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ABSTRACT

Chain-of-Thought (CoT) techniques have significantly enhanced reasoning in
Vision-Language Models (VLMs). Extending this paradigm, Visual CoT inte-
grates explicit visual edits, such as cropping or annotating regions of interest, into
the reasoning process, achieving superior multimodal performance. However, the
robustness of Visual CoT-based VLMs against image-level noise remains unex-
plored. In this paper, we present the first systematic evaluation of Visual CoT
robustness under visual perturbations. Our benchmark spans 12 image corruption
types across 4 Visual Question Answering (VQA) datasets, enabling a comprehen-
sive comparison between VLMs that use Visual CoT, and VLMs that do not. The
results reveal that integrating Visual CoT consistently improves absolute accuracy
regardless of whether the input images are clean or corrupted by noise; however, it
also increases sensitivity to input perturbations, resulting in sharper performance
degradation compared to standard VLMs. Through extensive analysis, we iden-
tify the intermediate reasoning components of Visual CoT, i.e., the edited image
patches , as the primary source of fragility. Building on this analysis, we propose
a plug-and-play robustness enhancement method that integrates Grounding DINO
model into the Visual CoT pipeline, providing high-confidence local visual cues
to stabilize reasoning. Our work reveals clear fragility patterns in Visual CoT and
offers an effective, architecture-agnostic solution for enhancing visual robustness.

1 INTRODUCTION

With the introduction of Chain-of-Thought (CoT) techniques, Large Language Models (LLMs)
have achieved remarkable progress in reasoning capabilities. Recent studies have extended CoT
to Vision-Language Models (VLMs), evolving from CoT pipelines that rely solely on textual rea-
soning to Visual Chain-of-Thought (Visual CoT) approaches that incorporate visual information into
the reasoning process (Shao et al., 2024; Jiang et al., 2025a; Wang et al., 2025; Chen et al., 2024;
Fu et al., 2025), thereby significantly enhancing multimodal reasoning performance. For Visual
CoT methods, a common practice is to perform visual editing on the input images, such as crop-
ping, annotating, or modifying regions of interest. The edited and original images are jointly fed
into the model, which is guided to perform step-by-step reasoning based on both visual inputs, thus
supporting finer-grained multimodal understanding.

However, despite several studies exploring the robustness of CoT-based VLMs under purely tex-
tual reasoning scenarios (Jiang et al., 2025a; Zhou et al., 2024a; Jiang et al., 2025b; Wang et al.,
2024), there has been no systematic investigation into the robustness of Visual CoT-based VLMs.
Unlike standard textual CoT, Visual CoT introduces explicit visual manipulations, which inherently
interact with the reasoning process. Under noisy conditions, these added components may amplify
the effects of input perturbations, making the system more susceptible to errors and raising new
challenges for multimodal reasoning (as shown in Figure 1).

To address this gap, we propose a robustness evaluation framework for Visual CoT-based VLMs,
aiming to systematically assess how Visual CoT affects model robustness under visual perturba-
tions. Specifically, we employ 12 distinct visual perturbation techniques, systematically applied to
the input images. To quantify the robustness impact introduced by Visual CoT, we compute the
performance degradation separately under two paradigms, Visual CoT-enhanced VLMs and stan-
dard VLMs without CoT, by comparing outputs before and after perturbation. This setup enables a
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Figure 1: Visual CoT pipeline amplifies the effects of input noise due to intermediate visual editing
steps, where noise influences both global and local components, in contrast to Standard VLMs where
noise only affects a single input stage.

direct and systematic analysis of how incorporating Visual CoT changes robustness in multimodal
reasoning tasks.

Our experimental results show that while Visual CoT VLMs consistently achieve higher absolute
accuracy across all perturbation conditions, their performance degrades more sharply under noisy
inputs compared to standard VLMs. Further experiments reveal that noise compromises the relia-
bility of intermediate reasoning components, which subsequently propagates to the final stage and
leads to more severe accuracy degradation. Moreover, attention analysis demonstrates that Visual
CoT VLMs exhibit a more concentrated attention distribution compared to standard VLMs. These
attention characteristics explain why Visual CoT VLMs achieve higher accuracy under whether
clean or perturbed inputs.

Building on this analysis, we propose a lightweight, plug-and-play robustness enhancement strategy
by integrating Grounding DINO model (Liu et al., 2023b) into the Visual CoT pipeline. Grounding
DINO automatically identifies high-confidence image regions relevant to the question and injects
these localized cues into the reasoning chain. This provides the model with richer and redundant
visual information, effectively mitigating the adverse effects of perturbation without requiring addi-
tional fine-tuning or architecture modification.

This paper makes several contributions to the literature: 1 We present the first comprehensive eval-
uation of Visual CoT-based VLMs under visual perturbations, offering new insights into the trade-
off between their accuracy and robustness. 2 We introduce a lightweight strategy that integrates
Grounding DINO into the Visual CoT pipeline, substantially improving reasoning stability under
noisy conditions. 3 We establish a robustness evaluation benchmark that spans 12 visual perturba-
tion types across multiple datasets on VQA task, providing a reproducible and extensible foundation
for future research on Visual CoT robustness.

2 RELATED WORK

2.1 CHAIN-OF-THOUGHT IN VISION-LANGUAGE MODELS

CoT prompting has significantly advanced the reasoning capabilities of LLMs by decomposing com-
plex problems into intermediate steps. Building on this success, recent research has extended CoT
to VLMs, enabling multimodal reasoning by integrating visual evidence into the reasoning chain.
Zhang et al. (2024) first formally introduce the concept of Multimodal-CoT (MCoT) and extend it
into a rationalizing-answering stages paradigm. Yang et al. (2023) introduce MM-REACT, which
combines LLMs with vision experts through prompt-based coordination, enabling zero-shot multi-
modal reasoning across diverse visual tasks.

Later, the development of CoT gradually evolved from purely textual prompting to frameworks that
integrate explicit visual editing into the reasoning process. Shao et al. (2024) introduce a large-scale
visual CoT dataset with bounding boxes and reasoning steps, enabling VLMs to identify key regions
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and enhance multimodal reasoning. Hu et al. (2024) propose Sketchpad, enabling VLMs to sketch
visual artifacts during reasoning and improving performance on complex visual and mathematical
tasks. Fu et al. (2025) introduce ReFous, which equips VLMs with visual editing capabilities to
generate “visual thoughts”, achieving substantial gains in structured image understanding. These
studies highlight the progression of CoT in VLMs, from textual prompting to Visual CoT pipelines
incorporating editing and sketching, broadening the scope and effectiveness of multimodal reason-
ing.

2.2 ROBUSTNESS OF CHAIN-OF-THOUGHT

While CoT has achieved remarkable performance gains, its robustness under input perturbations
remains an open challenge. Zhou et al. (2024b) address the challenge of noisy rationales in
CoT prompting by introducing the NoRa dataset and proposing CD-CoT, a contrastive denoising
method that significantly improves reasoning robustness under irrelevant or inaccurate intermedi-
ate thoughts. Jin et al. (2024) investigate the security vulnerabilities of CoT-based models in code
generation and propose SABER, a model-agnostic backdoor attack leveraging self-attention, demon-
strating that CoT models remain highly susceptible to stealthy data poisoning. Wang et al. (2024)
reveal that CoT-based MLLMs exhibit only limited resistance to adversarial attacks despite their
multi-step reasoning process.

Collectively, these studies reveal that despite the strong reasoning capabilities of CoT-based sys-
tems, they remain vulnerable to various forms of security threats. However, prior studies have
predominantly investigated robustness in purely textual CoT prompting frameworks, the robustness
of Visual CoT approaches remains largely underexplored. In this work, we aim to bridge this gap by
conducting a comprehensive study on the robustness of Visual CoT reasoning under diverse noisy
and adversarial conditions.

3 METHODOLOGY

To systematically examine the impact of incorporating Visual CoT on model robustness, we compare
two paradigms: (1) Standard VLMs, which generate answers directly from image–question pairs,
and (2) Visual CoT VLMs, which explicitly integrate intermediate visual reasoning steps. Our
evaluation focuses on how their performance degrades when subjected to identical perturbations
applied to the input images.

3.1 TWO VLM PARADIGMS

In this study, we compare two modeling paradigms:

1) Standard VLMs The Standard VLMs refers to the conventional multimodal question answering
framework, where the model receives an image–question pair and directly generates the final an-
swer. The reasoning process is entirely implicit within the model’s internal representations, without
interpretable intermediate steps.

2) Visual CoT VLMs In contrast, Visual CoT VLMs introduce intermediate reasoning stages into
the multimodal pipeline. We adopt VisCoT (Shao et al., 2024) as a representative implementation.
Given an image–question pair, VisCoT first predicts a bounding box for the most relevant region,
and then crops the corresponding patch. This patch and the original image are jointly encoded, and
their visual features are fused with the textual input to produce the final answer.

3.2 PERTURBATION DESIGN

To evaluate the robustness of Standard and Visual CoT VLMs under noisy conditions, we design
controlled perturbation experiments by applying both natural corruptions and adversarial attacks to
the visual inputs and measuring model performance degradation across different perturbation types.

For natural perturbations, we adopt image-level corruption strategies from the ImageNet-C bench-
mark (Hendrycks & Dietterich, 2019), which cover a broad range of common distortions. We select
8 types grouped into four categories: (1) Noise: Gaussian Noise, Shot Noise, Impulse Noise; (2)
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Blur: Defocus Blur, Zoom Blur; (3) Digital: Pixelate, Elastic Transformations, Contrast Adjust-
ments. Each corruption is applied at 5 severity levels, enabling fine-grained analysis of performance
degradation under increasing noise intensity. The detailed description about severity setting is shown
in Appendix A.2.

In addition, we incorporate widely used white-box adversarial attacks, including FGSM (Goodfel-
low et al., 2014), BIM (Kurakin et al., 2017) , PGD (Makelov et al., 2025) and C&W (Carlini &
Wagner, 2016). In our white-box attack setup, the generation of adversarial examples for Visual CoT
VLMs follows the same strategy as for Standard VLMs. Specifically, we only apply adversarial per-
turbations to the initial input image, without modifying intermediate localized patches. This ensures
a fair comparison between the two paradigms by keeping the attack surface and perturbation bud-
get consistent. We also manually define 5 severity levels for each attack based on parameters (e.g.,
iteration count, step size) that determine the strength and impact of the perturbation. The detailed
implementation procedures of these algorithms, along with the generated adversarial examples, are
provided in the Appendix A.3.

3.3 ROBUSTNESS EVALUATION METRICS

We adopt Visual Question Answering (VQA) as the primary evaluation task, as it is a representative
and widely used benchmark for assessing multimodal reasoning capabilities. Formally, the VQA
task is defined as follows:

Given a natural language question q and an associated image i as the visual context, the model is
required to generate an answer. Each question is paired with a ground truth answer gt, which serves
as the reference for evaluation. Our evaluation dataset Deval consists of triplets (q, i, gt). For a given
Vision-Language Model f that takes (q, i) as input and outputs an answer f(q, i), we define the
Answer Accuracy over Deval as:

Acc(f,Deval)
def
=

1

|Deval|
∑

(q,i,gt)∈Deval

1(f(q, i), gt),

where 1(·) is the indicator function, returning 1 if f(q, i) exactly matches gt, and 0 otherwise. In
our evaluation, the indicator function is implemented by GPT-4O acting as an automatic evaluator,
which compares the predicted and ground truth answers while accounting for minor paraphrasing or
synonym variations.

To evaluate model robustness, we apply input-level perturbations during inference by directly cor-
rupting the image. Formally, given a perturbation operator δ(·), the perturbed evaluation set is
defined as δ(Deval) = {(δ(qk), ik, gtk)}Nk=1, where δ is applied to the image in each sample of the
original datasetDeval. Following Zhu et al. (2024), we quantify the relative performance degradation
caused by perturbations using the Performance Drop Rate (PDR):

PDR(f)
def
=

Acc(f,Deval)− Acc(f, δ(Deval))

Acc(f,Deval)
,

where δ(Deval) denotes the evaluation set in which perturbations are applied to the input image before
being processed by the model. A higher PDR value indicates greater performance degradation under
noise, while a lower value suggests stronger robustness.

4 EXPERIMENTS

4.1 EVALUATION MODELS AND EVALUATION DATASETS

We conduct a comprehensive robustness evaluation of the two paradigms, Standard VLM and Visual
CoT VLM, under input perturbations. We use two representative VLMs, LLaVA-1.5-7b (Liu et al.,
2023a) and VisCoT-7b-224 (Shao et al., 2024), each evaluated under both paradigms by toggling the
use of Visual CoT reasoning.

Our evaluation spans four widely adopted datasets across both natural and document-based VQA
tasks: CUB (Wah et al., 2011), SROIE (Huang et al., 2019), DocVQA (Mathew et al., 2021), and
TextCaps (Sidorov et al., 2020). For each dataset, we construct corresponding perturbed variants
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Table 1: PDR (%) of two VLM paradigms (Standard VLMs vs. Visual CoT VLMs) under 12
image perturbations across four datasets and two base models (LLaVA-1.5-7b, VisCoT-7b-224).

Dataset Model Paradigm Gaussian Shot Impulse Defocus Zoom Pixelate Elastic Contrast BIM FGSM PGD C&W

CUB
LLaVA-1.5-7b

Standard -10.3 -3.4 -3.4 -10.3 -13.8 3.4 -10.3 -10.3 10.3 10.3 6.9 13.8
VisCoT 13.2 5.3 10.5 7.9 5.3 -2.6 13.2 23.7 10.5 10.5 2.6 13.1

VisCoT-7b-224
Standard 0.0 -6.9 -10.3 -10.3 -13.8 3.4 -3.4 -10.3 3.4 1.0 6.8 3.4

Visual CoT 2.6 2.6 10.5 7.9 5.3 -2.6 10.5 23.7 13.1 15.7 2.6 15.8

SROIE
LLaVA-1.5-7b

Standard 11.1 22.2 -11.1 0.0 77.8 44.4 -88.9 7.3 77.8 77.8 66.7 77.8
Visual CoT 27.3 18.2 12.1 9.4 90.9 9.1 9.1 34.8 68.5 75.8 72.7 73.9

VisCoT-7b-224
Standard 30.0 40.0 0.0 10.0 50.0 40.0 -20.0 60.0 90.0 80.0 30.0 96.0

Visual CoT 25.2 16.5 -0.7 19.4 28.1 10.8 13.7 65.5 82.7 65.4 30.9 94.2

DocVQA
LLaVA-1.5-7b

Standard 35.3 11.8 -11.8 23.5 58.8 -5.9 29.4 29.4 41.2 35.2 47.0 17.6
Visual CoT -25.7 4.8 -7.6 23.8 38.1 9.5 50.0 4.8 41.9 23.8 33.3 40.9

VisCoT-7b-224
Standard 39.1 13.0 -4.3 47.8 56.5 4.3 13.0 47.8 30.4 7.8 56.5 25.2

Visual CoT -10.2 9.1 1.9 42.1 56.6 -9.4 29.4 26.0 54.3 52.8 47.1 73.2

TextCaps
LLaVA-1.5-7b

Standard 3.8 7.7 13.5 30.8 71.9 7.7 17.3 30.8 19.2 25.0 63.4 15.4
Visual CoT 18.0 15.6 22.7 49.0 64.3 14.8 32.6 25.3 32.6 39.9 69.1 28.5

VisCoT-7b-224
Standard 1.8 2.5 -1.8 -12.5 -16.1 4.3 -3.6 8.9 33.9 33.9 69.6 35.7

Visual CoT 25.0 13.2 20.6 10.3 14.7 7.4 17.6 20.6 39.7 44.8 70.5 44.1

Table 2: Answer Accuracy (%) of two VLM paradigms (Standard VLMs vs. Visual CoT VLMs)
under 12 image perturbations across four datasets and two base models (LLaVA-1.5-7b, VisCoT-7b-
224).

Dataset Model Paradigm Clean Gaussian Shot Impulse Defocus Zoom Pixelate Elastic Contrast BIM FGSM PGD C&W

CUB
LLaVA-1.5-7b

Standard 58.0 64.0 60.0 60.0 64.0 66.0 56.0 64.0 64.0 64.0 64.0 54.0 66.0
VisCoT 76.0 66.0 72.0 68.0 70.0 72.0 78.0 66.0 58.0 68.0 68.0 74.0 66.0

VisCoT-7b-224
Standard 58.0 58.0 62.0 64.0 64.0 66.0 56.0 60.0 64.0 56.0 58.0 54.0 56.0

Visual CoT 76.0 74.0 74.0 68.0 70.0 72.0 78.0 68.0 58.0 66.0 64.0 74.0 64.0

SROIE
LLaVA-1.5-7b

Standard 9.0 8.0 7.0 10.0 9.0 2.0 5.0 17.0 8.3 2.0 2.0 3.0 2.0
Visual CoT 33.0 24.0 27.0 29.0 29.9 30.0 30.0 30.0 21.5 10.4 8.0 9.0 8.6

VisCoT-7b-224
Standard 10.0 7.0 6.0 10.0 9.0 5.0 6.0 12.0 4.0 1.0 2.0 7.0 0.4

Visual CoT 34.8 26.0 29.0 35.0 28.0 25.0 31.0 30.0 12.0 6.0 12.0 24.0 2.0

DocVQA
LLaVA-1.5-7b

Standard 17.0 11.0 15.0 19.0 13.0 7.0 18.0 12.0 12.0 10.0 11.0 9.0 14.0
Visual CoT 21.0 26.4 20.0 22.6 16.0 13.0 19.0 10.5 20.0 12.2 16.0 14.0 12.4

VisCoT-7b-224
Standard 11.5 7.0 10.0 12.0 6.0 5.0 11.0 10.0 6.0 8.0 10.6 5.0 8.6

Visual CoT 26.5 29.2 24.1 26.0 15.3 11.5 29.0 18.7 19.6 12.1 12.5 14.0 7.1

TextCaps
LLaVA-1.5-7b

Standard 52.0 50.0 48.0 45.0 36.0 14.6 48.0 43.0 36.0 42.0 39.0 19.0 44.0
Visual CoT 61.6 50.5 52.0 47.6 31.4 22.0 52.5 41.5 46.0 41.5 37.0 19.0 44.0

VisCoT-7b-224
Standard 56.0 55.0 54.6 57.0 63.0 65.0 53.6 58.0 51.0 37.0 37.0 17.0 36.0

Visual CoT 68.0 51.0 59.0 54.0 61.0 58.0 63.0 56.0 54.0 41.0 37.5 20.0 38.0

by applying the image perturbation techniques described in Section 3.1, resulting in 48 image per-
turbation evaluation splits (e.g., CUB-Gaussian Noise, CUB-Shot Noise, SROIE-Gaussian Noise,
SROIE-Shot Noise, etc.).

4.2 EVALUATION RESULTS

As summarized in Table 1 and Table 2, our evaluation reveals distinct robustness characteristics
between Standard VLMs and their Visual CoT-enhanced counterparts when subjected to image cor-
ruptions:

(1) Visual CoT VLMs exhibit a higher PDR than Standard VLMs in 70 out of 96 evaluated settings.
Specifically, the average PDR of Visual CoT VLMs reaches 26.3%, while that of Standard VLMs is
only 18.6%. This indicates that Visual CoT VLMs are generally more vulnerable to perturbations
compared to Standard VLMs. The trend is particularly pronounced on the TextCaps dataset, where
Visual CoT VLMs exhibit higher performance degradation than the Standard VLMs in 100% of
perturbation cases.

(2) Although Visual CoT VLMs exhibit lower robustness than Standard VLMs in terms of PDR,
their accuracy under perturbations remains higher in 79 out of 96 cases. Notably, on the CUB and
TextCaps datasets, Standard VLMs occasionally show an apparent accuracy increase under pertur-
bations; however, even in these cases, the resulting accuracy still falls below that of the perturbed
Visual CoT VLMs.
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Figure 2: Accuracy trends of Visual CoT VLMs and Standard VLMs under varying image perturba-
tion severity levels.

4.3 PERFORMANCE TRENDS ACROSS PERTURBATION SEVERITY LEVELS

To explore how model accuracy evolves under increasing levels of image corruption, we conduct a
severity-aware evaluation across 5 levels of perturbation intensity. Figure 2 presents representative
accuracy degradation curves across all perturbation types on the CUB dataset using the LLaVA-1.5-
7b model.

As illustrated, the Visual CoT VLMs’ performance curve exhibits a steeper decline compared to
Standard VLMs’ as noise severity increases. This indicates that Visual CoT VLMs are more sensi-
tive to perturbation, with performance dropping more rapidly under increasingly severe corruption.
However, despite this higher degradation rate, Visual CoT VLMs typically maintain a higher abso-
lute accuracy across all severity levels. This suggests that while they are less robust, their overall
capacity for accurate reasoning remains stronger than that of the Standard VLMs. This pattern aligns
with our previous quantitative findings on PDR and perturbed accuracy.

5 ANALYSIS

5.1 WHY ARE VISUAL COT VLMS MORE FRAGILE?

The experimental results reveal a consistent pattern: although Visual CoT VLMs achieve higher
absolute accuracy than Standard VLMs baseline, they suffer a more severe accuracy drop under
the same perturbation conditions. We attribute this to fundamental differences in their reasoning
paradigms.
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Figure 3: Correlation between PDR and IoU
Degradation.

Figure 4: Average Attention Entropy.

Standard VLMs adopt a single-step inference paradigm, directly mapping the input image and ques-
tion to an answer, which reduces noise propagation and makes them less sensitive to perturbations.
In contrast, Visual CoT VLMs employ a multi-stage chain-of-thought framework that integrates
global and localized visual information. This enhances reasoning precision but also increases com-
plexity, causing input perturbations to cascade through multiple steps and lead to sharper accuracy
degradation.

To investigate, we further analyze the relationship between the accuracy of reasoning steps and
the final model performance. In particular, we measure the quality of intermediate bounding box
predictions using Intersection over Union (IoU, as described in Appendix A.4), and examine how
variations in IoU relate to the PDR of the overall system. The results (as shown in Figure 3) reveal
a clear positive correlation: when intermediate localization accuracy decreases, the final prediction
accuracy also drops more severely. This indicates that errors accumulated in the intermediate reason-
ing stages propagate through the Chain-of-Thought process, thereby amplifying the overall fragility
of Visual CoT.

5.2 CAN ATTENTION MAPS EXPLAIN WHY VISUAL COT VLMS PERFORMS BETTER
UNDER PERTURBATION?

To better understand why Visual CoT VLMs achieve higher accuracy than Standard VLMs under
noisy image conditions, we analyze the 3D attention distributions obtained from perturbed inputs, as
shown in Figure 5. These visualizations reveal a clear distinction between the two paradigms: while
Standard VLMs tend to spread attention across broader regions with multiple dispersed peaks, Visual
CoT VLMs produce more concentrated and sharper attention peaks focused on specific regions of
the input.

This visual difference indicates that Visual CoT VLMs allocate their attention more selectively, fo-
cusing on semantically relevant areas while suppressing irrelevant regions. To quantitatively support
this observation, we compute the attention entropy for each data instance. Specifically, a lower en-
tropy value indicates that the model’s attention is concentrated on more specific regions, whereas
a higher entropy suggests a more dispersed focus. As shown in Figure 4, Visual CoT VLMs con-
sistently exhibits lower entropy across samples, confirming a narrower and more focused attention
distribution compared to Standard VLMs.

Such concentrated attention behavior helps Visual CoT VLMs better withstand noisy inputs by min-
imizing distractions from irrelevant tokens. In contrast, the broader and more uniform attention of
Standard VLMs may dilute the impact of informative cues, reducing answer reliability under noise.

6 ROBUSTNESS ENHANCEMENT

Based on the above analysis, we argue that the multi-step reasoning process in Visual CoT VLMs
acts as a double-edged sword: while it drives superior performance through structured reasoning
and multimodal integration, it also introduces additional vulnerability to perturbations due to longer

7
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Figure 5: 3D scatter plots of attention scores under noise conditions for Standard and Visual CoT
VLMs. Visual CoT exhibits more concentrated attention over key regions.

Grounding 
DINO

Image Edited
Module Answer

Query

Figure 6: Enhanced Visual CoT pipeline with Grounding DINO.

reasoning chains. Among these, the intermediate components, namely the local image patches play
a pivotal role. Consequently, strengthening the components offers a promising and feasible direction
to enhance Visual CoT VLMs ’ robustness against noisy perturbations. In the following, we present
a new approach to achieving this goal.

6.1 INCORPORATING GROUNDING DINO FOR ENHANCED VISUAL INFORMATION

To enhance the robustness of Visual CoT VLMs under visual perturbations, we incorporate an aux-
iliary visual grounding step into the reasoning pipeline in a plug-and-play manner (as shown in
Figure 6). This step complements the original single-region strategy by identifying multiple seman-
tically relevant regions that may provide redundant visual cues under noisy conditions.

Specifically, given an image–question pair, we apply Grounding DINO to generate text-conditioned
region proposals. All bounding boxes with confidence scores exceeding a threshold (typically 0.4)
are retained, and the selected regions are cropped from the original image. Then these auxiliary
patches are appended to the original visual inputs and subsequently used within Visual CoT VLMs
as supplementary visual cues to assist answer generation. This design encourages VLMs to attend
to diverse visual perspectives during multi-step reasoning, thereby improving robustness under per-
turbations.
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Figure 7: Accuracy comparison of Visual CoT with and without Grounding DINO under different
image perturbations across four datasets.

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

Experimental results in Figure 7 demonstrate that, across all types of visual perturbations, the in-
tegration of Grounding DINO consistently enhances Visual CoT VLMs performance, yielding no-
ticeable accuracy gains on the majority of evaluated datasets. On average, the incorporation of
Grounding DINO leads to a 6% increase in accuracy. The improvements are most pronounced on
DocVQA, where accuracy gains frequently exceed 10% under perturbations such as Pixelate, Elastic
Transformations and Contrast Adjustments.

This improvement can be primarily attributed to Grounding DINO’s ability to identify key regions
in images. By integrating target bounding box information relevant to the given question into the
Visual CoT reasoning process, the system’s ability to resist noise interference and extract critical
information is effectively strengthened. These findings suggest that incorporating visual grounding
model into the reasoning process can significantly enhance the robustness of Visual CoT VLMs
under perturbations.

7 CONCLUSION

In this paper, we present a systematic robustness study of Visual CoT reasoning in VLMs, revealing
a fundamental trade-off: while Visual CoT improves answer accuracy, it also introduces increased
sensitivity to visual perturbations. To address this limitation, we introduce a plug-and-play enhance-
ment based on the Grounding DINO model, which improves robustness without requiring retraining
of the base VLMs. Our work provides a foundation for future research on developing robust and
reliable multimodal reasoning systems.

9
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

To improve the readability of this manuscript, we used LLMs for language polishing, such as
rephrasing sentences for clarity and correcting grammar. The LLMs were not involved in designing
the methodology, conducting experiments, analyzing results, or drawing scientific conclusions. All
substantive research contributions are the sole work of the authors.

A.2 SEVERITY LEVELS OF NATURAL PERTURBATIONS

For all natural corruption methods, we adopt five severity levels from 1 to 5, following the ImageNet-
C benchmark design. Severity controls the intensity of distortion, with level 1 corresponding to the
weakest corruption and level 5 to the strongest. Below we explain the parameterization of each
corruption and how these parameters influence the degree of degradation.

Table 3: Severity Level Settings for Visual Perturbations (Code-based Implementation). Severity
increases from 1 to 5, with higher levels indicating stronger perturbations.

Perturbation Parameter Severity Values (1→5) Effect Description

Gaussian Noise Std. dev. σ [0.08, 0.12, 0.18, 0.26, 0.38] Adds Gaussian-distributed pixel noise. Larger
σ → stronger random fluctuations, fine details
vanish at severity 5.

Shot Noise Photon count scale c [60, 25, 12, 5, 3] Lower c → stronger Poisson noise. Severity
5 simulates extreme low-light, heavy discrete
fluctuations.

Impulse Noise Pixel corruption ratio p [0.03, 0.06, 0.09, 0.17, 0.27] Higher p replaces more pixels with
black/white. Severity 5 → ∼27% pixels
corrupted.

Defocus Blur Disk radius, alias blur [(3,0.1), (4,0.5), (6,0.5), (8,0.5), (10,0.5)] Increasing radius → stronger out-of-focus
blur. At severity 5, edges/boundaries disap-
pear.

Zoom Blur Zoom factor ranges c

1: 1.00–1.10 (step 0.01)
2: 1.00–1.15 (step 0.01)
3: 1.00–1.21 (step 0.02)
4: 1.00–1.26 (step 0.02)
5: 1.00–1.33 (step 0.03)

Combines zoomed-in frames. Larger ranges
represent stronger radial streaks. Severity 5
represents heavy smearing.

Pixelate Downsample ratio c [0.6, 0.5, 0.4, 0.3, 0.25] Image is resized to c· original then upscaled.
Lowe r values → larger blocks. Severity 5 →
coarse blockiness.

Elastic Transform (α, σ, αaffine)

1: (224×2, 224×0.7, 224×0.1)
2: (224×2, 224×0.08, 224×0.2)
3: (224×0.05, 224×0.01, 224×0.02)
4: (224×0.07, 224×0.01, 224×0.02)
5: (224×0.12, 224×0.01, 224×0.02)

α controls displacement, σ smooths deforma-
tion, αaffine adds affine distortion. Higher
severity → stronger warping, shapes de-
formed.

Contrast Reduction Contrast scaling c [0.4, 0.3, 0.2, 0.1, 0.05] Lower c reduces pixel variance. Severity 5 →
image looks flat/washed out.

A.3 SEVERITY LEVELS OF WHITE-BOX ADVERSARIAL ATTACK

The four standard adversarial attacks: FGSM, BIM, PGD, and C&W, are conducted on the image
encoder of the model (e.g., CLIP ViT or other vision towers), targeting the embedding similarity
between clean and adversarial samples. The goal is to cause minimal pixel changes while maximally
deviating the internal representations Gao et al. (2024).
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A.3.1 FAST GRADIENT SIGN METHOD (FGSM)

Algorithm 1 FGSM Algorithm

Require: Input image x, vision encoder f(·), loss function L (e.g., MSE), perturbation bound ϵ
Ensure: Adversarial image xadv

1: Compute clean embedding: zclean ← f(x)
2: Initialize perturbation: δ ← 0, set δ as a trainable tensor
3: zadv ← f(x+ δ)
4: Ladv ← MSE(zadv, zclean)
5: Compute gradient: ∇δLadv
6: Update perturbation: δ ← ϵ · sign(∇δLadv)
7: xadv ← clip(x+ δ, 0, 1) ▷ Ensure valid pixel range
8: return xadv

Table 4: Severity Level Settings for FGSM Attack

Severity Level ϵ (Perturbation Magnitude)

1 1
255

2 2
255

3 4
255

4 6
255

5 8
255

A.3.2 BASIC ITERATIVE METHOD (BIM)

Algorithm 2 BIM Algorithm

Require: Input image x, vision encoder f(·), loss function L (e.g., MSE), step size α, maximum
perturbation ϵ, number of iterations T

Ensure: Adversarial image xadv
1: Compute clean embedding zclean ← f(x)
2: Initialize perturbation δ ← 0 ▷ No random start
3: for t = 1 to T do
4: zadv ← f(x+ δ) ▷ Get perturbed embedding
5: Ladv ← MSE(zadv, zclean)
6: Compute gradient∇δLadv
7: δ ← δ + α · sign(∇δLadv)
8: δ ← clip(δ,−ϵ, ϵ) ▷ Clip to ℓ∞ ball
9: δ ← clip(x+ δ, 0, 1)− x ▷ Ensure pixel validity

10: end for
11: xadv ← clip(x+ δ, 0, 1)
12: return xadv

Table 5: Severity Level Settings for BIM Attack

Severity Level ϵ α (Step Size) T (Iterations)

1 1
255

0.2
255 100

2 2
255

0.4
255 200

3 4
255

0.8
255 300

4 6
255

1.0
255 400

5 8
255

1.2
255 500

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3.3 PROJECTED GRADIENT DESCENT (PGD)

Algorithm 3 PGD Algorithm

Require: Input image x, vision encoder f(·), loss function L (e.g., MSE), step size α, maximum
perturbation ϵ, number of iterations T

Ensure: Adversarial image xadv
1: Initialize perturbation δ ∼ Uniform(−ϵ, ϵ)
2: for t = 1 to T do
3: zadv ← f(x+ δ) ▷ Get perturbed embedding
4: zclean ← f(x) ▷ (Optional) Use precomputed clean embedding
5: Ladv ← MSE(zadv, zclean)
6: Compute gradient∇δLadv
7: δ ← δ + α · sign(∇δLadv)
8: δ ← clip(δ,−ϵ, ϵ) ▷ Project onto ℓ∞ ball
9: end for

10: xadv ← clip(x+ δ, 0, 1) ▷ Clamp to valid pixel range
11: return xadv

Table 6: Severity Level Settings for PGD Attack

Severity Level ϵ α (Step Size) T (Iterations)

1 1
255

0.2
255 100

2 2
255

0.4
255 200

3 4
255

0.8
255 300

4 6
255

1.0
255 400

5 8
255

1.2
255 500

A.3.4 CARLINI & WAGNER (C&W) ATTACK (UNTARGETED)

Algorithm 4 C&W Attack Algorithm

Require: Input image x, vision encoder f(·), loss function L (e.g., MSE), regularization coefficient
C, learning rate η, number of iterations T

Ensure: Adversarial image xadv
1: Compute clean embedding: zclean ← f(x)
2: Convert x to tanh-space: w ← arctanh(2x− 1) ▷ Ensure differentiability
3: for t = 1 to T do
4: xadv ← 0.5 · (tanh(w) + 1) ▷ Map w back to [0, 1]
5: zadv ← f(xadv)
6: Compute adversarial loss: Lembed ← MSE(zadv, zclean)
7: Compute distortion loss: Ll2 ← ∥xadv − x∥22
8: Total loss: Ltotal ← C · Lembed + Ll2
9: Update w via Adam: w ← w − η · ∇wLtotal

10: end for
11: return xadv
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Table 7: Severity Level Settings for C&W Attack

Severity Level C (Embed Weight) η (Learning Rate) T (Iterations)

1 0.1 1× 10−3 100
2 0.5 1× 10−3 200
3 1.0 5× 10−4 300
4 2.0 1× 10−4 400
5 5.0 1× 10−4 500

Shot NoiseGaussian Noise Impulse Noise Defocus Blur PixelateZoom Blur

Elastic Transform Contrast

Original Image

Bim fgsm pgd cw

Perturbed Types
Noise
Blur
Digital

Adv-Attacks

Figure 8: Example images under 8 natural image perturbations and 4 white-box adversarial attacks.
The original image is taken from the Flickr30k dataset and shown on the top left.

A.4 INTERSECTION OVER UNION

In our experiments, we evaluate the accuracy of intermediate localization using the Intersection over
Union (IoU) metric. Given two axis-aligned boxes B1 = [x

(1)
1 , y

(1)
1 , x

(1)
2 , y

(1)
2 ] (prediction) and

B2 = [x
(2)
1 , y

(2)
1 , x

(2)
2 , y

(2)
2 ] (ground truth), IoU is defined as

IoU(B1, B2) =
|B1 ∩B2|
|B1 ∪B2|

.

where |B1 ∩B2| denotes the area of overlap between the two boxes, and |B1 ∪B2| represents their
union area. The overlap region is determined by taking the maximum of the top-left coordinates and
the minimum of the bottom-right coordinates. The area of each box is then computed as the product
of its width and height, and the union is given by the sum of both areas minus the intersection.

This implementation ensures that IoU ranges between 0 and 1, where 0 indicates no overlap and
1 denotes perfect alignment. In practice, a higher IoU signifies more accurate localization of pre-
dicted regions with respect to ground-truth annotations, while lower values reflect misalignment or
degraded localization quality.

A.5 INTERMEDIATE PERTURBATION REUSLTS

We conduct a supplementary experiment that perturbs not only the input image but also the interme-
diate local patches. This leads to a more pronounced performance drop, underscoring the sensitivity
of Visual CoT VLMs to noise in intermediate components.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Answer accuracy (%) of Visual CoT models under different perturbation positions: either
applied on the global image only (“Global Only”) or both on the intermediate local crops (“Global
and Local”). Experiments are conducted under severity level 5 across four datasets.

Dataset Model Perturb Location Gaussian Shot Impulse Defocus Zoom Pixelate Elastic Contrast BIM FGSM PGD C&W

CUB
LLaVA-1.5-7b

Global Only 66.0 72.0 68.0 70.0 72.0 78.0 66.0 58.0 68.0 68.0 74.0 66.0
Global and Local 60.5 65.3 61.7 64.0 66.2 70.8 59.0 50.2 62.2 67.0 62.1 58.2

VisCoT-7b-224
Global Only 74.0 74.0 68.0 70.0 72.0 78.0 68.0 58.0 50.0 54.0 46.0 40.0

Global and Local 66.3 67.8 60.5 62.6 67.1 69.4 60.3 48.7 42.1 47.0 39.0 35.0

SROIE
LLaVA-1.5-7b

Global Only 24.0 27.0 29.0 29.9 30.0 30.0 30.0 21.5 10.4 8.0 9.0 8.6
Global and Local 20.3 23.5 25.0 26.2 25.8 27.2 25.1 17.0 14.6 16.2 12.5 9.3

VisCoT-7b-224
Global Only 26.0 29.0 35.0 28.0 25.0 31.0 30.0 12.0 6.0 12.0 24.0 2.0

Global and Local 20.8 25.3 29.2 24.1 22.5 26.6 23.0 9.5 16.5 18.3 14.4 10.7

DocVQA
LLaVA-1.5-7b

Global Only 26.4 20.0 22.6 16.0 13.0 19.0 10.5 20.0 12.2 16.0 14.0 12.4
Global and Local 21.2 16.7 18.0 13.4 10.6 15.8 8.1 15.5 11.6 13.0 10.0 7.2

VisCoT-7b-224
Global Only 29.2 24.1 26.0 15.3 11.5 29.0 18.7 19.6 12.1 12.5 14.0 7.1

Global and Local 23.7 20.2 21.8 12.6 9.3 24.5 14.2 16.0 13.2 15.6 12.2 8.8

TextCaps
LLaVA-1.5-7b

Global Only 50.5 52.0 47.6 31.4 22.0 52.5 41.5 46.0 41.5 37.0 19.0 44.0
Global and Local 44.3 47.1 42.0 27.0 18.2 46.8 35.0 38.4 34.1 37.8 30.1 25.3

VisCoT-7b-224
Global Only 51.0 59.0 54.0 61.0 58.0 63.0 56.0 54.0 41.0 37.5 20.0 38.0

Global and Local 44.6 52.8 47.2 54.1 49.5 56.6 49.2 46.8 39.3 42.5 35.3 30.6
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