
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SNAPMEM: SNAPSHOT-BASED 3D SCENE MEMORY
FOR EMBODIED EXPLORATION AND REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Constructing a compact and informative 3D scene representation is essential for
effective embodied reasoning and exploration, especially in complex environ-
ments over long periods. Existing approaches have relied on object-centric graph
representations, which oversimplify 3D scenes by modeling them as individual
objects and describing inter-object relationships through rigid textual descriptions.
This rigidity leads to the loss of rich spatial relationships between objects, which
are essential for embodied scene reasoning tasks. Furthermore, these representa-
tions lack natural mechanisms for active exploration and memory management,
which hampers their applications for lifelong autonomy. In this work, we propose
SnapMem, a novel 3D scene representation that leverages a compact set of infor-
mative snapshot images to cover the scene based on object co-visibility. These
snapshot images capture rich spatial and semantic information among objects
within the same view and their surroundings. We then illustrate how such a repre-
sentation can be directly integrated with frontier-based exploration algorithms to
facilitate active exploration by leveraging unexplored regions and scene memory.
To support lifelong memory in active exploration settings, we further present an
efficient memory aggregation pipeline to incrementally construct SnapMem, as
well as an effective memory retrieval technique for memory management. Exper-
imental results over three benchmarks demonstrate that SnapMem significantly
enhances agents’ reasoning and exploration capabilities in 3D environments over
extended periods, highlighting its potential for advancing applications in embod-
ied AI.

1 INTRODUCTION

Embodied agents operating in complex 3D environments require robust scene representations to
effectively reason and explore over extended periods. Directly representing scenes using dense 3D
representations, such as point clouds (Ding et al., 2023; Zhang et al., 2023; Ding et al., 2024; Jataval-
labhula et al., 2023) or neural fields (Tsagkas et al., 2023; Kerr et al., 2023; Mazur et al., 2023), is
often extremely computationally expensive and difficult to reason over. As a result, recent advance-
ments have focused on object-centric representations, particularly 3D scene graphs (Wald et al.,
2020; Gu et al., 2024), as a means of encoding scene memory compactly. These graphs represent
scenes using nodes for objects and edges for inter-object relationships, facilitating reasoning about
3D environments.

However, existing object-centric representations exhibit significant limitations. Such representa-
tions are limited to captions or visual features in object-level, lacking flexible information at dif-
ferent scales. The relationships between objects, represented as edges between nodes, oversimplify
the complex spatial relationships present in 3D environments. The oversimplified nature of such
scene representations lacks the robustness needed for an agent to interpret intricate spatial layouts
and respond to complex queries that require a nuanced understanding of both spatial and semantic
information.

Moreover, these representations lack mechanisms for active exploration and effective memory man-
agement, which are essential to lifelong autonomy. In particular, agents are often deployed in par-
tially mapped environments, and it is important that the agent has a well-specified way to explore and
solve tasks. Additionally, object-centric representations will continuously grow in size due to the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: With SnapMem, explored regions are represented by a set of Memory Snapshots capturing
clusters of co-visible objects, i.e., the objects observable in a single image observation, along with
their spatial relationships and background context, as shown in the bottom-left example. Unexplored
regions are represented by navigable frontiers along with image observations, referred to as Frontier
Snapshots. In the top-right example, the agent actively explores a frontier snapshot when no helpful
memory snapshot is found.

vast number of objects in a scene, creating challenges for both storage and retrieval, and hindering
long-term autonomous execution in an environment.

To address these challenges, we introduce SnapMem, a novel snapshot-based 3D scene representa-
tion that is both compact and informative. SnapMem is based on the intuition that an image alone
is sufficient to capture rich visual information of a region within a 3D scene. In an image, object
features and spatial relationships are directly visible, while global information can also be inferred
from the background context. Therefore, SnapMem adopts a set of informative images, referred to
as “memory snapshots”, to represent the explored regions of a scene. These snapshots encapsulate
intricate spatial and semantic information among co-visible objects and their surroundings, includ-
ing background context. As illustrated in Figure 1, the memory snapshot in the bottom-left corner
clearly depicts the spatial relationships among a cluster of co-visible objects, each highlighted by
bounding boxes. By capturing the scene from various viewpoints, SnapMem provides richer and
more robust visual information, surpassing the capabilities of traditional object-centric graphs.

In addition, SnapMem supports active exploration through integration with frontier-based explo-
ration frameworks (Yamauchi, 1997; Mobarhani et al., 2011). As illustrated in Figure 1, we extend
the concept of “frontier”, which represents an unexplored region, to “frontier snapshot”. Similar to
a memory snapshot, we use an image observation towards the unexplored region to represent the
corresponding frontier. By maintaining the frontier snapshots, the agent can make exploration de-
cisions by leveraging both its accumulated knowledge and the potential for new information. This
mechanism addresses a critical aspect of embodied reasoning by enabling the agent to actively ex-
pand its knowledge of the environment. Moreover, by representing both explored and unexplored
regions with snapshot images in a unified manner, we can better leverage vision-language models
(VLMs). With recent advances in VLMs’ perception capabilities, these snapshots are well suited as
effective inputs for visual information.

By incorporating our real-time memory aggregation and filtering framework, SnapMem serves as an
effective memory system for lifelong agents operating in 3D environments. Throughout the explo-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ration process, the scene memory is dynamically and incrementally constructed, enabling agents to
continuously update and refine their understanding of the environment. With each memory snapshot
representing multiple objects, the size of SnapMem does not grow as large as object-centric repre-
sentations during exploration. Moreover, we propose Prefiltering, a memory retrieval mechanism,
that first retrieves only the relevant memory snapshots of a given query, and uses only the filtered
snapshots for reasoning and planning. This allows the agent to perform continuous exploration
and navigation over long periods without excessive computational burden. Extensive experiments
and superior performance on three benchmarks demonstrate that SnapMem significantly enhances
agents’ capabilities in reasoning and lifelong exploration in 3D environments.

Our contributions can be summarized as follows:
• We introduce SnapMem, a compact scene memory that constructs informative snapshot images

to capture diverse and robust information among co-visible objects and their surroundings in 3D
scenes.

• By augmenting snapshot memory to include unexplored regions through frontier snapshots, we
enable agents to actively explore and acquire new information. This enhancement significantly
improves their abilities to complete tasks that require knowledge beyond their initial observations.

• We present a dynamic framework for SnapMem, featuring memory aggregation and filtering
strategies that enable agents to actively expand their knowledge and adapt over extended peri-
ods, supporting lifelong learning in 3D environments.

2 RELATED WORKS

3D Scene Representations Recent works (Peng et al., 2023; Shafiullah et al., 2022) have focused
on establishing universal 3D representations by grounding 2D representations captured by VLMs to
3D scenes, which showcases impressive results on a wide range of tasks, including navigation (Wani
et al., 2020), language-guided object grounding (Hong et al., 2022). However, such representations
are rather limited due to high resource consumption and the inability to support dynamic updates.
3D scene graphs address these limitations by formulating the scene as a compact graph, where nodes
represent objects, and edges encode inter-object relationships as textual descriptions (Fisher et al.,
2011; Gay et al., 2019; Armeni et al., 2019; Kim et al., 2019), enabling real-time establishment and
dynamic update for hierarchical scene representations (Rosinol et al., 2021; Wu et al., 2021; Hughes
et al., 2022). While such object-centric representations have demonstrated effectiveness in various
tasks, they remain constrained for oversimplifying inter-object relationships with rigid descriptions
and missing mechanism for active exploration and memory management. To tackle this challenge,
our work leverages a set of informative snapshot images to visually capture spatial and semantic
relationships among objects, offering a more sophisticated understanding of the scene.

VLM for Exploration and Reasoning Vision-Language Models (VLMs) have shown promising
results in solving embodied exploration and reasoning tasks by leveraging commonsense reasoning
and internet-scale knowledge. Existing exploration approaches can be divided into two categories.
The former directly employs consecutive observations together with instructions as input, requiring
the VLM to predict next-step action (Zhang et al., 2024) while the latter grounds the exploration
target to 3D scene through visual prompting, establishing a semantic map to guide the exploration
process (Majumdar et al., 2022; Shah et al., 2023; Ren et al., 2024; Yokoyama et al., 2024). How-
ever, both approaches are constrained by their memory representations. For the former, vanilla past
observations can only serve as short-term memory. For the latter, their semantic maps are target-
specific and cannot be generalized to future tasks. On the other hand, current reasoning approaches
generally assume a fully observable scene as the input of the VLM, either represented with image
observations (Chen et al., 2024) or 3D scene representations like point clouds (Hong et al., 2023),
which makes them inapplicable in partially mapped environments. To address these limitations, our
work introduces the first lifelong and target-agnostic scene memory that can be seamlessly integrated
with VLM for further reasoning, stepping closer to the ultimate goal of lifelong autonomy.

3 APPROACH

In this section, we first introduce how SnapMem is constructed from a series of RGB-D images with
poses using co-visibility clustering (Section 3.1). We then explain how SnapMem can be integrated

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

with frontier-based exploration and incrementally and dynamically constructed during exploration
(Section 3.2).

Algorithm 1 Co-Visibility Clustering for Memory Snapshots

1: Initial clusters C = {O}
2: Temporary memory snapshot set Stmp = ∅, Final memory snapshot set S = ∅
3: All frame candidates I
4: Score function F
5: while C is not empty do
6: O∗ = argmaxO∈C ∥O∥
7: I∗ = {I|I ∈ I,O∗ ⊆ OI}
8: if I∗ is not empty then
9: I∗ = argmaxI∈I∗ F(I)

10: S∗ =< O∗, I∗ >
11: Stmp = Stmp ∪ {S∗}
12: else
13: Use K-Means to split O∗ into two clusters O∗ = O∗

1 ∪ O∗
2 based on (x, y, z) coordinates

14: C = C ∪ {O∗
1 ,O∗

2}
15: end if
16: C = C − {O∗}
17: end while
18: IS = {IS |S ∈ Stmp}
19: for I ∈ IS do
20: S =< ∪S∈Stmp,IS=IOS , I >
21: S = S ∪ {Sm}
22: end for

return S

3.1 SNAPMEM CONSTRUCTION

Inspired by the idea that an image itself is informative enough to represent a small area of the scene
with rich and robust information, we propose a novel way to utilize a set of snapshot images to
cover the whole informative areas of a scene. Instead of the object-centric representation proposed
by ConceptGraph, in which only object-level visual features are stored and managed, we propose
using one image to represent a cluster of objects that are co-visible in that image, namely a Memory
Snapshot. With this, the major objects in a scene can be visually represented by a small set of
images.

Specifically, given a set of N image observations Iobs = {Iobs1 , Iobs2 , ..., IobsN }, where each Iobsi =

⟨Irgbi , Idepthi , θi⟩ (color image, depth, pose), we first utilize ConceptGraph (Gu et al., 2024) pipeline
to do a series of object detection, segmentation, spatial transformations and merging, resulting in
an object set that contains all detected objects from the observations O = {o1, o2, ..., oM} of size
M , where each object oj = ⟨cj , pj⟩ is characterized by an object category and its 3D location.
Meanwhile, we obtain a set of frame candidates I = {I1, I2, ..., IN}, where each Ii = ⟨Iobsi ,OIi⟩
consists of the image observation together with a list of all detected objects in that image, i.e., all
objects in OIi are co-visible in Iobsi .

We define SnapMem S as a set of memory snapshots {S1, S2, ..., SK} of size K ≤ N , where each
memory snapshot Sk = ⟨OSk

, ISk
⟩ is characterized by a frame candidate ISk

∈ I and a cluster of
objects OSk

that is a subset of all detected objects in the image IobsSk
, i.e., OSk

⊆ OISk
. Therefore, an

image IobsSk
serves as a shared visual feature of the group of objects OSk

. Since S needs to cover the
whole object set O, and each object oj needs to be uniquely represented by one memory snapshot Sk

(although it may still be visible in other snapshot images), we require OS1
∪OS2

∪ ...∪OSK
= O,

and OSi
∩ OSj

= ∅ for ∀Si, Sj ∈ S.

To acquire the desired set of memory snapshots, we follow Savaresi & Boley (2001) to hierarchically
split O into clusters, each of which is a subset of the detected object list OIi of a certain frame
candidate Ii. As detailed in the pseudocode in Algorithm 1, we define a cluster set C composed of
all unsettled object clusters that haven’t been matched with observations, initialized to contain the
full object set {O}, and the temporary memory snapshot set Stmp, initialized to ∅. Each time, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

pick the largest unsettled cluster O∗ from C and search through all frame candidates for capable
candidates I∗ such that O∗ is a subset of the detected object list of I∗. When such candidates exist,
we rank them based on a score function F and pick the top-ranked frame candidate I∗ to create a
new memory snapshot S∗ =< O∗, I∗ > and add it to Stmp. In practice, we choose F(I) = ∥OI∥
to select the observation that not only covers most objects but also has the highest sum of confidence
for all objects in the cluster. If there is no feasible frame candidate, we then use K-Means to further
divide O∗ into two subclusters O∗

1 and O∗
2 based on the 2D horizontal positions of the objects, and

add them to C. We repeat the above process until no clusters remain in C. Note that the process is
guaranteed to terminate for every object that has been captured in certain observations. Ultimately,
after all objects have been assigned to corresponding snapshots, we merge memory snapshots in
Stmp that share the same observations, achieving the final compact memory representation S.

In each memory snapshot, not only is the visual information of each object stored, but also the spatial
relationships between objects and the room-level information are provided by visual cues in the
background. With the increasing perception abilities of VLMs, such snapshot-based representations
can provide richer and more robust visual information for VLMs to complete difficult tasks.

3.2 SNAPMEM WITH FRONTIER-BASED DYNAMIC EXPLORATION

3.2.1 INTEGRATION WITH FRONTIER-BASED EXPLORATION

We adapt the frontier-based exploration pipeline from Ren et al. (2024). In a frontier-based explo-
ration episode, an agent is initialized in an unknown scene and explores the environment step by
step. At each step, the agent moves to a new location and receives a series of observations, including
depth and pose. The depth images are mapped into a 3D occupancy map, which allows us to deter-
mine which areas are navigable. Meanwhile, we record a map of the explored regions, defined as the
nearby areas along the agent’s trajectory, and a map of the unexplored regions, defined as navigable
but yet-to-be-explored areas. A frontier is then defined to represent such an unexplored region that
could be further explored.

In this work, we extend this concept by using a snapshot to represent a frontier, similar to memory
snapshots. We define a Frontier Snapshot F = ⟨r, p, Iobs⟩, consisting of the unexplored region r
it represents, a navigable location p, and an image observation Iobs from the agent’s position toward
that unexplored region. Therefore, the frontier shares the same format as memory snapshots, and
both can be used jointly as inputs into VLMs. More implementation details about frontier-based
exploration are in Appendix A.1.

3.2.2 INCREMENTAL CONSTRUCTION OF SNAPMEM

Throughout the exploration process, the scene memory is dynamically and incrementally con-
structed. At each exploration step, the agent observes its surroundings and updates the scene memory
and frontiers. At step t, we denote the current object set as Ot, the frontier set as Ft, the memory
snapshot set as St, and the frame candidate set as It, all of which are initialized as ∅ at the beginning
of the episode.

Detect. As illustrated in Figure 2, at each time step t, the agent first captures N egocentric views
Iobs = {Iobs1 , Iobs2 , ..., IobsN }. The ConceptGraph pipeline is then applied to Iobs to extract the
object set O and frame candidate set I: O, I = ConceptGraph(Iobs,max dist). Specifically, the
threshold “max dist” ensures that only objects within a certain distance from the agent are added
to the scene graph, as the memory snapshot should only represent objects from a local area. It is
important to note that the object set O detected in these egocentric views may contain both newly
identified objects and those already present in the previous set Ot−1. Subsequently, the full object
set and frame candidate set are updated as Ot = Ot−1 ∪ O and It = It−1 + I respectively.

Cluster. We implement the co-visibility clustering in Section 3.1 incrementally. At each time step
t, instead of performing clustering on the entire object set Ot, we focus on clustering objects related
to O, the objects detected from the egocentric views at this step. In O, some objects may have
already been assigned to specific memory snapshots in St−1. We refer to those memory snapshots
as Sprev = {S|S ∈ St−1,OS ∩ O ≠ ∅}. All objects from Sprev , along with the newly detected
objects in O, are used as input for clustering, denoted as Oinput. Then, the memory snapshot set is
updated as St = St−1 − Sprev + Cluster(Oinput, It)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: The memory aggregation process of SnapMem. At each step t, the object set Ot is first
updated using the object-wise update pipeline from ConceptGraph. The newly detected objects and
the updated existing objects are then jointly clustered into new memory snapshots using co-visibility
clustering (Algorithm 1), which are used to update the memory snapshot set St.

Frontier Update. At each step t, an existing frontier from Ft−1 may be modified if the unexplored
region it represents has been updated, or it may be removed if the region has been fully explored.
Additionally, new frontiers may be introduced. For each newly added or modified frontier, a snap-
shot is taken to update its image representation. As a result, Ft−1 is updated to Ft.

More implementation details regarding how the agent moves and navigates are in Appendix A.2.

3.2.3 MEMORY RETRIEVAL WITH PREFILTERING

For a given instruction, most memory snapshots are irrelevant, and that processing these irrelevant
snapshots consumes substantial computational resources without contributing meaningful informa-
tion. Therefore, we introduce a novel memory retrieval mechanism called Prefiltering. Figure 3
illustrates Prefiltering in an embodied question answering task. We present the VLM with the ques-
tion, along with all object categories in Ot. The VLM is then tasked with outputting all relevant
object categories in the order of relevancy and importance, and a hyperparameter K is employed to
keep only the top K categories. Memory snapshots that do not contain any object within the selected
categories are filtered out. This prefiltering technique significantly reduces resource consumption,
allowing us to include images directly within the prompt. Moreover, prefiltering can help eliminate
many falsely detected objects caused by the limitations of the object detection model, increasing the
robustness of SnapMem. The complete prompt is provided in Appendix A.5.

3.2.4 REASONING AND EXPLORATION WITH VLMS

With the updated frontier snapshots and memory snapshots, we can directly leverage the perception
and reasoning capabilities of large VLMs, as the snapshot-based nature of frontier and memory
snapshots makes them easily interpreted by VLMs.

SnapMem is versatile and can be prompted in various ways for different tasks. In the case of em-
bodied question answering (illustrated in Figure 3), the VLM is required to either choose a frontier
to explore or answer the question based on the memory snapshots. If the VLM chooses a frontier,
it must provide a rationale for exploring in that direction; otherwise, it must directly provide an
answer to the question, which is then adopted as the final answer for that exploration episode. In ob-
ject navigation tasks, where the agent is tasked with finding a specific object, we modify the prompt
by appending each memory snapshot with the image crops of the objects it contains, and the VLM
is required to directly pick an object from one memory snapshot. Detailed experiments on these
two tasks are presented in Section 4.1 and 4.3 respectively, with the complete prompt provided in
Appendix A.5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: SnapMem as visual input for the VLM in embodied question answering. The VLM
first retrieves relevant memory snapshots with prefiltering, then utilizes the frontier snapshots and
memory snapshots to perceive the scene and reason about the embodied questions.

4 EXPERIMENTS

SnapMem is a form of scene representation that stores rich and compact visual information, serving
as a memory system for a lifelong agent to explore and reason about a scene. To comprehensively
evaluate SnapMem, we begin with Active Embodied Question Answering (Section 4.1), where the
scene is initially unknown. This assessment tests SnapMem’s overall performance in scenarios
that require both embodied exploration and reasoning. Next, we examine SnapMem’s efficiency
in representing 3D scene information through Episodic Memory Embodied Question Answering
(Section 4.2). In this evaluation, the scene scan of the ground truth region is provided and no
exploration is needed. Following this, we evaluate SnapMem on GOAT-Bench (Section 4.3), a
multi-modal lifelong navigation benchmark, to demonstrate SnapMem’s effectiveness as a lifelong
memory system. Finally, we conduct a series of ablation studies to determine key hyperparameters
choices in Appendix A.4.

For all experiments, we construct SnapMem based on the real-time streamlined implementation of
ConceptGraphs, using YOLO-Wolrd-X (Cheng et al., 2024) as our object detector. Since Snap-
Mem is a versatile scene memory, we adapt it to different benchmarks in slightly different ways, as
explained in each respective subsection. More implementation details are in Appendix A.2.

4.1 ACTIVE EMBODIED QUESTION ANSWERING (A-EQA)

On the A-EQA (Majumdar et al., 2024) benchmark (Table 1), we evaluate SnapMem’s ability to
dynamically construct scene representations for exploration and reasoning given complex questions.

Benchmark. A-EQA consists of 557 questions drawn from 63 scenes in HM3D (Ramakrishnan
et al., 2021). Due to resource limitations, our evaluation focuses on a subset of 184 questions, as
mentioned in the OpenEQA benchmark (Majumdar et al., 2024). The open-vocabulary and open-
ended questions in A-EQA encompass diverse daily tasks such as object recognition, functional
reasoning, and spatial understanding. For each question, an agent is initialized at a specific location
and is required to explore the scene to gather the necessary information for answering the question.

Implementation Details. As explained in detail in Section 3.2, we integrate SnapMem into the
frontier-based exploration framework. The VLM directly returns an answer after identifying visual
clues from certain memory snapshots. We set the number of egocentric observations at each step
N = 3, the maximum distance for objects to be included in the scene graph max dist = 3.5, and
the number of prefiltered classes K = 10.

Metrics. Following OpenEQA, we employ LLM-Match and LLM-Match SPL for quantitative eval-
uation. We first rate each predicted answer from 1 to 5 using GPT-4 to compare ground-truth and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method LLM-Match ↑ LLM-Match SPL ↑
Blind LLMs
GPT-4* 35.5 N/A
GPT-4o 35.9 N/A

Question Agnostic Exploration
CG Scene-Graph Captions* 34.4 6.5
SVM Scene-Graph Captions* 34.2 6.4
LLaVA-1.5 Frame Captions* 38.1 7.0
Multi-Frame* 41.8 7.5

VLM Exploration
Explore-EQA 46.9 23.4
CG w/ Frontier Snapshots 47.2 33.3
SnapMem (Ours) 52.6 42.0
Human Agent* 85.1 N/A

Table 1: Experiments on A-EQA. “CG” denotes ConceptGraphs. Methods with * are reported from
OpenEQA (Majumdar et al., 2024).

predicted answers. Given the predicted answers, LLM-Match, which measures the answer accuracy,
is calculated as the average score for each question, mapped to a 20-100 scale. LLM-Match SPL,
which measures the exploration efficiency, is then calculated by weighting the LLM-Match score by
exploration path length. For the questions where the VLM Exploration methods failed to provide an
answer, we ask GPT-4o to directly guess an answer without visual inputs, setting the SPL to 0.0.

Baselines. For baselines that use VLM for exploration, we mainly compare SnapMem with Explore-
EQA (Ren et al., 2024) and ConceptGraph (Gu et al., 2024) w/ frontier snapshots. We adapt Explore-
EQA for open-ended questions by halting exploration and answering the question with the ego-
centric view once the VLM’s confidence in the question exceeds a predetermined threshold. We
integrate ConceptGraph into our exploration pipeline by replacing memory snapshots with object
image crops, while maintaining other settings the same, including prefiltering and how answers are
obtained. We adopt GPT-4o as the choice of VLM by directly utilizing the OpenAI API. Besides the
methods that can do active exploration above, we also include other simple baselines implemented
by OpenEQA. The group of question-agnostic exploration baselines employ question-agnostic fron-
tier exploration to obtain an episodic memory of image frames. These frames are subsequently used
to prompt VLMs directly (Multi-Frame), generate frame captions as prompts for LLMs (LLaVA-
1.5 Frame-Captions), or construct textual scene-graph representation using ConceptGraph (CG) and
Sparse Voxel Map (SVM) to prompt LLMs. Additionally, blind LLM experiments are included,
where the LLM is tasked with answering questions without any visual information. Note that the
Multi-Frame baseline uses 75 frames for each question, and is evaluated on the 184-question subset.
Other baselines from OpenEQA are evaluated on the full 557-question set.

Analysis. As shown in Table 1, SnapMem significantly outperforms previous methods in both
accuracy and efficiency. The superior performance in open-ended embodied question answering
highlights the advantages of using snapshots as a memory format, which can store richer and more
flexible visual information for the VLM to address complex questions. In contrast, object-based
memory systems—using either image crops or language captions to represent objects and spatial
relationships—are less robust when handling diverse questions, as they rely on rigid object-level
features. Additionally, the multi-frame VLM implemented by OpenEQA also achieves inferior re-
sults, despite using a similar snapshot-based representation. Multi-Frame with linearly selected
frames include too much repetitive or irrelevant information for the questions. This result, in turn,
demonstrates the compactness and efficiency of SnapMem as a scene memory system.

4.2 EPISODIC-MEMORY EMBODIED QUESTION ANSWERING (EM-EQA)

We evaluate the representation capability of SnapMem on EM-EQA (Majumdar et al., 2024) to
further demonstrate 1) the effectiveness of image memory compared to captions, 2) the compact and
informative nature of our method.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods Avg. Frames LLM-Match
Blind LLM* 0 35.5
CG Captions* 0 34.4
SVM Captions* 0 34.2
Frame Captions* 0 38.1
Multi-Frame 3.0 48.1
SnapMem (Ours) 3.1 57.2
Human Full 86.8

Table 2: EM-EQA Experiments. Frame Effi-
ciency and performance. Methods denoted by *
use GPT-4 to generate answers, as reported in
OpenEQA

Figure 4: LLM-Match Score vs. Av-
erage Number of Frames for SnapMem
and Multi-Frame both using GPT-4o

Benchmark. EM-EQA is an Embodied Q&A benchmark that contains over 1600 questions from
152 ScanNet (Dai et al., 2017) and HM3D(Ramakrishnan et al., 2021) scenes. The open-vocabulary
and open-ended questions in EM-EQA encompass diverse daily tasks such as object recognition,
functional reasoning, and spatial understanding. For each question, a trajectory comprising RGB-
D observations and the corresponding camera poses at each step is provided, offering necessary
contextual information needed to answer the questions.

Implementation Details. To adapt SnapMem to the EM-EQA benchmark, we first construct Snap-
Mem for each scene using the given RGB-D observations and corresponding camera poses. For
each question, we then apply prefiltering to the memory snapshots using different K values (1, 2, 3,
5, 10), and utilize the resulting filtered snapshots as prompts for GPT-4o to generate the answers.

Baselines. We compare against language-only scene representations, including ConceptGraphs cap-
tions, Sparse Voxel Maps Captions, and Frame Captions. We also compare against Multi-Frame,
which directly processes 2 to 6 linearly sampled frames using GPT-4o.

Analysis. As shown in Table 2, both SnapMem and Multi-Frame significantly outperform methods
that rely on captions to represent a 3D scene while using only approximately three frames. This
demonstrates the effectiveness of using a set of images to represent a 3D scene and highlights the
limitations of 3D scene graph captions when addressing complex queries involving relationships
between objects. Furthermore, in both Table 2 and Figure 4, we observe that SnapMem surpasses
Multi-Frame in frame efficiency, underscoring the compact and informative nature of our proposed
3D scene memory.

4.3 GOAT-BENCH

On GOAT-Bench (Khanna* et al., 2024) (Table 3), we evaluate SnapMem’s effectiveness as a life-
long memory system that facilitates efficient exploration and reasoning.

Benchmark. GOAT-Bench is a multimodal lifelong navigation benchmark, where an agent is tasked
with sequentially navigating to several objects in an unknown scene, with each target described by
either a category name (e.g., microwave), a language description (e.g., the microwave on the kitchen
cabinet near the fridge), or an image of the target object. Due to the large size of GOAT-Bench and
the resource limitations, we assess a subset of the “Val Unseen” split, consisting of one exploration
episode for each of the 36 scenes, totaling 278 navigation subtasks.

Implementation Details. We reformulate the navigation task into the embodied question answering
format by filling in templates for three types of target descriptions: “Can you find the {category}?”,
“Can you find the object described as {language description}?”, and “Can you find the object cap-
tured in the following image? {image}”. We adapt the prompt for navigation tasks as described
in Section 3.2.4, allowing the VLM to choose an object directly from a memory snapshot. After
the VLM identifies an object in such a way, the agent navigates to a location near that object to
complete the task. We evaluate both GPT-4o and open-sourced VLM (specifically LLaVA-7B (Liu
et al., 2023)) as the choice of VLM. For LLaVA-7B model, we further fine-tune it on our generated
dataset for better performance (see Appendix A.3 for more details). Other hyperparameter settings
are the same as the experiments on A-EQA.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Metrics. GOAT-Bench employs the Success Rate and Success weighted by Path Length (SPL) as
metrics, similar to A-EQA dataset. A navigation task is deemed success if the agent’s final location is
within 1 meter from the navigation goal. SPL is the success score weighted by exploration distances.

Baselines. Similar to the experiments in A-EQA, we compare SnapMem with Explore-EQA (Ren
et al., 2024) and ConceptGraph (Gu et al., 2024) baselines. Due to implementation differences in
Explore-EQA, we introduce an additional success criterion for this baseline: a subtask is consid-
ered successful if the target object is visible in the final observation. This supplementary criterion
leverages ground truth grounding, thereby enhancing the baseline’s capability. To demonstrate the
effectiveness of SnapMem’s lifelong memory, we include another baseline (SnapMem w/o memory)
in which we clear the constructed scene graph after each navigation task. We also directly include
baselines implemented in GOAT-Bench. However, these baselines are simple RNN-based models
trained via reinforcement learning, which causes their performance to lag behind the baselines we
implemented.

Analysis. As shown in Table 3, SnapMem achieves the highest scores compared to previous meth-
ods in both accuracy and efficiency. Even though GOAT-Bench is an object-based navigation bench-
mark, which is well-suited for ConceptGraph settings, SnapMem still outperforms ConceptGraph w/
frontier snapshots. This can be attributed to the snapshot-based representation, which captures more
comprehensive information, making it easier to match with the diverse descriptions in GOAT-Bench.
Furthermore, when compared with the original SnapMem, the performance of SnapMem w/o mem-
ory declines for both GPT-4o and LLaVA-7B models, particularly in efficiency (SPL), indicating
that SnapMem is beneficial as a memory system for lifelong learning. Additionally, Explore-EQA,
which uses a traditional value map for each subtask to indicate regions of interest, also performs
worse, as it lacks the mechanism to memorize information in explored regions.

Method Success Rate ↑ SPL ↑
GOAT-Bench Baselines
Modular GOAT* 24.9 17.2
Modular CLIP on Wheels* 16.1 10.4
SenseAct-NN Skill Chain* 29.5 11.3
SenseAct-NN Monolithic* 12.3 6.8

Open-Sourced VLM Exploration
SnapMem w/o memory 40.6 14.6
SnapMem (Ours) 49.6 29.4

GPT-4o Exploration
Explore-EQA 55.0 37.9
CG w/ Frontier Snapshots 61.5 45.3
SnapMem w/o memory 58.6 38.5
SnapMem (Ours) 69.1 48.9

Table 3: Experiments on the subset of the GOAT-Bench “Val Unseen” split. “CG” denotes Concept-
Graphs. Methods denoted by * are from GOAT-Bench.

5 CONCLUSION

We present SnapMem, a snapshot-based 3D scene memory that uses a set of informative snapshot
images to cover the scene and store robust visual information. With the integration of the frontier-
based exploration framework, SnapMem allows the agent to either leverage the memory of explored
regions to solve tasks or explore the scene to expand its knowledge. With its incremental construc-
tion and efficient memory retrieval mechanism, SnapMem serves as an effective memory system for
lifelong agents. Extensive experiments demonstrate the significant advantages of SnapMem over
traditional scene representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra Malik, and
Silvio Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 5664–5673, 2019.
3

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14455–14465,
2024. 3

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
Real-time open-vocabulary object detection. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2024. 7

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017. 9, 15

Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Pla: Language-
driven open-vocabulary 3d scene understanding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 7010–7019, 2023. 1

Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Lowis3d:
Language-driven open-world instance-level 3d scene understanding. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2024. 1

Matthew Fisher, Manolis Savva, and Pat Hanrahan. Characterizing structural relationships in scenes
using graph kernels. In ACM SIGGRAPH 2011 papers, pp. 1–12. 2011. 3

Paul Gay, James Stuart, and Alessio Del Bue. Visual graphs from motion (vgfm): Scene understand-
ing with object geometry reasoning. In Computer Vision–ACCV 2018: 14th Asian Conference on
Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14, pp.
330–346. Springer, 2019. 3

Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, Chuang Gan, Celso Miguel
de Melo, Joshua B. Tenenbaum, Antonio Torralba, Florian Shkurti, and Liam Paull. Con-
ceptgraphs: Open-vocabulary 3d scene graphs for perception and planning. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5021–5028, 2024. doi:
10.1109/ICRA57147.2024.10610243. 1, 4, 8, 10

Yining Hong, Yilun Du, Chunru Lin, Josh Tenenbaum, and Chuang Gan. 3d concept grounding on
neural fields. Advances in Neural Information Processing Systems, 35:7769–7782, 2022. 3

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural Information
Processing Systems, 36:20482–20494, 2023. 3

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021. 16

Nathan Hughes, Yun Chang, and Luca Carlone. Hydra: A real-time spatial perception system for
3d scene graph construction and optimization. arXiv preprint arXiv:2201.13360, 2022. 3

Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Alaa
Maalouf, Shuang Li, Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, et al. Conceptfusion: Open-
set multimodal 3d mapping. arXiv preprint arXiv:2302.07241, 2023. 1

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
guage embedded radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 19729–19739, 2023. 1

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mukul Khanna*, Ram Ramrakhya*, Gunjan Chhablani, Sriram Yenamandra, Theophile Gervet,
Matthew Chang, Zsolt Kira, Devendra Singh Chaplot, Dhruv Batra, and Roozbeh Mottaghi. Goat-
bench: A benchmark for multi-modal lifelong navigation. In CVPR, 2024. 9, 15

Ue-Hwan Kim, Jin-Man Park, Taek-Jin Song, and Jong-Hwan Kim. 3-d scene graph: A sparse and
semantic representation of physical environments for intelligent agents. IEEE transactions on
cybernetics, 50(12):4921–4933, 2019. 3

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. 9, 16

Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy Hoffman, and Dhruv Batra. Zson:
Zero-shot object-goal navigation using multimodal goal embeddings. Advances in Neural Infor-
mation Processing Systems, 35:32340–32352, 2022. 3

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, Karmesh Yadav, Qiyang Li,
Ben Newman, Mohit Sharma, Vincent Berges, Shiqi Zhang, Pulkit Agrawal, Yonatan Bisk, Dhruv
Batra, Mrinal Kalakrishnan, Franziska Meier, Chris Paxton, Sasha Sax, and Aravind Rajeswaran.
Openeqa: Embodied question answering in the era of foundation models. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2024. 7, 8

Kirill Mazur, Edgar Sucar, and Andrew J Davison. Feature-realistic neural fusion for real-time, open
set scene understanding. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 8201–8207. IEEE, 2023. 1

Amir Mobarhani, Shaghayegh Nazari, Amir H Tamjidi, and Hamid D Taghirad. Histogram based
frontier exploration. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 1128–1133. IEEE, 2011. 2

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
Funkhouser, et al. Openscene: 3d scene understanding with open vocabularies. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 815–824, 2023. 3

Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Ruslan Partsey, Jimmy Yang,
Ruta Desai, Alexander William Clegg, Michal Hlavac, Tiffany Min, Theo Gervet, Vladimir Von-
drus, Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakr-
ishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and
Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots, 2023. 15

Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg,
John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al.
Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. arXiv
preprint arXiv:2109.08238, 2021. 7, 9, 15

Allen Z Ren, Jaden Clark, Anushri Dixit, Masha Itkina, Anirudha Majumdar, and Dorsa Sadigh.
Explore until confident: Efficient exploration for embodied question answering. arXiv preprint
arXiv:2403.15941, 2024. 3, 5, 8, 10, 14

Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang, Jingnan Shi, Arjun
Gupta, and Luca Carlone. Kimera: From slam to spatial perception with 3d dynamic scene graphs.
The International Journal of Robotics Research, 40(12-14):1510–1546, 2021. 3

Sergio M Savaresi and Daniel L Boley. On the performance of bisecting k-means and pddp. In
Proceedings of the 2001 SIAM International Conference on Data Mining, pp. 1–14. SIAM, 2001.
4

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019. 15

Nur Muhammad Mahi Shafiullah, Chris Paxton, Lerrel Pinto, Soumith Chintala, and Arthur
Szlam. Clip-fields: Weakly supervised semantic fields for robotic memory. arXiv preprint
arXiv:2210.05663, 2022. 3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dhruv Shah, Michael Robert Equi, Błażej Osiński, Fei Xia, Brian Ichter, and Sergey Levine. Navi-
gation with large language models: Semantic guesswork as a heuristic for planning. In Conference
on Robot Learning, pp. 2683–2699. PMLR, 2023. 3

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Von-
drus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen
Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to
rearrange their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
15

Nikolaos Tsagkas, Oisin Mac Aodha, and Chris Xiaoxuan Lu. Vl-fields: Towards language-
grounded neural implicit spatial representations. arXiv preprint arXiv:2305.12427, 2023. 1

Johanna Wald, Helisa Dhamo, Nassir Navab, and Federico Tombari. Learning 3d semantic scene
graphs from 3d indoor reconstructions. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3961–3970, 2020. 1

Saim Wani, Shivansh Patel, Unnat Jain, Angel Chang, and Manolis Savva. Multion: Benchmarking
semantic map memory using multi-object navigation. Advances in Neural Information Processing
Systems, 33:9700–9712, 2020. 3

Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scene-
graphfusion: Incremental 3d scene graph prediction from rgb-d sequences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7515–7525, 2021. 3

Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’, pp. 146–151.
IEEE, 1997. 2

Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. Vlfm: Vision-
language frontier maps for zero-shot semantic navigation. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 42–48. IEEE, 2024. 3

Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
Zhizheng Zhang, and Wang He. Navid: Video-based vlm plans the next step for vision-and-
language navigation. arXiv preprint arXiv:2402.15852, 2024. 3

Junbo Zhang, Runpei Dong, and Kaisheng Ma. Clip-fo3d: Learning free open-world 3d scene
representations from 2d dense clip. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 2048–2059, 2023. 1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILS OF FRONTIER-BASED EXPLORATION FRAMEWORK

Our frontier-based exploration framework is based on the framework in Explore-EQA (Ren et al.,
2024). We enhance its robustness and adapt it to our snapshot-based representation framework. A
3D grid-based occupancy map M , representing the length, width and height of the entire room, is
used to record the occupancy, with each voxel having a side length of 0.1 meters. During exploration,
each depth observation, together with its corresponding observation pose, is used to map unoccupied
spaces onto the initially fully occupied M . The navigable region is then defined as the layer of
unoccupied voxels at the height of 0.4 meters above the ground where the agent moves. Within
this navigable region, the area within 1.7 meters of the agent’s trajectory is defined as the explored
region, while the remainder is designated as the unexplored region, as illustrated in Figure 5.

Figure 5: A illustration of different regions and frontiers in the frontier-based exploration framework.
Note that navigable region consists of explored and unexplored regions.

Frontiers are defined as clusters of pixels in the unexplored region. Pixels in the unexplored re-
gion are clustered into different groups using Density-Based Spatial Clustering of Applications with
Noise (DBSCAN), with each group consisting of connected pixels. Each frontier F = ⟨r, p, Iobs⟩
represents such a pixel group r. The navigable location of the frontier p is determined at the bound-
ary between the frontier region and the explored region, and an image observation Iobs is captured
once the frontier has been updated. As shown in Figure 5, each purple arrow together with a green
region it points to is a frontier. For a frontier to be meaningful, r must contain more than 20 pixels;
otherwise, the frontier will not be created. A frontier is considered updated if the intersection-over-
union (IoU) between the new and previous regions r is less than 0.95. Additionally, if r spans more
than 150◦ in the agent’s field of view, it is split into two regions using K-Means clustering, resulting
in two separate frontiers. This approach allows for more flexibility in choosing navigation direc-
tions. Also, it is important to note that this format for representing 3D space does not currently
support scenes with multiple floors. Consequently, our results in Table 1 fall significantly short of
human performance, as many of the questions in A-EQA require exploration across different floors.

When prompting the VLM, only the image observations are included in the prompt. If the VLM
chooses a frontier F , the location p is used as the agent’s navigation target.

A.2 DETAILS OF THE ACTIVE EXPLORATION FRAMEWORK

At each step t, we take N = 3 egocentric views, each with a gap of 60◦. The egocentric views are
captured at a resolution of 1280× 1280 for better object detection and are then resized to 360× 360

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

as frame candidates for VLM input. Frontier snapshots are initially captured at 360 × 360. We
use YOLOv8x-World, implemented by Ultralytics, as our detection model and a 200-class set from
ScanNet (Dai et al., 2017) as the detection class set. Then, we provide the VLM with the filtered
memory snapshots, frontier snapshots, and an egocentric view in the forward direction.

When prompting the VLM for embodied question answering (A-EQA Benchmark), as shown in
Figure 10, we append each memory snapshot with the object classes it contains. However, we only
append classes that are within the prefiltered class list. The VLM will then respond with either a
frontier snapshot or a memory snapshot. If the VLM returns a frontier, we set the location p as
the navigation target. If the VLM returns a memory snapshot along with the answer, although we
directly conclude the navigation episode in our A-EQA experiments, we also set a navigation target
for that memory snapshot. This allows the agent to move closer to the snapshot region, refine the
selected memory snapshot, and potentially reconsider its choice.

The navigation location for a memory snapshot is determined by several conditions. We set the
observation distance, obs dist, to 0.75 meters. If the snapshot contains only one object, the location
is set obs dist away from the object, in the direction from the object’s location toward the center
of the navigable area that is obs dist around the object. If the memory snapshot contains two
objects, the location is set obs dist away from the midpoint of the two objects, in the direction
of the perpendicular bisector of the line segment connecting the objects. If the memory snapshot
contains more than two objects, we first perform Principal Component Analysis (PCA) on the object
cluster to obtain the principal axis with the smallest eigenvalue. The navigation location is then set
obs dist away from the center of the object cluster, in the direction of this principal axis. Note
that, in all cases for determining the navigation location, we always ignore the height of the objects
and treat them as 2D points. Additionally, the above algorithm can be randomized by assigning the
highest probabilities to the aforementioned positions.

Embodied navigation tasks (GOAT-Bench Benchmark) work similarly, with the following differ-
ences: 1) we append the object crop after each class name when prompting the VLM, as shown in
the prompt in Figure 11; 2) when the VLM returns an object choice, we treat that object as a memory
snapshot containing one object and follow a similar method to set the navigation location.

After a navigation target is set (either a frontier or a memory snapshot), the agent moves 1 meter
along a path generated by the pathfinder in habitat-sim (Savva et al., 2019; Szot et al., 2021; Puig
et al., 2023). Although we utilize the pathfinder, which uses prior information from a global navmesh
to find the shortest paths, we can easily replace it with a simple path-finding algorithm based on the
navigable map described in Appendix A.1. Step t ends after the movement. Then in the new step
t+ 1, the agent updates the frontiers and memory snapshots and makes the next decision. We set a
maximum of 50 steps for each navigation task.

A.3 DETAILS OF TRAINING OPEN-SOURCED VLMS FOR GOAT-BENCH NAVIGATION

A.3.1 TRAINING DATASET COLLECTION

In GOAT-Bench (Khanna* et al., 2024), each navigation target is described by three types of descrip-
tors: category, language, and image. We generate training data based on their provided exploration
data, sourced from 136 scenes in HM3D (Ramakrishnan et al., 2021) training set. In each scene, a
set of navigation targets is provided, each consisting of an object ID, location, category, language
description, and multiple viewpoints and angles for capturing image observations. In total, the train-
ing set includes 3669 such objects, which we use as navigation targets to generate training data in
our framework’s format.

We adapt our exploration pipeline for data generation. For each navigation target, we first randomly
select an initial point on the same floor. We then use the pathfinder in habitat-sim (Savva et al., 2019;
Szot et al., 2021; Puig et al., 2023) to find the shortest trajectory to the target. At each step, if the
target object is present in a memory snapshot, we use that memory snapshot as the ground truth and
move one step toward a location near it; if the target object is not present in any memory snapshot,
we select the frontier closest to the shortest trajectory as the ground truth for that step and move one
step toward that frontier. On average, we collect 4 exploration paths per target object from different
initial points, with each path consisting of approximately 12 steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We also collect the ground truth for prefiltering by prompting GPT-4o. For each navigation target,
we collect all objects that can be seen along the exploration path and feed them, together with the
description, into GPT-4o. We ask GPT-4o to rank all visible objects based on their helpfulness in
finding the navigation target. For each navigation target, we collect three such rankings correspond-
ing to three types of descriptions.

A.3.2 TRAINING PROCESS

We fine-tune our model based on the LLaVA-1.5-7B checkpoint(Liu et al., 2023) using the collected
training dataset for 5 epochs with a learning rate of 4e-6 and a batch size of 1. We use the AdamW
optimizer with no weight decay. During training, DeepSpeed ZeRO-2 and LORA (Hu et al., 2021)
are used to save GPU memory and accelerate training. FP16 is enabled to balance speed and pre-
cision. We train our model with 6×24 Tesla V100 GPUs, and the fine-tuning process is completed
within 6 hours.

We use the default CLIP vision encoder of LLaVA to encode all memory snapshots, frontier snap-
shots, egocentric views and image navigation targets. And the encoded vision features are further
compressed to 12 × 12 (for image targets and egocentric views) and 3 × 3 (for memory snapshots
and frontier snapshots) tokens in the training prompt.

During fine-tuning, we simultaneously optimize the model for exploration task and prefiltering task
with cross-entropy loss. The loss weights for exploration and prefiltering are set to 1 and 0.3,
respectively. The training goal of exploration is to correctly predict the ground truth choice of
memory snapshot or frontier at each step. The training goal of prefiltering is to select the top 10
helpful objects that have been observed, based on the ground truth we collected earlier.

A.4 ABLATION STUDY

We mainly evaluate on the number of egocentric observations at each step (N), the maximum dis-
tance an object should be included in the memory snapshot (max dist), and the number of pre-
filtered classes (K).

Figure 6: Ablation on the number of observation each step (N) for A-EQA and GOAT-Bench.

In Figure 6, we present the evaluation metrics for different choices of N on both A-EQA and GOAT-
Bench. We can observe that increasing the number of observations does not necessarily lead to better
performance. This is mainly because the additional views often provide repeated and redundant
information. Furthermore, as the number of frame candidates increases, a cluster of objects that
would originally be assigned to one memory snapshots may instead be assigned to separate memory
snapshots, resulting in confusion. Based on the results, we choose N = 3 for both datasets.

In Figure 7, we present the evaluation metrics for different choices of max dist on both A-EQA
and GOAT-Bench, where we observe different tendencies across the two benchmarks. Evaluation
metrics on GOAT-Bench generally improve with an increase in max dist, while metrics on A-EQA
decline. This is because, under normal circumstances, a memory snapshot should only represent
objects within a local area. Objects in more distant regions should either remain in unexplored areas
or be captured by another memory snapshot that is closer to them. A large max dist imposes a
looser distance restriction, which can introduce disorder. However, in the navigation task of GOAT-
Bench, the earlier the target object is added to the scene graph as a choice for the VLM, the faster

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Ablation on the maximum distance for including an object to the scene graph (max dist)
for A-EQA and GOAT-Bench.

the VLM can select it as the direct navigation target, resulting in faster arrival at the target objects.
Balancing both accuracy and efficiency across the two benchmarks, we choose max dist to be 3.5
meters.

Figure 8: Ablation on the number of prefiltered classes (K) for A-EQA and GOAT-Bench.

In Figure 8, we present the evaluation metrics for different choices of K on both A-EQA and GOAT-
Bench. In addition to the metrics introduced in the experiment sections, we include the average ratio
of the number of remaining memory snapshots after prefiltering to the total number of memory snap-
shots as a measure of the effectiveness and intensity of prefiltering. The results on both benchmarks
align with our intuition: allowing more prefiltered classes leads to better performance. Moreover,
even when K = 10, on average only 3.26 and 4.66 memory snapshots are left after prefiltering
for A-EQA and GOAT-Bench respectively, accounting for 29.8% and 28.1% of the total memory
snapshots, and 8.2% and 5.1% of the total frame candidates. These statistics demonstrate the effec-
tiveness of prefiltering as a memory retrieval mechanism, as well as SnapMem’s compactness as a
scene representation. Furthermore, we observe that the overall performance does not drop signifi-
cantly when K is small, highlighting the robustness of our framework.

A.5 COMPLETE PROMPTS FOR VLMS

We present the full prompt for prefiltering in Figure 9, the prompt for embodied question answering
(A-EQA dataset) in Figure 10, and the prompt for navigation (GOAT-Bench dataset) in Figure 11.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

System Prompt:

You are an AI agent in a 3D indoor scene.

Content Prompt:

Your goal is to answer questions about the scene through exploration.

To efficiently solve the problem, you should first rank objects in the scene based on their importance. These
are the rules for the task.

1. Read through the whole object list.

2. Rank objects in the list based on how well they can help your exploration given the question.

3. Reprint the name of all objects that may help your exploration given the question.

4. Do not print any object not included in the list or include any additional information in your response.

Here is an example of selecting helpful objects:

Question: What can I use to watch my favorite shows and movies?

Following is a list of objects that you can choose, each object one line:

painting

speaker

box

cabinet

lamp

tv

book rack

sofa

oven

bed

curtain

Answer:

tv

speaker

sofa

bed

Following is the concrete content of the task and you should retrieve helpful objects in order:

Question: {question}

Following is a list of objects that you can choose, each object one line:

{class_0}

{class_1}

...

Answer:

Figure 9: Prompt for prefiltering. The placeholders {question} and {class i} are replaced by the
question and all existing classes in the scene graph, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

System Prompt:

Task: You are an agent in an indoor scene tasked with answering questions by observing the surroundings
and exploring the environment. To answer the question, you are required to choose either a Snapshot as the
answer or a Frontier to further explore.

Definitions:

Snapshot: A focused observation of several objects. Choosing a Snapshot means that this snapshot image
contains enough information for you to answer the question. If you choose a Snapshot, you need to directly
give an answer to the question. If you don't have enough information to give an answer, then don't choose a
Snapshot.

Frontier: An observation of an unexplored region that could potentially lead to new information for
answering the question. Selecting a frontier means that you will further explore that direction. If you choose
a Frontier, you need to explain why you would like to choose that direction to explore.

Content Prompt:

Question: {question}

Select the Frontier/Snapshot that would help find the answer of the question.

The following is the egocentric view of the agent in forward direction: [img]

The followings are all the snapshots that you can choose (followed with contained object classes).

Please note that the contained classes may not be accurate (wrong classes/missing classes) due to the
limitation of the object detection model. So you still need to utilize the images to make decisions.

Snapshot 0 [img] {class_0}, {class_1}, ...

Snapshot 1 [img] {class_0}, {class_1}, ...

...

The followings are all the Frontiers that you can explore:

Frontier 0 [img]

Frontier 1 [img]

...

Please provide your answer in the following format: “Snapshot i\n[Answer]” or “Frontier i\n[Reason]”, where
i is the index of the snapshot or frontier you choose. For example, if you choose the first snapshot, you can
return “Snapshot 0\nThe fruit bowl is on the kitchen counter.”. If you choose the second frontier, you can
return “Frontier 1\nI see a door that may lead to the living room.”.

Note that if you choose a snapshot to answer the question, (1) you should give a direct answer that can be
understood by others. Don't mention words like “snapshot”, “on the left of the image”, etc; (2) you can also
utilize other snapshots, frontiers and egocentric views to gather more information, but you should always
choose one most relevant snapshot to answer the question.

Figure 10: Prompt for embodied question answering. The placeholders {question} and {class i} are
replaced by the question and the object classes contained in the corresponding memory snapshots,
respectively. [img] are replaced by the egocentric views, memory snapshots or frontier snapshots.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

System Prompt:

Task: You are an agent in an indoor scene that is able to observe the surroundings and explore the
environment. You are tasked with indoor navigation, and you are required to choose either a Snapshot or a
Frontier image to explore and find the target object required in the question.

Definitions:

Snapshot: A focused observation of several objects. It contains a full image of the cluster of objects, and
separate image crops of each object. Choosing a snapshot means that the object asked in the question is
within the cluster of objects that the snapshot represents, and you will choose that object as the final
answer of the question. Therefore, if you choose a snapshot, you should also choose the object in the
snapshot that you think is the answer to the question.

Frontier: An unexplored region that could potentially lead to new information for answering the question.
Selecting a frontier means that you will further explore that direction.

Content Prompt:

Question: {question}

Select the Frontier/Snapshot that would help find the answer of the question.

The following is the egocentric view of the agent in forward direction: [img]

The followings are all the snapshots that you can choose. Following each snapshot image are the class name
and image crop of each object contained in the snapshot. Please note that the class name may not be
accurate due to the limitation of the object detection model. So you still need to utilize the images to make
the decision.

Snapshot 0 [img] Object 0: {class_0} [img_crop_0], Object 1: {class_1} [img_crop_1] ...

Snapshot 1 [img] Object 0: {class_0} [img_crop_0], Object 1: {class_1} [img_crop_1] ...

...

The followings are all the Frontiers that you can explore:

Frontier 0 [img]

Frontier 1 [img]

...

Please provide your answer in the following format: “Snapshot i, Object j” or “Frontier i”, where i, j are the
index of the snapshot or frontier you choose. For example, if you choose the fridge in the first snapshot,
please return “Snapshot 0, Object 2”, where 2 is the index of the fridge in that snapshot. You can explain the
reason for your choice, but put it in a new line after the choice.

Figure 11: Prompt for GOAT-Bench dataset. The placeholders {question} and {class i} are re-
placed by the question and the object classes contained in the corresponding memory snapshots,
respectively. [img] are replaced by the egocentric views, memory snapshots or frontier snapshots,
and [img crop i] are replaced by the corresponding object crops, which are directly cropped from
the memory snapshots based on the detection bounding boxes.

20

	Introduction
	Related Works
	Approach
	SnapMem Construction
	SnapMem with Frontier-based Dynamic Exploration
	Integration with Frontier-based Exploration
	Incremental Construction of SnapMem
	Memory Retrieval with Prefiltering
	Reasoning and Exploration with VLMs

	Experiments
	Active Embodied Question Answering (A-EQA)
	Episodic-Memory Embodied Question Answering (EM-EQA)
	GOAT-Bench

	Conclusion
	Appendix
	Details of Frontier-based Exploration Framework
	Details of the Active Exploration Framework
	Details of Training Open-Sourced VLMs for GOAT-Bench Navigation
	Training Dataset Collection
	Training Process

	Ablation Study
	Complete Prompts for VLMs

