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Abstract

Scaling language model capacity is crucial for achieving better performance, as it1

allows these models to capture more complex patterns and representations. Empir-2

ically, increasing model size and compute improves outcomes; however, the rela-3

tionship between model parameters and compute per example, and their combined4

contribution to capacity, is not yet fully understood. We explore this relationship5

through sparse Mixture-of-Expert models (MoEs), which allow scaling the num-6

ber of parameters without proportionally increasing the FLOPs per example. We7

investigate how varying the sparsity level, i.e., the ratio of non-active to total pa-8

rameters, affects model performance in terms of both pretraining and downstream9

objectives. We find that under different constraints (e.g. parameter and total train-10

ing compute), there is an optimal level of sparsity that improves both training11

efficiency and model performance. These results provide a clearer understanding12

of the impact of sparsity in scaling laws for MoEs and complement existing works13

in this area, offering insights for designing more efficient architectures.14

1 Introduction15

Empirical scaling laws for language model pretraining [15, 14, 19, 23, 13, 4, 27, 17] have demon-16

strated that proportionally increasing model capacity, along with data and total compute budget,17

consistently decreases pretraining loss, improves downstream task performance [8, 3, 1] and un-18

locks emergent capabilities [24]. A recurring notion in these studies is that model capacity is well19

quantified by the total number of model parameters. However, the number of parameters is not20

the only means to increase model capacity— compute per example (i.e., a fixed-sized input), mea-21

sured in FLOPs, also plays a significant role. In fact, several mechanisms [22, 7, 25, 12, 6] allow22

for independent variation of the number of parameters or FLOPs per example within a model. For23

instance, Mixture-of-Experts (MoE) models[22] introduce “FLOP-free parameters” by leveraging24

sparsity, where only a subset of expert modules is activated for each input. Under specific con-25

ditions, the total number of parameters can serve as a reasonable relative estimator of FLOPs per26

example. Therefore, using the number of parameters as a measure of model capacity in scaling law27

studies is appropriate. However, in scenarios or for architectures where the number of parameters28

and FLOPs per example are not inherently linked, it is essential to jointly consider the effects of29

these variables on scaling model capacity. We thus ask “Can we draw scaling laws for the opti-30

mal trade-off between parameter count and FLOPs per example?” To address this question, we31

study sparse Mixture-of-Expert Transformers (MoEs) [22, 16, 10, 28, 18] in the context of language32

modeling.33

Existing scaling law studies for MoEs, investigate the role of variables like number and granularity34

of experts, underlying dense model size and inference compute in predicting the performance of the35

models under different conditions such as training or inference compute optimality [9, 4, 27, 17]. In36
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this paper, we focus on the interaction between FLOPs per example and total parameter count, and37

their impact on model performance in MoEs, through a large-scale empirical study.38

We define sparsity as the ratio of inactive experts to the total number of experts, which indirectly39

controls FLOPs per example in MoEs. We evaluate loss and downstream metrics for different spar-40

sities, model sizes, and compute budgets terms. Our findings are summarized as follows:41

• Effect of Sparsity on Scaling Laws for Optimal Model Size: For any specific sparsity level,42

performance of the models as a function of their size exhibits parabolic behavior under a fixed43

training compute budget. i.e., the model reaches its optimal performance at a vertex, that indicates44

optimal model size. Under these conditions:45

– The optimal active number of parameters decreases as the sparsity level increases, leading46

to smaller FLOPs per example and more efficient inference even though the total number of47

parameters increases (see §2.1).48

– While the trend of increasing active number of parameters is similar across all training com-49

pute budgets; the optimal active number of parameters decrease more rapidly with sparsity50

as the training compute budget increases (see §3).51

• Optimal Sparsity for Fixed Model Size: For any given number of parameters and under a fixed52

training compute budget, model performance as a function of sparsity exhibits a parabolic pattern,53

reaching its peak at an optimal sparsity level (see §2.2). Specifically, the optimal sparsity level:54

– Increases with the total number of parameters approaching 1.0 for larger models. i.e., if55

a model is relatively small for a given training compute budget, sparsifying it more than a56

threshold will hurt its performance. On the other hand, if a model is relatively large for a57

given compute budget, further sparsifying it helps as it leads to increase in the number of58

tokens the model is trained on under the given training budget constraints (see §2.2).59

– Decreases across all model sizes as the training compute budget decreases (see §D.1 and60

§D.2).61

• Effect of Sparsity on Downstream Performance: Models with similar pretraining perplexity62

have similar downstream task performance regardless of sparsity. For reading comprehension63

tasks (e.g., CoQA [21], SQuAD [20]), denser models perform better, potentially due to their64

higher inference-time compute than a perplexity-matched sparse model. Alternative strategies to65

increase inference time compute dynamically [25, 12] may address this gap (see §4).66

Ultimately, this paper highlights the crucial role of the sparsity variable in scaling laws for MoEs,67

emphasizing that the most efficient model configuration requires joint optimization of model size,68

total training budget and sparsity level and the optimal balance between FLOPs per example and69

parameter count in MoEs depends on both the computational constraints and the main objective.70

2 The Interplay between Model Parameters and Sparsity in MoEs71

Is there an optimal trade-off betweenparameter count and FLOPs per example in MoEs under the72

setting where the training compute budget is fixed?73

Intuitively, under infinite data setting, scaling model capacity along with the training compute budget74

leads to performance improvements. Previous scaling law studies suggest that, conditioned on a75

training compute budget measured in FLOPs denoted by C, the optimal number of parameters,76

N∗(C), exhibits a power-law relationship with C [14]:77

N∗(C) = argmin
N

L(N ;C) ∝ Ca (1)

Our goal is to study how to optimally trade-off FLOPs per example (i.e. a fixed-sized input) and total78

parameters as shown in Equation 2. Instead of FLOPs vs. parameters, we investigate the relationship79

between Sparsity S and total number of parameters N , as S is the variable in MoEs that indirectly80

impacts FLOPs per example.1 Essentially, for models with the same N , the model with a higher S81

will have fewer active parameters Na, resulting in fewer FLOPs per example. For more details on82

1We use the active number of parameters as a proxy for FLOPs per example, as 6NaD provides a good
estimate of the total FLOP count for MoEs; see Appendix C for details.
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(a) IsoFlop Surface (Budget: 3e20 FLOPs)
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(b) Ground-truth vs. Predicted Loss on Held-out Data
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Figure 1: IsoFLOP surface over observed pretraining loss L, model size N and sparsity S. We fit a
polynomial mapping N , S and their interaction to L using empirical data to obtain plot (a) from which we
observe that for fixed compute budget the loss is decreasing with increased model sparsity. The plot on the
right shows the goodness-of-fit from which we observe that the predictions and observed loss values are highly
correlated with a small prediction error. (see Figure 6 in Appendix D.1 for other total training compute budgets.)
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(c) Optimal Active Parameters N *
a
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Figure 2: IsoFLOP slices along Sparsity and Model Size. We use fitted isoFLOP surfaces (Section 2) to
analyze how sparsity S and model size N impact the loss L for a fixed compute budget. We identify optimal
points by (a) fixing N and varying S, (b) fixing S and varying N and (c) fixing S and varying active parameters
Na. Observe that (a) the optimal sparsity S increases with increasing model size N and converges to 1 while (b)
and (c) show that the optimal model size N and active parameter count Na increase and decrease respectively
with increasing sparsity levels. (see Figure 7 in Appendix D.1 for other total training compute budgets.)

the notations and experimental settings see Appendix A and Appendix B.83

(N∗, S∗) = argmin
N,S

L(N,S;C) (2)

To simplify the problem of understanding the joint role of N and S in predicting L, we break the84

problem, Equation 2, into two parts:85

1. "How does the sparsity level impact the scaling laws of the relationship between N and C for86

training-compute optimal models?" To address this question in §2.1, we fix S and vary N , study-87

ing how optimal N and Na change for different values of S:88

N∗ = argmin
N

L(N ;C, S) (3)

2. "Is there an optimal balance between total and active number of parameters under fixed training-89

compute budget?" To address this question in §2.2, we fix N and vary S, studying how optimal90

S changes across different values of N :91

S∗ = argmin
S

L(S;C,N) (4)

As the first step, considering a fixed training compute budget C, we fit a 3D surface, referred to92

as the IsoFLOP surface, in Figure 1a, using a polynomial function, following approach II of Hoff-93

mann et al. [14]. We include sparsity and fit a single IsoFLOP surface across all data points, rather94
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than fitting separate curves for fixed sparsity levels or model sizes. We conducted a grid search to95

determine the optimal polynomial degree for N , S, and the interaction term N × S, finding that96

a degree of (2, 2, 2) resulted in the lowest cross-validation error. Both N and S are in log space97

(see Appendix B for more details). Figure 1b illustrates the goodness of fit, demonstrating a strong98

correlation and low predictive error.99

As seen in Figure 1a, the IsoFLOP surface plot is parabolic along model size, suggesting that the100

findings of Hoffmann et al. [14] extend to MoEs across different sparsity levels, i.e., L(N ;C, S) is101

parabolic, with its optimal solution located at the turning point. However, along sparsity, pretraining102

loss decreases monotonically, indicating that, for the same compute budget, sparser models achieve103

better pretraining loss. To better understand these observations, we examine slices of the IsoFLOP104

surface along the axes of S and N separately in §2.1 and §2.2, respectively.105

2.1 Optimal Model Size for Fixed Sparsity Level106

Here we examine how sparsity influences scaling laws governing the relationship between N and C107

for training-compute optimal models, i.e. how does N∗, for a given C, S (Equation 3), change as we108

increase S? Looking at slices of the IsoFLOP surface along the model size dimension, in Figure 2b109

and (c), we observe how the IsoFLOP curves shift along loss and model size. Considering the110

training-compute optimal model, for a fixed compute budget, loss decreases as we increase sparsity.111

Furthermore, while sparser models have larger N compared to denser models, as seen in Figure 2b,112

they have a smaller active parameter count Na; hence, fewer FLOPs per example. More parameters113

in total increase the capacity of the sparser models to fit the data, while fewer FLOPs per example114

allow the model to be trained with more tokens, i.e., higher D, for the same compute budget.115

2.2 Optimal Sparsity Level for Fixed Model Size116

Understanding the dynamics between number of parameters and FLOPs per example is essential117

for training models with smaller inference cost under constraint training budget. This leads us to a118

fundamental question: Is there an optimal balance between the total and active number of parameters119

under a fixed training-compute budget? This section investigates this question. Specifically, we ask:120

Given N and C, How does S∗ change as we increase N?121

To address this, we look into slices of the IsoFLOP surface along sparsity, Figure 2a. As we can122

see in this figure, given a fixed compute budget for training and fixed model size there L(S;N,C)123

exhibits a parabolic profile, reaching its optimum value at the vertex where S = S∗. We observe in124

Figure 2a, generally, for smaller models, models with N < Nth, increasing the sparsity level, and125

for larger models, models with N > Nth, increasing sparsity has a positive impact. More accurately,126

for a fixed compute budget the optimal sparsity level increases with model size and converges to 1127

as the model size grows (see Figure 8 in §D.2 in the Appendix for more details).128

If the model size has more parameters than a threshold Nth it is favorable to sparsify as much as129

possible. Note that the model with the lowest loss is not the largest sparsest model, i.e., there is a130

compute optimal model size even after MoE sparsity is introduced, and increasing total number of131

parameters would lead to under-training if training compute budget is fixed.132

These results highlight the importance of balancing the number of parameters with FLOPs per ex-133

ample. Intuitively, when the total number of parameters is small, higher sparsity results in fewer134

active parameters, and thus fewer FLOPs per example. We speculate that this reduction in FLOPs135

per example may lead to inefficiencies during both training and inference. Conversely, when the136

total number of parameters is large, a fixed compute budget may not allow sufficient training on137

enough tokens to make use of the model’s additional capacity.138

3 Impact of Training Compute Budget on the Interaction between Model139

Parameters and Sparsity140

Does increasing compute budget impacts the interaction between the parameters and compute per141

example and how they contribute to model’s capacity? In other words, does the recipe for optimally142

increasing model capacity change as we scale up the training budget?143
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(b) Effect of Budget C on Active Parameters
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(c) Effect of Budget C on Loss

Figure 3: Effect of compute budget on model size, number of active parameters and loss with sparsity.
Over all budgets considered, we observe that (a) the optimal model size N increases with sparsity, (b) the
optimal number of active parameters Na decreases with sparsity, and (c) the loss L decreases with sparsity.
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(a) Language Understanding
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(c) Common Sense Reasoning
PIQA (10-shot)
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(d) World Knowledge
BIG-bench QA-Wikidata (10-shot)

Figure 4: Effect of sparsity on downstream vs upstream performance. Downstream error shows a tight
relationship with pretraining (“upstream”) loss across downstream tasks across all sparsity levels.

To answer this question. in Figure 3 we illustrate the trends for changing the total number of param-144

eters, N∗, the number of active parameters, N∗
a , and the loss, L∗, with sparsity level across different145

compute budgets.146

Figure 3c shows that the optimal sparsity level approaches 1 across all compute budgets used in our147

experiments. There is no significant difference observed in the slope of the loss vs sparsity curves148

across different training compute budgets used in our experiments. This observation suggests that149

there is no diminishing effect of sparsity on the pretraining loss as we increase training compute150

budget, i.e., if there is no constraint on the model size, sparsity improves the performance of the151

model across all training budgets. As shown in §2.2, when model size in terms of total number of152

parameters is fixed, optimal sparsity level does now always approach 1.0, and it decreases as we153

increase the training compute budget (see Appendix D.2 in Figure 8).154

Furthermore, as we see in Figures 3a and 3b, across all training compute budgets, we see a consistent155

trend of increasing N and decreasing Na for compute optimal models as sparsity level increases.156

However, the rate of decreasing Na, which can be interpreted as inference cost, increases as we157

increase training compute budget. This means, at larger training compute budgets, the benefit of158

reducing compute in terms of FLOPs per example amplifies. i.e., the gains of increasing sparsity159

level to reduce inference cost becomes more significant at larger training budgets.160

4 Effect of MoE Sparsity on Downstream Task Performance161

In this section, we study how sparsity affects the relationship between upstream and downstream162

performance of MoEs. In other words, does sparsity impact the relative gains from improvements163

in pretraining tasks on downstream tasks?164

We use downstream tasks from the evaluation suite in llm-foundry2 for benchmarking our pre-165

trained models. The downstream task are devided into four pre-defined categories namely: language166

2Github repository: https://github.com/mosaicml/llm-foundry
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understanding, world knowledge, reading comprehension, and symbolic reasoning to help us sys-167

tematically test whether the downstream vs upstream performance trend remains the same or is168

different as we vary sparsity values.169

We observe from Figure 4a (language understanding), Figure 4c (common sense reasoning) and170

Figure 4d (world knowledge) that there is a tight relationship between upstream (pretraining) loss171

and downstream performance (error) across all these tasks. However, Figure 4b (reading compre-172

hension) shows an example of a task where models with higher sparsity transfer worse compared to173

denser models. This decrease in the transfer performance of sparser models on these tasks maybe174

due to the lower inference-time compute in sparser models over their denser counterparts for similar175

pretraining loss. Further analysis in needed to verify this intuition. If fewer FLOPs per example176

is the reason behind worse transfer performance in sparser models, this effect might diminish at177

larger total training compute budget. Moreover, one can leverage approaches like chain-of-thought178

reasoning to independently increase FLOPs per example during inference time179

While our results may indicate that there maybe no additional benefit obtained via sparsity in MoEs,180

we caution the reader that this suggestion maybe an artifact of the scale of our experiments. In the181

end, since, as shown in §2, sparser models are more efficient both in terms of training and inference182

cost (when measured in terms of theoretical FLOPs); we can reach a better pretraining performance183

with higher sparsity levels at a lower cost, which can translates to better downstream performance.184

5 Conclusion185

This paper underscores the role of sparsity in the scaling laws for Mixture-of-Expert Transformers186

(MoEs), showing that the most efficient model configuration depends on balancing model size, train-187

ing compute, and sparsity level. The optimal recipe for balancing FLOPs per example and parameter188

count in MoEs depends on the objective as well other resource constraints. Our findings indicate189

that sparsity, as a knob that controls FLOPs per example in MoEs, is a powerful mechanism for190

optimizing model performance under constrained training compute budgets. By balancing the total191

number of parameters, compute, and sparsity, MoEs can be scaled more effectively. These insights192

provide valuable guidance for scaling language models, especially for MoEs, where the trade-offs193

between parameters and FLOPs must be carefully managed.194

MoEs were originally introduced to allow increasing model capacity without a significant increase195

in inference cost. Our experiments show that under fixed total training compute budget increasing196

sparsity in MoEs leads to smaller FLOPs per example, higher number of parameters, and lower pre-197

training loss simultaneously. In other words, in the context of MoEs, if there are no constraints on198

the total number of parameters, increasing the capacity of the model through parameter count seem199

to be the optimal strategy if lower pretraining loss is the main goal. On the other hand, when com-200

paring how well the pretraining performance transfers to various downstream tasks, denser models201

seem to be better on certain types of task that potentially rely on deeper processing of the input vs202

the knowledge stored in the parameters of the model. This potentially signals the importance of the203

role of FLOPs per example in increasing the capacity of the model during inference. Furthermore,204

under conditions where memory, i.e., number of total parameters, is a constraint, we find that there205

is an optimal sparsity value that depends both on the total number of parameters and total training206

compute budget.207

It is also noteworthy that, in this paper, we have prioritized training compute-optimal models, in208

contrast to many published results on large language models (LLMs), which often rely on over-209

trained models. As a result, the performance of the models we use for the analysis in this paper is210

not directly comparable to those of other studies, where they overtrain smaller language models, to211

reduce the cost of inference relative to training.212

Future work will examine the optimal balance of FLOPs per example and parameter count with more213

emphasis and in depth analysis on performance of the models on different types of downstream214

tasks, as well as investigating how the finding on the role of sparsity in MoEs extend to model215

architectures or approaches with different mechanisms to change FLOPs per example and number216

of trainable parameters of the models independently. More specifically, an interesting follow-up217

is to investigate the scaling behaviors of the models which allow negative sparsity values (through218

parameter sharing).219
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A Preliminaries347

In this section, we provide a brief overview of Mixture-of-Expert (MoE) Transformers.348

A.1 Mixture-of-Expert (MoE) Transformers349

Mixture-of-Experts Transformers modify the standard transformer architecture by introducing in the350

MLP layer. In this design, the experts are MLP (Multi-Layer Perceptron) modules that follow the351

attention mechanism and are selectively activated for each token. A gating mechanism determines352

which MLP experts are most relevant for each token, ensuring that only a subset of experts (top-k)353

is active at any given time, while the rest remain inactive. Below, we provide the notations used354

throughout the paper for various terms related to training MoEs.355

Total and Active Parameters: In MoEs, we distinguish between total and active parameters,356

denoted by N and Na, respectively. The total parameter count, N , includes all parameters of the357

network, encompassing both the experts and the rest of the architecture. The active parameter count,358

Na, refers to the parameters associated with the active portion of the experts, along with the rest of359

the network that is always utilized.360

Top-k Expert Selection: In MoEs, the gating mechanism assigns tokens to a subset of experts361

using a top-k selection process, where k denotes the number of experts activated for each token. The362

gate computes a relevance score for each expert, and the top k experts with the highest scores are363

selected and activated. This selective activation limits the computational overhead by ensuring that364

only a fraction of the experts are used per token.365

Expansion Factor and Granularity: The expansion factor, typically denoted by E, represents366

the increase in model capacity due to the inclusion of multiple experts, measured as a multiplicative367

factor relative to the base dense model. The granularity, G, determines the size of each expert368

relative to the size of the MLP module in the base dense model. The total number of experts in the369

model is given by E ×G, where E scales the capacity and G controls the level of granularity.370

Sparsity (S): In general, sparsity is defined as the ratio of inactive to total parameters. However,371

in the context of MoEs, we focus on the sparsity of the MLP modules specifically. Therefore, we372

define the sparsity level as the ratio of inactive to total experts, given by:373

S =
number of non-active experts

number of total experts
. (5)

This definition provides an interpretable measure of sparsity but cannot be directly used to calculate374

the active parameter count Na due to the contribution of other parameters in the model that remain375

unsparsified.376
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B Experimental Setup377

We train and evaluate auto-regressive sparse Mixture-of-Experts (MoE) language models of varying378

sizes and configurations on subsets of the RedPajamaV1 dataset [5]. The key variables we explore379

in our experiments are total model parameters N , training compute budget C, and the MoE sparsity380

S.381

Pre-training data. Our models are pre-trained on subsets of the RedPajamaV1 dataset3 [5], which382

attempts to replicate the LLaMA pre-training data recipe and comprises 1.2 trillion tokens from383

sources such as Common Crawl, C4, GitHub, and Wikipedia. In all our experiments, the effective384

dataset size is adjusted based on the training compute budget C and the model size N . We tokenize385

the data using the GPT-NeoX tokenizer [2], which has a vocabulary size of 50, 432 tokens.386

Model and tokenizer. We use auto-regressive transformer-based MoE language models in order387

to study compute-parameter trade-offs by varying MoE sparsity. We use the Megablocks library [11]388

to train dropless MoEs in which the routing mechanism ensures that all tokens are efficiently routed389

without being dropped due to routing capacity constraints.390

Optimizer and scheduler. We optimize our models using the scale-free Adam optimizer4 with391

variable learning rate, a weight decay of 1 × 10−5, and fixed Adam-specific parameters β =392

(0.9, 0.95) and ε = 1 × 10−8. We use a learning rate scheduler consisting of a linear warm-up393

phase followed by a cosine decay. The warm-up phase increases the learning rate from 0 to the394

base learning rate over a fraction of the total training steps (selected from {0.1, 0.05, 0.02}). After395

warm-up, the learning rate decays following a cosine schedule for the remaining training steps.396

Fitting IsoFLOP surfaces. Recall that in Section 2, we fit isoFLOP surfaces to predict pretraining397

loss L as a polynomial function of model size N and MoE sparsity S for a fixed training budget C.398

The polynomial function takes the form399

L(N,S) = aN̂α + bŜβ + c(N̂ · Ŝ)γ + d (6)

where N̂ = logN and Ŝ = − log(1 − S)—we find that applying log transformations improves400

the fit of the resulting isoFLOP surface. Through a grid search over the polynomial coefficients401

α, β, γ ∈ {0, 1, 2, 3, 4}, we found that the best fit was obtained for α = β = γ = 2, i.e., a402

quadratic polynomial. We evaluate the fitted isoFLOP surfaces in Figure 1 by (a) re-running the403

fitting procedure k = 100 times on randomly sub-sampled data and (b) evaluating the Pearson404

correlation between the true and predicted pretraining loss values on a set of held-out data points.405

Hyperparameters. We fix a subset of hyperparameters for which changing values in preliminary406

experiments (a) did not significantly improve pre-training loss, (b) the optimal value remained the407

same across several model configurations, or (c) in order to reduce the search space (i.e., limited408

compute resources). Specifically, we first opted to use z-router loss [28] and qk-normalization [26]409

in order to stabilize training for large MoEs. Second, we fixed MoE router jitter noise to 0, as it did410

not improve performance. We also fixed our batch size to 2048 for all model sizes.411

We swept over hyperparameters that, when adjusted, (a) significantly improved pre-training loss and412

(b) the optimal values varied across different model configurations. We increase the MoE sparsity413

by decreasing the number of active experts and/or increasing the number of total experts. We also414

varied the MoE granularity [17], MoE load balancing regularizer, Adam learning rate, and linear415

warm-up steps (fraction) in order to improve pre-training loss. The table below summarizes our416

hyperparameter sweeps:417

3GitHub repository: https://github.com/togethercomputer/RedPajama-Data
4Scale-free Adam: https://fabian-sp.github.io/posts/2024/02/decoupling/

12

https://github.com/togethercomputer/RedPajama-Data
https://fabian-sp.github.io/posts/2024/02/decoupling/


Table 1: Hyperparameter configurations and search spaces

Hyperparameter Configuration Search Space

Sparsity Level Tuned {0, 25, 50, 75, 90, 95, 98}%
Number of Total Experts Tuned Adjusted depending on sparsity
Number of Active Experts Tuned Adjusted depending on sparsity
Granularity Tuned {1, 2}
Learning Rate Tuned [0.003, 0.002, 0.001]
Load Balancing Factor Tuned {0.02, 0.05}
Warm-up Steps Tuned {2, 5, 10}%
Batch Size Constant 2048
Jitter Noise Constant 0
z-Loss Constant 0
z-Router Loss Constant 0.001
QK Norm Constant Applied
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C Estimating Mixture-of-Expert (MoE) FLOPs418

Similar to prior work on scaling laws (e.g., [15, 14, 17]), we use theoretical FLOP estimates as419

proxies for training and inference costs of language models. In this section, we (a) outline our420

methodology for estimating FLOPs for MoEs and (b) show that the proposed estimator closely421

approximates empirical FLOPs of large-scale MoEs.422

Setup and notation. Consider an MoE model with nlayers MoE layers, each with an embedding423

dimension of dmodel. We denote the number of total experts and active experts in each MoE layer424

by Etotal and Eactive respectively. Following Ludziejewski et al. [17], we let G denote the MoE425

granularity, which defaults to 1 and controls the size of each expert relative to the size of a feed-426

forward layer in an equivalent dense transformer. In our experiments, we use a vocabulary size427

nvocab = 50, 432 context length nctx of 2048 and use GLU modules (Gated Linear Units) [22] over428

feed-forward modules as the architecture of choice for MoE experts. We also set the (a) hidden429

dimension of each GLU expert dffn to 4 · dmodel and (b) instantiate MoEs where the number of430

attention heads nheads times the dimensionality for each head dhead equals dmodel, i.e., nheadsdhead =431

dmodel.432

Estimating module-specific FLOPs. To estimate the FLOPs of a given MoE model, we first433

individually estimate the FLOPs per token incurred by a forward and backward pass through every434

module in MoEs. Then, we aggregate these estimates to obtain the final estimator for the FLOPs per435

token incurred by a forward and backward pass through the model.436

Like in prior work [15, 14], we take a two-step approach to estimate module-specific FLOPs. Given437

a module, we first estimate the number of parameters in the module and then scale this with an438

appropriate constant corresponding to the number of add-multiply operations per parameter through439

a forward and backward pass of the given module. We also omit non-leading terms such as non-440

linearities, biases, and layer normalization in our estimation. We estimate the FLOPs per token for441

attention modules, MoE routers, MoE experts, and the final un-embedding layer as follows:442

1. Attention module. We estimate the FLOPs incurred via the QKV (and final) projections,443

attention logits, and attention values of all heads in a multi-head attention module as follows.444

• QKV (and final) projections. These projections involve 4 · dmodelnheadsdheads = 4d2model445

parameters. Following Kaplan et al. [15], we use the multiplicative constant C = 6 to446

account for the add-multiply operations per parameter in a forward and backward pass447

through linear modules, resulting in a FLOPs-per-token estimate of 4 · C · d2model.448

• Attention logits. The FLOPs required to compute the attention logits for all nctx tokens449

equals C ·n2
ctxdmodel FLOPs, making the FLOP-per-token estimate equal to C ·nctxdmodel.450

• Attention values. The computation of attention values requires a per-token weighted sum451

over nctx dmodel-dimensional vectors, making the estimate C · nctxdmodel.452

2. MoE module. Given an MoE layer, we estimate the FLOPs incurred by its router and all453

experts separately.454

• Router. The MoE routing linearly maps a dmodel-dimensional token embedding to a Etotal-455

dimensional logit vector, which is subsequently used to map the token to Eactive active456

experts. Following Ludziejewski et al. [17], we use a multiplicative constant R = 14 that457

accounts for the add-multiply-route operations per router parameter. The resulting FLOP458

estimate equals R · dmodelEtotal459

• Experts. Each MoE experts corresponds to a GLU module [22] with dffn = 4·dmodel. Since460

there are Eactive active experts with granularity G, each involving three linear projections,461

this results in a FLOP estimate of 1/G · 3 · Eactive · C · dmodeldffn = 12C/G · Eactive · d2model.462

3. Un-embedding layer. The un-embedding linear layer maps the final dmodel-dimensional em-463

bedding of a token to nvocab-dimensional logits, making the FLOPs-per-token C · nvocabdmodel.464

Estimating MoE FLOPs. We can aggregate the module-level FLOP estimates described above to465

estimate the FLOPs per token required for a single forward and backward pass through a given MoE466

model as follows:467

nlayer
(
4Cd2model + 2Cdmodelnctx + 12C/GEactived

2
model +RdmodelEtotal

)
+ Cnvocabdmodel
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When Etotal/dmodel is small, which is typically the case in practice, the FLOPs induced by MoE routing468

can be ignored as they contribute negligibly to the estimator. This allows us to simplify the estimator469

to:470

MoE FLOPs per token := C · nlayersd
2
model

(
4 +

2nctx

dmodel
+

12Eactive

G
+

nvocab

dmodelnlayers

)
(7)

Evaluating 6NaD as a FLOPs-per-token estimator in MoE Models For standard dense trans-471

formers, the FLOPs are often estimated as 6ND [15, 14]. Given that D is fixed and not adjusted472

dynamically, N can serves as a reliable relativeestimator of FLOPs per token for dense transformer473

models.474

To adapt the 6ND estimator for MoE models, we replace N with Na (the active number of475

parameters)—the number of parameters used in every forward and backward pass. In Figure 5,476

we evaluate the accuracy of the 6NaD estimator by plotting the ratio between the MoE FLOPs esti-477

mator described in Equation 7 and 6NaD as a function of model size N and a fixed context length478

D = 2048. The results show that, across all sparsity levels, the ratio remains close to one, and the479

gap between the two estimators decreases as model size N increases.480
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Figure 5: Accuracy of 6NaD FLOPs Estimator for MoEs. Ratio of the MoE FLOPs estimator (Equation 7)
to the 6NaD estimator as a function of the total number of parameters, for a fixed context length of D = 2048,
used in our experiments.
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D Additional Analysis481

D.1 Interplay between parameters and FLOPs per example482

Recall that in Section 2, we showed that isoFLOP curves were predictive of pretraining loss for483

different parameter counts and sparsity levels. In this section, we show similar results with additional484

training compute budgets.485

1. In Figure 6, we first show that IsoFLOP surfaces mapping model size N and sparsity level S to486

pre-training loss L are predictive for all training compute budgets that we consider, ranging from487

3e19 to 1e21 FLOPs.488

2. In Figure 7, we analyze the fitted IsoFLOP surfaces (one for each training budget) and find that489

the (a) effect of model size N on optimal MoE sparsity S∗ and (b) the effect of MoE sparsity S490

on the optimal total and active parameters, N∗ and N∗
a , is similar for all training budgets.491

D.2 Effect of training budget and model size on optimal MoE sparsity492

Recall that Section 3, we demonstrated how the relationship between optimal total parameters N∗,493

optimal active parameters N∗a, and optimal pretraining loss L predictably changes as a function of494

sparsity S and training budget C. In this section, we use the fitted isoFLOP surfaces to analyze how495

the optimal MoE sparsity S∗ changes as a function of total parameters N and training budget C, as496

shown in Figure 8. Our main findings are:497

• Across all training budgets (ranging from 3e19 to 3e20 FLOPs), increasing the total parameters498

N leads to an increase in the optimal sparsity level S∗.499

• For a fixed model size (i.e., total parameters N ), increasing the training budget C generally re-500

duces the optimal sparsity level S∗.501

• The relationship between model size N and optimal S∗ is not linear. For smaller models (up502

to about 500 · 106 parameters), the optimal sparsity remains at 0 (i.e., dense) for most compute503

budgets.504
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D.3 Effect of sparsity on downstream task performance505

In Section 4, we analyzed the relationship between upstream pre-training loss and downstream task506

performance across different MoE sparsity levels. We found that language understanding and world507

knowledge tasks generally showed a strong correlation between upstream and downstream perfor-508

mance, while reading comprehension tasks seemed to favor denser models to some extent.509

In this section, we provide additional plots for a broader range of tasks within each category to510

further support our findings. We consider the following tasks:511

• Common Sense Reasoning: PIQA, CommonSenseQA, OpenBookQA, COPA512

• Language Understanding: LAMBADA, HellaSwag, Winograd, Winogrande513

• Reading Comprehension: SQuAD, CoQA, BoolQ514

• World Knowledge: TruthfulQA, ARC-Easy, ARC-Challenge515

Figure 9 shows the relationship between upstream pre-training loss and downstream task perfor-516

mance for these additional tasks. Each row corresponds to a task category and each subplot repre-517

sents a different task, with points colored according to MoE sparsity S. The x-axis represents the518

upstream pre-training loss, while the y-axis shows the downstream task performance metric (usually519

accuracy or error rate). These results supplement our main findings from Section 4:520

• We observe consistent trends across tasks within each category, with language understanding and521

world knowledge tasks showing strong correlations between upstream and downstream perfor-522

mance regardless of sparsity.523

• Reading comprehension tasks continue to show a slight advantage for denser models, while com-524

mon sense reasoning tasks (which can be considered part of the symbolic problem-solving cate-525

gory) show more varied relationships between upstream and downstream performance.526

D.4 Comparing IsoFLOP Surface Analysis with Independent 2d IsoFLOPs527

Recall that in Section 2, we used IsoFLOP surfaces that predict pre-training loss across varying528

parameter counts and sparsity levels to understand how optimal sparsity and optimal model size529

depend on each other.530

In this section, we evaluate whether these findings remain consistent when we do not rely on fitted531

IsoFLOP surfaces. Specifically, similar to Approach II in Hoffmann et al. [14], we directly fit532

univariate quadratic functions that map model size N to pre-training loss L, independently for each533

sparsity level and training compute budget. We then assess these univariate fits to determine whether534

our findings in Section 2 hold.535

• In Figure 10, each row shows how the optimal total and active parameters change as a function of536

MoE sparsity for fixed training budgets. As in our findings from Section 2 (Figure 2), increasing537

sparsity increases the optimal total parameters while decreasing the optimal active parameters.538

Moreover, larger compute budgets still result in higher optimal total and active parameters, re-539

gardless of the sparsity level.540

• Furthermore, in Figure 11, we observe that across all training compute budgets, increasing sparsity541

reduces the optimal pre-training loss. This is consistent with the trends identified in Section 3542

(Figure 3), thereby validating our earlier results.543

544
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Figure 6: IsoFLOP surfaces over total parameters N , MoE sparsity S, and pretraining loss L for different
compute budgets. The rows correspond to IsoFLOP surface fitted using models trained with a budget of 3e19,
6e19, 1e20, 3e20, and 1e21. The subplots on the left visualize IsoFLOP surfaces mapping total parameters N
and sparsity level S to pretraining loss L. The subplots on the right correlate the ground-truth pretraining loss
with the estimated pretraining loss on held-out data. Taken together, these results show that isoFLOP surfaces
are accurate proxies for understanding how model size and MoE sparsity jointly impact pretraining loss.
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Figure 7: Optimal MoE configurations predictably change with training compute budget. Each row corre-
sponds to an analysis of how optimal MoE sparsity S∗, total parameters N∗, and active parameters N∗

a change
for a given training budget. The subplots on the left show that (a) increasing the training budget increases the
model size N (denoted with black dots) with the minimum pretraining loss and (b) for models smaller than a
threshold (which increases with training budget), dense models (i.e., 0% sparsity) fare better than sparse MoEs.
The subplots in the second and third panel show that (a) increasing MoE sparsity increases the optimal total
parameters N∗ and decreases the optimal active parameters N∗

a . In both cases, for a fixed sparsity level, in-
creasing the budget shifts increases the optimal total and active parameters.
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sparsity S∗.
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Figure 9: Downstream task performance vs. upstream pre-training loss. Each subplot shows the relation-
ship between upstream pre-training loss (x-axis) and downstream task performance (y-axis) for a specific task.
Similar to our results in Section 4, we find that the MoE sparsity level does not change the relationship between
upstream pre-training loss and downstream task performance.
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Figure 10: Effect of MoE sparsity on optimal total and active parameters across different training com-
pute budgets. Each row shows the change in total and active parameters as a function of sparsity level for
fixed training budgets. Increasing sparsity leads to an increase in the optimal total parameters while reducing
the optimal active parameters, consistent with our findings in Section 2 (Figure 2). Larger training compute
budgets result in higher optimal (total and active) parameters across all sparsity levels.
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Figure 11: Effect of MoE sparsity on pretraining loss across different training compute budgets. As spar-
sity increases, the validation loss decreases for all compute budgets, with larger budgets (darker lines) achieving
lower losses at each sparsity level. This trend is consistent with the findings from Section 3, demonstrating that
increasing sparsity reduces the optimal pretraining loss across all compute budgets.
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