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ABSTRACT

Continual learning has gained increasing importance as it facilitates the acquisi-
tion and refinement of scalable knowledge and skills in language models. How-
ever, existing methods typically encounter strict limitations and challenges in
real-world scenarios, such as reliance on experience replay, optimization con-
straints, and inference task-ID. In this study, we introduce the Scalable Language
Model (SLM) to overcome these limitations within a more challenging and gen-
eralized setting, representing a significant advancement toward practical appli-
cations for continual learning. Specifically, we propose the Joint Adaptive Re-
Parameterization (JARe), integrated with Dynamic Task-related Knowledge Re-
trieval (DTKR), to enable adaptive adjustment of language models based on spe-
cific downstream tasks. This approach leverages the task distribution within the
vector space, aiming to achieve a smooth and effortless continual learning process.
Our method demonstrates state-of-the-art performance on diverse backbones and
benchmarks, achieving effective continual learning in both full-set and few-shot
scenarios with minimal forgetting. Moreover, while prior research primarily fo-
cused on a single task type such as classification, our study goes beyond, with
the large language model, i.e., LLaMA-2, to explore the effects across diverse do-
mains and task types, such that a single language model can be decently scaled to
broader applications. The code is available on the project website1.

1 INTRODUCTION

Human-level intelligence demonstrates the remarkable ability to continuously acquire new knowl-
edge and skills while retaining previously learned information. Although deep learning in language
models has achieved significant advancements recently, it still faces challenges in retaining and ac-
cumulating knowledge when dealing with sequential tasks. It is also known as the “catastrophic
forgetting” phenomenon, which refers to the potential loss of previously learned information caused
by the distribution shift during the fine-tuning process for novel tasks (McCloskey & Cohen, 1989).

Despite considerable efforts to tackle the aforementioned challenges, recent studies on continual
learning in language models still encounter significant limitations. Specifically, shown in Fig. 1
(a), the replay-based methods (Rebuffi et al., 2017; Romanov et al., 2018), require access to the
previously learned data, leading to additional demands on resources for continual training. This
approach also raises potential privacy concerns. Then, the regularization-based approaches Huang
et al. (2021); Aljundi et al. (2018) (Fig. 1 (b)) exhibit vulnerability in long task sequences and strug-
gle to strike a balance between forgetting and adaptability to specific tasks. And, certain architecture-
based methods (Razdaibiedina et al., 2023) (Fig. 1 (c)) rely on task-ID during inference, which poses
challenges in practical scenarios where obtaining task-IDs for individual runs may not be feasible.
Besides, most previous methods have primarily focused on a single task type, such as text classifi-
cation, neglecting the broader spectrum of language-related tasks (Qin & Joty, 2021). These issues
deprecate the efficacy and greatly hinder the practical applications of continual learning.

In this paper, our objective is to extend the application of continual learning to a more practical and
generalized setting without relying on experience replay, optimization constraints, or inference task-
ID, which enables agile adaptation to novel tasks. To this end, we propose the Scalable Language

1https://github.com/Pbihao/SLM
2Correspondence to Zhuotao Tian(tianzhuotao@gmail.com).
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Figure 1: Illustration depicting the framework comparison of various previous methods.

Model (SLM), which efficiently scales base language model to novel tasks in different domains
without compromising the performance of the witnessed ones.

SLM incorporates vector space retrieval into the language model, which aids in achieving scalable
knowledge expansion and management, ultimately enhancing its capabilities and skill set. It com-
prises two primary components: Joint Adaptive Re-parameterization (JARe) and Dynamic Task-
related Knowledge Retrieval (DTKR). Assuming that each task is associated with a distinct distri-
bution in the vector space (Finn et al., 2017), the DTKR technique is utilized to identify the most
relevant knowledge for each input instance. The relevant knowledge is preserved as a compilation
of weight increments that leverage low-rank adaptation techniques to mitigate computational ex-
penses (Hu et al., 2021). Then, these weight increments are employed by JARe techniques to achieve
adaptive re-parameterization of the pre-trained model, with the objective of effectively aligning it
with specific downstream tasks according to the task distribution.

Extensive experiments demonstrate remarkable efficacy and stability of our method on widely rec-
ognized benchmarks, reaching state-of-the-art performance on various models, including BERT, T5
and the latest LLaMA-2 (Devlin et al., 2018; Qin & Joty, 2021; Touvron et al., 2023). Our method
achieves an impressive up to 80% reduction in forgetting, with only a minimal 0.5% performance
degradation on the BERT benchmark. Unlike previous literature that primarily focuses on a sin-
gle task like classification, our study pushes the boundaries by exploring continual learning across
multiple task types in various domains. This comprehensive analysis highlights the superior gener-
alization ability of our approach, making it applicable to a wider range of real-world applications.

In summary, the primary contributions of this paper can be summarized as follows:

• We propose the Scalable Language Model (SLM) as a model-agnostic solution for scalable
acquisition of knowledge and skills. SLM eliminates dependencies on experience replay,
optimization constraints, and inference task-IDs in a generalized continual learning setting.

• SLM incorporates vector space retrieval into the language model, with two primary compo-
nents: Joint Adaptive Re-parameterization (JARe) and Dynamic Task-related Knowledge
Retrieval (DTKR). Extensive experiments conducted on standard continual learning bench-
marks demonstrate its remarkable superiority over previous state-of-the-art methods.

• Our study goes beyond previous literature by exploring continual learning across multiple
task types from diverse domains, showcasing the superior generalization ability.

2 PRELIMINARIES

Continual learning aims to facilitate ongoing knowledge acquisition from sequential tasks while
mitigating the issue of catastrophic forgetting. Specifically, the language model is exposed to a se-
quence of M tasks denoted as T = {T 1, . . . , T M}. Each task T t consists of a collection of training
samples {(xt

i, y
t
i)}

Nt
i=1, where xt

i represents the input instance, and yti denotes its corresponding la-
bel. Assuming that the language model is parameterized by θ and the loss function is L, the learning
objective across all tasks is to minimize the generalization error:

argmin
θ

M∑
t=1

∑
(xt,yt)∈T t

L(fθ(xt), yt) (1)

However, current continual learning approaches always encounter practical limitations and chal-
lenges due to their stringent constraints, which are difficult to achieve in real-life scenarios.
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Figure 2: Illustration depicting our proposed method. qi,ki ∈ Rh indicate the query and key, where
h = c

g with c as the channels and g as the groups. The weight increment is denoted as ∆θi. SLM
first retrieves relevant knowledge based on the task distribution and then adapts the pretrained model
through joint re-parametrization to align with the corresponding task.

Generalized continual learning. We propose addressing this challenging problem in a more
generalized setting, which effectively eliminates auxiliary operations by solely leveraging new task
data, and encompasses a wider range of task types. Our goal is to achieve incremental knowledge
acquisition and retention without relying on experience replay of past data, model optimization con-
straints, or artificial auxiliary information. Furthermore, unlike prior methods that are primarily
limited to single tasks such as classification, we extend the scope of our approach to encompass di-
verse domains and task types within the broader spectrum of language-related tasks. This expansion
allows for a more comprehensive and practical application of our proposed methodology.

3 SCALABLE LANGUAGE MODEL

In this study, we introduce two novel techniques, namely Joint Adaptive Re-parameterization (JARe)
and Dynamic Task-related Knowledge Retrieval (DTKR), which are detailed in Sec. 3.1 and Sec. 3.2
respectively. JARe dynamically adjusts the model’s weights to suit various task contexts, leveraging
the knowledge priors obtained from DTKR. This adaptive mechanism enables effective scaling of
the language model as illustrated in Fig. 2. Consequently, we refer to any language model that
efficiently integrates and extends novel knowledge using JARe and DTKR techniques as the Scalable
Language Model (SLM).

3.1 JOINT ADAPTIVE RE-PARAMETERIZATION

Efficient tuning for continual learning. Recent research has shown that optimizing a small
subset of the model or incorporating minimal trainable parameters enables the pre-trained model
to adapt to downstream tasks (Li & Liang, 2021; Houlsby et al., 2019). Based on this, recent
continual learning methods have proposed to incrementally incorporate new parameters like prompts
for sequential tasks while keeping the pre-trained models frozen (Razdaibiedina et al., 2023; Qin &
Joty, 2021; Wang et al., 2022; Madotto et al., 2020). However, they still face certain limitations:

• Appending new parameters without pre-training may result in convergence challenges, perfor-
mance degradation, and increased cost. Especially when scaling up to large language models and
long prompts (Li & Liang, 2021; Hu et al., 2021), it can introduce additional training challenges.

• The new parameters are commonly stacked and accumulated together without distinguishing or
relying on task-IDs before being incorporated into the model. These approaches (Razdaibiedina
et al., 2023; Qin & Joty, 2021; Wang et al., 2022) still lack the capability to adaptively adjust the
importance of each element based on the task distribution.

More discussions regarding the parameter-efficient tuning methods can be found in Appendix A.5.

Joint adaptive re-parameterization. To address these challenges, we propose an alternative
model-agnostic approach called Joint Adaptive Re-parameterization (JARe), which adaptively re-
parameterizes pretrained models to effectively adapt to downstream tasks based on the joint task
distribution. Let fθ represent the pretrained model, which is parametrized with the initial parame-
ters θ. The goal during fine-tuning is to adapt the language model to a specific downstream task T
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using gradient-based learning. This adaptation is guided by the following objective:

argmin
θ′

∑
(x,y)∈T

LT (fθ′(x), y), θ′ = θ +∆θ, (2)

where LT denotes the loss function specific to task T , and ∆θ represents the weight increment. We
regard the process of assigning the corresponding weight increment from memory to fit a specific
instance as the “adaptive re-parameterization”.

Directly preserving all weight increments of the pre-trained models would result in excessive re-
source consumption. Therefore, following Hu et al. (2021), we only selectively update minimal
weight matrices in the dense layers and leverage low-rank adaptation technique to achieve additional
cost savings. Consider a specific pre-trained weight matrix of the linear layer W0. It is updated as:

y = W ′x = (W0 +∆W )x = (W0 +BA)x, (3)

where W0 ∈ Rd×k is frozen, B ∈ Rd×r and A ∈ Rr×k are trainable parameters, and
r ≪ min(d, k). Thus each task only requires minimal trainable parameters and utilizes accept-
able memory. More implementation details can be found in A.6 in the appendix.

Subsequently, we introduce the process of adaptively re-parameterizing the pre-trained models based
on the joint task distribution. In the context of a specific task T t, the corresponding task distribution
is denoted as pt. Thus, after learning a sequence of tasks, a set of weight increments {∆θ1, ...,∆θM}
is derived, where each increment is associated with one of the M distributions, namely {p1, ..., pM}.
Given a specific instance x drawn from the distribution p, i.e. x ∼ p, the objective is to adapt the
pretrained model fθ to the corresponding distribution, resulting in fθ → fθ+∆θp .

Given the discrete nature of preserved values, direct computation of precise weight increments in
continuous space is infeasible. Consequently, we resort to utilizing a set of interrelated elements to
approximate and estimate similar, similar to the linear interpolations used in meta-learning Tri-
antafillou et al. (2021). To be specific, we first employ the K-nearest neighbors (KNN) algo-
rithm to select a subset of K weight increments from the most relevant distributions, denoted as
{∆θ1, ...,∆θK}, where K ≤ M . Then, the pre-trained models are re-parametrized towards the
target task as shown in Fig 2(c), which can be formulated as:

θ′ = θ +∆θp = θ +

∑K
i=1D(p, pi) ·∆θi∑K

i=1D(p, pi)
(4)

Here, D(·) represents the function that measures the correlation between two distributions. In prac-
tice, we approximate the correlation by using query-key similarity distance.

Discussion. A single dataset can also be allocated and partitioned into multiple distributions. In
practical scenarios, there are situations where the model may inadvertently retrieve unrelated or in-
correct information, resulting in the erroneously selected information and worse performance. The
proposed JARe effectively alleviates this issue by employing joint re-parameterization that reaches
a consensus among multiple feasible directions for optimization, thus mitigating the negative im-
pacts. Moreover, it is noteworthy that even different datasets can often share transferable knowledge.
This approach leverages the shared common knowledge among closely related tasks to enhance the
model’s performance and improve its generalization ability.

3.2 DYNAMIC TASK-RELATED KNOWLEDGE RETRIEVAL

Overview. This section outlines the process of retrieving the most relevant knowledge. As previ-
ously mentioned, the sequentially learned knowledge can be represented as a collection of weight
increments {∆θ1, ...,∆θM}. Subsequently, each ∆θi is correlated with a key vector ki ∈ Rc

(i ∈ 1, ...,M ), which serves to estimate the centroid of its corresponding task distribution pi. This
forms the key-value pair, i.e., [ki,∆θi]. During the inference phase, given query obtained from the
input, the proposed Dynamic Task-related Knowledge Retrieval (DTKR) identifies the most relevant
pairs based on the correlations between the query and key vectors and then re-parameterizes the pre-
trained model using the corresponding values as Eq. 4. As for the training phase, we divide it into
the preparation stage and the fine-tune stage. The preparation stage exclusively serves the purpose
of keys generation. In the subsequent fine-tune stage, the keys are frozen, and the values are utilized
for fine-tuning specific tasks, which follows the same procedure as the inference phase.
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Keys generation and knowledge retrieval. To begin, we initialize a set of learnable parameters
with a (semi) orthogonal matrix, following the methodology described in Saxe et al. (2013); Wang
et al. (2022). This initialization yields a collection of initial keys, ensuring orthogonality between
any two keys within the set. After that, given a tokenized input x, we employ Sentence-BERT
(Reimers & Gurevych, 2019), denoted as fs, to extract its semantic features. This extraction process
maps the original text x to a hidden feature space, resulting in the generation of the query vector
q. Mathematically, this process can be represented as q = fs(x) (x ∈ Rl×c, q ∈ Rc ), where l
represents the sequence length and c denotes the number of channels. It is important to note that, to
maintain consistency in the mapping process during training, fs remains frozen and unchanged.

Then, we calculate the correlations between the query and keys, and employ the K-nearest neighbors
algorithm to retrieve the top K most similar keys Kq = {k1, . . . ,kK}, where K ≤ M . The cosine
similarity distance is utilized as the metric to measure the distance between the query and the keys.

During the preparation stage, the selected keys Kq undergo optimization to improve their alignment
with the distribution of input instances and perform centroid estimation. The other unselected keys
remain unchanged and are not affected, which can be written as:

k′ ← k + γ∇kcos(q,k), k ∈ Kq, (5)

where γ is the learning rate and cos(·) represents the cosine similarity.

However, directly utilizing such an operation for keys generation may inadvertently result in getting
stuck in a local optimum, as elaborated in Appendix A.8. This occurs when only a subset of keys
is constantly selected and optimized throughout the entire process, while the remaining keys are
ignored and never updated. To address this problem, we propose two strategies:

• Group-based retrieval. Insipired by Vaswani et al. (2017), rather than retrieving directly from
the entire keys set, we first partition the set into multiple equal groups. Simultaneously, the query
vector q ∈ Rc is also segmented into equal parts as follows:

q = [ q′
1, . . . , q

′
g ], q′

i = q(i−1)·c/g:i·c/g, (6)

where q′
i ∈ Rc/g , and g represents the number of groups, which is a hyperparameter. The re-

trieval process is conducted independently within each qi in distinct groups, while the outcomes
are subsequently aggregated across multiple groups. Group retrieval enables the model to simul-
taneously capture diverse patterns and relationships presented in the input data by attending to
different aspects and subsets of features. Additionally, this approach enhances the robustness of
the retrieval system by compensating for any potential failure of any group to capture relevant
information. As a result, it facilitates a more comprehensive and expressive representation.

• Random keys mask. To mitigate the retriever’s tendency to overly prioritize specific keys, we in-
troduce a method called random keys mask. This technique involves randomly masking certain
keys during the training process, which encourages the model to allocate attention to other ele-
ments. In practice, this objective is accomplished by randomly assigning some cosine similarity
results to -Inf, effectively excluding them from retrieval during training. Specially,

Si,j = cos(q′
i,ki,j) · (1− B(p))− Inf · B(p), (7)

where B(p) represents a Bernoulli random variable that takes the value 1 with probability p.

Notably, only keys are optimized during the preparation stage as Eq. 5, and values are unchanged
and still remain as the initialized learnable parameters. After the keys have been generated during the
preparation stage, they are subsequently frozen and the associated values are adopted as adaptable
weight increments to align the language models with the forthcoming tasks of continual learning.
The overall training pipeline is illustrated in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We evaluate across various benchmarks with different backbones, demonstrating strong
generalization capabilities. We first test our method on the widely adopted continual learning bench-
marks for language models following de Masson D’Autume et al. (2019), which use five text clas-
sification datasets (Zhang et al., 2015; Chen et al., 2020) including AG News (news classification),
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Algorithm 1 The training pipeline of Scalable Language Model

Input: Training sets {T 1, . . . , T M}, T t = {(xt
i,y

t
i)}

Nt
i=1

Output: Grouped key-value pairs V1,...,g = {[k,∆θ ]}
1: for t = 1, . . . ,M do
2: Initialize the t-th task’s grouped key-value pairs Vt

1,...,g

3: for (xt
i, ) ∈ T t do # The preparation stage for task T t

4: Feature extraction and Group partition [ q′
1, . . . , q

′
g ]← q = fs(x

t
i) via Eq. 6

5: Calculate similarities Si,j = cos(q′
i,ki,j) · (1− B(p))− Inf · B(p) via Eq. 7

6: K = K1 ∪ · · · ∪ Kg , where Kj ← Top-K similar keys of group j (j ∈ {1, ..., g})
7: Update ki,j ∈ K by ki,j ← ki,j + γ∇ki,j cos(q′

i,ki,j) as Eq. 5
8: end for
9: for (xt

i,y
t
i) ∈ T t do # The fine-tune stage for task T t

10: Retrieve most related weight increments {∆θ1 . . .∆θK} with similarity distances D
11: Obtain the weight increment ∆θ =

∑K
i=1 Di·∆θi/

∑K
i=1 Di used in Eq. 4

12: Calculate sample loss Li = L(fθ+∆θ(x
t
i),y

t
i)

13: Back-propagate the gradients ∆θLi to update {∆θ1 . . .∆θK}
14: end for
15: V1,...,g ← V1,...,g ∪ Vt

1,...,g
16: end for

Yelp (sentiment analysis), DBPedia (Wikipedia article classification), Amazon (sentiment analysis)
and Yahoo Answers (Q&A classification).

In our experiments with BERT-base backbone (Devlin et al., 2018), we follow the approaches of
IDBR and ProgPromt (Razdaibiedina et al., 2023; Huang et al., 2021) employing four different task
orders from the five tasks. We adopt the full supervised continual setting, where the training set
and test set are the same as MbPA++ and LAMOL (de Masson D’Autume et al., 2019; Romanov
et al., 2018), consisting of 115,000 training examples and 7,600 test examples for each task. On the
contrary, we conduct the few-shot continual learning setup with T5-large backbone (Raffel et al.,
2020), following the approach of LFPT5 (Qin & Joty, 2021). This setup involves sampling 16
examples per class in the training and validation sets to evaluate the performance of our proposed
method on limited training resources.

We further extend our method to large generation language models with LLaMA-2 backbone (Tou-
vron et al., 2023) and introduce a new benchmark that spans multiple domains and task types. This
benchmark includes three types of tasks: question answering (medical), multiple-choice exami-
nation (mmlu), and sentiment classification (finance) (Li et al., 2023; Hendrycks et al., 2021b;a).
These tasks are drawn from domains such as medical, history, finance, and more. For each task, we
randomly allocate 85% of the data to the training set and the remaining portion to the test set.

Methods Compared. In order to compare and evaluate the performance of our method, we have
selected several baselines. The selected baselines include: Fine-tune (de Masson D’Autume et al.,
2019; Wang et al., 2020), Replay (Razdaibiedina et al., 2023), MBPA++ (de Masson D’Autume
et al., 2019), IDBR (Huang et al., 2021), LFPT5 (Qin & Joty, 2021) and ProgPromt (Razdaibiedina
et al., 2023). Detailed descriptions of these methods can be found in A.12 in the Appendix.

4.2 IMPLEMENTATION DETAILS

Backbones. Our proposed method, Scalable Language Model (SLM), is a model-agnostic ap-
proach to continual learning that can be applied to various backbones. In our study, we specifically
selected three different models: encoder-only BERT-base model (Devlin et al., 2018), encoder-
decoder T5-large model (Qin & Joty, 2021), and decoder-only LLaMA2-7B model Touvron et al.
(2023), covering various scales and architectures. To ensure consistency, we replicate all models
from HuggingFace Transformers (Wolf et al., 2020) with corresponding pretrained weights.

Configuration. We conducted trials using the BERT and T5 backbones with 4 NVIDIA GeForce
RTX 3090 GPUs. We set the batch size to 8 and the maximum sequence length to 512 for
these experiments. Additionally, for experiments involving the LLaMA2-7B backbone, we uti-
lized 4 NVIDIA A100 GPUs with a batch size of 2. To enhance training efficiency, we employed
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I have severe head ache in back side.

It could be due to stress, anxiety, lack of sleep, dehydration, eye strain 
or due to migraine. If … You can take paracetamol for pain relief. If it 
persists for more than 3 days, you need to consult your doctor.

What is the sentiment of this tweet: The cooperation 
will double The Switch 's converter capacity.

Dear user, Thanks for using Chat Doctor. 
Cooperation with Switch will double the speed of 
data transfer and will improve overall performance. 

[This tweet is:] Positive.

Medical Q&A 

Finance Sentiment 

:  Scalable Language Model (Ours) :  Fine-tune (Baseline)Order:  Finance →	MMLU →	 Medical

[This tweet is:] Neutral. Order:  Medical → MMLU → Finance 

Figure 3: Comparison between our method and the baseline with the LLaMA backbone. We employ
the continual training strategy to train a chat robot with diverse skills, and evaluate its performance
using examples from the first task it learned. The baseline exhibits catastrophic forgetting.

DeepSpeed (Rasley et al., 2020) as a training optimization. AdamW is employed as the opti-
mizer (Loshchilov & Hutter, 2017) for our experiments. For the preparation stage, we set the
learning rate lr = 1e−3 and the random mask rate p = 20% for all scenarios. Specifically, we set
the learning rate to 2e−4 for fully continual learning using the BERT and LLaMA2 backbones. For
the few-shot continual learning scenario with the T5 model, we set the learning rate to 2e−2. The
weight decay is set to 0.01. More configuration details can be found in Appendix A.4.

4.3 RESULTS ON CONTINUAL LEARNING BENCHMARKS

Table 1: Results on BERT benchmark. The results are aver-
aged over 2 runs. “TI”: whether task-ID is available during in-
ference. “DR”: whether require data replay. † and ‡ denote re-
sults from Huang et al. (2021) and Razdaibiedina et al. (2023).

Order
Method TI DR 4 5 6 7 Avg

Finetune† 14.8 27.8 26.7 4.5 18.4
Replay† ✓ 67.2 64.7 64.7 44.6 57.8
MBPA++† ✓ 74.9 73.1 74.9 74.1 74.3
IDBR† ✓ 75.9 76.2 76.4 76.7 76.3
SLM 79.2 78.8 79.0 79.2 79.1

ProgPrompt‡ ✓ 78.0 77.7 77.9 77.9 77.9
SLM-TI ✓ - - - - 80.0

Table 2: Results on the continual learn-
ing with T5 backbone. All selected meth-
ods don’t use task-ID during inference.
We report the averaged results over 3 runs.
† denotes results from Qin & Joty (2021).

Order
Method 1 2 3 Avg
Finetune† 18.9 24.9 41.7 28.5
Prompt† 18.9 24.9 41.7 28.5
EWC† 39.0 38.0 44.8 40.6
LFPT5† 47.6 52.6 57.9 52.7
SLM 73.1 72.9 73.3 73.1

In our evaluation, we initially fine-tune the pretrained models to adapt them to sequential tasks
during the training stage. Then, we assess the performance of these models on the test sets associated
with each task and report the averaged scores. Experiments without the inclusion of specific notation
don’t provide task-ID during inference. Further, Appendix A.1 shows detailed task orders, A.3
presents the dataset details, and A.9 investigates the number of learnable parameters.

BERT benchmark. Tab. 1 showcases the performance of our proposed method on the BERT
continual learning benchmark. Our method achieves a new state-of-the-art (SOTA) result, surpassing
the alternatives, even without relying on experience replay or task-ID. Task-ID utilization simplifies
the problem, particularly for methods that introduce new parameters (Razdaibiedina et al., 2023;
Qin & Joty, 2021). It resembles fine-tuning on multiple tasks with distinct parameters. However, the
practical determination of the input source remains challenging, such as in applications like online
chatbot services where advanced knowledge of upcoming tasks may not be accessible. While our
method does not depend on the task-ID, incorporating it yields a slight improvement, resulting in a
remarkable performance of 80% as a first achievement.

T5 benchmark. We conducted experiments on the few-shot continual learning benchmark for the
T5 model, following Qin & Joty (2021). The results of our experiments are presented in Tab. 2,
where we compare the performance of SLM with other methods. All selected methods do not
require the task-ID, and only LFPT5 necessitates slight experience replay. In accordance with Qin
et al. (2021) Qin & Joty (2021), we employ the text-to-text formulation for all T5 experiments,
where classification labels are mapped into words. We employ accuracy as the comparative metric,
considering only the first word selected as the answer from the generated output.

LLaMA benchmark. We extend our method to the large language model, utilizing the decoder-
only LLaMA2-7B (Touvron et al., 2023) as the backbone. In our study, we incorporate three types of

7



Published as a conference paper at ICLR 2024

tasks: question answering (medical), multiple-choice examination (mmlu), and sentiment classifica-
tion (finance) across various domains. For the multiple-choice and classification tasks, we evaluate
performance using accuracy. And we utilize BERTScore, following Zhang et al. (2019), to assess
the medical answers generation quantity. Specially, we assign a score of 0 to the answers that do
not align with the given tasks. The performance comparison with the baseline is presented in Tab. 3
and Fig. 3 provides more intuitive sampled examples. We conduct the replay methods following
previous related work (He et al., 2021; Huang et al., 2021) with 1% sampled instances. It is evi-
dent that after fine-tuning sequential tasks, the baseline model has almost completely forgotten the
first-learned knowledge and skills, suffering from catastrophic forgetting. And as the interval be-
tween tasks increases, the severity of forgetting tends to worsen. Indeed, our method demonstrates
outstanding performance without significant forgetting. More examples can be found in Fig. 5 and
Fig. 6 in the Appendix.
Table 3: Results on LLaMA benchmark. Finance: finance news sentiment classification. MMLU:
multiple choice questions across multiple domains. Medical: medical question answering.

Method Order Order AvgFinance→MMLU→Medical Medical→MMLU→Finance

Finetune 18.0 25.5 85.3 1.6 13.6 87.2 38.5
Replay 71.5 23.3 85.0 83.7 23.6 86.8 62.3
SLM 89.0 72.4 85.4 85.1 72.5 89.1 82.3

4.4 ANALYSIS

Table 4: The comparison of forgetting which is calcu-
lated each time after completing the training on a new
task of the BERT benchmark.

Method SLM IDBR
Order 4 5 6 Avg Avg
After 2 tasks 0.0 0.0 0.0 0.0 0.8
After 3 tasks 0.0 0.6 0.4 0.3 2.4
After 4 tasks 0.2 0.4 0.8 0.5 2.7
After 5 tasks 0.5 0.5 0.5 0.5 2.9

Figure 4: t-SNE visualization of keys distribution.
Different spans indicate distinct groups, and the
same tasks are linked by lines.

Influence of task sequence length on forgetting. In addition to accuracy, forgetting is another
important indicator for assessing continual learning. Following the approach of Huang et al. (2021)
and Chaudhry et al. (2018), we conduct experiments on the BERT benchmark and measure forget-
ting Fk after training on task t using the following formula:

Fk = Ej=1...t−1f
k
j , fk

j = max
l∈{1...,t−1}

al,j − at,j , (8)

where al,j is the accuracy on task j after trained on task l. We report the forgetting evaluated on each
new task and report the results compared with IDBR in Tab. 4. Our method demonstrates a remark-
able improvement of up to 82.8% compared to the previous state-of-the-art (SOTA) approaches
and all indicators are less than 0.5%. It effectively minimizes the forgetting of previously learned
knowledge while acquiring new knowledge. Additional discussions are in Appendix A.7.

Visualization of the keys’ distribution. To investigate the partitioning of distinct knowledge do-
mains and assess the impact of the grouping strategy, we adopt t-SNE (Van der Maaten & Hinton,
2008) to visualize the distributions of the keys, as demonstrated in Fig. 4. In this figure, different
cluster spans indicate different groups, and the keys belonging to the same task are connected by
lines within each group. We can observe that different groups correspond to varied distributions,
demonstrating the effectiveness of the grouping strategy in capturing diverse patterns and improving
robustness. This is crucial because a single group may fail to retrieve the related information, and
the presence of multiple groups helps mitigate this limitation.

Effects of JARe. Multiple ablation experiments were conducted to examine the impact of our pro-
posed Joint Adaptive Re-Parameterization (JARe), and the results are presented in Tab. 5. Specif-
ically, we replaced the weight increments in our DTKR with prompts and adapters (Li & Liang,
2021; Zhang et al., 2023). The “Separate Fine-tune” approach involves individually fine-tuning on
different tasks instead of continual learning among multiple tasks. By demonstrating a marginal
deviation of only 0.8%, the proposed JARe manifests its superiority over the competitors.

8
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Table 5: Results of the ablation studies on various
storage values on BERT benchmark.

Order
Method 4 5 6 Avg
DTKR + Prompt 54.7 55.8 49.4 53.3
DTKR + Adapter 71.2 71.2 70.2 70.9
DTKR + JARe 79.2 78.8 79.0 79.0
Separate Fine-tune - - - 79.8

Table 6: Zero-shot evaluation on open bench-
marks to assess the phenomena of forgetting
and knowledge transfer.

Task
Method Arc-c Arc-e Piqa Wino

Finetune 31.8 42.6 67.9 64.3
SLM 44.7 76.0 76.3 67.7
LLaMA2 43.9 74.4 76.7 66.4

Zero-shot evaluation. We further evaluate our method in a zero-shot setting on four open bench-
marks (Arc-c, Arc-e, Piqa, Wino) (Clark et al., 2018; Sakaguchi et al., 2021; Bisk et al., 2020)
following Gao et al. (2021). We first fine-tune the LLaMA-2 backbone following the order:
Medical → MMLU → Finance, and then evaluate the models on the above four benchmarks.
Ther results are shown in Tab. 6 and more detailed comparison can be found in A.10. It can be seen
that directly utilizing fully fine-tune will result in a deterioration of the overall performance because
of catastrophic forgetting. In constract to deterioriting the performance, our method even slightly
improves the baseline on several tasks. It demonstrates the dual capability of our method to alleviate
forgetting and effectively transfer knowledge.

5 RELATED WORK

Continual Learning, also known as lifelong learning or incremental learning, aims to improve a
learning system to progressively acquire and preserve knowledge from various tasks. Existing meth-
ods for continual learning can be broadly classified into three primary categories: (1) Replay-based
methods: periodically replay past experiences and knowledge from the observed tasks and data (Re-
buffi et al., 2017; Romanov et al., 2018). The experiential data can be sampled from the previous
tasks (de Masson D’Autume et al., 2019; Rebuffi et al., 2017) or synthesized using generative mod-
els (Romanov et al., 2018; Shin et al., 2017). (2) Regularization-based methods: impose constraints
on the parameter changes of the model to prevent forgetting of previously learned tasks (Aljundi
et al., 2018; Huang et al., 2021). (3) Architecture-based methods: employ distinct components
and separate sets of parameters within the model for different tasks (Rusu et al., 2016; Mallya &
Lazebnik, 2018; Razdaibiedina et al., 2023).

Vector space model. Compared to traditional retrieval methods, such as the keyword-based or
the rule-based, the Vector Space Model (VSM) has emerged as a prominent paradigm in informa-
tion retrieval (Berry et al., 1999; Wong et al., 1987; Singhal et al., 2001). The VSM represents
queries as vectors in a high-dimensional space. This representation enables the application of var-
ious similarity measures, such as cosine similarity, to determine the relevance between documents
and queries (Zhang & Lu, 2003). Previous methods have endeavored to incorporate vector space
retrieval into diverse endeavors (Peng et al., 2023; Danisman & Alpkocak, 2008; Wang et al., 2022),
and Wang et al. (2022) adopts VSM for in-context learining. In contrast, our work introduces the use
of VSM to enable dynamic transfering and adaptation of models for downstream tasks, incorporating
meta-learning techniques similar to the “model soup” (Wortsman et al., 2022).

6 CONCLUSION

This paper presents Scalable Language Model (SLM), which enables incremental learning of se-
quential tasks while effectively mitigating catastrophic forgetting in a generalized setting. Notably,
our approach eliminates the requirement for experience replay, optimization constraints and infer-
ence task-ID, enhancing its applicability to practical scenarios. We propose the integration of Joint
Adaptive Re-Parameterization (JARe) with Dynamic Task-related Knowledge Retrieval (DTKR) to
adaptively re-parameterize pretrained models based on the distance between task distributions. Our
approach demonstrates remarkable stability and effectiveness across diverse model scales, leading
to state-of-the-art performance on multiple benchmarks encompassing different tasks types.

The weakness of our method lies in the introduction of an additional retrieval framework, which
may lead to increased computational and memory storage costs. However, when compared to the
resource requirements of large models used for inference generation, this additional consumption is
relatively small. Further quantitative analysis regarding this weakness can be found in Section A.11.
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A APPENDIX

A.1 TASK SEQUENCE ORDERS

In standard continual learning benchmarks, the BERT and T5 models (Devlin et al., 2018; Raffel
et al., 2020) utilize a total of 7 orders, as described by Huang et al. (2021); Qin & Joty (2021). The
specific orders are presented in Tab. 7 as follows:

In all benchmark experiments, we initially train the pretrained model on the specific dataset, follow-
ing the predefined orders mentioned above. Subsequently, we evaluate the fine-tuned model on all
test sets simultaneously to test the model’s performance and alleviating forgetting ability.

Table 7: Different orders of the task sequences that we used for the standard continual learning
benchmarks with the BERT and T5 backbones. The 1-3 orders are used for T5 models, while the
4-7 orders are used for the BERT models.

Order Model Task Sequence
1 T5 db→ amazon→ yahoo→ ag
2 T5 db→ amazon→ ag→ yahoo
3 T5 yahoo→ amazon→ ag→ db

4 BERT ag→ yelp→ amazon→ yahoo→ db
5 BERT yelp→ yahoo→ amazon→ db→ ag
6 BERT db→ yahoo→ ag→ amazon→ yelp
7 BERT yelp→ ag→ db→ amazon→ yahoo

In the LLaMA benchmark, we use two orders due to resource constraints. The specific orders are
listed as follows:

• Order 8: Medical→MMLU→ Finance
• Order 9: Finance→MMLU→Medical

A.2 EXAMPLES DEMO

Large Language Model (LLM) has achieved a significant success in recent years, demonstrating
their distinguished ability to excel in various tasks. Furthermore, numerous applications are have
been proposed that leverage fine-tuning on the pretrained large language models to adapt them to
specific domains (Taori et al., 2023; Li et al., 2023). However, such operation only let the LLM
grasp single domain-specific skills while potentially causing catastrophic forgetting of its general
abilities.

The objective of this study is to enable the large language model (LLM) to acquire diverse skills
and knowledge across multiple domains, while also possessing the potential for lifelong learning
capability. More examples about the comparison of our method and the baseline, which involves
direct fine-tuning of the pretrained LLM on sequence tasks, are presented in Fig. 5 and Fig. 6.

• Fig. 5: Medical→MMLU→ Finance.
• Fig. 6: Finance→MMLU→Medical.

The results clearly demonstrate that while fine-tuning enables the model to acquire specific knowl-
edge, it suffers from catastrophic forgetting, which can only answer following the formats of the
last task. This is even detrimental to LLM’s general abilities, which is supported by the zero-shot
evaluation on the open benchmarks in Sec. 4.4. In contrast, our method significantly alleviates
these issues, allowing the pretrained LLM to acquire a wide range of skills across multiple domains
without experiencing catastrophic forgetting.

Disclaimer of liability. The examples provided is for demonstration purposes only and should not
be relied upon as professional advice.
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Medical

[Chat Doctor:] Thanks for your query. I have reviewed your concerns. 
The tooth pain could be due to a tooth or gum infection. I recommend 
consulting an oral physician for a thorough examination and a radiograph 
to identify any infections. If I were your treating doctor, I would 
prescribe antibiotics such as amoxicillin and metronidazole, along with 
analgesics like diclofenac. Additionally, performing saline gargling may 
provide relief. I hope this information helps. Take care.

During science class, students combined 1 kg of iron filings with 1 kg 
of sand to create a mixture. Which of the following methods would be 
best for separating the iron filings from the sand?
A. Stir the mixture into hot water to dissolve the sand.
B. Strain the mixture through a paper filter to collect the sand.
C. Drag a magnet through the mixture to attract the iron filings.
D. Shake the mixture to cause the iron filings to settle to the bottom.

FinanceMMLUTrain Order :

Medical

My bottom teeth have been hurting a lot for a week. It really hurts. My teeth 
are crooked, and my gums are swollen. I've started brushing my teeth for a 
couple of days and plan to never stop. How do I make the pain go away?

[This tweet is:] neutral.

[The answer is:] C

[This tweet is:] neutral.

What is the sentiment of this tweet? Please choose an answer from 
{negative/neutral/positive}:
According to CEO Kai Telanne , the company 's newspapers achieved 
the best financial result ever .

[This tweet is:] positive.

[This tweet is:] positive.

MMLU

Finance

:
Finetune

:
SLM

:
SLM

:
Finetune

:
SLM

:
Finetune

Medical

Finance

MMLU

Finance

Finance

Finance

:
Question

:
Question

:
Question

Figure 5: Demo showcases the chat robot with the LLaMA2 backbone, which undergoes continual
fine-tuning on the following datasets: Medical→MMLU→ Finance order.

14



Published as a conference paper at ICLR 2024

Medical

[Chat Doctor:] Hi, stretch marks are caused by the breakdown of 
collagen and elastin fibers in the skin. This can be due to various reasons 
like pregnancy, weight gain, weight loss, hormonal changes, and genetic 
factors. These marks can be improved by using creams and ointments 
containing vitamin E, retinol, cocoa butter, and glycolic acid. These 
creams can be applied over the affected areas twice daily. Apart from 
this, the stretch marks can be treated by laser therapy.

Rhea is a moon of Saturn. Which of these facts about Rhea best indicates 
that it does not have a water cycle in which water changes state? 
A. Its radius is 765 km.
B. Its density is about 1.3	𝑘𝑔/𝑚!.
C. Its period of rotation is about 4.5 Earth days.
D. Its temperature is between -174°C and -220°C.

Finance MMLUTrain Order :

Medical

I got a lot of stretch marks, mostly on my legs. I know I’m not over weight 
but what could I do to make them less noticeable. What might be causing 
them? 

[Chat Doctor:] Hi, Stretch marks are due to the sudden growth of the 
body, and it is very common. It is very difficult to remove them. You can 
apply retinoid cream at night and vitamin E cream in the morning. Hope 
I have answered your query. Let me know if I can assist you further. 

[The answer is:] D

[Chat Doctor:] Dear Sir/Madam have gone through your query and read 
your symptoms. In my opinion …

What is the sentiment of this tweet? Please choose an answer from 
{negative/neutral/positive}:
Customers in a wide range of industries use our stainless steel and 

services worldwide . 

[Chat Doctor:]  Hi, Welcome to Chat Doctor, Stainless steel is a type of 
steel alloy that contains at least 11% chromium. It is highly resistant to 
corrosion…

[This tweet is:] neutral.

MMLU

Finance

:
Finetune

:
SLM

:
SLM

:
Finetune

:
SLM

:
Finetune

Medical

Medical

Medical

Medical

MMLU

Finance

:
Question

:
Question

:
Question

Figure 6: Demo showcases the chat robot with the LLaMA2 backbone, which undergoes continual
fine-tuning on the following datasets: Finance→MMLU→Medical order.
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A.3 DATASETS

BERT and T5 benchmarks. More details about the five datasets used for the BERT and T5 bench-
marks are listed in Tab. 8. For the BERT benchmarks, we adopt a fully supervised training approach
as described in the works by Huang et al. (2021); de Masson D’Autume et al. (2019). As for
the experiments conducted with T5 backbones, we use the few-shot setting where 16 examples are
sampled for each class, following the methodology outlined in (Qin & Joty, 2021).

Table 8: Details of the datasets used for the BERT and T5 benchmarks. The datasets used for the
BERT benchmark involve fully supervised training, while the T5 benchmark employs the few-shot
setting.

Dataset Alias Class Type Training Samples
BERT T5

AGNews ag 4 News 115,000 64
Yelp yelp 5 Sentiment analysis 115,000 80
Amazon amazon 5 Sentiment analysis 115,000 80
DBPedia db 14 Wikipedia classification 115,000 224
Yahoo yahoo 10 Yahoo Q&A 115,000 160

LLaMA benchmarks. In this study, we utilize three distinct datasets(Li et al., 2023; Hendrycks
et al., 2021b;a) for conducting experiments on the LLaMA benchmark. We adopt instruction tuning
similar to Taori et al. (2023), while replacing the training datasets with our selected datasets. We
present the sampled examples in Tab. 9 to show more details, including the instructions used in the
experiments. It can be seen that in the LLaMA benchmark, the models should learn to adapt to
distinct tasks across various domains with different generation formats.

Table 9: The examples of the input instances in the LLaMA benchmark.

Dataset Instruction Input Output
Medical If you are a doctor,

please answer the
medical questions
based on the pa-
tient’s description.

I am suffering from bad
breath , this makes me don’t
dare to talk and get closer to
people. I can’t find a way to
get rid of it.

Hi, simple and effec-
tive ways to freshen your
breath. Brush and floss
more frequently. Scrape
your tongue. Avoid
foods that sour your
breath. Chat Doctor.

MMLU Question: Since green plants
make their own food, they are
called?

D

Choices: [predators, prey, de-
composers, producers]

Finance What is the senti-
ment of this tweet?
Please choose an
answer from

According to CEO Kai
Telanne , the company ’s
newspapers achieved the best
financial result ever.

positive.

{negative / neutral /
positive}

A.4 IMPLEMENTATION DETAILS

Task-ID. In this work, we mainly focus on the scenarios where inference is conducted without
the task ID. In such cases, we don’t know that which task or dataset is the input come from for
each input instance. In particular, for architecture-based methods, having knowledge of the task ID
significantly simplifies the problem by enabling direct determination of the target parameters, which
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is similar to fine-tune on separate tasks independently. However, in the practical scenarios, it is
always unable to determine the input task-ID directly. Such as a customer service chatbot, it doesn’t
have the feasibility to provide the model with the task source from the user.

Labels. For the T5 models, we employ a mapping technique to convert the classification labels
into words, following the methodology outlined in Raffel et al. (2020). The same operation is also
applied to the MMLU and Finance tasks in the LLaMA benchmark. During the evaluation phase,
we select only the first word and compare it with the labels to measure accuracy, following Raffel
et al. (2020). The excess part of the generation results will be ignored. Regarding the Medical task,
we utilize the entire generated outputs with a maximum length of 512 and compare them with the
labels using the BERTScore metric introduced by Zhang et al. (2019) following Li et al. (2023).

Optimization hyperparameter. AdamW (Loshchilov & Hutter, 2017) is adopted as the optimizer
in all experiments. The details of the optimization hyperparameter are listed in the Tab. 10.

Table 10: The details of the optimization hyperparameter. When the number of warm-up steps is
specified as a floating-point value, it represents a ratio of the total training steps.

Benchmark BERT T5 LLaMA
learning rate 2e− 4 2e− 2 2e− 4
batch size 8 4 2
epoch 5 100 3
warmup steps 100 100 0.03
weight decay 0.01 0.01 0.01

A.5 DISCUSSION OF VARIOUS PEFT METHODS

In this section, we delve into further details and compare different parameter efficient fine-tuning
(PEFT) methods as the retrieved targets using the vector space retrieval framework. We replace
our Joint Adaptive Re-Parameterization (JARe) with alternative components and perform ablation
experiments on various individual tasks.

Prior continual learning methods have made attempts to introduce PEFT techniques like prompt
tuning, which involves tuning prompts for better adaptation to new tasks. (Razdaibiedina et al.,
2023; Qin & Joty, 2021; Wang et al., 2022). Specially, for a novel incremental task Tk, the learining
objective is to minimize the log probability of training examples:

Llm(θPk
) = −

∑
(x,y)∈Tk

log p(y | [Pk,x], θ, θPk
), (9)

where Pk is a learnable prompt with its corresponding parameters θk. Similar to prompt tuning,
another alternative is to replace prompts with adapters, such as prefix-tuning (Li & Liang, 2021),
which also provide a flexible and modular approach to incorporate task-specific information without
modifying its base parameters. We conduct the ablation experiments on the different single tasks,
and the results are shown in Fig. 7.

Adaptability. In contrast to JARe, replacing it with prompts and adapters only allows them to be
retrieved without the ability to dynamically adjust the importance and significance of each element
based on the distribution distance in the vector space. As a result, all the responsibility is placed
on the pretrained model itself to determine the importance of attention without the additional task
distribution information, which, although lost, can be valuable for effective adaptation.

Limited trainable parameters. Directly introducing more learnable parameters through prompts
and adapters did not lead to significant improvements and fitting abilities. As more prompts and
adapters are added, the input length increases significantly. However, the rate of improvement grad-
ually slows down (Hu et al., 2021).To solve this problem, Razdaibiedina et al. (2023) proposes to
introduce a res-mlp layer, specifically,

P ′
k = MLPk(Pk) + Pk, (10)
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Figure 7: Comparison with different finetune methods with the vector space retrieval framework.
All the experiments are conducted on a single task.

where MLPk(·) is a learnable MLP layer for the task Tk. However, the inclusion of task-ID infor-
mation is inevitable when determining which MLP layer to use. But in the practical scenarios, such
as a customer service chatbot, it is impossible to provide the task-ID from the users.

Large language model. The direct incorporation of prompt-tuning or adapters into large language
models can lead to convergence difficulties and training instability. This issue primarily arises from
the fact that all newly introduced parameters are randomly initialized without pretraining, which
can make the model fragile when dealing with a large number of parameters. To alleviate this
problem, Zhang et al. (2023) proposes to introduce a gate variable, specifically,

P ′
i = gate · Pi, (11)

where gate ∈ R is a learnable parameter that is initialized as zero. This initialization ensures that the
introduced parameters have no influence on the original model at first and provides a slow warm-up
process. But the gate variable also limits the influences of the prompts and determining its optimal
value can be challenging.

In our practical experiments, we discovered an alternative approach where the introduced prompts
can be initialized with tokens from the pretrained embedding layers. This initialization strategy can
be effective in improving the performance and stability of the model during training. Specifically,

Pi ← γ(E), (12)

where E ∈ Rn×c represents the pretrained embedding tokens, and γ denotes the random selection
function that returns a token randomly.

However, while these strategies may improve stability, they often do not fully overcome the upper
limit bottleneck. Additionally, they can make models and inputs redundant and increase the time
cost of the inference with more and more incremental tasks added.

A.6 MODEL RE-PARAMETERIZATION

In the Sec. 3.1, we have introduce that we utilize a single group of weight increments to re-
parameterize the pretrained models to adapt to a specific downstream task following Hu et al. (2021).
Specifically, we freeze all the pretrained parameters without further optimization and introduce a
limited number of learnable parameters to store the weight increments during training. We empoly
the low-rank adaptation techniques to reduce more costs, as more details are shown in Fig. 8. Re-
cent research further shows that optimizing all pretrained parameters for fine-tuning is unnecessary.
Instead, selectively optimizing a limited set of parameters can achieve comparable performance to
fully fine-tuning (Hu et al., 2021; Li & Liang, 2021; Zhang et al., 2023). Another question arises
regarding which part of the pretrained models should be selected for optimization. In this work, we
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Table 11: Ablation experiments results of different weight types.

Tasks
Weight amazon ag yahoo db Average
Query 61.1 94.3 74.7 99.2 82.3
Key 61.4 94.1 74.6 99.1 82.3
Value 62.3 94.3 75.3 99.2 82.8

Out 62.9 94.7 75.5 99.3 83.1

Q

Key
Linear

K

Value
Linear

V

Scaled Dot-Product Attention

Query
Linear

Concat

Out
Linear

× =

𝑨 ∈ ℝ!×# 𝑩 ∈ ℝ#×$ 𝚫𝑾 ∈ ℝ!×$

𝑾% = 𝑾+ 𝜟𝑾 = 𝑾+𝑩𝑨

𝒀 = 𝑾%𝑿 + 𝑩𝒊𝒂𝒔

Figure 8: Illustration showcases the selection of parameter parts to store weight increments, along
with the application of low-rank adaptation techniques for re-parameterizing the model.

focus on optimizing the weight matrix within the out linear layer in the attention module as shown
in Fig. 8. For saving more memories, we only select a single part from the attention module, and
additional ablation experiment results, showcasing the impact of different parts, are presented in
Tab. 11.

A.7 FORGETTING EVALUATION

Apart from the performance, the ability to mitigate forgetting is another crucial indicator for as-
sessing a continual learning method. To evaluate this ability, we conduct separate tests to assess
our model’s performance on all previously learned tasks after training of each single incremental
task. This evaluation reflects the extent to which the model retains past knowledge. The results
for four different task orders on BERT benchmark are shown in Fig. 9. It is worthy to notice that
as the sequence of learned tasks grows, our proposed method exhibits no significant degradation,
demonstrating its remarkable ability to mitigate forgetting.

A.8 KEYS GENERATION

Local optimization. In this section, we will delve into further details about the key generation
process, focusing on strategies to address the issue of local optimization. When selecting and up-
dating keys using gradient descent, it is possible that only certain keys are optimized while others
are left untouched, leading to a situation of being stuck in local optimization. To tackle this issue,
we propose two easy yet effective strategies: Group-based retrieval and Random keys mask. These
strategies aim to capture diverse patterns and relationships within the input data by attending to
different aspects and subsets of features. To evaluate the impact of these two strategies, we con-
ducted ablation experiments, and the results are presented in Tab. 12. Specifically, with JARe, the
retrieved keys are not constrained to belonging to the same task as the query, and more details we
have discussed abovee. So we calculate the accuracy as follows:

Acc =
∑
q∈T

δ(|{k ∈ Kq : k ∈ p(T }| > |Kq|
2

) / |T |, (13)

where δ(·) is a condition function that returns 1 if the condition is satisfied. In other words, We
calculate the percentage of inputs for which the retrieved keys from the same task distribution con-
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Figure 9: Accuracy of our method evaluated after training on different task sequence lengths. It is
observed that as the sequence length increases, there is no obvious degradation in accuracy, indicat-
ing the significant ability of our method to alleviate forgetting.

stitute more than half of the total retrieved keys. It can be seen that our proposed strategies have
significantly improved the performance, particularly in the case of the group partition operation.

Table 12: Results of the ablation experiments on our proposed keys generation strategies.

ID Group Mask Task Avgag amazon dbpedia yahoo yelp

i ✓ ✓ 98.0 98.0 98.6 86.3 99.5 96.1
ii ✓ 96.8 96.7 97.7 82.6 99.5 94.6
iii 91.6 92.2 91.1 78.9 93.9 89.5

Time consumption. For each incremental task, we split the process into two stages: (1) Prepa-
ration stage: generating keys for each stored value [k,∆θ]. In this stage, we generate keys that
correspond to the stored key-value pairs. These keys play a critical role in retrieving the correct
information during the subsequent fine-tuning process. (2)Finetune stage: fine-tune the models and
preserve corresponding values. In this stage, we fine-tune the models to adapt them to the specific
requirements of the downstream task. So another important consideration is the computational time
required for key generation. We display the training time in Tab. 13. All experiments are conducted
on 4 NVIDIA GTX 3090 GPUs, batch size per device is set to 4 and epoch is 3. The results show
that the training time for key generation is approximately 11 minutes, which is minimal and has
negligible impact on the overall process.

Table 13: Time consumption involved in generating the keys.

Tasks ag amazon dbpedia yahoo yelp Avg
Time(min) 10.2 8.7 10.5 14.3 15.4 11.8

Similarity matrix. To provide a visual representation of the relationships and similarities among
all the generated key vectors, we present the visualization of the similarity matrix in Fig. 10. We
randomly sampled some groups, where each group consists of 5 tasks and each task is associated
with four keys. The visualization reveals that the keys belonging to the same task generally exhibit
similar distributions, resulting in higher similarities among them. This characteristic ensures that
the keys from a particular task can be easily distinguished from those of other tasks.

20



Published as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Similarity Matrix

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sim
ilarity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Similarity Matrix

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sim
ilarity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Similarity Matrix

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sim
ilarity

Figure 10: Visualization of similarity values between different generated key vectors.

A.9 THE NUMBER OF LEARNABLE PARAMETERS

The size of the introduced learnable parameters does not always follow a “less is better” principle.
Insufficient learnable parameters for certain tasks may result in underfitting, leading to unsatisfac-
tory performance. Compared to the prompt tuning and adapters discussed in the previous sections,
another advantage is its ability to dynamically adjust the size of learnable parameters within the
range of 0 as the lower bound and the size of the entire model as the upper bound. This adaptability
ensures its ability to dynamically adjust to diverse tasks with varying requirements.

It is important to note that while the size of the learnable parameters is a critical factor in evaluating
a method, it does not have any impact on the inference process in terms of delays or computational
burdens. This advantage is derived from the complete decoupling of the continual learned knowl-
edge from the pretrained model. The cost of the retrieval process remains constant, and the retrieved
values are solely utilized for model re-parameterization, without affecting the input or model scales.

To assess the impact of learnable parameter size on performance across different tasks, we conducted
experiments with various hyperparameter settings, specifically modifying the size of the learnable
parameters. These experiments were conducted individually for each task to evaluate the influence
on performance with the BERT as the backbone.

All the experimental results are presented in Tab. 14, revealing several interesting findings and con-
clusions. Different tasks necessitate varying sizes of learnable parameters, and increasing the pa-
rameter size yields distinct improvements depending on the task at hand. In the case of the “yahoo”
task, increasing the parameter size beyond a certain point does not provide notable benefits same as
“ag” task. Our method allows us a probability to assign different sizes to the respective tasks based
on their specific requirements.

Regarding the memory usage for storing these additional parameters, we provide a statistical analysis
in Tab. 15. The introduced parameters in our approach are considered acceptable and relatively small
compared to the size of the original pretrained large models.
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Table 14: Ablation experiments to investigate the impact of learnable parameter size on perfor-
mance. For all the conducted experiments, we maintained a consistent configuration of 768 channels
and 12 layers for the learnable parameters.

ID Group TopK Rank Task Avgag amazon dbpedia yahoo yelp

i 3 2 2 59.5 93.1 74.3 99.2 63.0 77.8
ii 3 2 4 61.0 94.1 74.8 99.2 64.2 78.7
iii 3 4 4 61.0 94.1 75.4 99.3 65.6 79.1
iv 6 2 8 62.5 94.4 75.4 99.4 66.5 79.7
v 6 2 12 63.2 94.5 75.4 99.3 67.1 80.0

Table 15: The memory consumption of the additional parameters and their proportion relative to the
original model.

ModelSize Additional Parameter Proportion

Bert 512M 3.6M 0.7%

LLaMA 12.6G 33M 0.3%

A.10 ZERO-SHOT EVALUATION ON VARIOUS TASKS

Table 16: Zero-shot evaluation on open bench-marks to assess the phenomena of forgetting and
knowledge transfer.

Task Method Arc e Arc c Piqa Wino

Finace Finetune 31.8 42.6 67.9 64.3
SLM 44.7 76.0 76.3 67.7

MMLU Finetune 30.0 39.7 63.6 66.3
SLM 49.4 76.7 76.6 66.2

Medical Finetune 73.2 73.8 76.5 66.9
SLM 44.3 75.0 77.8 67.8

Table 16 presents a more detailed zero-shot evaluation of our method using the LLaMA2 backbone
finetuned on various downstream tasks. It has been observed that fine-tuning on small-scale datasets
that differ significantly from the training data can have a negative impact on the LLM’s generality
and adaptability. Our aim is to address this issue and mitigate the catastrophic forgetting.

A.11 WEAKNESS DISCUSSION

We humbly acknowledge that the proposed method indeed introduces a cost associated with the
retrieval process. However, we find the additional cost to be acceptable because:

1. Compared to the subsequent inference models, the retrieval stage model used is notably
smaller, lighter, and operates at a faster speed. This distinction is particularly significant
for the T5 and Llama models.

2. In the case of generation models with the decoder architecture, each inference only pro-
duces a single token, necessitating multiple inferences to generate a complete sentence.
However, the retrieval process is executed only once. Therefor, given tr as the retrivak
time, ti as the inference time, n as the tokens number, the proportion of time consumed is:

tr
tr + n ∗ ti

∗ 100%

We conducted an experimental comparison to measure the time consumption of different parts of
various tasks using Llama on a single A100 GPU. And the results are shown in Tab. 17.
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Table 17: Infference time of the retrieval framework and generalization model.

Task Retrieval Generation Sum Proportion

Finance 7.2ms 147.6ms 154.8ms 4.7%
MMLU 9.7ms 161.2ms 170.9ms 5.7%
Medical 8ms 2600ms 2608ms 0.3%

In terms of storage, we show the memories used for the additional parameters in Tab. 15. Moreover,
it is worth noting that while our method requires additional parameters, these parameters are only
used to store the weight increments. They do not incur any computational cost or increase the
complexity of the original models.

A.12 COMPARED METHODS

Below are the detailed descriptions of the methods we have chosen to compare:

• Fine-tune (de Masson D’Autume et al., 2019; Wang et al., 2020): Fully fine-tune all model param-
eters to adapt to sequential downstream tasks without additional episodic or modular components.

• Replay (Razdaibiedina et al., 2023): incorporates a mechanism to replay samples from previous
tasks stored in the memory buffer during whole model fine-tuning, ensuring that the model retains
knowledge from old tasks.

• MBPA++ (de Masson D’Autume et al., 2019): augments the BERT model with an episodic mem-
ory module, storing all seen examples. It performs experience replay during training and uses
K-nearest neighbors for local adaptation at test time.

• IDBR (Huang et al., 2021): divides the representation learning process into task-specific and task-
generic spaces to attain effective representation for BERT model. This method involves continual
training of the model while incorporating data replay and a regularization loss.

• LFPT5 (Qin & Joty, 2021): leverages prompt tuning (PT) from T5 to simultaneously train the
model as a task solver and a data generator. It leverages experience replaying during the learning
process, requiring only a limited amount of resources.

• ProgPromt (Razdaibiedina et al., 2023): utilizes prompt tuning to adapt models for individual
downstream tasks by employing a distinct set of prompts for each task and sequentially concate-
nating them with previously learned prompts. During inference, Progressive Prompts assumes that
the task identifier is known, enabling the model to appropriately select the corresponding prompts.
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