages to maintain competitive efficiency. Moreover, compared to PatchTST, which employs
equivalent patch-wise associations, TCAN, with its asymmetric modeling strategy, not only delivers
superior performance but also maintains better efficiency. However, TCAN is less efficient than
iTransformer with respect to model size and training speed, primarily due to iTransformer’s omis-
sion of attention mechanisms in the temporal dimension, which significantly reduces computational
complexity. Overall, considering the accuracy improvement brought by TCAB, TCAN achieves the
best balance between performance and efficiency.

Hyperparameter sensitivity analysis Table 5: Hyperparameter Sensitivity Analysis.
To see whether TCAN is sensitive to the
choice of layer and patch length settings,
we perform another experiments with

|  ETTm2 Weather ECL
Design  Num | MSE | MAE | MSE | MAE | MSE | MAE

h 1 [0.249 | 0.310 | 0.221 | 0.258 | 0.158 | 0.255
varying model parameters. As Table [3] PAB 2 | 0252|0312 | 0222 | 0258 | 0.16 | 0.258
shown, TCAN is not sensitive to the z 8-523 gg}: 8%%‘3‘ 8%2; 8}22 &2662
setting of hyperparameters. Using the 1 0'253 0‘31‘3 0'222 (;26 0'164 0'262
unified parameters with PAB =1, VAB = VAB 2| 0252|0310 | 0222 | 0259 | 0.161 | 0.259
3 and patch length = 8 is sufficient to most 3 | 025 | 0310 | 0.221 | 0.259 | 0.158 | 0.256
scenarios 4 | 0252|0312 | 0224 | 0261 | 0.158 | 0.255
’ 4 0251|0310 | 0225 | 0262 | 0.164 | 0.265

achleneth 5| 0:249 | 0.310 | 0.221 | 0.259 | 0.158 | 0256

P g 16 | 0253 | 0312 | 0.224 | 0.26 | 0.158 | 0.255

5 DISCUSSION 32 | 0254 | 0314 | 0.224 | 0.259 | 0.161 | 0.258

Potential limitations While TCAN demonstrates strong performance in TSF, it presents several
potential limitations that warrant further discussion:

* Cost of Asymmetric Modeling: Although TCAN may be more cost-effective than most TCN's
and Transformers on many datasets, it incurs additional parameter overhead on high-dimensional
datasets such as Traffic, where the parameter size scales with the number of variables due to
asymmetric modeling.

» Impact of outliers: When a dataset contains significant outliers, the performance of TCAN may
be affected. Because TCAB relies on learnable patch weights, it is less responsive to extreme
values than inner product-based attention mechanisms, which tend to assign disproportionately
high weights to anomalies. This limitation can reduce prediction accuracy in highly irregular or
noisy settings.

Interesting finding However, as demonstrated in Appendix TCAN provides a SOTA solu-
tion by leveraging non-Gaussian receptive fields. This highlights the significant potential of design-
ing domain-adaptive convolutional structures for TSF. Specifically, the domain-specific designs in
TCAN, including asymmetric modeling of temporal and causal relationships and equivalent atten-
tion convolution, suggest that tailoring convolutional architectures to the unique characteristics of
TSF is a promising direction for future research. In this context, as advanced research shifts toward
time series domains, it may become increasingly important to focus on the specific characteristics
of temporal data.

6 CONCLUSION

In this paper, we reveal that existing approaches in time series forecasting (TSF) typically rely on
symmetric modeling, which fails to capture the distinct periodic behaviors observed in real-world
datasets. To address this limitation, we propose the Temporal Convolutional Association Block
(TCAB), a flexible module that integrates the strengths of both attention and convolution to support
asymmetric modeling across temporal or variable dimensions. Building upon TCAB, we introduce
the Temporal Convolutional Association Network (TCAN), which effectively captures asymmetric
temporal and causal relationships. Our experimental results affirm the potential of asymmetric mod-
eling as a promising research direction for TSF and highlight TCAB as a principled and efficient
approach for advancing multivariate time series forecasting.
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594
595
596
597
598 To examine the necessity of asymmetric modeling, we apply patch-wise attention on the ETT
599 datasets and visualize the relationships between the first patch and subsequent patches across differ-
600 ent variables. The visualization highlights variable-specific periodic structures, demonstrating that
601 periodicity is not consistent across variables.
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A.2 PRINCIPAL PERIOD ANALYSIS BASED ON ACF

The periodicity of variables can be analyzed from two complementary perspectives. At the dataset
level, distinct datasets exhibit different periodic behaviors, as widely reported in prior studies such
as Weather and ECL (Xu et al.| 2024a). At the variable level, even within a single dataset, variables
may display heterogeneous periodicity. As shown in Appendix the results reveal clear periodic
patterns, with variables such as HUFL and MUFL exhibiting distinct periods.

To further support this observation, we extend the autocorrelation function (ACF) method from (Xu
et al.| [2024a). This method, originally applied at the dataset level, is adapted here to analyze period-
icity within individual variables. The ACF quantifies autocorrelation by measuring the correlation
between a sequence and its lagged values, defined as

SN Fwy — 7) (@ — 7)
Zi\[:l (zt - 577)2

where IV denotes the number of observations, x; represents the value at time ¢, & is the lag, and Z is
the mean. Significant peaks in the ACF curve indicate periodicity at the corresponding lag.

ACF =

) 12)

Our empirical analysis in Table[6|confirms that periodicity differs not only across variables within the
same dataset but also for the same variable across different datasets. For instance, ETTh1 and ETTh2
are recorded at hourly intervals, while ETTm1 and ETTm2 are recorded at 15-minute intervals,
leading to variations in their periodic patterns.

Table 6: Periodicity analysis of variables across datasets

Major Period All Periods

Variable ETThl ETTh2 ETTml ETTm2 ETThl ETTh2 ETTml ETTm2
HUFL 24 24 96 58 24 24 96 58,96
HULL 15 15 96 46 15,24,39 15,24,39 96 46, 58, 87
MUFL 24 24 96 96 24 24 96 96, 142
MULL 12 15 59 46 12,15,24 15,24,36 59,96,132 46, 59, 66
LUFL 11 24 45 59 11, 13,24 24, 47 45,96, 141 59,94, 157
LULL 17 - 68 - 17,24 - 68, 96 -

oT 22 24 88 95 22,48 24 88, 188 95, 191

B DETAILS OF TCAB

B.1 VISUALIZATION OF TCAB

Figure E]presents a visualization of the two variants of TCAB, namely PAB and VAB.

B.2 COMPARISON BETWEEN DSC AND TCAB

Depthwise Separable Convolution (DSC) and the Temporal Convolutional Association Block
(TCAB) adopt fundamentally different strategies for information interaction and grouping. A de-
tailed comparison between Depthwise Convolution (DWConv) and TCAB, using PAB as an exam-
ple, is illustrated in Figure

The N-dimensional DWConv is typically derived from downsampling the D-dimensional input at
multiple granularities (Luo & Wang;,2024)). DSC employs a combination of DWConv and Pointwise
Convolution to decouple spatial and channel information, aiming to enhance expressiveness while
mitigating the parameter growth associated with traditional convolutions.

In contrast, PAB within TCAB isolates variables while simultaneously capturing spatiotemporal de-
pendencies in a unified module. This design preserves independent group learning, facilitates patch-
wise information association within groups, and produces non-Gaussian receptive fields. By com-
bining these properties, PAB introduces a novel convolutional association block for TSF, demon-
strating that effective modeling can be achieved through a minimal yet efficient structure.

13
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Figure 9: Visualization of the two variants of TCAB.
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Figure 10: Comparison between DWConv and TCAB.

C PROOF

C.1 A SIMPLE PROOF OF THE GAUSSIAN RECEPTIVE FIELD

We consider a convolutional layer with all weights equal to one to provide a simple proof, while a
more detailed derivation can be found in Paper 2017). Assume a stack of n convolutional
layers, each using k£ x k kernels with stride one, a single channel per layer, and no nonlinearity,
forming a deep linear CNN.
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Let g(i,7,p) = Bféj denote the gradient on the p-th layer, and let g(i,j,n) = %. Then g(,,0)

corresponds to the éradient image of the input. The backpropagation process convolving g(, ,p)
with the k x k kernel produces g(,,p — 1) for each p.

Since the kernel is a k x k matrix of ones, the 2D convolution decomposes into two 1D convolutions.
We therefore focus on the 1D case. The initial gradient signal «(¢) and kernel v(t) are defined as

u(t) = 6(t), (13)
k—1
v(t) = Z 5(t —m), (14)

1, t=0

0, t£0 and t € Z indexes the pixels.

where §(t) = {

The gradient signal on the input pixels is 0 = w * v * - - - % v, convolving u with n such kernels. To
compute this convolution, we apply the Discrete Time Fourier Transform:

Uw)= Y u(t)e 7" =1, (15)
t=—o0
oo k—1
V(w) = Z v(t)e vt = Z e—iwm, (16)
t=—o00 m=0

By the convolution theorem, the Fourier transform of o is
k—1 n
Fo)(w) =U(w) - V(w)" = (Z fwm) - a7
m=0

Applying the inverse Fourier transform yields

k—1 "
1 g . .
olt) = 5- / (§ :e—wm> e day, (18)
—T \m=0

1 T
2 J_,

1, s=t

0, s#t’ (19)

efjwsejwtdw — {

Thus o(t) corresponds to the coefficient of e~7** in the expansion of (21:”—:10 e‘wm) .

C.2 THE ELABORATION OF NON-GAUSSIAN RECEPTIVE FIELD

This section provides an explanation of why the receptive field becomes discrete when the kernel
size equals the stride, as in the case of TCAB.

C.2.1 NECESSITY

In Section[C.I] the Gaussian receptive field derivation assumes stride equal to one, kernel size equal
to k, and weights fixed at one for all convolution layers. The initial gradient signal and kernel

are represented as u(t) = 4(¢) and v(t) = Zlﬁn;lo d(t — m), with the input gradient given by
u * v™. Under stride one, the convolution theorem transforms the gradient into a frequency-domain
product. By the Central Limit Theorem, the inverse transform coefficients approximate a Gaussian
distribution due to multi-path superposition. When stride equals kernel size, however, the output at
the p-th layer 2% depends only on the discrete block [i - k,i - k + k — 1] from the (p — 1)-th layer,

eliminating continuous overlap. In this setting, the backpropagation gradient becomes
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rather than
k—1

gli,p—1) = wp, - g(i +m,p).
m=0
Because the convolution theorem requires continuous sliding windows, the Fourier-based Gaussian
derivation does not apply when stride equals kernel size.

C.2.2 SUFFICIENCY

When stride equals kernel size, the output gradient influences the input only through discrete and
non-overlapping blocks. This can be written as

9(jp—1) = Zg(@p) cwlj — ik,

which is nonzero only when j € [i-k, -k + k — 1]. Since there are no gradients connecting adjacent
blocks, the resulting distribution is discrete and block-like, lacking the smooth continuity and decay
that characterize a Gaussian distribution.

D EXPERIMENT DETAILS
D.1 DATASETS

We evaluate the performance of our Table 7: The detail statistics of datasets
method on seven real-world IoT

datasets. The ETT (Electricity Trans-
former Temperature) dataset contains

Datasets Name | Timesteps | Frequency | Variable

two years of data collected from two Weather 52696 10 min 21
counties in China, with subsets de- Electricity 26304 1 hour 321
signed for different granularities of Traffic 17544 1 hour 862
forecasting. ETThl and ETTh2 are Exchange 7207 1 day 8
recorded hourly, while ETTm1 and ETThl 17420 1 hour 7
ETTm?2 are recorded every 15 min- E%‘%‘:ﬁ éggég 115hr(r)11ilrr1 ;
utes. The ECL dataset records the ETTm2 60680 15 min 7

hourly electricity consumption of 321
customers. The Traffic dataset in-
cludes 862 measurements such as vehicle counts, speed, and congestion levels collected by sensors
and cameras across the San Francisco Bay area from 2015 to 2016. The Weather dataset con-
sists of 21 meteorological variables including temperature, precipitation, wind speed, and humidity,
recorded every 10 minutes throughout 2020 in Germany.

Table [/ provides detailed statistics of these datasets. Timesteps denotes the total number of obser-
vations, Frequency represents the sampling interval, and Variables indicates the number of recorded
features.

D.2 ANALYSIS OF DATASETS

Non-stationary Analysis We apply the Augmented Dick-Fuller (ADF) test statistic (Elliott et al.,
1992; [Liu et al., 2022b) to measure the degree of stationarity. A smaller ADF statistic reflects
stronger stationarity, indicating that the distribution is more stable. Table [/| summarizes the overall
statistics of the datasets, presented in ascending order by stationarity level.

We adopt the Augmented Dick-Fuller (ADF) test statistic(Elliott et al., |1992; [Liu et al., 2022b)) as
the metric to quantitatively measure the degree of stationarity. A smaller ADF test statistic indicates
a higher degree of stationarity, which means the distribution is more stable. Table 1 summarizes the
overall statistics of the datasets.

Outlier Analysis We also investigate the statistical characteristics of the datasets (Xu et al.,[20244a)
to examine the role of outliers. Our analysis reveals that the Traffic dataset contains a particularly
large number of extreme values, both in frequency and magnitude, which highlights its challenging
nature for forecasting tasks.
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Table 8: ADF of datasets. Smaller ADF test statistic indicates more stationary dataset.

| Traffic | ECL | Weather | ETT (4 subsets)
ADF | -15.02 | -844 | -26.68 |  -7.67

Table 9: Outlier of datasets. the average number and scale of extreme points per window in each
dataset when the Z-Score>6 and the window size is 720.

| Traffic | ECL | Weather | ETThl | ETTh2 | ETTml | ETTm2
Avg. Count | 61038 | 228 | 398 | 00 | 074 | 00 | 085
Avg. Scale | 4693.72 | 169.42 | 65.19 | nan | 476 | nan | 538

D.3 ENVIRONMENTS

All experiments were implemented in PyTorch and executed on a single NVIDIA GeForce RTX
4090 GPU with 24 GB of memory.

E MORE EXPERIMENTAL RESULTS

E.1 FULL MAIN RESULTS

Due to space constraints in the main text, we have included all experimental results in Table [T0]
along with comparisons against MLP-based methods such as FITS, and DLinear. The experimental
results further demonstrate the effectiveness of the proposed method.

Table 10: Performance comparison of different models on seven forecasting datasets. Metrics in-
clude MSE and MAE for different time horizons. The random seed is fixed as 2021 and the best
results are highlighted in bold while the second best are underlined.

Method | TCN-based | Transformer-based | MLP-based
Model TCAN ConvTimeNet ModernTCN MICN TimesNet SimpleTM iTransformer PatchTST FITS DLinear
ode (ours) (2025) (2024) (2023) (2023) (2025) (2024) (2023) (2024) (2022)
\

Metic | MSE  MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

— | 96 | 0368 0.390 | 0379 0.399 | 0.381 0.401 | 0.405 0.429 | 0423 0437 | 0373 0.395 | 0.399 0.414 | 0382 0.405 | 0.374 0.395 | 0.384 0.405
| 192 | 0405 0413 | 0408 0416 | 0422 0.426 | 0.503 0499 | 0.481 0481 | 0426 0.425 | 0.435 0.440 | 0.414 0421 | 0407 0414 | 0444 0.450
E 336 | 0424 0427 | 0438 0436 | 0442 0.440 | 0476 0482 | 0489 0478 | 0469 0.450 | 0.457 0.456 | 0.431 0435 | 0429 0428 | 0447 0.448

720 | 0433 0455 | 0.454 0464 | 0474 0478 | 0.718 0.642 | 0.532 0515 | 0.472 0468 | 0483 0.489 | 0.449 0.466 | 0425 0.446 | 0.504 0.515
| 96 ] 0270 0333 | 0280 0.339 | 0276 0340 | 0.294 0.356 | 0.378 0421 | 0293 0.345 | 0.315 0366 | 0.276 0.338 | 0.274 0.337 | 0.290 0.353
S 192 1 0334 0378 | 0342 0381 | 0.343 0388 | 0.415 0.446 | 0.409 0439 | 0379 0.398 | 0.388 0.409 | 0339 0.379 | 0.337 0.378 | 0.389 0.422
E 336 | 0347 0.396 | 0.371 0.407 | 0.359 0.407 | 0.564 0.541 | 0.414 0441 | 0419 0430 | 0410 0.429 | 0367 0.399 | 0360 0.398 | 0.463 0.473

720 | 0.373  0.418 | 0.394 0.432 | 0408 0.440 | 1.256 0.825 | 0.433 0.457 | 0424 0443 | 0434 0452 | 0.392 0430 | 0386 0.423 | 0.733  0.606
— | 96 | 0.286 0.342 | 0.292 0.344 | 0.302 0.353 | 0.305 0.354 | 0.344 0.378 | 0.324 0.364 | 0.303 0.356 | 0.293 0.343 | 0.303 0.345 | 0.301 0.345
E 192 1 0325  0.361 | 0.331 0.367 | 0.349 0.384 | 0.355 0393 | 0361 0.394 | 0360 0.380 | 0.341 0.379 | 0.330 0.368 | 0.337 0.365 | 0.336 0.366
5 336 | 0.360 0.381 | 0.365 0.389 | 0.385 0.403 | 0.384 0.407 | 0.428 0432 | 0391 0.403 | 0.381 0.402 | 0366 0.392 | 0.372 0.385 | 0.372 0.389

720 | 0.417 0415 | 0433 0423 | 0440 0437 | 0445 0442 | 0462 0456 | 0.454 0437 | 0443 0438 | 0420 0425 | 0428 0416 | 0427 0423
| 96 | 0160 0.247 | 0.169 0258 | 0.175 0.261 | 0.188 0.287 | 0.184 0.273 | 0.174 0257 | 0.181 0.269 | 0.165 0.255 | 0.165 0.255 | 0.172 0.267
E 192 | 0213 0.288 | 0.224 0.294 | 0226 0.298 | 0.241 0325 | 0.243 0.309 | 0.238 0.299 | 0.238 0310 | 0.220 0.292 | 0.220 0.291 | 0.238 0314
5 336 | 0.266  0.322 | 0.279 0.330 | 0.277 0331 | 0.372 0.386 | 0.303 0.350 | 0.294 0.336 | 0.292 0.344 | 0.277 0.329 | 0.274 0.326 | 0.295 0.359

720 | 0.358 0.381 | 0.362 0.384 | 0.387 0.401 | 0416 0432 | 0.393 0405 | 0.397 0.397 | 0.378 0.398 | 0.369 0.386 | 0.367 0.383 | 0427 0.439
5| 96 | 0145 0.194 | 0.156 0207 | 0.154 0.207 | 0.173 0241 | 0.170 0.228 | 0.154 0.201 | 0.165 0215 | 0.155 0.204 | 0.145 0.196 | 0.174 0.233
£ | 19210188 0238 | 0.198 0245 | 0201 0252 | 0217 0283 | 0215 0264 | 0206 0249 | 0211 0256 | 0.195 0241 | 0.189 0238 | 0218 0278
%J 336 | 0.238 0275 | 0.250 0.287 | 0.248 0.288 | 0.277 0.332 | 0.273 0.302 | 0.264 0.289 | 0.259 0.295 | 0.249 0.284 | 0.241 0.278 | 0.263 0.314

720 | 0312 0.326 | 0.325 0.337 | 0.338 0.346 | 0.315 0.356 | 0.341 0.350 | 0.343 0.342 | 0.327 0.339 | 0.321 0335 | 0.319 0.333 | 0.332 0.374

96 | 0.130 0.228 | 0.132 0.227 | 0.135 0.231 | 0.150 0.261 | 0.176 0.283 | 0.146 0.240 | 0.131  0.227 | 0.131 0.223 | 0.141 0.237 | 0.140 0.237
(—)‘ 192 | 0.149  0.247 | 0.149 0.243 | 0.150 0.243 | 0.173 0.283 | 0.186 0.290 | 0.160 0.252 | 0.155 0250 | 0.149 0.242 | 0.155 0.249 | 0.154 0.251
@] 336 | 0.163 0261 | 0.167 0.261 | 0.166 0.259 | 0.196 0.306 | 0.210 0.308 | 0.174 0.267 | 0.166 0.264 | 0.167 0.261 | 0.172 0.265 | 0.169  0.268

720 | 0.189  0.286 | 0.206 0.293 | 0.208 0.298 | 0.302 0.386 | 0.226  0.321 | 0.208 0.296 | 0.222 0.318 | 0.202 0.292 | 0.210 0.297 | 0.204 0.301
o | 96 | 0385 0265 | 0377 0.265 | 0.397 0278 | 0.476 0.295 | 0.591 0322 | 0.421 0.281 | 0.356 0.263 | 0.365 0.250 | 0.411 0.280 | 0413  0.287
£ 19210398 0270 | 0396 0.272 | 0.415 0.287 | 0488 0.304 | 0.609 0.328 | 0.442 0.290 | 0.369 0.269 | 0.383 0.258 | 0.424 0.284 | 0424 0.290
E 336 | 0411 0.275 | 0409 0.280 | 0428 0.295 | 0.493 0.295 | 0.621 0.340 | 0.467 0.300 | 0.386 0277 | 0.397 0.264 | 0436 0.290 | 0.438 0.299

720 | 0.446 0301 | 0.438 0.294 | 0454 0311 | 0.515 0312 | 0.646 0.344 | 0.503 0.320 | 0417 0.291 | 0432 0.285 | 0.464 0.307 | 0466 0.316

E.2 RESULTS ON THE SOLAR DATASET

To further investigate the impact of dataset characteristics on model performance, we evaluate
TCAN and PatchTST on the high-dimensional Solar dataset, which contains 137 variables but fewer
outliers compared with Traffic. This experiment is designed to separate the influence of dimension-
ality from that of outliers.
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As shown in Table[TT} TCAN consistently Table 11: Performance comparison on the high-
outperforms PatchTST across all predic- dimensional Solar dataset.
tion horizons in both MSE and MAE. The

margins are particularly clear for shorter

horizons such as 96 and 192, where TCAN Horizon TCAN PatchTST
achieves lower error values. These re- MSE MAE MSE MAE
sults confirm that the weaker performance

of TCAN on the Traffic dataset is largely 96 0.175  0.230 0.199 0.259
attributable to the abundance of outliers 192 0.193 0.242 0.210 0.263
rather than to increased dimensionality. 336 0.204 0.254 0.206 0.284
The Solar dataset thus provides additional 720 0215 0253 0216 0270

evidence that TCAN maintains robust per-
formance in high-dimensional but relatively clean environments.

E.3 ROBUSTNESS ANALYSIS Table 12: Robustness experiments on different
datasets.

We conducted experiments across seven

datasets using random seeds from 2020, Dataset MSE STD MAE STD

2021, and 2022. The results show standard

deviations below 0.001 in most cases, in- ETThl  0.408 0.0005 0.422 0.0004

dicating strong model robustness. ETTh2  0.333 0.0007 0.383 0.0005
ETTm1 0.348 0.0006 0.375 0.0003
E.4 FULL ABLATION RESULTS ETTm2 0.251 0.0012 0.310 0.0006

Weather 0.221 0.0004 0.258 0.0003
Due to the limited pages, we list the over- ECL 0.158 0.0005 0.256 0.0006

all ablation study results on the effect of Traffic 0412 0.0013 0279 0.0008
PAB and VAB in TCAN as shown in Ta-

ble The detailed ablations contain two type of experiments denoted as removing components
(w/0) and replacing components (replace).

E.5 FULL EFFICIENCY ANALYSIS
As shown in Figure we further compare the efficiency of our model with that of MLPs.

Table 13: Ablation Results on Key Components of TCAN: Impact of PAB, and VAB on Time and
Variable Dimensions

Design Time Variable Prediction ETTh2 Weather Electricity Traffic
Lengths | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 0.270 0333 | 0.145 0.194 | 0.130 0.228 | 0.385 0.265
192 0.334 0.378 | 0.188 0.238 | 0.149 0.247 | 0.398 0.270
TCAN PAB VAB 336 0.347 0396 | 0.238 0.275 | 0.163 0.261 | 0.411 0.275
720 0373 0.418 | 0.312 0.326 | 0.189 0.284 | 0.446 0.301
Avg 0.331 0.381 | 0.221 0.258 | 0.158 0.255 | 0.410 0.278
96 0271 0333 | 0.153 0.202 | 0.132 0.232 | 0.406 0.280
192 0.335 0379 | 0.202 0.247 | 0.149 0.247 | 0.422 0.287
MLPFFN VAB 336 0.363 0.404 | 0.248 0.282 | 0.163 0.261 | 0.429 0.288
720 0.399 0.432 | 0.318 0.330 | 0.199 0.290 | 0.461 0.310
R Avg 0.342 0387 | 0.230 0.265 | 0.161 0.258 | 0.430 0.291
eplace
96 0.270 0.333 | 0.148 0.199 | 0.132 0.232 | 0.398 0.275
192 0.334 0377 | 0.205 0.250 | 0.150 0.248 | 0.408 0.279
ConvFFN VAB 336 0.361 0.402 | 0.250 0.283 | 0.159 0.259 | 0.426 0.289
720 0.388 0.425 | 0.323 0.331 | 0.190 0.284 | 0.454 0.304
Avg 0.338 0.384 | 0.231 0.266 | 0.158 0.256 | 0.422 0.287
96 0271 0334 | 0.153 0.203 | 0.132 0.231 | 0.406 0.280
192 0.335 0378 | 0.207 0.252 | 0.150 0.249 | 0.417 0.284
w/o VAB 336 0.362 0.403 | 0.250 0.283 | 0.162 0.261 | 0.430 0.290
720 0.393 0.428 | 0.319 0.330 | 0.194 0.286 | 0.458 0.308
wlo Avg 0.340 0.386 | 0.232 0.267 | 0.160 0.257 | 0.428 0.290
96 0.269 0.333 | 0.148 0.195 | 0.135 0.230 | 0.402 0.274
192 0.333 0378 | 0.192 0.240 | 0.151 0.244 | 0.433 0.287
PAB w/o 336 0.358 0.401 | 0.242 0.276 | 0.169 0.262 | 0.443  0.300
720 0.391 0428 | 0315 0.328 | 0.207 0.301 | 0.473 0.318
Avg 0.338 0385 | 0.224 0.260 | 0.165 0.259 | 0.438 0.295
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GPU Memory by Series Length
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Figure 11: Analysis of memory usage and time efficiency of the model on the Weather dataset.

F USE OF LARGE LANGUAGE MODELS

In preparing this paper we used large language models to assist with writing. They were employed
only for language refinement, including grammatical correction and phrasing optimization.
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