
Decomposing Reasoning Efficiency in
Large Language Models

Daniel Kaiser∗† Ali Ramezani-Kebrya∗‡ Arnoldo Frigessi∗‡ Benjamin Ricaud∗†

†daniel.kaiser@uit.no

Abstract

While large language models (LLMs) are typically evaluated on accuracy met-
rics alone, real-world deployment requires careful control of computational effi-
ciency. Building on the CogniLoad benchmark [Kaiser et al., 2025], we intro-
duce a unified efficiency metric (i.e., correct answers per 1’000 output tokens)
enabling direct cross-model comparison. We further provide an interpretable fac-
torization into context robustness, logic robustness, and token appetite. Evaluating
15 state-of-the-art reasoning LLMs on CogniLoad, we find that some models fail
due to logic errors, others consume excessive tokens, and a few hit context lim-
its. Tokens are an imperfect but practical proxy for computation load, permitting
consistent comparisons across closed and open models. By decomposing overall
efficiency into actionable components, our framework identifies concrete targets
for improving LLM reasoning efficiency.

1 Introduction

Performance on a task is not the only factor influencing the deployment of LLMs. Two models with
comparable accuracy may differ substantially in terms of token usage (i.e., cost and latency). This
disparity is particularly evident on reasoning tasks where models may explore redundant solution
paths, produce verbose chain-of-thought, or derail into reasoning loops.

In this paper, we propose a unified metric and a diagnostic factorization, benchmark reasoning LLMs
by measuring their token usage, and link it to different properties of the reasoning task and reason-
ing outcomes. We leverage the reasoning benchmark CogniLoad [Kaiser et al., 2025] grounded in
Cognitive Load Theory [Sweller, 1988], which generates tasks with controlled cognitive load across
three dimensions: intrinsic difficulty d, task length N , and distractor density ρ. This allows us to
define an actionable measure of efficiency and uncover where reasoning models struggle. We focus
on CogniLoad benchmark because it specifically evaluates the pure deductive reasoning ability of
LLMs within their context without requirement of any domain knowledge (e.g., math, code, etc).

Token Efficiency. We define efficiency as the ratio of correct answers on CogniLoad relative to the
average number of thousand output tokens (T ). This is a global measure, i.e., it is computed over
the complete CogniLoad parameter surface. We denote the token efficiency by E0:

E0 =
1000 · P (success)

E[T ]
(TokenEff)

where P (success) is the probability of giving the correct answer (solving the puzzle), estimated
over all given puzzles. The token appetite E[T ] in the denominator is the average number of output
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tokens generated (including thinking trace + response) for each puzzle. This measure allows us to
calculate a single score for each LLM and enables us to produce a token-efficiency leaderboard (see
Table 1).

Tokens as a Practical Proxy for Computation. We define efficiency in terms of generated output
tokens to achieve some P (success) and through it compare open and proprietary models without
having to know model details: model size, FLOPs, or energy usage. Because per-token cost is
usually the billed unit by model providers and they vary by model architecture, we treat tokens as a
measurable, model-agnostic proxy for computation. For open models, compute-normalized variants
(e.g., size×tokens) can complement E0 while for proprietary models, this information is typically
unavailable.

In our second experiment, we explore how E0 depends on CogniLoad’s three cognitive load dimen-
sions as Ed, EN and Eρ. Following this experiment we regress the output tokens of LLMs across the
CogniLoad parameter surface and investigate how these cognitive dimensions influence the token
appetite of the models.

In our final experiment, we go deeper into the analysis of reasoning failures and the genera-
tion of tokens. For this, we decompose P (success) further into interpretable robustness factors:
P (success) = rctx · rlogic, where rctx = 1 − P (context failure) and rlogic = 1 − P (logic failure |
no context failure). Combined with token appetite E[T ], this decomposition separates three distinct
weaknesses in terms of efficiency: (i) hitting the context cap, (ii) making logical errors, and (iii)
spending too many tokens when correct. More precisely, for each evaluation, we classify the out-
come as success (correct solution for the puzzle), context failure (exhausting the 32’768 combined
token limit), or logic failure (incorrect answer without hitting the limit).

2 Related Work

Reasoning Efficiency and Overthinking in LLMs: LLMs often produce unnecessarily long chains
of thought on easy problems, inflating token use and sometimes lowering accuracy. Han et al. [2025]
show that step-by-step solutions on simple math can introduce unnecessary steps and hurt accuracy,
while Chiang and yi Lee [2024] find redundant calculations on trivial GSM8K-Zero items, with
elaborate traces that occasionally derail correct answers. Recent surveys [Sui et al., 2025] synthesize
these patterns and outline causes and mitigations for overthinking and underthinking.

Balancing Over- and Underthinking: OptimalThinkingBench [Aggarwal et al., 2025] formalizes
both failure modes with an overthinking-adjusted accuracy and shows that no current model achieves
the optimal balance: reasoning models over-explain trivial queries, while faster non-reasoning mod-
els underthink hard ones. This framing motivates adaptive policies that scale the amount of reasoning
to instance difficulty rather than using a fixed chain-of-thought budget.

Token-budget-aware Reasoning Approaches: Recent work reduces superfluous reasoning via
budgeting, early stopping, and training. TALE [Han et al., 2025] prompts with token budgets that
scale with difficulty, cutting tokens by about 67% with minimal accuracy loss. Dynasor-CoT [Fu
et al., 2025a] terminates reasoning when confidence is high, saving up to 29% tokens at similar
accuracy. Length-controllable fine-tuning (CoT-Valve [Ma et al., 2025]) and length-harmonizing
pruning (O1-Pruner [Luo et al., 2025]) shorten traces without degrading correctness. CoThink [Fan
et al., 2025] uses a concise outline from an instruct model to guide a reasoner, reducing tokens by
2̃2% with negligible loss. Complementary dynamic controls further improve efficiency with Deep
Think with Confidence [Fu et al., 2025b] filtering redundant paths using internal confidence signals,
and TRAAC [Singh et al., 2025] pruning low-utility steps online using attention and difficulty es-
timation—both cutting tokens substantially while maintaining accuracy. Offline CoT compression
via step entropy [Li et al., 2025b] likewise removes redundant steps with small accuracy impact.
Together, these strategies trim reasoning while aiming to preserve reasoning quality.

Efficiency-aware Evaluation Metrics: Standard evaluations often ignore computational cost, fa-
voring methods that simply spend more tokens. Budget-aware evaluation [Wang et al., 2024] charges
for compute and frequently eliminates purported gains. Metrics such as Accuracy per Computa-
tion Unit (ACU) [Ma et al., 2025] and reasoning-efficiency ratios [Fan et al., 2025] quantify ac-
curacy–cost trade-offs. Beyond scalar ratios, efficiency-frontier analyses define best-known accu-
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Model E0 in % P (S) in % E[T ]
o3-2025-04-16 15.21 89.27 5’869
gpt-5-2025-08-07 13.38 92.29 6’897
DeepSeek-R1-Distill-Llama-70B 12.30 56.46 4’592
o4-mini-2025-04-16 12.19 75.97 6’232
Qwen3-32B 11.47 50.26 4’383
gpt-5-mini-2025-08-07 8.87 78.79 8’878
Qwen3-30B-A3B 8.74 44.64 5’105
DeepSeek-R1-Distill-Qwen-32B 7.76 49.59 6’393
gpt-5-nano-2025-08-07 5.86 45.64 7’792
gemini-2.5-pro 5.20 75.00 14’416
gemini-2.5-flash 3.98 57.00 14’332
Phi-4-reasoning 3.38 40.62 12’013
Phi-4-reasoning-plus 3.08 46.27 15’046
Phi-4-mini-reasoning 2.79 22.34 8’005
DeepSeek-R1-Distill-Qwen-1.5B 0.97 14.21 14’690

Table 1: Efficiency Leaderboard by E0 = 1000P (success)/E[T ]. The token appetite E[T ] is the
average number of token generated by each model to solve the puzzles. P (S) is short for P (success),
the overall accuracy score for each model.

racy–length curves and measure a Reasoning Efficiency Gap (REG) [Gao et al., 2025], showing
most systems lie well off the frontier with their method REO-RL narrowing but not closing this gap.

Benchmarks and Diagnostic Frameworks: CogniLoad [Kaiser et al., 2025] manipulates length,
difficulty, and distractor density to probe failure modes with length strongly degrading accuracy
for several models, indicating weak context robustness. Think-Bench [Li et al., 2025a] evaluates
“thinking efficiency” with human-annotated key steps and metrics such as total tokens, tokens to
first correct step, reflection tokens, and step precision/recall, finding widespread overthinking on
simple problems and that larger models, while more accurate, often spend more tokens per unit of
reasoning quality. Complementary to these, OptimalThinkingBench [Aggarwal et al., 2025] explic-
itly balances over- and underthinking via thresholded “thinking tokens”, emphasizing efficiency-
sensitive correctness.

A Unified and Decomposable Efficiency Metric: We introduce a single, model-agnostic score:
correct answers per 1’000 output tokens—computed from black-box outputs. We further decompose
efficiency into three interpretable factors: context robustness, logic robustness, and token appetite
(tokens used per solution). Unlike prior work that reports multiple metrics without a synthesis,
our factorization yields an actionable index that separates contextual, logical, and verbosity-driven
reasoning inefficiencies, extending budget-aware evaluation [Wang et al., 2024] and complementing
efficiency-frontier views [Gao et al., 2025], especially for proprietary models that hide their chain-
of-thought and details about the underlying model.

3 Results

We evaluate 15 LLMs on CogniLoad’s factorial design with three dimensions of complexity: in-
trinsic difficulty d ∈ {1, 3, 5, 7, 10}, task length N ∈ {20, 50, 100, 250}, and distractor density
ρ ∈ {5, 10, 25, 50, 75, 90, 95}%. This yields 140 parameter configurations for which we gener-
ated 10 random puzzles each, totaling 1’400 tasks per model. All LLMs are evaluated on the same
CogniLoad puzzles.

Each CogniLoad attempt is labeled as one of: success (exact match), context failure (hitting the
32’768 combined token limit), or logic failure (incorrect answer without hitting the limit). We count
output tokens T as all model-generated tokens (reasoning trace + final answer). Models use default
decoding settings and for the GPT-5 series models we set the reasoning effort to “medium”.

3.1 Overall Efficiency and Leaderboard

Table 1 ranks models by E0 and reveals that efficiency leadership differs significantly compared to
accuracy leadership.

3



Efficiency vs Accuracy: o3-2025-04-16 is most efficient, E0 = 15.21%, solving correctly 89.27%
of puzzles with 5’869 output tokens on average. gpt-5-2025-08-07 attains the highest accuracy
(92.29%) but lower efficiency E0 = 13.38% with 6’897 tokens (16% more tokens than o3).

Token Appetite Varies Widely: Gemini-2.5-pro achieves 75% success but uses 14’416 tokens on
average while by contrast, o4-mini-2025-04-16 obtains a comparable performance of 75.97% with
just 6’232 tokens (56% fewer).

3.2 Efficiency across Cognitive Load Dimensions

To better understand how task properties influence the efficiency of LLMs, we use the three Cog-
niLoad dimensions and vary one while averaging accuracy over the remaining two. The three
parameter-dependent efficiencies are plotted in Fig. 1.
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Figure 1: Token efficiency of recent LLMs with respect to the CogniLoad dimensions. Ed (left) and
EN (middle) show that the efficiency is impacted by the difficulty d and length N of the puzzles.
All models exhibit diminishing curves of efficiency. Surprisingly, the ratio of distractors in the task
has little influence on the efficiency (Eρ on the right).

The left panel (vs. d) shows a sharp drop from d = 1 to d = 3, followed by a much slower decline
through d = 10. Strong models retain a consistent margin after the early drop, and the ordering
among top models is largely preserved across difficulty levels. This pattern suggests that most of
the difficulty-related efficiency loss is incurred by the first increase in difficulty, with diminishing
additional loss of efficiency thereafter.

The center panel (vs. N ) reveals the primary bottleneck. Increasing task length from N = 20 to
N = 50 eliminates a large share of efficiency EN for every model, with a further steady decay
out to N = 250. By N = 250, efficiency is typically 70–90% lower than at N = 20, and some
lower-capacity models approach zero. Despite this overall contraction, the relative ranking among
stronger models remains stable, indicating that sustained, stateful reasoning over long sequences is
the central driver of efficiency loss.

The right panel (vs. ρ) varies the fraction of distractors in the puzzle text. Most models exhibit a
shallow U-shape: Eρ is higher when ρ is very low or very high and tends to be lowest at intermediate
values (roughly ρ ≈ 40–70%). The amplitude of this effect is modest compared to the impact of N ,
and several models deviate slightly from the U-shape (e.g., nearly flat or gently increasing with ρ).

3.3 What Drives Token Appetite?

To quantify how task properties inflate output token usage, we regress per-instance output tokens T
on successful cases only via an OLS regression of the form:

T = β0 + βd

(d− 1

10

)
+ βN

(N − 20

250

)
+ βρ

(needles
N

− 0.05
)

+ ε,

where d ∈ {1, 3, 5, 7, 10} is intrinsic difficulty, N ∈ {20, 50, 100, 250} is task length, and
needles/N ∈ [0.05, 0.95] is the fraction of PoI-relevant statements (higher ρ means fewer dis-
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Model β0 βd βN βρ

DeepSeek-R1-Distill-Llama-70B 2’487*** 1’593*** 6’225*** -545***
DeepSeek-R1-Distill-Qwen-1.5B 6’732*** -2’027*** -2’409*** 1’758***
DeepSeek-R1-Distill-Qwen-32B 2’620*** 1’745*** 9’410*** -501***
Phi-4-mini-reasoning 7’581*** 1’072*** -382* 358*
Phi-4-reasoning 3’949*** 7’926*** 11’925*** 784***
Phi-4-reasoning-plus 5’913*** 8’452*** 14’003*** 647***
Qwen3-30B-A3B 3’885*** 387*** 4’174*** -593***
Qwen3-32B 3’370*** 2 4’233*** -595***
gemini-2.5-flash 2’351*** 12’395*** 20’132*** 314
gemini-2.5-pro 3’766*** 9’901*** 21’386*** 444
gpt-5-2025-08-07 2’293*** 5’113*** 8’649*** -1’301***
gpt-5-mini-2025-08-07 2’283*** 8’224*** 10’279*** -585
gpt-5-nano-2025-08-07 4’230*** 5’151*** 5’172*** 874*
o3-2025-04-16 2’275*** 4’425*** 7’842*** -2’147***
o4-mini-2025-04-16 2’862*** 4’449*** 7’560*** -1’782***

Table 2: Stars denote significance (* p < 0.05, ** p < 0.01, *** p < 0.001).
Predictors: β0 (intercept), βd (difficulty-norm), βN (total-statements-norm), βρ (rho-norm).

tractors). The predictors for d and N are affine-normalized to anchor at the grid minimum; for ρ we
subtract 0.05 so that ρ = 0 corresponds to the minimum fraction in CogniLoad.

Length Dominates Token Appetite. The length coefficient βN is the largest driver across mod-
els ( Table 2). It is strongly positive for all high-capacity systems, confirming that longer se-
quences substantially increase token appetite: Gemini-2.5-pro and -flash exhibit the largest slopes
(βN ≈ 21′386 and 20′132), the Phi family shows large positive slopes (≈ 11′925 and 14′003),
GPT-5 variants and o3/o4 are sizable but smaller (8′649, 10′279, 7′842, 7′560), and mid-tier
Qwen models are more modest (≈ 4′174–4′233). The two small models show negative βN

(DeepSeek-R1-Distill-Qwen-1.5B: −2′409; Phi-4-mini-reasoning: −382), indicating that among
their successful cases, solutions tend to be guesses, consistent with short-circuiting under load rather
than the results of genuine correct reasoning.

Intrinsic Difficulty Increases Verbosity in Specific Families. The difficulty coefficient βd is
positive and significant for most models, with very large effects in the Phi (≈ 7′926, 8′452) and
Gemini families (12′395, 9′901), and moderate effects for GPT-5 and o3/o4 (5′113, 8′224; 4′425,
4′449). In contrast, some smaller models show weak or even negative dependence (Qwen3-32B: 2,
not significant; DeepSeek-R1-Distill-Qwen-1.5B: −2′027), suggesting that, conditional on success,
they do not expand their traces much with intrinsic complexity and may instead rely on guessed
answers on easier puzzle instances.

Distractor Effects Are Modest and Family-specific. The distractor ratio coefficient βρ (higher
means more distractors) is smaller in magnitude than βN and varies in sign across families. It is
negative and often significant for GPT-5 and o3/o4 (−1′301, −2′147, −1′782) and for some Qwen
variants (≈ −595), indicating that when a larger share of the puzzle are needles, successful solutions
include longer reasoning traces. In contrast, the Phi family and DeepSeek-R1-Distill-Qwen-1.5B
show positive and significant βρ (e.g., 784, 647, 1′758), suggesting they shorten traces distractors
become more frequent. For Gemini-2.5 models, βρ is positive but not significant, reinforcing that
distractor density has comparatively minimal influence on token appetite for these systems. Overall,
the direction and size of βρ are secondary to βN and appear model-family dependent.

Baselines Vary Substantially. Intercepts β0 (the expected output tokens at d=1, N=20, ρ=0.05)
highlight baseline concision differences: o3 has the smallest baseline (343∗), GPT-5 is low (1′122),
while Phi-4-mini-reasoning and DeepSeek-R1-Distill-Qwen-1.5B are much higher (7′903, 8′315).
These baseline gaps help explain the token-appetite component in the efficiency decomposition.

In sum, token appetite scales primarily with task length N , with intrinsic difficulty d contributing
notably in specific families, and distractor density playing a smaller, model-dependent role.
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3.4 Efficiency and Failure Modes

We propose an intuitive distinction between the three different outcomes of the LLMs answers:
success, logic failure and failure due to reached context limit, and decompose Eq. (TokenEff) into
different parts by taking its logarithm. Since P (success) = rctx · rlogic, the quantity log(E0) is a
sum of terms, each one related to one of the key parameter in our efficiency analysis. We obtain
the log-space identity logE0 = log rctx + log rlogic − logE[T ] + const. To facilitate comparison
between different LLMs, we compute the difference of log(E0) with the most efficient model (i.e.
o3-2025-04-16) used as the reference model :

∆ logE0 = ∆ log rctx + ∆ log rlogic − ∆ logE[T ]. (FailDecomp)

This leads to an additive contribution analysis where positive values indicate improvements and
negative values indicate degradations of relative efficiency relative to the reference. We compute
95% confidence intervals via bootstrap resampling of puzzle IDs over 400 iterations.
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Figure 2: Decomposition of ∆ logE0 relative to o3-2025-04-16 into context robustness (+ log rctx),
green, logic robustness (+ log rlogic), blue, and token appetite (− logE[T ]), red. The dominant
pattern across almost all models is that the largest negative contribution comes from logic robustness.

The results of this decomposition are shown in Fig. 2. The difference in efficiency with respect to
the reference is driven primarily by a higher probability of logic failures, not by hitting the context
cap and only by small differences in reasoning verbosity.

The second pattern concerns token appetite and is LLM-family dependent. Some
models are comparatively concise and gain efficiency through a positive ∆ logE[T ].
DeepSeek-R1-Distill-Llama-70B and several Qwen variants illustrate this: their red bars are pos-
itive, indicating fewer output tokens than the reference, yet this advantage is outweighed by a siz-
able negative ∆ log rlogic. Other models pay a substantial verbosity tax. The Gemini models ex-
hibits large token penalties in the chart while the Gemini-2.5-pro version compensates for it through
positive log rlogic). The Phi family (Phi-4-reasoning, Phi-4-reasoning-plus, Phi-4-mini-reasoning)
combines very large logic deficits with additional token penalties, resulting in the biggest overall
shortfalls in E0.

A third observation is that context robustness variations are minor. Green bars cluster near zero for
most models, with only modest positive values for a few (e.g., gemini-2.5-pro). This indicates that,
in CogniLoad, the 32k token cap is rarely the binding constraint. When context failures occur, they
likely reflect derailed or looping traces rather than genuine limits within the available context limit.

Two contrasts are especially informative. First, gpt-5-2025-08-07 is nearly at parity with the ref-
erence on both robustness terms and loses only slightly due to a higher token appetite. Second,
models such as Qwen3-32B and Qwen3-30B-A3B are relatively frugal in tokens but still trail the
reference mainly due to logic robustness, suggesting that making the reasoning steps more reliable
would deliver larger efficiency gains than more concise reasoning.

Overall, the decomposition shows that gains of a few tenths in ∆ logE[T ] are rarely sufficient to off-
set drops of 0.5–1.5 in ∆ log rlogic. Improving reasoning fidelity via better verifiers, self-correction,
or training signals that penalize invalid deductions is a potential remedy for improving E0.
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4 Limitations

Tokens as Computation Proxy. Token counts are a practical but imperfect proxy for computation:
per-token latency, FLOPs, and energy vary with model size, architecture, and inference stack. We
therefore emphasize E0 as a model-agnostic metric that allows comparison across closed and open
models. Where feasible (i.e., open models), compute-normalized variants can complement E0.

Deductive and Synthetic Reasoning Scope. CogniLoad targets sequential deductive reasoning
without external tools or prior knowledge. This isolates reasoning fidelity from retrieval and world
knowledge, but it does not cover other reasoning paradigms (e.g., inductive, analogical) or multi-
modal settings. Thus, while token efficiency on CogniLoad may differ from reasoning efficiency
in specific domains (eg. math, coding, or open-domain QA), it reveals fundamental sensitivities of
pure reasoning to length, intrinsic difficulty, and distractors.

Single Decoding Setup. We evaluate each model with default decoding (and a standardized
“medium” reasoning effort where available). Different temperatures, stop criteria, or thought con-
straints can alter token appetite and probability of success. We partially mitigate this by aggregating
over 1 400 puzzles per model.

No External Verifiers or Tools. As we focus on the efficiency of pure reasoning ability, our test
protocol forbids tool use and external verifiers as models must solve the puzzle only with their
generated reasoning tokens. This isolates intrinsic reasoning efficiency but does not evaluate tool-
augmented systems.

5 Discussion

The decomposition turns the vague goal of “token efficiency” into concrete, model-specific targets.
In addition, our analysis of how E0 depends on task properties (i.e. the three dimensions of cog-
nitive load) and the model behavior (i.e. logic failure, context failure, and verbosity) open several
future directions for improvements of reasoning in LLMs. When ∆ log rlogic dominates, improve-
ments should prioritize reasoning quality through better verifiers or self-correction mechanisms and
training data that emphasizes formal consistency. When −∆ logE[T ] dominates, one should fo-
cus on concise plans, early stopping, and mechanisms that avoid redundant reasoning steps. When
∆ log rctx is substantial, mitigation should first target derailing traces and self-loops before increas-
ing context size.
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