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Figure 1: An overview of generated videos and inference latency and memory of SANA-Video. The
generation latency is measured under 50 denoising steps. Linear attention is more efficient for video
generation and our block linear attention maintains a fixed memory requirement for long videos.
Please refer to anonymous link (https://sana-video.pages.dev/) for more generation results.

ABSTRACT

We introduce SANA-Video, a small diffusion model that can efficiently gener-
ate videos up to 720×1280 resolution and minute-length duration. SANA-Video
synthesizes high-resolution, high-quality and long videos with strong text-video
alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core
designs ensure our efficient, effective and long video generation: (1) Linear DiT:
We leverage linear attention as the core operation, which is more efficient than
vanilla attention given the large number of tokens processed in video generation.
(2) Constant-Memory KV cache for Block Linear Attention: we design block-
wise autoregressive approach for long video generation by employing a constant-
memory state, derived from the cumulative properties of linear attention. This KV
cache provides the Linear DiT with global context at a fixed memory cost, elim-
inating the need for a traditional KV cache and enabling efficient, minute-long
video generation. In addition, we explore effective data filters and model train-
ing strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is
only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves com-
petitive performance compared to modern state-of-the-art small diffusion models
(e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16× faster in measured la-
tency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4
precision, accelerating the inference speed of generating a 5-second 720p video
from 71s to 29s (2.4× speedup). In summary, SANA-Video enables low-cost,
high-quality video generation. Code and model will be publicly released.
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1 INTRODUCTION

Video generation is currently a highly active field, fueling applications that range from creative
content production and digital live streaming to virtual product displays. Recent large-scale models
from industry labs, such as Veo3 (DeepMind, 2025), Kling (Kuaishou, 2024), Wan (Wang et al.,
2025a) and Seedance (Gao et al., 2025), have demonstrated remarkable performance in generating
high-fidelity video content. However, this quality comes at the cost of immense computational
complexity. Video generation is an exceptionally token-extensive task; for instance, producing a
single 5-second video at 720p resolution with a model like Wan 14B (Wang et al., 2025a) requires
to process over 75,000 tokens, taking 32 minutes on a H100 GPU. This sheer volume of data leads
to prohibitive training costs and extremely slow generation speeds, rendering these powerful models
impractical for widespread research and application. Even with large cost, generating long video
(>10 s) is hard to realize with these large models due to the full-sequence processing operation.
Recent works (e.g., MAGI-1 (Teng et al., 2025) and SkyReelv2 (Chen et al., 2025a)) explores the
long video generation but the efficiency is strictly constrained by the vanilla attention and KV cache.
Given these challenges, a pivotal question arises: Can we develop a high-quality and high-resolution
video generator that is computationally efficient and runs very fast on both cloud and edge devices?

This paper proposes SANA-Video, a small diffusion model designed for both efficient training and
rapid inference without compromising output quality. In stark contrast to the massive resource re-
quirements of contemporary models, SANA-Video’s training is remarkably cost-effective, requiring
only 64 NVIDIA H100 GPUs for 12 days, which represents as little as 1% of the training cost of
MovieGen (Polyak et al., 2024) and 10% of that of OpenSora (Zheng et al., 2024). This efficiency
extends to inference, where SANA-Video can generate a 5-second, 720p video in just 36 seconds on
a NVIDIA H100 GPU. By drastically reducing the computational barrier, SANA-Video makes high-
quality video generation more accessible and practical for a broader range of users and systems. The
improvements mainly lie in three key components.

Linear DiT. We extend SANA (Xie et al., 2025a) linear DiT design to the video domain, addressing
the significant computational bottleneck of traditional self-attention (O(N2)), as shown in Fig. 1(d).
By replacing all attention modules with our efficient linear attention, we reduce complexity to O(N),
which is crucial for high-resolution video generation and leads to a 4× acceleration on 720p video.
To enhance our model for video, we make two key improvements. We first integrate Rotary Position
Embeddings (RoPE) (Su et al., 2024) to improve long-context modeling. In Sec. 3.2, we detail our
exploration of the optimal placement for RoPE and how we address the training instability it can
introduce. Additionally, we introduce a 1D temporal convolution to the Mix-FFN via a shortcut
connection. This design allows us to effectively leverage pre-trained image models and efficiently
adapt them for video generation by aggregating temporal features.

Block Linear Attention with KV Cache. The success of SANA-Video in long video generation is
mainly inspired by the attribute of causal linear attention (Katharopoulos et al., 2020). Based on our
reformulation of the causal linear attention operation, we reduce the KV cache to a small and fixed
memory, along with a fixed computational cost for each new token. This natively supports long-
context operations. Based on the block linear attention module, we introduce a two-stage autore-
gressive model continue-training paradigm, including autoregressive block training with monotoni-
cally increasing SNR sampler and the improved self-forcing specially for our long context attention
operation, leading to efficient, long, and high quality video generation.

Efficient Data Filter and Training. The low training cost is mainly attribute to three aspects: the
powerful pre-trained text-to-image (T2I) model, efficient data filtering, and the efficient training
strategy. First, SANA-Video is continue pre-trained from SANA (Xie et al., 2025a;b)-1.6B T2I
model with the modification for spatio-temporal modeling (Sec. 3.2). Second, we collect data from
diverse data source and design specific data filtering criterion for each data source. In addition, a
strong VLM (Bai et al., 2025a) serves as our video captioner, producing highly detailed captions
(80-100 words), including subject category, color, appearance, actions, expressions, surrounding
environment, camera angles, etc. Third, with the high-quality video-text pairs, we train SANA-
Video in multiple stages from low resolution to high resolution and finally leverage human preferred
data for SFT, ensuring the model can efficiently learn the motion and aesthetic appearance.

In conclusion, our model achieves a latency that is over 13× faster than the state-of-the-art Wan2.1
for 720p video generation (Fig. 1(b)), while delivering competitive results across many benchmarks.
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Figure 2: Overview of SANA-Video. Fig.(a) A high-level block-wise autoregressive training
pipeline based on our block causal KV cache. (Details in Sec. 3.3). Fig.(b) Our model pipeline,
containing an Autoencoder, Re-writer, Linear DiT, and a text encoder. Fig.(c) The detailed design of
the added 3D RoPE in linear attention and the temporal convolution in our Linear DiT’s Mix-FFN.

Additionally, we quantize and deploy our SANA-Video on RTX 5090 GPUs with the NVFP4 preci-
sion, where it takes just 29 seconds to generate a 5s 720p video. We hope our model can be efficiently
used by everyday users, providing a powerful foundation model for fast video generation.

2 PRELIMINARIES

2.1 VIDEO DIFFUSION MODEL

Following SANA (Xie et al., 2025a), we use Rectified Flows (RFs) (Esser et al., 2024) with SNR
sampler as the training objective in Eq. 1. Here, c is the conditional embedding, θ is the model
weights, and u(xt | t, c; θ) denotes the output velocity predicted by the diffusion model. v(x) is the
target velocity. In this paper, our SANA-Video is a unified framework for Text-to-Image (T2I), Text-
to-Video (T2V), and Image-to-Video (I2V) generation by varying condition embeddings. Specifi-
cally, for T2I and T2V, c is the text prompt and x is the image or video. For I2V, we use first frame
and text prompt as condition c. By setting the noise of the first frame to zero, SANA-Video can re-
alize I2V without any model modification. Therefore, the joint training of T2I, T2V, and I2V makes
SANA-Video a unified framework that can perform all tasks with a single model.

Ec,t,x0

∥∥u(xt | t, c; θ
)
− v(x)

∥∥2 . (1)

2.2 AUTOREGRESSIVE LONG VIDEO GENERATION

Autoregressive diffusion models combine a token/block-wise autoregressive chain-rule decomposi-
tion with denoising diffusion models, emerging as a promising direction for long sequence genera-
tion like language (Arriola et al., 2025) and video generation (Yin et al., 2025; Chen et al., 2025a;
Huang et al., 2025). Specifically, for a sequence of N blocks x1:N = (x1, x2, . . . , xN ), the gen-
eration process is a product of block distribution using the chain rule p(x1:N ) =

∏N
i=1 p(xi|xj<i),

with each block distribution p(xi|xj<i) modeled using a diffusion process (Eq. 1). This approach
leverages the strengths of both autoregressive models and diffusion models to capture sequential
dependencies and enable block-wise, high-quality generation.

3 SANA-VIDEO

Scaling video generation to higher resolutions and longer sequences dramatically increases the num-
ber of tokens, making the O(N2) complexity of self-attention a major bottleneck in computation,
speed, and memory. This underscores the need for efficient linear attention in video generation.
Building upon SANA Linear DiT (Xie et al., 2025a), we introduce Linear Video DiT (Fig. 2(a)) for
video generation by integrating two key components: Rotary Position Embeddings (RoPE) and a

3
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temporal 1D convolution within the Mix-FFN. These designs keep SANA’s macro architecture as
well as additional temporal modeling (Fig. 2(b)), allowing us to leverage a pre-trained image model
and efficiently adapting it into a powerful video model through continuous pre-training. In addition
to the short video generation, we introduce block linear attention module for efficient long video
generation. With the re-formulation of linear attention, the block linear attention module and causal
Mix-FFN keep a constant-memory KV cache and linear computational cost for long video. Based on
this KV cache, we design two stage post-training paradigm to unlock the infinite length generation
ability, leading to a high-quality and efficient long video generation model.

3.1 TRAINING STRATEGY

Stage1: VAE adaptation on text-to-image (T2I). Training video DiT models from scratch is
resource-intensive due to the mismatch between image and video VAEs. We address this by first ef-
ficiently adapting existing T2I models to new video VAEs. Specifically, We leverage different video
VAEs in generating videos of different resolution. For 480P videos, VAEs with high-compression
ratio limits the overall performance, and thus we adopt Wan-VAE (Wang et al., 2025a). For 720P
high-resolution video, we introduce our video VAE, DCAE-V, which provides a higher compression
ratio for more efficient generation (details in Sec. 3.5). The adaptation of both VAEs is highly effi-
cient, converging within 5-10k training steps, further demonstrating the strong generalization ability
of our Linear DiT.

Stage2: Continue pre-training from T2I model. Initializing video Linear DiT from a pre-trained
T2I model (Xie et al., 2025a) is an efficient and effective way to leverage the well-learned visual
and textual semantic knowledge. Therefore, we initialize our SANA-Video with a model adapted
from the first stage and introduce additional designs to model long-context and motion informa-
tion (Sec. 3.2). The additional temporal designs are tailor-made for linear attention, improving the
locality of attention operation. The newly added layers are zero-initialized with skip connection,
which minimizes their influence on the pre-trained weights during early training. After this identity
initialization, SANA-Video is trained in a coarse-to-fine manner. It first trains on low-resolution,
short videos (e.g., 192P 2.5 seconds) before moving to higher resolution, longer videos (e.g., 480P 5
seconds) with different data filtering criteria (Appendix E). This coarse-to-fine approach efficiently
encourages SANA-Video to fast learn dynamic information with abundant data and then refine de-
tails using less, but higher-quality, data.

Stage3: Autoregressive block training. The continued pre-training makes SANA-Video an effi-
cient small diffusion model, primarily for high-resolution 5-second video generation. To enable the
generation of much longer videos, we analyze the attributes of linear attention in Sec. 3.3 and pro-
pose a constant-memory block KV cache for autoregressive generation. Building on this design, we
conduct autoregressive block training in two steps: we first train the autoregressive module and then
address exposure bias with our improved self-forcing block training (Sec. 3.4). This process results
in a high-quality, efficient model for long video generation.

3.2 EFFICIENT LINEAR DIT PRETRAINING

SANA-Video adopts the SANA (Xie et al., 2025a) as the base architecture and innovatively tailors
the Linear Diffusion Transformer blocks to handle the unique challenges of T2V tasks, as depicted
in Fig. 2. Several dedicated designs are proposed as follows:

Linear Attention in Video DiT. Our work extends the SANA (Xie et al., 2025a) architecture by
integrating Rotary Position Embeddings (RoPE) (Su et al., 2024) into its efficient ReLU (ϕ) linear
attention blocks. This integration is crucial for enhancing the model’s ability to handle the sequential
and spatial relationships in high-quality video generation. The core of our design lies in applying
RoPE after the ReLU activation, specifically as RoPE(ReLU(x)), as shown in Fig. 2. This order is
critical because it prevents the ReLU kernel from filtering out the positional information encoded
by RoPE. As Fig. 3 shows, this design results in attention maps with a clear focus on local re-
gions, which is essential for capturing fine-grained video details. However, applying RoPE directly
to queries and keys (as in vanilla attention) can make the linear attention mechanism numerically
unstable (Su, 2021) due to the difference between softmax and ReLU similarity functions. The
RoPE transformation can change the non-negative nature of the ReLU output, potentially causing
the denominator in the standard linear attention formula (Eq. 2) to become zero. To solve this, we
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Figure 3: Analysis of Linear Attention with RoPE. (a) Visual comparison of attention maps. First
two plots compare vanilla softmax attention (Wan) to our linear attention without positional encod-
ing. The latter two plots show our method’s effect: applying RoPE after the ReLU kernel results in a
sparser, more localized attention pattern. (b) Training loss for the QK sum (Eq. 2 denominator). Re-
moving RoPE from the denominator (green line) ensures training stability, as discussed in Sec. 3.2.

modify the calculation: while the numerator includes RoPE on the queries and keys, we remove
RoPE from either the key or the query in the denominator. This ensures the denominator remains
positive, guaranteeing training stability (Fig. 3 (b)) while still benefiting from positional encoding.

Oi =
RoPE(ϕ(Qi))(

∑N
j=1 RoPE(ϕ(Kj))

TVj)
RoPE(ϕ(Qi))(

∑N
j=1 RoPE(ϕ(Kj))T )

=⇒ RoPE(ϕ(Qi))(
∑N

j=1 RoPE(ϕ(Kj))
TVj)

ϕ(Qi)(
∑N

j=1 ϕ(Kj)T )
, (2)

where Oi, Qi, Ki and Vi denote the output, query, key and value of the ith token.

Mix-FFN with Spatial-Temporal Mixture. As shown in Fig. 3, we compare the linear attention
map in SANA-Video with the softmax attention map in Wan2.1 (Wang et al., 2025a). We observe
that linear attention is much denser and less focused on local details compared to softmax attention.
SANA (Xie et al., 2025a) ameliorates the locality problem in image generation with the convolu-
tion in Mix-FFN. Building upon the Mix-FFN, we enhance it with a temporal 1D convolution. The
temporal convolution with a shortcut connection is appended to the end of the block (Fig. 2(b)),
enabling seamless temporal feature aggregation while preserving initialization. The module helps
capture local relationships along the temporal axis, resulting in better motion continuity and consis-
tency in generated videos. As evidenced in our ablation study (Fig. 5(a)), this addition leads to a
significantly lower training loss and improved motion performance.

3.3 BLOCK LINEAR ATTENTION

This section outlines key components enabling efficient long-video generation. Inspired by the
inherent attribute of causal linear attention (Katharopoulos et al., 2020), we explore the constant-
memory global KV cache in our block linear attention module, which supports long-context atten-
tion with small, fixed GPU memory. Based on this module, we introduce a two-stage autoregressive
model continue training paradigm: autoregressive block training with a monotonically increasing
SNR sampler and an improved self-forcing method for our long-context attention.

3.3.1 BLOCK LINEAR ATTENTION WITH KV CACHE

Table 1: For a sequence with N tokens ∈ R1×D, memory and compute costs are compared among
three attention types. Causal linear attention shows best efficiency while maintains global memory.

Metric Causal Full Attention Causal Local Attention Causal Linear Attention

Memory O(N ×D) O(W ×D) O(D2)
Comp. Cost (N -th token) O(N ×D) O(W ×D) O(D2)
Comp. Cost (N tokens) O(N2 ×D) O(N ×W ×D) O(N ×D2)

Limitation of Causal Vanilla Attention. In view of the training objective (Eq. 1), block-wise
causal attention is required to implement autoregressive generation. Recent works (Huang et al.,
2025; Chen et al., 2025a; Teng et al., 2025) use a combination of full attention within a block
and causal attention to previous blocks. To reduce computational costs, they leverage KV cache,
which is effective but comes with memory overhead. For each new token ∈ R1×D with N cached
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Figure 4: Overview of Block Linear Attention. (a) We compare the attention compute mechanism
among vanilla attention, linear attention and causal linear attention. (b) The illustration of block
causal Mix-FFN in processing the adjacent blocks.

conditional tokens, it requires O(N × D) memory to store the cache and O(N × D) FLOPs for
the attention computation. However, since the computational and memory costs grow linearly, these
methods (Huang et al., 2025; Chen et al., 2025a; Teng et al., 2025) often restrict the attention window
to a local scope during long video generation. While this maintains a stable cost, it comes at the
expense of losing global-context information.

KV cache in Block Linear Attention. In contrast to the dramatically increased computational and
memory cost in causal vanilla attention, linear attention (Katharopoulos et al., 2020) has significant
efficiency advantage, naturally supporting long video generation with global attention while main-
taining constant memory. Consider the causal attention setting, linear attention (Eq. 2) output for
the ith token can be re-formulated as:

Oi =
ϕ(Qi)

(∑i
j=1 ϕ(Kj)

TVj

)
ϕ(Qi)

(∑i
j=1 ϕ(Kj)T

) =
ϕ(Qi)

(∑i−1
j=1 ϕ(Kj)

TVj + ϕ(Ki)
TVi

)
ϕ(Qi)

(∑i−1
j=1 ϕ(Kj)T + ϕ(Ki)T

) =
ϕ(Qi)

(∑i−1
j=1 Sj + Si

)
ϕ(Qi)

(∑i−1
j=1 ϕ(Kj)T + ϕ(Ki)T

) , (3)

where Sj = ϕ(Kj)
TVj denotes the attention state for the jth token. We omit RoPE here for sim-

plicity. Obviously, as long as the cumulative sum of state
∑i−1

j=1 Sj and the cumulative sum of keys∑i−1
j=1 ϕ(Kj)

T are stored, only the attention state for the ith token Si ∈ RD×D is required to com-
pute. Therefore, the memory cost is only

∑i−1
j=1 Sj ∈ RD×D and

∑i−1
j=1 ϕ(Kj)

T ∈ RD×1, taking
O(D2) in total, and the computational cost is only O(D2). In Table 1 and Fig. 4(a), we compare the
memory and computational cost among causal full attention, causal local attention and our causal
linear attention. Since N > W >> D, causal linear attention achieves the best efficiency and can
still maintain global memory in long video generation.

Block Causal Mix-FFN. In addition to linear attention, our proposed temporal-spatial Mix-FFN
enhances locality using convolutional layers. To support long video generation, this module must
also operate causally. We ensure causal processing during both training and inference with two
operations, as illustrated in Fig. 4(b). First, to prevent information leakage from subsequent blocks
during training, we append an all-zero token (‘Zero Padding’ ∈ R1×HW×D) to the end of each
block ∈ RT×HW×D. Second, our causal temporal convolution (kernel size 3) requires the last
frame of the preceding block. We address this by caching the last token of each block (‘Token−1’
∈ R1×HW×D) and prepending it to the next. Overall, our causal linear DiT module keeps a fixed
memory cache, containing cumulative sum of attention states and keys from all previous frames for
attention, along with the last frame of the previous block for Mix-FFN.

3.4 LONGSANA

Autoregressive Block Training. The continue training of the autoregressive SANA-Video variant,
i.e. LongSANA, begins with the pre-trained 5s SANA-Video model. To align with the pre-trained
model’s distribution, we propose a monotonically increasing SNR sampler. Specifically, we ran-
domly select a block and sample a timestep for it with the SNR sampler (Esser et al., 2024). Then
the timesteps for the remaining blocks are sampled via propagated probability (Sun et al., 2025),
ensuring all the timesteps are monotonically increasing, i.e., later blocks have larger timestep than
early blocks. This proposed timestep sampler offers two key advantages. First, the monotonically
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increasing timesteps have a much smaller sampling space than random timesteps, which results
in faster convergence and better performance. Second, applying the SNR sampler to a randomly
selected block guarantees that every block is trained with sufficient information.

Addressing Exposure Bias with Long Training. However, monotonically increasing SNR sampler
cannot address a severe problem in autoregressive generation, i.e., exposure bias, where condition
blocks are ground truth during training but are generated content during inference, leading to error
accumulation and limiting performance in long video generation. Self-Forcing (Huang et al., 2025)
aims to address this issue in a vanilla attention DiT model with autoregressive rollout. Limited by
the increasing VRAM requirement of causal vanilla attention (Fig. 1(c) and Table 1), Self-Forcing
uses local attention within a designed window size. Consequently, it sets the length of self-generated
content to be the same as the pre-trained model (i.e., 5s). Later on, LongLive (Yang et al., 2025a)
explores streaming long training on 1 minute video, but it still limits to the local attention with sink
due to the complexity of full attention. In contrast to the full attention, the block linear attention
in LongSANA supports a long-context global KV cache with a small and constant GPU memory.
This allows us to further extend LongLive with global attention when self-generating a much longer
video (e.g., 1 min), which better aligns the conditioning signals between training and inference and
keeps better temporal consistency. The inference details are illustrated in Alg. 1.

3.5 DEEP COMPRESSION VIDEO AUTOENCODER

SANA-Video achieves high efficiency and quality for 480P video generation using Wan-VAE. How-
ever, even with our efficient linear attention, the generation speed for 720P videos is 2.3× slower.
This efficiency drop is even more severe for full attention DiT models (4× for Wan 2.1 1.3B), inspir-
ing us to explore a more efficient VAE that can compress more tokens. We fine-tune DCAE (Chen
et al., 2024c) into DCAE-V, with a spatial down-sampling factor of F = 32, a temporal factor of
T = 4, and channels C = 32. The number of latent channels aligns with our pre-trained T2I model,
enabling fast adaptation from an image to a video model in the same latent space.

The concurrent Wan2.2-5B model also achieves 32 times spatial compression, by combining a VAE
with a spatial down-sampling factor of 16 and a patch embedding compression of 2. The advantages
of DCAE-V over Wan2.2-VAE are twofold. First, DCAE-V’s 32 latent channels align with our pre-
trained T2I model, which improves convergence speed. Second, to achieve the same compression
ratio, Wan2.2-VAE would require the model to predict a much larger latent dimension (192 vs. 32 in
DCAE-V), a task that is difficult for a small diffusion model (Details in Appendix D.1). As shown
in Table 3, DCAE-V exhibits reconstruction performance comparable to other state-of-the-art VAEs
like Wan2.1 (Wang et al., 2025a), Wan2.2 (Wang et al., 2025a), and LTX-Video (HaCohen et al.,
2024). This high compression allows our model to achieve performance on par with much larger
models (e.g., Wan2.1-14B and Wan2.2-5B) while demonstrating significant acceleration, as shown
in Table 2. Specifically, SANA-Video can generate a 720P 5s video within just 36 seconds, which
is a 53× acceleration over Wan2.1-14B. When compared to Wan2.2-5B, which shares the same
compression ratio as ours, SANA-Video achieves a 3.2× acceleration.

Table 2: Latency on H100 GPU and VBench
evaluation on 720×1280×81 resolution videos.

Models Latency(s) Total ↑ Quality ↑ Semantic ↑
Wan-2.1-14B 1897 83.73 85.77 75.58
Wan-2.1-1.3B 400 83.38 85.67 74.22
Wan-2.2-5B 116 83.28 85.03 76.28

SANA-Video-2B 36 84.05 84.63 81.73

Table 3: Reconstruction capability of different
Autoencoders on Panda-70M 192p resolution.

Autoencoder Ratio PSNR ↑ SSIM ↑ LPIPS ↓
F8T4C16 (Wan2.1-VAE) 16 34.41 0.95 0.01
F16T4C48 (Wan2.2-VAE) 21 35.61 0.96 0.01
F32T8C128 (LTX-VAE) 64 32.26 0.93 0.04

F32T4C32 (Our DCAE-V) 128 33.25 0.94 0.03

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS.

Pipeline Settings. For DiT model, to best utilize the pre-trained text-to-image model SANA (Xie
et al., 2025a), our SANA-Video-2B is almost identical to those of the original SANA (Xie et al.,
2025a), including the diffusion transformer model and small decoder-only text encoder. For 480P
videos, we leverage a Wan2.1-VAE (Wang et al., 2025a) autoencoder. For 720P high-resolution
video generation, we fine-tune the DCAE (Chen et al., 2024c) into a video deep compression au-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Comprehensive comparison of our method with SOTA approaches in efficiency and
performance on VBench. The speed is tested on one H100 GPU with BF16 Precision. Latency:
Measured with a batch size of 1, on a 480×832×81 video, using the model’s default inference steps
for a fair comparison. We highlight the best, second best, and third best entries.

Methods Latency Speedup #Params Evaluation scores ↑
(s) (B) Total Quality Semantic / I2V

Text-to-Video
MAGI-1 (Teng et al., 2025) 435 1.1× 4.5B 79.18 82.04 67.74
Step-Video (Ma et al., 2025) 246 2.0× 30B 81.83 84.46 71.28
CogVideoX1.5 (Yang et al., 2024) 111 4.4× 5B 82.17 82.78 79.76
SkyReels-V2 (Chen et al., 2025a) 132 3.7× 1.3B 82.67 84.70 74.53
Open-Sora-2.0 (Peng et al., 2025) 465 1.0× 14B 84.34 85.40 80.12
Wan2.1-14B (Wang et al., 2025a) 484 1.0× 14B 83.69 85.59 76.11
Wan2.1-1.3B (Wang et al., 2025a) 103 4.7× 1.3B 83.31 85.23 75.65

SANA-Video 60 8.0× 2B 83.71 84.35 81.35
Image-to-Video
MAGI-1 (Teng et al., 2025) 435 1.1× 4.5B 89.28 82.44 96.12
Step-Video-TI2V (Ma et al., 2025) 246 2.0× 30B 88.36 81.22 95.50
CogVideoX-5b-I2V (Yang et al., 2024) 111 4.4× 5B 86.70 78.61 94.79
HunyuanVideo-I2V (Kong et al., 2024) 210 2.3× 13B 86.82 78.54 95.10
Wan2.1-14B (Wang et al., 2025a) 493 1.0× 14B 86.86 80.82 92.90

SANA-Video 60 8.2× 2B 88.02 79.65 96.40

toencoder (DCAE-V) to facilitate more efficient training and inference. Our final model is trained
on 64 H100 GPUs for approximately 12 days. Details are in Appendix C.1.

4.2 PERFORMANCE COMPARISON AND ANALYSIS

The comprehensive efficiency and performance comparison among SANA-Video with state-
of-the-art is illustrated in Table 4. We adopt VBench (Zhang et al., 2024) as the performance
evaluation metric and the generation latency of a 480P 81-frame video as efficiency metric. As
shown in Table 4, SANA-Video exhibits remarkable latency of 60 seconds, marking it the fastest
model compared. This translates to a throughput that is 7.2× faster than MAGI-1 and over 4×
faster than Step-Video. In terms of comparison, SANA-Video achieves a Total Score of 83.71 on
text-to-video generation, comparable with large model Open-Sora-2.0 (14B) and outperforming
Wan2.1 (1.3B). In addition, SANA-Video achieves 88.02 Total Score on image-to-video generation,
outperformance large DiT models Wan2.1 (14B) and HunyuanVideo-I2V (11B). Furthermore,
SANA-Video achieves the best semantic / I2V score across all the methods, demonstrating strong
vision-text semantic alignment.

4.3 ABLATION STUDIES

We then conduct ablation studies on the crucial architectural modifications discussed in Sec. 3.2. As
shown in Fig. 5, we provide training loss curves and latency profiles on H100 GPUs.
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Figure 5: SANA-Video configuration ablation studies. (a) Training loss curves with and without
3D RoPE. (b) Training loss curves with and without temporal 2D Convolution. (c) Latency compar-
ison of SANA-Video between linear and full attention. (d) Comparison of monotonically increasing
versus random timestep sampling in autoregressive block training.
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Linear Attention Module. We incorporate three key designs to enhance our linear attention model.
First, we integrate 3D RoPE to focus linear attention on local features (Fig. 3). This improves perfor-
mance, as evidenced by a significantly lower training loss (Fig. 5(a)). Second, to address differences
between linear and vanilla attention, we introduce a Spatial-Temporal Mix-FFN module. Its train-
ing loss curve (Fig. 5(b)) demonstrates that a 1D temporal convolution layer significantly enhances
performance. Finally, our linear attention design provides a significant efficiency advantage. As
Fig. 5(c) shows, our model’s latency becomes lower at higher resolutions, achieving a 2× speedup
at 480P and 4× at 720P, proving its superior efficiency for high-resolution video generation.

Monotonically Increasing SNR Sampler. We compare the proposed monotonically increasing
SNR sampler with random timestep sampling in the autoregressive block training. As shown in
Fig. 5(d) (two columns are from different blocks), monotonically increasing SNR sampler achieves
better quality and more consistency across blocks.

We also provide quantitative ablations studies for 3D RoPE, temporal conv and monotonically in-
creasing SNR sampler in Table 5. All the three design is crucial for achieving our high-quality,
efficient and long video generation.

Table 5: Quantitative ablation studies on VBench.
Model Total Score ↑ Quality Score ↑ Semantic Score ↑
w/o Temporal Conv 80.94 82.63 74.18
w/ Temporal Conv 81.71 83.10 76.15

w/o 3D RoPE 81.19 82.68 75.22
w/ 3D RoPE 82.79 83.89 78.38

Random Steps 82.00 83.13 77.51
Increasing Steps 83.70 84.43 80.78

Long Video Generation. We compare SANA-Video with previous autoregressive video genera-
tion methods on VBench, as shown in Table 6. SANA-Video achieves comparable performance
with Self-Forcing (Huang et al., 2025) while outperforming SkyReel-V2 (Chen et al., 2025a) and
CausVid (Yin et al., 2025).

Table 6: Comparison of autoregressive video genera-
tion methods on VBench.

Model Total Score ↑ Quality Score ↑ Semantic Score ↑
CausVid 81.20 84.05 69.80
SkyReels-V2 82.67 84.70 74.53
Self-Forcing 84.31 85.07 81.28

SANA-Video 83.70 84.43 80.78

quant
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Figure 6: Latency comparison of our
model on BF16 and NVFP4 precision.

5 APPLICATIONS AND DEPLOYMENT

As a pre-training model, SANA-Video can be easily extended to multiple applications of video gen-
eration. First, we adapt SANA-Video to several world model applications (Fig. 1 and Appendix F):
embodied AI, autonomous driving and game generation. (Details are in Appendix F). Second, we
quantize our model to NVFP4 for efficient inference.

On-Device Deployment with 4-Bit Quantization. To facilitate efficient edge deployment, we
quantize SANA-Video from BF16 to NVFP4 format using SVDQuant (Li et al., 2024a). To balance
efficiency and fidelity, we selectively quantize the following layers: the QKV and output projec-
tions in self-attention, the query and output projections in cross-attention, and the 1x1 convolutions
in feed-forward layers. Other components (normalization layers, temporal convolutions, and KV
projections in cross-attention) are kept at higher precision to preserve semantic quality and prevent
compounding errors. As shown in Fig. 6, this strategy reduces the end-to-end generation time for
a 720p 5-second video from 71 s to 29 s on a single RTX 5090 GPU, achieving a 2.4× latency
speedup while maintaining a quality indistinguishable from the BF16 baseline.
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6 RELATED WORKS

Video generation has advanced rapidly with diffusion models, evolving from text-to-image exten-
sions with temporal layers (Singer et al., 2022; Wu et al., 2023b) to latent video diffusion (Blattmann
et al., 2023a), temporal VAEs, and large-scale diffusion transformers such as Sora (Brooks et al.,
2024). Parallel work investigates hybrid autoregressive–diffusion strategies to endow visual models
with long-term planning, including block-wise and token-level hybrids (Li et al., 2024b; Hu et al.,
2024; Deng et al., 2024), later extended to video with temporal planners (Liu et al., 2024a) and
diffusion forcing (Chen et al., 2025a; 2024a). An alternative line of research targets efficiency in
training and inference through architectural design. Approaches include linear (Xie et al., 2025a)
and state-space attention mechanisms (Liu et al., 2024b) for image generation, as well as mamba-
based designs (Wang et al., 2025b; Gao et al., 2024) and spatio-temporal factorization (Chen et al.,
2023a; Ho et al., 2022; Wang et al., 2025c; Singer et al., 2022) for video generation. Collectively,
these methods highlight the ongoing push toward scalable, efficient, and general-purpose video dif-
fusion models. A more comprehensive related work section is provided in the Appendix B.

7 CONCLUSION

In this paper, we introduce SANA-Video, a small diffusion model that can efficiently generate high
resolution, high-quality and long videos at a remarkably fast speed and a low hardward requirement.
The significance of SANA-Video lies in the following improvements: linear attention as the core
operation, leading to remarkable efficiency improvement in token-extensive video generation task;
block linear attention with costant-memory KV cache, supporting minute-long video generation
with a fixed memory cost; effective data filters and model training strategies, narrowing the training
cost to 12 days on 64 H100 GPUs. With such a small cost, SANA-Video showcases 16× faster
latency but competitive performance with modern state-of-the-art small diffusion models.
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A LLM USAGE

Our use of large language models (LLMs) was limited to editorial assistance to improve the clarity
and readability of this manuscript. Specifically, these tools were used to refine grammar and phras-
ing, enhance the logical flow between sections, and condense overly verbose passages for concise-
ness. Crucially, all original research ideas, experimental designs, and data analyses were conceived
and executed by the authors; the LLM did not contribute to any scientific or methodological content.

B FULL RELATED WORK

B.1 VIDEO DIFFUSION MODEL

Video generation has become a rapidly growing focus in generative AI. Modern approaches typically
use a VAE to compress videos into a latent space, where a diffusion model—conditioned on text,
images, or both—learns to generate content. Early studies, such as Make-A-Video (Singer et al.,
2022), PYoCo (Ge et al., 2023) and Tune-A-Video (Wu et al., 2023b), adapted text-to-image models
with additional temporal layers to enable video generation. Works like, MagicVideo (Zhou et al.,
2022), SVD (Blattmann et al., 2023a) and Latent Video Diffusion (Blattmann et al., 2023b) played
pioneering roles in scaling latent diffusion approaches. However, the limited compression rate of
VAEs has hindered their ability to generalize to long video sequences. A major breakthrough came
with Sora (Brooks et al., 2024), which introduced a temporal VAE to compress temporal dimensions
alongside spatial ones, while adopting a transformer-based backbone (Peebles & Xie, 2023) at scale.
Recent efforts have pushed this framework further. For instance, Wan 2.2 (Wang et al., 2025a)
incorporated a sparse MoE architecture that routes different diffusion steps to specialized experts,
while VEO3 (DeepMind, 2025) extended the paradigm by integrating audio, achieving state-of-the-
art performance. The success of MovieGen (Polyak et al., 2024), Seaweed (Seawead et al., 2025),
Goku (Chen et al., 2025b), and Waiver (Zhang et al., 2025d) further demonstrates the potential of
video generation and its broad impact on practical applications. These developments underscore
video generation as one of the most dynamic and competitive frontiers in generative AI community.

B.2 AUTO-REGRESSIVE DIFFUSION MODEL

Auto-regressive generation dominates the text domain, while diffusion models have become the stan-
dard for visual generation. Recent research explores how to combine these paradigms to duplicate
the long-term planning capacity of large language models in vision generation. A straightforward
solution (Zhou et al., 2024) is to jointly train an autoregressive (AR) model for text and a diffusion
model for vision, but this leaves the visual side reliant solely on diffusion without benefiting from
AR modeling. Inspired by block diffusion (Arriola et al., 2025), several works (Li et al., 2024b;
Hu et al., 2024; Deng et al., 2024; Ren et al., 2025; 2024) explore AR–diffusion hybrids: MAR (Li
et al., 2024b) disentangles the two, letting AR predict conditions and diffusion reconstruct tokens;
ACDiT (Hu et al., 2024) integrates them via block-wise diffusion with autoregression across blocks,
while CausalDiffusion (Deng et al., 2024) extends this to token-level autoregression. Extending
these ideas to video is natural since frames form temporal chunks. FAR (Gu et al., 2025) gener-
ates each frame autoregressively; MarDini (Liu et al., 2024a) employs an AR planner to provide
frame-level conditions, with diffusion recovering pixels for tasks such as video interpolation, video
extension, and image-to-video generation. Beyond this, MAGI (Teng et al., 2025) and Skyreel (Chen
et al., 2025a) remove the dual-model design, training under the strategy of diffusion forcing (Chen
et al., 2024a), where later frames are assigned higher noise levels, thereby enabling infinite autore-
gressive inter-chunk prediction and high-quality inner-chunk diffusion generation. More recently,
self-forcing (Huang et al., 2025) highlights a gap between training (real data diffused with noise)
and inference (model-generated conditions), and proposes rollout-based training to align the two,
leading to more robust long-term prediction.

B.3 EFFICIENT ATTENTION FOR MULTIMODAL GENERATION.

Diffusion Transformers (DiT) have emerged as the mainstream architecture for visual content gener-
ation. Representative models include PixArt-α (Chen et al., 2023b), Stable Diffusion 3 (SD3) (Esser
et al., 2024), and Flux (Labs, 2024), the latter demonstrating the potential of scaling DiT to 12B
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parameters for high-resolution image synthesis.. To address the computational challenges of vanilla
attention (O(n2))), various methods have replaced it with linear-complexity mechanisms. For in-
stance, DiG (Zhu et al., 2024) uses gated linear attention, PixArt-Σ (Chen et al., 2024b) designs
key-value token compression, while LinFusion (Liu et al., 2024b) involves Mamba-based structure
and SANA (Xie et al., 2025a) employs ReLU linear attention approaches to reduce computational
overhead. With the rise of video generation, the computational demands of standard quadratic atten-
tion have become a major bottleneck. To address the high computational cost of 3D video attention,
many existing works employ factorized spatial and temporal attention to reduce complexity (Chen
et al., 2023a; Ho et al., 2022; Wang et al., 2025c; Singer et al., 2022). Other methods reduce at-
tention complexity by selectively skipping certain token interactions (Xi et al., 2025; Yang et al.,
2025b; Li* et al., 2025; Zhang et al., 2025a;b;c). Simultaneously, other models, such as Mamba-
based architectures (Wang et al., 2025b; Gao et al., 2024), have explored state-space models and
linear-complexity designs for efficient video generation. However, these methods either retain some
quadratic complexity due to global self-attention layers or are limited to local attention. In contrast,
our model maintains a constant-memory KV cache with global attention mechanism, enabling the
generation of high-quality, minute-length videos.

C MORE IMPLEMENTATION DETAILS

C.1 PIPELINE CONFIGURATION

As detailed in Table 7, our SANA-Video-2B model supersedes the original SANA (Xie et al., 2025a)
architecture, including the diffusion transformer and a small decoder-only text encoder, to best uti-
lize the pre-trained text-to-image model’s weights. However, we introduce several key modifications
to support video generation. We increase the FFN dimension from 5600 to 6720 and the head dimen-
sion from 32 to 112 to accommodate 3D RoPE, and we add a temporal convolution in the Mix-FFN
module to enhance motion performance. To effectively capture latent features from both images
and videos, our approach uses different VAEs based on resolution. For 480P videos, we leverage
a Wan2.1-VAE (Wang et al., 2025a) to prioritize reconstruction quality with a lower compression
rate (F8T4C16). In contrast, for high-resolution 720P videos, we fine-tune the DCAE (Chen et al.,
2024c) into a more aggressive deep compression autoencoder, DCAE-V (F32T4C32), to facilitate
more efficient training and inference. For conditional feature extraction, we follow SANA by using
a small decoder-only LLM for efficient text processing. For our training strategy, we also employ
multi-aspect augmentation to enable arbitrary aspect ratio generation and facilitate image-video joint
training, allowing the model to generate both images and videos from a single architecture. The
AdamW optimizer (Loshchilov & Hutter, 2017) is utilized with a weight decay of 0.03 and a con-
stant learning rate of 5e-5. We use Accelerate FSDP (acc, 2022) for efficient sharded data parallel
training. Our final model is trained on 64 H100 GPUs for approximately 12 days.

C.2 DETAILED TRAINING BREAKDOWN

In this subsection, we provide a detailed breakdown of the data scale, composition, and training steps
for the three main stages of the SANA-Video training pipeline. Our sources of video data include
public high quality datasets, Pexels and Artlist, as well as internal dataset. We design filtering and
captioning pipeline (Appendix E), and the overall data scale after filtering is O(10M).

Stage 1: VAE Adaptation on Text-to-Image (T2I). This stage aims to adapt the VAE for robust
representation learning before tackling the video domain. In this stage, we use approximately 10M
internal images and train the model for 20K iterations with a batch size of 512.

Stage 2: Continue Pre-training of T2V Model. This stage aims at transferring learned image
knowledge to video generation, establishing initial motion and short-term temporal coherence grad-
ually from low resolution (192p) to high resolution (480p or 720p). In this stage, we use all the
filtered video text pairs from our data pipeline (approximately 10M 5-second length video pairs).
The LinearDiT model is trained for 200K iterations with a batch size of 128.

Stage 3: Autoregressive Block Training (Long Video Fine-Tuning). This stage aims at fine-
tuning the LinearDiT to generate long videos in an autoregressive manner, enabling few-step and
minute-length generation. In this stage (Sec. 3.4, we first use approximately 1M 5-second length
short video samples to fine-tune the causal linear attention and causal MixFFN for 10K iterations.
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Algorithm 1 Block Linear Diffusion Inference with Linear KV Cache
Require: KV cache
Require: Denoise timesteps {t1, . . . , tT }, noise scheduler Ψ
Require: Number of blocks M
Require: Block-wise diffusion model Gθ (GKV

θ returns cumulative sum of state
∑

S, cumulative sum of key∑
ϕ(K)T and conv cache f )

1: Initialize model output Xθ ← []
2: Initialize KV cache KV← [None,None,None]
3: for i = 1, . . . ,M do
4: Initialize xi

tT ∼ N (0, I)
5: for j = T, . . . , 1 do
6: Set x̂i

0 ← Gθ(x
i
tj ; tj ,KV)

7: if j = 1 then
8: Xθ.append(x̂

i
0)

9: Update Cache KV← GKV
θ (x̂i

0; 0,KV)
10: else
11: Sample ϵ ∼ N (0, I)
12: Set xi

tj−1
← Ψ(x̂i

0, ϵ, tj−1)
13: end if
14: end for
15: end for
16: return Xθ

Subsequently, we leverage self-rollout long training with few-step distillation (DMD (Huang et al.,
2025)) for 9K steps to further improve performance and efficiency. The long training uses 200K
prompts from VidProM dataset (Wang & Yang, 2024).

Table 7: Architecture details of the proposed SANA-Video.

Model Width Depth FFN #Heads #Param (M)
SANA-Video-2B 2240 20 6720 20 2056

C.3 BLOCK LINEAR ATTENTION DURING INFERENCE

We follows Self-Forcing (Huang et al., 2025) for autoregressive inference, with the KV cache up-
date based on our design (Alg. 1). Specifically, we first initialize KV cache as empty and start to
denoise the first block. After it is fully denoised, the attention state

∑0
0 S, cumulative sum of keys∑0

0 ϕ(K)T and conv cache f will be stored. For the remaining blocks (e.g., n-th block), they will
use the existing KV cache to denoise the latent until clean and then update the cumulative attention
state

∑n
0 S and cumulative sum of keys

∑n
0 ϕ(K)T . Also, conv cache f will be replaced with the

new cache. Such update leverages the global while keeping the memory constant and small, making
the long video generation efficient and effective.

D MORE RESULTS

Please refer to our anonymous link (https://sana-video.pages.dev/), for the qualitative comparison
and our generation results.

D.1 VAE COMPARISON

In Sec. 3.5, we analyze the differences and performance of various video VAEs. To select the VAE
that best suits our small diffusion model, we conducted a generalization experiment. We hypothesize
that a VAE with better reconstruction ability under perturbation will be a better fit, as the diffusion
model’s output during inference may be slightly different from the clean latent distribution seen
during VAE training. Specifically, we add Gaussian noise to the encoded latent before decoding
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Figure 7: Qualitative comparison among T2V methods. SANA-Video has comparable motion
control and video-text semantic alignment with state-of-the-art small diffusion models.

it, setting x′
t = xt + ϵz, where z ∼ N (0, I). As the results in Table 8 show, our DCAE-V per-

forms much more robustly under different noise levels. This demonstrates its superior reconstruction
generalization, making it the ideal choice for our small diffusion model.

Table 8: Performance comparison of different VAE models on 1000 samples from Panda-70M with
different noise perturbation levels.

Model latent shape psnr↑ ssim↑ lpips↓
Wan2.1VAE (ϵ = 0) 16, T/4, H/8, W/8 34.41 0.95 0.01
Wan2.2VAE (ϵ = 0) 48, T/4, H/16, W/16 35.61 0.96 0.01
DCAE-V (ϵ = 0) 32, T/4, H/32, W/32 33.25 0.94 0.03

Wan2.1VAE (ϵ = 0.1) 16, T/4, H/8, W/8 28.61 0.89 0.06
Wan2.2VAE (ϵ = 0.1) 48, T/4, H/16, W/16 30.12 0.92 0.04
DCAE-V (ϵ = 0.1) 32, T/4, H/32, W/32 31.91 0.93 0.04
Wan2.1VAE (ϵ = 0.2) 16, T/4, H/8, W/8 24.25 0.78 0.16
Wan2.2VAE (ϵ = 0.2) 48, T/4, H/16, W/16 25.94 0.84 0.10
DCAE-V (ϵ = 0.2) 32, T/4, H/32, W/32 29.34 0.90 0.05
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Prompt: The individual's 
expression shifts from 
neutral to intense ... 
The camera remains 
steady, focusing on the 
person's face and upper 
body.

Prompt: A majestic 
brown cow across a 
dusty field under a clear 
blue sky. The camera 
captures the animal from 
a low angle ... A slow-
motion effect enhances 
the fluidity of the cow's 
movement...

Figure 8: Qualitative comparison among I2V methods. SANA-Video has better motion control
and video-text semantic alignment.

D.2 QUALITATIVE COMPARISON

Text-to-Video Generation. We compare the text-to-video generation results with current state-
of-the-art small diffusion models Wan2.1-1.3B (Wang et al., 2025a) and Wan2.2-5B (Wang et al.,
2025a). As shown in Fig. 7, SANA-Video has comparable semantic understanding, great motion
control, and high aesthetic quality.

Image-to-Video Generation. We compare the image-to-video generation results with small dif-
fusion models LTX-Video (HaCohen et al., 2024) (2B) and SkyReelv2-I2V (Chen et al., 2025a)
(1.3B). As shown in Fig. 8, SANA-Video has the best semantic understanding ability (“camera re-
mains steady” instruction in the first case) as well as the best motion control (“slow-motion effect”
instruction in the second case) and moderate motion magnitude (first case).

D.3 MORE I2V RESULTS

Our SANA-Video is a unified framework that can perform T2I, T2V and I2V with a single model.
We visualize the I2V generation results in Fig. 9. The first column is the reference image and the
remaining columns are the generated video. Our SANA-Video can generate semantic consistent and
temporal smooth videos based on the first frame.

D.4 INFLUENCE OF MOTION SCORE

As mentioned in our data pipeline (Sec. E), we use the average optical flow value to represent the
motion magitude, which is called motion score in our paper. The motion score is added to the text
prompt to better control the motion. In Fig. 10, we compare the impact of motion score in the I2V
task, which is more clear with the same reference image. By increasing the motion, SANA-Video
can generate videos with larger but still consistent motion.
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I2V 
Example Done

A man is skydiving, suspended mid-air against a backdrop of fluffy…

A fluffy Ragdoll cat is seen stirring a pot on the stove with a wooden spoon…

Reference Frame

Two young men stand together on a bustling city street at night, taking a selfie…

A serene valley unfolds beneath a cloudy sky, with a river winding…

Generation Frames

Figure 9: Visualization of image-to-video generation. SANA-Video can keep consistent with the
first frame while generating realistic motion.
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Figure 10: The impact of motion score on I2V task. Higher motion score can lead to larger motion.

D.5 LONGSANA VISUALIZATION

In Fig. 11, we provide an example of our 1-minute long video generation. LongSANA is able to
generate motion consistent and semantically aligned long videos.

D.6 LONG VIDEO EVALUATION

We further conduct quantitative evaluation on VBench-Long (Zhang et al., 2024) to verify the ef-
fectiveness of LongSANA in long video generation. We compare LongSANA with previous state-
of-the-art methods on 30-second video generation in Table 9. Our LongSANA achieves the best
semantic and total scores. In addition, SANA-Video is the fastest method that can generate videos
in real-time with 27.5 FPS, demonstrating the efficiency and effectiveness of LongSANA when han-
dling long video sequences.

E DATA PROCESSING PIPELINE

To build our training dataset, we collect public real and synthetic data and implement a multi-stage
filtering paradigm. First, we use PySceneDetect (Castellano) and FFmpeg (Developers, 2025) to cut
raw videos into single-scene short clips. For each video clip, we analyze its aesthetic and motion
quality, as well as providing detailed captions. Specifically, the motion quality is measured by
Unimatch (Xu et al., 2023) (optical flow) and VMAF (Peng et al., 2025) (pixel difference), and
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LongSANA

Done

0-10s

10-20s

20-30s

A white Arctic fox runs gracefully across a fallen log in a dense forest. The fox's fur is pristine white, 
and it moves with agility and purpose, its tail held high. The camera follows the fox closely, capturing its 
fluid movements and the serene beauty of the woodland setting. The fox's ears are perked up, and its 
eyes are focused ahead, embodying the spirit of freedom and wildness.

30-40s

40-50s

50-60s

Figure 11: Long video visualization of LongSANA.

Table 9: Comparison of long video generation methods on the VBench-Long (Zhang et al.,
2024) benchmark. All compared methods generate 30s videos for evaluation.

Model Total Score ↑ Quality Score ↑ Semantic Score ↑ FPS

SkyReels-V2 (Chen et al., 2025a) 75.29 80.77 53.37 0.49
FramePack (Zhang & Agrawala, 2025) 81.95 83.61 75.32 0.92
Self Forcing (Huang et al., 2025) 81.59 83.82 72.70 17.00
SANA-Video 82.29 83.10 79.04 27.50

only clips with moderate and clear motion are kept. Furthermore, the average optical flow is used
as a representation of motion magnitude, injecting into prompt for better motion controllability.
Aesthetic quality is measured by a pre-trained video aesthetic model (DOVER (Wu et al., 2023a))
and key frame saturation obtained with OpenCV (Bradski, 2000), where low aesthetic score and
over-saturated videos are removed. Finally, we collect approximately 5,000 human preferred high-
quality videos based on stringent motion and aesthetic criteria. The SFT data is collected with
diverse but balanced motion and style categories, which can further improve the overall performance.
As shown in Fig. 12, the details of this data processing pipeline are discussed as follows.

Scene Detection and Shot Cut. In the pre-training stage, we focus on generating 5-second short
videos with 16 FPS on a specific scene. However, the raw videos are commonly long and con-
tains more than one scene. Therefore, we cut the raw videos to small video shots with two steps:
PySceneDet (Castellano) to split the scenes and FFmpeg (Developers, 2025) to split videos into
short clips.

Motion Filtering. Our pre-training dataset comes from multiple sources, and each source of data
differs not only in style but also in motion. Motion that is too fast or too slow degrades the motion
performance of SANA-Video. Following Zheng et al. (2024), we apply Unimatch (Xu et al., 2023)
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Synthetic Data

Public Data

Data Acquisition Raw
Data

Scene Cut

Text-
Clips
Pairs

Captioning

Filters

Motion

Aesthetic

Saturation

Pre-Training

SFT

Human
Selection

Text
Embeds

VAE
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Figure 12: Data filtering paradigm of SANA-Video.

You are a video captioning specialist whose goal is to generate high-quality English prompts by referring to the details of the 
user's input videos. Your task is to carefully analyze the content, context, and actions within the video, and produce a 
complete, expressive, and natural-sounding caption that accurately conveys the scene. The caption should preserve the 
original intent and meaning of the video while enhancing its clarity and descriptive richness. Strictly adhere to the formatting 
of the examples provided.

    Task Requirements:
    1. You need to describe the main subject of the video in detail, including their appearance, actions, expressions, and the 
surrounding environment.
    2. You need to emphasize movement information in the input and different camera angles.
    3. Your output should convey natural movement attributes, incorporating natural actions related to the described subject 
category, using simple and direct verbs as much as possible.
    4. You should reference the detailed information in the video, such as character actions, clothing, backgrounds, and 
emphasize the details in the photo.
    5. Control the output prompt to around 80-100 words.
    6. No matter what language the user inputs, you must always output in English.

    Example of the English prompt:
    1. A Japanese fresh film-style photo of a young East Asian girl with double braids sitting by the boat. The girl wears a white 
square collar puff sleeve dress, decorated with pleats and buttons. She has fair skin, delicate features, and slightly 
melancholic eyes, staring directly at the camera. Her hair falls naturally, with bangs covering part of her forehead. She rests 
her hands on the boat, appearing natural and relaxed. The background features a blurred outdoor scene, with hints of blue sky, 
mountains, and some dry plants. The photo has a vintage film texture. A medium shot of a seated portrait.
    2. An anime illustration in vibrant thick painting style of a white girl with cat ears holding a folder, showing a slightly 
dissatisfied expression. She has long dark purple hair and red eyes, wearing a dark gray skirt and a light gray top with a wh ite 
waist tie and a name tag in bold Chinese characters that says "紫阳" (Ziyang). The background has a light yellow indoor tone, 
with faint outlines of some furniture visible. A pink halo hovers above her head, in a smooth Japanese cel-shading style. A 
close-up shot from a slightly elevated perspective.
    3. CG game concept digital art featuring a huge crocodile with its mouth wide open, with trees and thorns growing on its 
back. The crocodile's skin is rough and grayish-white, resembling stone or wood texture. Its back is lush with trees, shrubs, 
and thorny protrusions. With its mouth agape, the crocodile reveals a pink tongue and sharp teeth. The background features a 
dusk sky with some distant trees, giving the overall scene a dark and cold atmosphere. A close-up from a low angle.
    4. In the style of an American drama promotional poster, Walter White sits in a metal folding chair wearing a yellow 
protective suit, with the words "Breaking Bad" written in sans-serif English above him, surrounded by piles of dollar bills and 
blue plastic storage boxes. He wears glasses, staring forward, dressed in a yellow jumpsuit, with his hands resting on his 
knees, exuding a calm and confident demeanor. The background shows an abandoned, dim factory with light filtering through 
the windows. There's a noticeable grainy texture. A medium shot with a straight-on close-up of the character.

    Directly output the English text.

A cat leaps off a balcony, mid-air jump with its legs extended and tail flowing behind, from a low-angle view, capturing the 
moment just as it leaves the edge.

Qwen-2.5-VL

User

User

Figure 13: An overview of the captioning pipeline.

and Vmaf to score the motion of each video. Unimatch can evaluate the optical flow of two given
images of the same shape. We select frames from each video every 0.5 seconds, reshape them into
320x576, and calculate the average optical flow over all selected frames. Vmaf, on the other hand,
simply computes the pixel difference of two images; we use FFmpeg (Developers, 2025) to compute
the Vmaf over all consecutive frames and normalize them. Due to the variance of different video
sources, we analyze the motion scale and set the appropriate motion range individually, ensuring our
data has moderate and clear motion. During pre-training, we also append Motion score: {unimatch
value} to the text prompt to help control the motion magnitude of the generated videos (Fig. 10).

Aesthetics Many Text-to-Image works have proven that high aesthetic data can improve the training
efficiency of an image generation model (Chen et al., 2023b). We believe that this also applies to
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the video generation model. We use Dover (Wu et al., 2023a) to score each video for its aesthetics.
Dover produces three different scores: aesthetic score, technical score, and overall score, among
which we use the overall score as the filter metric.

Saturation We also observe that some of our data, especially synthetic data and real data converted
from HDR to SDR, has unnatural color, appearing in high saturation. To prevent these data from
damaging the output quality of SANA-Video, we use OpenCV (Bradski, 2000) to compute a satu-
ration score of each video. We select frames from each video every 0.5 seconds, convert their color
representation from RGB to HSV, where the “S” channel in HSV color representation stands for
saturation. By averaging the “S” channel over all pixels and frames, we obtain the saturation score
of a video. We keep only videos with a saturation score lower than a threshold set to a reasonable
value for each data source.

Captioning (Wang et al., 2025a) shows that LLM rewritten prompts can produce more accurate
and detailed prompts within the same distribution, and thus make the model easier to learn, and
consequently enhance the model’s performance. Moreover, for synthetic data with existing prompts,
replacing their prompts with LLM rewritten ones helps reduce the misalignment between the original
prompts and their synthetic output. Following (Wang et al., 2025a), we use Qwen-2.5-VL (Bai et al.,
2025b) to caption our data as shown in Fig. 13.

SFT Data For our final stage of SFT training, we selected approximately 5,000 high-quality videos
based on stringent criteria for motion and aesthetics. The motion requirement is fulfilled by the pres-
ence of either distinct object motion, camera motion, or both. Ideal object motion is characterized
by a moderate magnitude and a clearly focused action that is free from occlusions. Similarly, any
camera movement must be stable and smooth, without jittering, to maintain 3D consistency. The
aesthetic criteria are equally comprehensive. Beyond technical qualities like balanced brightness
and natural color, we prioritize videos with appealing overall content and layout, demonstrated by
thoughtful composition and engaging subject matter. Following this filtering process, the videos
were classified into four motion categories (human activities, animal activities, other objects, natu-
ral or urban scenes) and three aesthetic styles (realistic, cartoon, cinematic). This strategic sampling
across diverse categories is crucial for ensuring both the model’s high performance and the breadth
of its capabilities. The influence of fine-tuning on the SFT data is illustrated in Fig. 14, where both
the aesthetic details (the eyes in the first example), and the motion realism (the pipe of the second
example) will be improved.

SFT 
Influence Done
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TFigure 14: Analysis of the influence of SFT. Fine-tuning on the human preferred SFT data can

improve the video details and adherence to the laws of physics.
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Figure 15: Visualization of world model task generation.
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We fine-tune SANA-Video on several downstream tasks to demonstrate the potential of applying
SANA-Video to world model related generation: embodied AI, autonomous driving and game gen-
eration.

World Model for Embodied AI. The first important downstream task for video generation is em-
bodied AI, where SANA-Video can be used to generate simulation data for robot training. In this
task, we leverage AgiBot (contributors, 2024) as the training data, which contains synchronized
views of different camera views. The head-front view is adopted as the target videos and filtered
with our data pipeline. The generation results are shown in the first row of Fig. 15.

World Model for Autonomous Driving. Video generation model is also a good simulator for
autonomous vehicle scenarios, and SANA-Video can be used to generate diverse and realistic driving
scenes. In this task, we fine-tune SANA-Video on internal driving data, using the front camera with
30 FOV. The generation results are shown in the second row of Fig. 15.

World Model for Game Generation. We explore downstream game generation to create interactive
video games. Specifically, we use VPT (Baker et al., 2022) as the training data, containing screen
recording videos of players playing Minecraft. The raw videos are cut and processed following our
data pipeline in Appendix E. In addition, we train a small classifier to identify low-quality data in
the scenario. The generation results are shown in the third row of Fig. 15.
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