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ABSTRACT

Dynamic network embedding methods transform nodes in a dynamic network
into low-dimensional vectors while preserving network characteristics, facilitat-
ing tasks such as node classification and community detection. Several embed-
ding methods have been proposed to capture structural proximity among nodes
in a network, where densely connected communities are preserved, while others
have been proposed to preserve structural equivalence among nodes, capturing
their structural roles regardless of their relative distance in the network. However,
most existing methods that aim to preserve both network characteristics mainly
focus on static networks and those designed for dynamic networks do not explic-
itly account for inter-snapshot structural properties. This paper proposes a novel
unifying dynamic network embedding method that simultaneously preserves both
structural proximity and equivalence while considering inter-snapshot structural
relationships in a dynamic network. Specifically, to define structural equivalence
in a dynamic network, we use temporal subgraphs, known as dynamic graphlets, to
capture how a node’s neighborhood structure evolves over time. We then introduce
a temporal-structural random walk to flexibly sample time-respecting sequences
of nodes, considering both their temporal proximity and similarity in evolving
structures. The proposed method is evaluated using five real-world networks on
node classification where it outperforms benchmark methods, showing its effec-
tiveness and flexibility in capturing various aspects of a network.

1 INTRODUCTION

Network embedding transforms graph nodes into low-dimensional vectors while preserving network
characteristics. These embeddings serve as inputs for tasks like link prediction, node classification,
community detection, and graph visualization (Goyal & Ferrara, 2018; Cui et al., 2018). As real-
world networks often change over time (Xue et al., 2022), dynamic network embedding is essential
to capture this evolving nature. Developing effective node embedding methods requires considera-
tion of various structural network properties.

One fundamental network characteristic is structural proximity. Studies have shown that nodes
closer in a network often share similar properties or functions. For instance, in protein-protein
interaction networks, nearby proteins typically share functions or are part of the same metabolic
pathway (De Las Rivas & Fontanillo, 2010; Durek & Walther, 2008). In social networks, individuals
tend to connect with others who are similar in demographics, backgrounds, or interests (Block &
Grund, 2014).

Structural equivalence, on the other hand, focuses on the similarity between nodes based on their
roles or functions within the network, regardless of their proximity. Two nodes are structurally
equivalent if they share similar connection patterns. This concept helps identify consistent patterns
and roles across different parts of the network. For example, users acting as mediators across a so-
cial network, who connect different communities together, might not belong to the same community
but instead share similar connection patterns with other users who also act as mediators. Struc-
tural equivalence is evident in real-world networks, including social networks (Lorrain & White,
1971; Charbey & Prieur, 2019), transportation networks (Bai et al., 2021), and biological networks,
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e.g. protein-protein interaction networks (Milenković & Pržulj, 2008; Davis et al., 2015) and brain
networks (Finotelli et al., 2021).

2 RELATED WORK

2.1 STATIC NETWORK EMBEDDING

Various methods have been proposed to preserve structural proximity in static networks. Traditional
methods include LLE (Roweis & Saul, 2000) and Laplacian eigenmaps (Belkin & Niyogi, 2001).
Matrix factorization-based methods, such as HOPE (Ou et al., 2016), preserve higher-order prox-
imities using a high-order proximity matrix and singular value decomposition, while GraRep (Cao
et al., 2015) captures structural proximities across different neighborhood sizes using k-step proba-
bilities. Random walk-based methods like DeepWalk (Perozzi et al., 2014) and node2vec (Grover &
Leskovec, 2016) extract node neighborhoods with random walks and learn embeddings via a Skip-
gram (Mikolov et al., 2013a) model. Deep learning-based methods, such as SDNE (Wang et al.,
2016), use a deep learning framework to maintain both local and global network structures.

In addition to methods focusing on structural proximity, several static network embedding meth-
ods address structural equivalence and capture node roles within the network. struc2vec (Ribeiro
et al., 2017) captures structural similarities using node degrees, constructing a multi-layer graph
where each layer encodes different resolutions of structural similarity. Random walks are applied,
and Skip-gram is used to learn the final embeddings. GraphWave (Donnat et al., 2018) uses heat
wavelets to describe neighborhood structures, effectively summarizing local patterns around each
node. Another method (Wang et al., 2020) proposes structural role embedding in hyperbolic space.
Additionally, Ahmed et al. (2020) performs attributed random walks to learn role-based embeddings.

2.2 DYNAMIC NETWORK EMBEDDING

Various dynamic network embedding methods build upon static methods to capture structural prox-
imity in time-varying networks. CTDNE (Nguyen et al., 2018) extends DeepWalk by using temporal
random walks to generate temporal node sequences, capturing temporal dynamics in node embed-
dings. Other methods include T-EDGE (Lin et al., 2020), which considers weighted networks, and
tNodeEmbed (Singer et al., 2019), which builds on node2vec and employs LSTM (Hochreiter &
Schmidhuber, 1997) for evolving interactions. De Winter et al. (2018) extends node2vec for dy-
namic link prediction. Pandhre et al. (2018) learns embeddings from random walks within the same
snapshots as well as temporal walks across different snapshots to capture spatio-temporal dynamics.

Regarding structural equivalence in dynamic networks, Wang et al. (2021) first explores structural
roles by extending the idea from struc2vec to dynamic networks. k-hop neighborhoods structural
distance is calculated for node pairs at each timestep and aggregated to form a historical structural
distance. However, this method does not consider structural dynamics between timesteps, as struc-
tural information is extracted independently at each timestep. Some works focus on a specific kind
of structure, a triad, and model its evolution process. Zhou et al. (2018) proposes DynamicTriad
which preserves the evolution pattern of a triad by modeling the triadic closure process to get node
embeddings for each time snapshot. Huang et al. (2020) further proposes MTNE that models the
triad evolution using Hawkes process (Hawkes, 1971).

2.3 UNIFYING STRUCTURAL PROXIMITY AND EQUIVALENCE

Several static network embedding methods aim to capture both structural proximity and equivalence
simultaneously. Lyu et al. (2017) proposes a node embedding method that uses local subgraphs,
or graphlets, to measure structural equivalence among nodes, in addition to node neighborhood
information. However, this method limits structural similarity to nearby nodes in the Sth-order
neighborhood. Shi et al. (2019) considers graphlet-based structural equivalence between all node
pairs and introduces joint representation learning to preserve both structural proximity and equiva-
lence. Shi et al. (2021) defines structural equivalence using the graphlet degree vector (GDV) and
employs cross-layer random walks on the original and structural similarity networks to capture both
proximity and equivalence.
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For dynamic networks, Liu et al. (2020) proposes a k-core based temporal Graph Convolution Net-
work (CTGCN) that preserves both nodes’ connective proximity and global structural similarity
based on k-core (Nikolentzos et al., 2018) subgraphs or maximal subgraphs where all nodes have
a degree of at least k. Node features are propagated along the k-core subgraphs within each time
snapshot where RNN is then utilized to model the temporal dependency at different timestep. In a
similar manner, Li et al. (2024) proposes a temporal Graph Convolution Network based on k-truss
(Cohen, 2008) subgraphs (TTGCN) defined based on triangles. However, the topological structure
considered to be preserved for both methods is defined within each time snapshot independently, as
k-core and k-truss network structures are considered independently at each timestep.

3 OUR CONTRIBUTIONS

Majority of network embedding methods aim to capture either proximity or equivalence, but not
both. Furthermore, existing methods that aim to preserve both characteristics are mostly designed for
static networks, while the methods for dynamic networks do not explicitly consider inter-snapshot
structural relationships. To address these limitations, we are motivated to propose a unifying net-
work embedding framework that preserves both structural proximity and equivalence in a dynamic
network, while considering inter-snapshot structural relationships. The main contributions of our
work can be summarized as follows:

• We propose a unifying network embedding framework which preserves both structural
proximity and equivalence in a dynamic network. We construct a structural similarity net-
work based on dynamic graphlets (Hulovatyy et al., 2015), which explicitly accounts for
inter-snapshot structural dynamics.

• We propose a temporal-structural random walk to generate temporal node contexts that
capture both temporally close nodes and nodes with similar structural roles. We introduce
the α hyperparameter that can be tuned to capture different degrees of task-specific network
characteristics, offering flexibility and interpretability to the task of network learning.

• We evaluate the proposed method on five real-world networks for node classification and
compare it with five benchmark methods. Our method outperforms the benchmarks. Addi-
tionally, we are able to infer the importance of each network characteristic across different
networks using the α hyperparameter.

4 PROBLEM STATEMENT AND PRELIMINARIES

Proximity and Equivalence Preserving Dynamic Network Embedding. Given a dynamic net-
work, G = (V,ET ) where V is the set of nodes shared across all timesteps and ET ⊆ V × V × T
is the set of all dynamic edges and Et ∈ ET is the edge at timestep t. The dynamic network embed-
ding aims to learn a mapping function for time-respecting embedding f : V −→ Rd, where d is the
embedding dimensions and d ≪ |V |. Additionally, the node embeddings vi and vj preserves both
structural proximity and equivalence of node vi and vj in G.

4.1 STRUCTURAL PROXIMITY

Structural proximity in a dynamic network refers to how closely connected nodes are to each other
over time. Preserving proximity is useful in preserving communities where nodes in close proximity
are considered to be in the same community and share the same characteristics. Specifically, an edge
etij = (vi, vj) ∈ Et between nodes i and j indicates first-order proximity between the two nodes at
time t.

4.2 STRUCTURAL EQUIVALENCE

Structural equivalence identifies roles of nodes across different parts of the network based on their
structural patterns. Regardless of their distance, a group of nodes can be considered structurally
equivalent if they have the same local structures, e.g., mediator users across the network who connect
different communities together. This concept is formally introduced in this section.
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Graphlets and graphlet degree vector (GDV) have been widely used to capture local topological
structure of nodes in real world networks (Sarajlić et al., 2016; Charbey & Prieur, 2019; Finotelli
et al., 2021; Milenković & Pržulj, 2008). Graphlets are small, non-isomorphic, induced subnet-
works. Nodes within the same graphlet are said to be of the same automorphism orbit, if they can
be mapped to one another by automorphism, or in simple terms, have identical connection patterns.
Figure 1 (a) shows all graphlets with up to four nodes where for each graphlet, its automorphism
orbits are denoted in unique colors. The graphlet degree vector (GDV) of a node, serving as its
topological signature, is a vector where each element corresponds to the number of times the node
takes part in a specific orbit of a graphlet.

Figure 1: (a) All static graphlets with up to four nodes. Each graphlet has its unique automorphism
orbits denoted in different colors, e.g. G0 has one unique orbit, shown in black, while G3 has
two unique orbits shown in black and white. (b) All dynamic graphlets with up to three events.
Automorphism orbits are shown in different colors. Ordered events of each graphlets are labeled
with numbers where multiple events can occur on the same edge as labeled by numbers separated
by commas.

To quantify the structural equivalence among nodes in dynamic networks, we use a dynamic gen-
eralization of graphlets, namely dynamic graphlets and dynamic GDV (D-GDV) (Hulovatyy et al.,
2015). Dynamic graphlets introduce temporal information to the edges of graphlets, identifying each
edge in a graphlet with a specific order in time. Hence, the D-GDV of a node, which summarizes
the involvement of the node in different dynamic graphlet orbits, provides a topological dynamics
signature of that node. Furthermore, since each edge in a dynamic graphlet can correspond to a
different timestep, as we will later elaborate, it explicitly accounts for inter-snapshot dynamics in
the network. The definitions of dynamic graphlet and dynamic GDV (D-GDV) (Hulovatyy et al.,
2015) are as follows:

Definition 3.3.1 ∆t-time respecting path. Nodes s and d are said to be connected by a ∆t-time
respecting path, if there is a sequence (v0, u0, t0, σ0) , (v1, u1, t1, σ1) , . . . , (vk, uk, tk, σk) such that
v0 = s, uk = d,∀i ∈ [0, k − 1]ui = vi+1 and ti+1 ∈ [ti + σi, ti + σi +∆t] or intuitively there is a
temporal path from s to d.

Definition 3.3.2 A temporal network is called ∆t-connected if for any pair of nodes, there is a
∆t-time respecting path between the two nodes.

Definition 3.3.3 Dynamic graphlets. Isomorphic ∆t-connected temporal subgraphs, where two ∆t-
connected temporal subgraphs correspond to the same dynamic graphlet if they are topologically
identical and their events occur in the same order. Figure 1 (b) shows all dynamic graphlets with
up to three events, where the order of events is labeled along the edges and automorphism orbits for
each graphlet are denoted in unique colors.

Definition 3.3.4 Dynamic graphlet degree vector (D-GDV) of a node is a vector where each ele-
ment corresponds to the number of times the node takes part in a specific orbit of a dynamic graphlet.
This summarizes the dynamic graphlet involvement of a node and serves as its topological signature.
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4.2.1 DYNAMIC GRAPHLET-BASED STRUCTURAL EQUIVALENCE

For our work, we define structural equivalence in a dynamic network based on dynamic graphlets.
Given the dynamic graphlet degree vectors (D-GDVs) of all nodes in the network, the structural
equivalence of two nodes vi and vj , is based on the Euclidean distance of their D-GDVs in the PCA
(Abdi & Williams, 2010) space. Specifically, the structural equivalence sij is defined as

sij =
1

1 + d(vi, vj)
, (1)

where d(vi, vj) = ∥DGDV ′(vi) − DGDV ′(vj)∥ is the distance between the two D-GDVs in the
PCA space. A weighted dynamic graphlet-based structural similarity network, S = (V,ES), is then
constructed where each weighted edge eij = (vi, vj , sij) ∈ Es represents the structural equivalence
sij between nodes vi and vj . The network is made sparse by having each node keep only the top k
most similar neighbors. In this network S, structural proximity translates to structural equivalence
in the original network G.

5 METHODOLOGY

Figure 2: The proposed methodology workflow.

5.1 TEMPORAL-STRUCTURAL RANDOM WALK

To capture proximity and equivalence in a dynamic network, we introduce a temporal random
walk algorithm, called temporal-structural random walk, that samples a time-respecting sequence
of nodes that includes nodes that are temporally close in G and nodes that are structurally similar
based on dynamic graphlets, i.e., nodes that are close together in S.

We first describe a temporal random walk. A temporal random walk is a variation of the traditional
random walk, adapted for temporal networks, which introduces the dimension of time into its transi-
tions. The resulting walk reflects the temporal order of events in the network. Formally, a temporal
walk in a dynamic network G is a sequence of nodes {v1, v2, ..., vl} where the edge ei, which is
the edge connecting vi and vi+1 for 1 ≤ i < l − 1, satisfies T (ei) ≤ T (ei+1) where T (ei) and
T (ei+1) ∈ 1 . . . T are the timesteps of edges ei and ei+1, respectively. This incorporates time in-
formation into the walk and ensures that the walk is a forward move in time and that it is an ordered
sequence of events in the network.

Given a random walker at node vi at time t, the temporal edge neighborhood for node vi at time t is

NT (vi, t) = {et
′

ik = (vi, vk, t
′) ∈ ET where t′ ≥ t}.

The transition probability of walking an edge in the neighborhood is

PT (e
t′

ij |vi, t) =
exp[t− t′]∑

e∈NT (vi)
exp[t− T (e)]

. (2)

The exponential distribution is chosen to ensure the random walker is more likely to follow edges
with smaller time gaps and avoid losing temporal information from bigger jumps in time.
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Next, we introduce a structural random walk which samples structurally similar nodes that are not
necessarily connected in the original network. The structural edge neighborhood NS(vi, t) for node
vi is a set of weighted edges defined in S connecting vi to its structurally similar nodes,

NS(vi, t) = {etik = (vi, vk, sik, t) where (vi, vk, sik) ∈ ES}.

Unlike a temporal walk, since there is no notion of a temporal order of events when sampling two
structurally similar nodes, the structural edge neighborhood for each node at time t is defined only
within the same time snapshot. However, the structural similarity weight sik, defined for each pair
of nodes vi and vk, considers the inter-snapshot dynamics through dynamic graphlets.

The transition probability of walking an edge in the structural neighborhood is then defined to be
based on S for all time snapshots t as

PS(e
t
ij |vi, t) =

sij∑
eik∈NS(vi)

sik
. (3)

We introduce a hyperparameter α to control the importance weight between structural proximity
(i.e., captured by the temporal walk) and equivalence (i.e., captured by the structural walk). Given a
random walker at node vi at time t, the next edge e will be sampled from the temporal neighborhood
with probability 1− α and from the structural neighborhood with probability α:

e ∼
{
PT (.|vi, t) with probability 1− α,

PS(.|vi, t) with probability α.
(4)

When α = 0, the walk captures only temporal proximity and reduces to a temporal random walk
on the dynamic network G, which in this special case our method is equivalent to CTDNE (Nguyen
et al., 2018). Conversely, when α = 1, the walk considers only dynamic structural roles, equivalent
to walking solely on the structural similarity network S.

5.2 LEARNING NODE EMBEDDINGS VIA SKIP-GRAM MODEL

The Skip-gram (Mikolov et al., 2013a) model is used to learn node embeddings from the random
walk sequences. The Skip-gram model is a three-layer neural network, originally used in natu-
ral language processing (NLP), which later has been widely adopted to learn node embeddings in
networks.

Nodes in the network are treated as words, and the random walk sequences on the network are
analogous to sentences in a text corpus. For each node vi, the model maximizes the likelihood of
finding the temporal context nodes appearing in the random walk sequences. More specifically,
consider a node vi appearing in a random walk sequence, the sliding temporal context window of
node vi is W(vi) = {vi−ω, ..., vi, ..., vi+ω} where ω is the window size and T (vi−ω, vi−ω+1) ≤
· · · ≤ T (vi+ω−1, vi+ω). The likelihood of finding the context nodes conditioned on its embedding
is as follows:

log p(W(vi)|vi) =
∑

vj∈W(vi)

log p(vj | vi), (5)

where W(v) represents the nodes around node v in random walks. The probability p(vj | vi),
modeled using the softmax function, is

p(vj | vi) =
exp(vT

j vi)∑
vk∈V exp(vT

k vj)
. (6)

As the sum of all nodes in the denominator
∑

vk∈V exp(vT
k vj) can be computationally costly for

large networks, negative sampling is generally adopted to reduce training running time (Mikolov
et al., 2013b). Instead of summing over all the nodes, a small number of negative nodes (i.e., nodes
that are not in the context window) will be sampled from a noise distribution. In this paper, we use a
well-adopted modified unigram distribution. A negative node will be sampled from the distribution

Pn(x) =
U(x)

3
4

Z , where U(x) is the unigram distribution of the frequency of node x in all random
walk sequences.

6
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Algorithm 1 Dynamic Network Embeddings
Require: an unweighted and (un)directed dynamic network G = (V,ET , T ), number of walks β,

context window size ω, embedding dimensions D, maximum walk length l, maximum number
of graphlet nodes n, maximum number of graphlet events m, number of neighbors to keep k

1: S = STRUCTURALSIMILARITYNETWORK(G,n,m, k)
2: Initialize set of walks W = {}
3: for iter = 0 to β do
4: Wi = TEMPORALSTRUCTURALWALK(G,S, l)
5: Add Wi to W
6: end for
7: Z = SKIPGRAM(W,ω)

Algorithm 2 Temporal-Structural Random Walk
Require: an unweighted and (un)directed dynamic network G = (V,ET ), a weighted structural

similarity network S = (V,ES), walk length l, balancing weight α
1: Sample a starting edge in G, (u, v, t)
2: Initialize walk sequence W = [u, v]
3: Set vi = v
4: for iter = 1 to l − 1 do
5: NT (vi, t) = {et′ik = (vi, vk, t

′) ∈ ET where t′ ≥ t}
6: NS(vi, t) = {etik = (vi, vk, sik, t) where eik = (vi, vk, sik) ∈ ES}
7: Define PT (.|vi, t) based on Equation (2)
8: Define PS(.|vi, t) based on Equation (3)
9: Sample new edge e from PT (.|vi, t) with prob. 1− α and from PS(.|vi, t) with prob. α as in

Equation (4)
10: Set vi = Dst(e)
11: Set t = T (e)
12: Add vi to W
13: end for
14: return ramdom walk sequence W

Algorithm 3 Structural Similarity Network S

Require: G = (V,ET ), maximum number of graphlet nodes n, maximum number of graphlet
events m, number of neighbors to keep k.

1: Compute Dynamic Graphlet degree vector DGDV (vi) for each node vi
2: PCA decomposition DGDV ′

3: for each node pair i and j do
4: Compute structural similarity sij according to (1)
5: end for
6: Initialize ES = {}
7: for each node vi do
8: Define an edge (vi, vk, si,k) for top k largest weighted edges and add to ES

9: end for
10: return S = (V,ES)

6 COMPUTATIONAL COMPLEXITY ANALYSIS

6.1 TIME COMPLEXITY

Given the number of nodes N = |V |, the number of dynamic edges M = |E|, the embed-
ding dimension D, the number of random walk sequences sampled per node R, the maximum
length of a random walk L, and the maximum degree of a node ∆, the time complexity of per-
forming temporal random walks and learning Skip-gram model has been shown by Nguyen et al.

7
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(2018) to be O (M +N (R logM +RL∆+D)). For the number of dynamic graphlet types
S(n,m) which is a function of the number of n nodes and m events considered, S(n,m) =∑n−2

i=0

(−1)n+i(n−2
i )(2i+1)m−1

2(n−2)! , n ≥ 3, the time complexity of dynamic graphlets computation

has been shown by Hulovatyy et al. (2015) to be O
(
M +M

(
S
M

)m−1
)

. The time complex-
ity of performing PCA on the dynamic graphlet degree vector with dimension P using SVD is
O
(
P 2N

)
, where P ≪ N . The time complexity of constructing a structural similarity network

is O
(
jN2

)
, where j ≪ N is the dimension kept after PCA. Therefore, the total running time is

O(M+N(R logM+RL∆+D)+M
(

S
M

)m−1
+P 2N+jN2), which is affordable as generally it

is sufficient to only consider a small number of nodes and events for dynamic graphlets. The specific
number of nodes and events considered for dynamic graphlets used in our setting is specified in the
Experimental Settings section.

6.2 SPACE COMPLEXITY

The space complexity for the temporal random walk is O (M +ND) (Nguyen et al., 2018). The
space complexity for the structural random walk is O (kN), since each node requires storing the
edge weights of top k most structurally similar nodes. Therefore, the total space complexity is
O (M +ND + kN).

7 EXPERIMENT AND RESULTS

In this section, we introduce the experimental settings and results. Our code with all datasets used in
the experiment is publicly available at https://anonymous.4open.science/r/temporal-structural-walk-
C7CC.

7.1 DATASETS

We use five real-world networks in our experiments: Hospital (Vanhems et al., 2013), Workplace
(Génois et al., 2015), Enron (Carley, 1995), PPI-aging (Faisal & Milenković, 2014), and Brain 1.
Details of the datasets can be found in Appendix A.1.

7.2 EVALUATION METRICS AND BASELINE METHODS

We compare our method with five network embedding methods including DeepWalk (Perozzi et al.,
2014), node2vec (Grover & Leskovec, 2016), struc2vec (Ribeiro et al., 2017), CTDNE (Nguyen
et al., 2018), and D-GDV or dynamic graphlet degree vector (Hulovatyy et al., 2015) where PCA
decomposition is applied for dimension reduction, with the dimensions kept so that 90% variance in
the data remains.

The node embeddings from each method are used as inputs to a one-vs-rest logistic regression clas-
sifier for a node classification task where 5-fold cross validation is applied. Specifically, the model
is trained on four parts and tested on the remaining part, this process is repeated five times with
each part used exactly once as the test set, and the results are averaged to provide a performance
estimate. The macro-average scores for Average Precision (AP) and Area Under the Receiver Op-
erating Characteristic Curve (AUROC) are reported as mean and standard deviation obtained from
the cross validation.

7.3 EXPERIMENTAL SETTINGS

The embedding dimension d is set to 32 for all datasets. The maximum length of random walk l is
chosen from the set {10, 15, 20, 25, 30} according to the length of the timesteps and sparsity of each
network and is set to 25, 15, 20, 30, and 10, for Hospital, Workplace, Enron, PPI-aging, and Brain
datasets, respectively. The context window size ω is set to 10 for all datasets. The hyperparameter

1https://tinyurl.com/y4hhw8ro
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α is chosen over the interval [0, 1] with 0.025 incremental search to get the optimal performance in
terms of AP.

We use the constrained dynamic graphlets counting implementation provided by Hulovatyy et al.
(2015) to compute D-GDV. According to their graphlet size and node classification performance
analysis, increasing the number of nodes improves accuracy at a cost of higher computational com-
plexity and a small graphlet size is shown to be effective. However, for a fixed number of nodes,
increasing the number of events considered does not necessarily improve the performance. For the
smallest network, Hospital, we consider dynamic graphlets with up to 6 events and 4 nodes. For
the medium size network, Workplace and Enron, we consider dynamic graphlets with up to 4 events
and 5 nodes. Lastly, for large networks, PPI-aging and Brain, we reduce the node size and consider
dynamic graphlets with up to 4 events and 4 nodes. The structural similarity network S is then
constructed with the top k similar neighbors kept for each node, where k is set to be 5, 5, 5, 100,
and 20, for Hospital, Workplace, Enron, PPI-aging, and Brain datasets, respectively.

7.4 NODE CLASSIFICATION IN DYNAMIC NETWORK

Data Set Algorithm AP AUROC
Hospital D-GDV 0.7535 ± 0.0691 0.8370 ± 0.0943

DeepWalk 0.7054 ± 0.0449 0.8334 ± 0.0275
node2vec 0.7782 ± 0.0779 0.8627 ± 0.0727
struc2vec 0.5956 ± 0.0374 0.7326 ± 0.0791
CTDNE 0.8407 ± 0.0394 0.9329 ± 0.0403

Ours 0.8639 ± 0.0710 0.9399 ± 0.0527
Workplace D-GDV 0.4713 ± 0.1020 0.6780 ± 0.0782

DeepWalk 0.9755 ± 0.0184 0.9877 ± 0.0133
node2vec 0.9766 ± 0.0149 0.9890 ± 0.0103
struc2vec 0.4023 ± 0.0405 0.6363 ± 0.0308
CTDNE 0.9836 ± 0.0157 0.9911 ± 0.0090

Ours 0.9922 ± 0.0077 0.9959 ± 0.0043
Enron D-GDV 0.3102 ± 0.0216 0.6624 ± 0.0171

DeepWalk 0.4076 ± 0.0433 0.7780 ± 0.0279
node2vec 0.4118 ± 0.1152 0.7499 ± 0.0428
struc2vec 0.3118 ± 0.0597 0.6726 ± 0.0460
CTDNE 0.4730 ± 0.0807 0.7967 ± 0.0300

Ours 0.5145 ± 0.0922 0.8047 ± 0.0366
PPI-aging D-GDV 0.2373 ± 0.0363 0.7576 ± 0.0241

DeepWalk 0.2332 ± 0.0615 0.8418 ± 0.0232
node2vec 0.2375 ± 0.0681 0.8296 ± 0.0191
struc2vec 0.2239 ± 0.0561 0.8226 ± 0.0155
CTDNE 0.1035 ± 0.0296 0.7592 ± 0.0322

Ours 0.2566 ± 0.0311 0.7857 ± 0.0262
Brain D-GDV 0.4544 ± 0.0098 0.8706 ± 0.0043

DeepWalk 0.5111 ± 0.0203 0.9088 ± 0.0033
node2vec 0.4956 ± 0.0221 0.9063 ± 0.0048
struc2vec 0.1735 ± 0.0034 0.6422 ± 0.0065
CTDNE 0.5571 ± 0.0116 0.9200 ± 0.0019

Ours 0.5664 ± 0.0156 0.9205 ± 0.0027

Table 1: Comparison of algorithms on node classification tasks.

The proposed method is evaluated using node classification on five real-world networks. The results
shown in Table 1 demonstrates the state-of-the-art performances of the proposed method. The net-
works exhibit varying degrees of proximity and equivalence characteristics that can be observed by
the optimal tuned value of α for each network in Figure 3. The optimal α values for the majority of
networks including Hospital, Workplace, Enron, and Brain, are found to be low in the range of 0.025
to 0.1, which indicates that the labels of the networks are more related to structural proximity than
structural roles. However, the non-zero α values demonstrate that structural equivalence properties
are beneficial for node classification. Specifically when compared to CTDNE (Nguyen et al., 2018),
which is the special case of our model when α = 0 (capturing only structural proximity), our model
shows improvements in both AP and AUROC. The improvement is particularly large on the Enron
and Hospital dataset, where our method has a relative improvement of 8.77% and 2.75% increase
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in AP. The results also indicate significant improvements over static baselines such as DeepWalk,
node2vec, and struc2vec, highlighting the temporal information captured by the proposed method.

On the other hand, the high optimal α value of 0.95 for the PPI-aging network indicates that node
labels are more related to structural equivalence or structural roles. However, the optimal α value
being less than one shows that proximity characteristics also contribute to the classification task.
Given the highly imbalanced labels in the PPI-aging network, with a significantly larger negative
class, AP is a more suitable metric for evaluation. Compared to struc2vec, which captures only
structural roles, our proposed method achieves a relative improvement of 14.60% in AP. Further-
more, compared with D-GDV, whose structural information is used to construct our structural sim-
ilarity network, our proposed method achieves a relative improvement of 8.13% AP, showing the
enhanced performance from incorporating information on node proximity.

7.5 SENSITIVITY OF THE HYPERPARAMETER α

The α hyperparameter, which controls the balance between node proximity and structural roles,
introduces flexibility to the model as different tasks in the same network might require varying
degrees of each network characteristic. Figure 3 shows the model performance in terms of AP across
different datasets using different values of α. The optimal value for α for each dataset tends to be
either close to 0 or 1, indicating that each task primarily relies on either proximity or equivalence.
However, there is an improvement when incorporating the minor characteristic to a small degree.
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Figure 3: Average Precision for different values of hyperparameter α, where the vertical lines rep-
resent the standard deviation.

8 CONCLUSION

In this work, we have studied the dynamic network embedding problem with the goal of capturing
both structural proximity and equivalence of a dynamic network, while accounting for the inter-
snapshot structural dynamics among nodes. We have quantified structural equivalence between
two nodes in a dynamic network based on dynamic graphlets. A temporal-structural random walk
method has been proposed to sample node sequences consisting of temporally close nodes and
structurally similar nodes by introducing a hyperparameter α to balance the weight between the two
network characteristics. The proposed method has demonstrated the state-of-the-art performances
on five real-world datasets on node classification, capturing varying degrees of structural proximity
and equivalence in dynamic networks. In this paper, the hyperparameter α was chosen by brute
force search; for future work, a supervised strategy could be developed to learn the optimal α using
node labels in the training set.
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A APPENDIX

A.1 DATASETS

• Hospital Vanhems et al. (2013): A contact network between patients and health-care work-
ers where the node labels are different individual roles (e.g., paramedical staffs, adminis-
trative staff, etc.).

• Workplace Génois et al. (2015): A contact network in an office building where the node
labels are different workplace departments.

• Enron Carley (1995): An email communication network where the node labels are com-
pany roles (e.g., CEO, president, director, employee, etc.).
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• PPI-aging Faisal & Milenković (2014): A dynamic age-specific protein-protein interaction
network spanning 37 different ages, from 20 to 99 years. Node labels are binary, indicating
whether the protein/gene is aging-related. The node labels are highly imbalanced with
approximately 2% of the nodes in the positive class.

• Brain 2: This dataset is obtained from functional magnetic resonance imaging (fMRI) data,
where nodes represents cubes of brain tissue and edges between two nodes represent the
similar degrees of activation at each time period. Node labels are brain functions (e.g.,
auditory processing, language processing, emotion processing, body movement, etc.).

Table 2: Dataset Detail
Dataset Nodes Edges Time Steps Classes
Hospital 72 2,845 27 4

Workplace 92 9,827 20 5
Enron 182 9,880 45 7

PPI-aging 6,371 557,303 37 2
Brain 5,000 947,744 12 10

2https://tinyurl.com/y4hhw8ro
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