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ABSTRACT

Diffusion models achieve superior generation quality but suffer from slow genera-
tion speed due to the iterative nature of denoising. In contrast, consistency models,
a new generative family, achieve competitive performance with significantly faster
sampling. These models are trained either through consistency distillation, which
leverages pretrained diffusion models, or consistency training/tuning directly from
raw data. In this work, we propose a novel framework for understanding con-
sistency models by modeling the denoising process of the diffusion model as a
Markov Decision Process (MDP) and framing consistency model training as the
value estimation through Temporal Difference (TD) Learning. More importantly,
this framework allows us to analyze the limitations of current consistency train-
ing/tuning strategies. Built upon Easy Consistency Tuning (ECT), we propose
Stable Consistency Tuning (SCT), which incorporates variance-reduced learning
using the score identity. SCT leads to significant performance improvements on
benchmarks such as CIFAR-10 and ImageNet-64. On ImageNet-64, SCT achieves
1-step FID 2.42 and 2-step FID 1.55, a new SoTA for consistency models.

1 INTRODUCTION

Diffusion models have significantly advanced the field of visual generation, delivering state-of-the-art
performance in images (Dhariwal & Nichol, 2021b; Rombach et al., 2022a; Song & Ermon, 2019;
Karras et al., 2022b; 2024b), videos (Shi et al., 2024; Blattmann et al., 2023; Singer et al., 2022;
Brooks et al., 2024; Bao et al., 2024), 3D (Gao et al., 2024; Shi et al., 2023), and 4D data (Ling et al.,
2024). The core principle of diffusion models is the iterative transformation of pure noise into clean
samples. However, this iterative nature comes with a tradeoff: while it enables superior generation
quality and training stability compared to traditional methods (Goodfellow et al., 2020; Sauer et al.,
2023a), it requires substantial computational resources and longer sampling time (Song et al., 2020a;
Ho et al., 2020a). This limitation becomes a substantial bottleneck when generating high-dimensional
data, such as high-resolution images and videos, where the increased generation cost slows practical
application.

Consistency models (Song et al., 2023a), an emerging generative family, largely address these
challenges by enabling high-quality, one-step generation without adversarial training. Recent stud-
ies (Song & Dhariwal, 2023; Geng et al., 2024) have shown that one-step and two-step performance
of consistency models can rival that of leading diffusion models, which typically require dozens or
even hundreds of inference steps, underscoring the tremendous potential of consistency models. The
primary training objective of consistency models is to enforce the self-consistency condition (Song
et al., 2023a), where predictions for any two points along the same trajectory of the probability
flow ODE (PF-ODE) converge to the same solution. To achieve this, consistency models adopt two
training methods: consistency distillation (CD) and consistency training/tuning (CT). Consistency
distillation leverages a frozen pretrained diffusion model to simulate the PF-ODE, while consistency
training/tuning directly learns from real data with no need for extra teacher models.

The motivation of this paper is to propose a novel understanding of consistency models from the
perspective of bootstrapping. Specifically, we first frame the numerical solving process of the PF-
ODE (i.e., the reverse diffusion process) as a Markov Decision Process (MDP), also indicated in
prior works (Black et al., 2023; Fan et al., 2024). The initial state of the MDP is randomly sampled
from Gaussian. The intermediate state consists of the denoised sample xt and the corresponding
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Noising

𝐱! 𝐱"

CD: Solving ODE with 𝝐𝜽(𝐱" , 𝑡)   

CT: Solving ODE with 𝝐(𝐱" , 𝑡; 𝐱#)   

Stable Consistency Tuning

𝐱# i.i.d samples 𝐱! ∼ 	ℙ!

Solving ODE through 
approximating 
𝝐(𝐱" , 𝑡)   

High training variance

Low upper-bound

CT is a special case of SCT with 
only one reference sample 𝐱! 

Figure 1: Stable consistency tuning (SCT) with variance reduced training target. SCT provides a
unifying perspective to understand different training strategies of consistency models.

conditional information, including the timestep t. The policy function of the MDP corresponds to
the action of applying the ODE solver to perform single-step denoising, resulting in the transition
to the new state. Building on this MDP, we show that the training of consistency models, including
consistency distillation, consistency training/tuning, and their variants, can be interpreted as Temporal
difference (TD) learning (Sutton & Barto, 2018), with specific reward and value functions aligned
with the PF-ODE. From this viewpoint, we can derive, as we will elaborate later, that the key
difference between consistency distillation and consistency learning lies in how the ground-truth
reward is estimated. The difference leads to distinct behaviors: Consistency distillation has a lower
performance upper bound (being limited by the performance of the pretrained diffusion model) but
exhibits lower variance and greater training stability. Conversely, consistency training/tuning offers a
higher performance upper bound but suffers from a larger variance in reward estimation, which can
lead to unstable training. Additionally, for both CD and CT, smaller ODE steps (i.e., ∆t “ t ´ r) can
improve the performance ceiling but complicate the optimization.

Building upon the foundation of Easy Consistency Tuning (ECT), we introduce Stable Consistency
Tuning (SCT), which incorporates several enhancements for variance reduction and faster conver-
gence: 1) We introduce a variance-reduced training target for consistency training/tuning via the
score identity (Vincent, 2011; Xu et al., 2023), which provides a better approximation of the ground
truth score. This helps improve training stability and facilitates better performance and convergence.
Additionally, we show that variance-reduced estimation can be applied to conditional generation
settings for the first time. 2) Our method adopts a smoother progressive training schedule that
facilitates training dynamics and reduces discretization error. 3) We extend the scope of ECT to
multistep settings, allowing for deterministic multistep sampling. Additionally, we investigate the
potential capacity and optimization challenges of multistep consistency models and propose an
edge-skipping multistep inference strategy to improve the performance of multistep consistency
models. 4) We validate the effectiveness of classifier-free guidance in consistency models, where
generation is guided by a sub-optimal version of the consistency model itself.

2 PRELIMINARIES ON CONSISTENCY MODELS

In this section, we present the essential background on consistency models to ensure a more self-
contained explanation.

Diffusion Models define a forward stochastic process with the intermediate distributions Ptpxt|x0q

conditioned on the initial data x0 „ P0 (Lipman et al., 2022; Kingma et al., 2021a). The intermediate
states follow a general form xt “ αtx0 ` σtϵ with x1 « ϵ „ N p0, Iq. The forward process can be
described with the following stochastic differential equation (SDE):

dxt “ ftx0dt ` gtdwt, (1)

where wt is the standard Wiener process, ft “
d logαt

dt , and g2t “
dσ2

t

dt ´ 2d logαt

dt σ2
t . For the above

forward SDE, a remarkable property is that there exists a reverse-time ODE trajectory for data
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sampling, which is termed as probability flow ODE (PF-ODE) (Song et al., 2023a) That is,

dx “

„

ft ´
g2t
2
∇x logPtpxq

ȷ

dt. (2)

It allows for data sampling without introducing additional stochasticity while satisfying the pre-
defined marginal distributions Ptpxtq “ EPpx0|xtqrPpxt | x0qs. In diffusion models, a neural network
ϕ is typically trained to approximate the score function sϕpxt, tq « ∇x logPtpxtq, enabling us
to apply numerical solver to approximately solving the PF-ODE for sampling. Many works apply
epsilon-prediction ϵϕpxt, tq “ ´σt∇x logPtpxtq form for training.

Consistency Models propose a training approach that teaches the model to directly predict the
solution point of the PF-ODE, thus enabling 1-step generation. Specifically, for a given trajectory
txtutPr0,1s, the consistency model fθpxt, tq is trained to satisfy fθpxt, tq “ x0,@t P r0, 1s, where
x0 is the solution point on the same PF-ODE with xt. The training strategies of consistency models
can be categorized into consistency distillation and consistency training. But they share the same
training loss design,

dpfθpxt, tq,fθ´ pxr, rqq , (3)

where dp¨, ¨q is the loss function, 0 ď r ă t ď 1, θ´ is the EMA weight of θ or simply set to θ
with gradient disabled for backpropagation. Both xt and xr should be approximately on the same
PF-ODE trajectory.

3 UNDERSTANDING CONSISTENCY MODELS

Consistency model as bootstrapping. For a general form of diffusion xt “ αtx0 ` σtϵ, there exists
an exact solution form of PF-ODE as shown in previous work (Song et al., 2021; Lu et al., 2022a),

xs “
αs

αt
xt ´ αs

ż λs

λt

e´λϵpxtλ , tλqdλ , (4)

where λt “ lnpαt{σtq, tλ is the reverse function of tλ, and ϵpxtλ,tq “ ´σtλ∇ logPtλpxtλq is the
scaled score function. Consistency models aim to learn a x0 predictor with only the information from
xt,@t P r0, 1s. The left term is already known with xt, and thereby we can write the consistency
model-based x0 prediction as

x̂0pxt, t;θq “
1

αt
xt ´ hθpxt, tq, (5)

where s is set to 0 with αs “ 1, θ is the model weights, and hθ is applied to approximate the
weighted integral of ϵ from t to s “ 0.

The loss of consistency models penalize the x0 prediction distance between xt and xr at adjacent
timesteps,

x̂0pxt, t;θq
fit

ÐÝ x̂0pxr, r;θ
´q , (6)

where 0 ď r ă t and θ´ is the EMA weighg of θ. Therefore, we have the following learning target

1

αt
xt ´ hθpxt, tq

fit
ÐÝ

1

αs
xr ´ hθ´ pxr, rq (7)

It is noting that xr “ αr

αt
xt ´ αr

şλr

λt
e´λϵpxtλ , tλqdλ, and hence we replace the xr in the above

equation and have

hθpxt, tq
fit

ÐÝ r ` hθ´ pxr, rq , (8)

where r “
şλs

λt
e´λϵpxtλ , tλqdλ. The above equation is a Bellman Equation. hθpxt, tq is the value

estimation at state xt, hθ´ pxr, rq is the value estimation at state xr, and r is the step ‘reward’.

Standard formulation. It is known that the diffusion generation process can be modeled as a Markov
Decision Process (MDP), and here we show that the training of consistency models can be viewed

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: The definition of symbols in the value estimation of the PF-ODE equivalent MDP.

MDP symbols Definition

stn ptN´n,xtN´n
q

atn xtN´n´1
:“ ΦpxtN´n

, tN´n, tN´n´1q

P0ps0q ptN ,N p0, Iqq

P pstn`1 | stn , atnq pδtN´n´1
, δxtN´n´1

q

πpatn | stnq δxtN´n´1

Rpstn , atnq
şλtN´n´1

λtN´n
e´λϵpxtλ , tλqdλ

Vθpstnq hθpxtN´n
, tN´nq

as a value estimation learning process, which is also known as Temporal Difference Learning (TD-
Learning), in the equivalent MDP. We show the standard formulation in Table 1. In Table 1, stn
and atn are the state and action at timestep tn, P0 and P are the initial state distribution and state
transition distribution, ΦpxtN´n

, tN´n, tN´n´1q is the ODE solver, π is the policy following the
PF-ODE, reward R is equivalent to the r defined above and value function Vθ is corresponding to hθ .
π is the Dirac distribution δ due to the deterministic nature of PF-ODE.

From this perspective, we can have a unifying understanding of consistency model variants and their
behaviors. Fig. 1 provides a straightforward illustration of our insight. One of the most important
factors of the consistency model performance is how we estimate r in the equation.

Understanding consistency distillation. For consistency distillation, the approximation of r is
depent on the pretrained diffusion model ϵϕ and the ODE solver applied. For instance, if the
first-order DDIM (Song et al., 2020a) is applied, then the approximation is formulated as,

r « ϵϕpxt, tq

ż λr

λt

e´λdλ ` Oppλr ´ λtq
2q . (9)

We can observe that the error comes from two aspects: one is the prediction error between the pre-
trained diffusion model ϵϕpxt, tq and the ground truth ϵpxt, tq; the other is the first-order assumption
that ϵpxtλ , tλq « ϵpxt, tq,@tλ P rt, rs. The first error indicates a better pretrained diffusion model
can lead to better performance of consistency distillation. The second error indicates that the distance
between t and s should be small eough to eliminate errors caused by low-order approximation. This
perspective also connects the n-step TD algorithm with the consistency distllation. The n-step TD is
equivalent to apply multistep (n-step) ODE solver to compute the xr from xt.

Understanding consistency training/tuning. For consistency training/tuning, the approximation of
r is achieved through approximating the groudtruth ϵpxt, tq with the conditional ϵpxt, t;x0q, where
x0 is sampled from the dataset D and xt “ αtx0 ` σtϵ with ϵ „ N p0, Iq. It is konwn that the
groudtruth ϵpxt, tq is equivalent to

ϵpxt, tq “ ´σt∇xt
logPtpxtq

“ ´σtEPtpx0|xtq r∇xt logPpxt | x0qs

“ ´σtEPpx0|xtq

„

´
xt ´ αtx0

σ2
t

ȷ

“ EPpx0|xtq

„

xt ´ αtx0

σt

ȷ

“ EPpx0|xtq rϵpxt, t;x0qs

,

(10)

where ϵpxt, t;x0q “ xt´αtx0

σt
. In simple terms, the ground truth ϵpxt, tq is the expectation of all pos-

sible conditional epsilon ϵpxt, t;x0q,@x0 P D. Instead, previous work on consistency training/tuning
apply the conditional epsilon to approximate the ground truth epsilon, which can be regarded as a
one-shot MCMC approximation. The approximation is formulated as,

r « ϵpxt, t;x0q

ż λr

λt

e´λdλ ` Oppλr ´ λtq
2q (11)
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Similarly, the error comes from two aspects: one is the difference between conditional epsilon
ϵpxt, t;x0q and groudtruth epsilon ϵpxt, tq; the other is the first-order approximation error. Even
though, it is shown by previous work that the final learning objective will converge to the gourd truth
under minor assumptions (e.g, L-Lipschitz continuity) (Song et al., 2023a).

hθpxt, tq “ EPpx0|xtq rϵpxt, t;x0qs

ż λr

λt

e´λdλ ` hθpxr, rq . (12)

However, the variance of one-shot MCMC is large. This causes the consistency training/tuning is not
as stable as distillation methods even though it has a better upper bound.

Summary. In summary, the main performance bottlenecks in improving consistency training/tuning
can be attributed to two factors:

1. Training Variance: This refers to the gap between the conditional epsilon ϵpxt, t;x0q and
the ground truth epsilon ϵpxt, tq. Although, in theory, the conditional epsilon is expected
to match the ground truth epsilon on average, it exhibits higher variance, which introduces
instability and deviations during training.

2. Discretization Error: In the numerical solving of the ODE for consistency training/tuning,
only first-order solvers can be approximated. To push performance to its upper limit, the time
intervals between sampled points, t and r, must be minimized, i.e., dt “ limpt ´ rq Ñ 0.
However, smaller dt results in a longer information propagation process (with large N ). If
the training process lacks stability, error accumulation through bootstrapping may occur,
potentially causing training failure.

4 STABLE CONSISTENCY TUNING

Our method builds upon Easy Consistency Tuning (ECT) (Geng et al., 2024), chosen for its efficiency
in prototyping. Given our analysis of consistency models from the bootstrapping perspective, we
introduce several techniques to enhance performance.

4.1 REDUCING THE TRAINING VARIANCE

Previous research has shown that reducing the variance for diffusion training can lead to improved
training stability and performance (Xu et al., 2023). However, this technique has only been applied
to unconditional generation and diffusion model training. We generalize this technique to both
conditional/unconditional generation and consistency training/tuning for variance reduction. Let c
represent the conditional inputs (e.g., class labels). We begin with

∇xt
logPtpxt | cq “ EPpx0|xt,cq r∇xt

logPtpxt | x0, cqs

“ EPpx0|cq

„

Ppx0 | xt, cq

Ppx0 | cq
∇xt

logPtpxt | x0, cq

ȷ

“ EPpx0|cq

„

Ppxt | x0, cq

Ppxt | cq
∇xt logPtpxt | x0, cq

ȷ

“ EPpx0|cq

„

Ppxt | x0q

Ppxt | cq
∇xt

logPtpxt | x0q

ȷ

«
1

n

i“0,...n´1
ÿ

tx
piq

0 u„Ppx0|cq

Ppxt | x
piq
0 q

Ppxt | cq
∇xt logPtpxt | x

piq
0 q

«
1

n

i“0,...n´1
ÿ

tx
piq

0 u„Ppx0|cq

Ppxt | x
piq
0 q

ř

x
pjq

0 Ptx
piq

0 u
Ppxt | x

pjq

0 , cq
∇xt

logPtpxt | x
piq
0 q

“
1

n

i“0,...n´1
ÿ

tx
piq

0 u„Ppx0|cq

Ppxt | x
piq
0 q

ř

x
pjq

0 Ptx
piq

0 u
Ppxt | x

pjq

0 q
∇xt

logPtpxt | x
piq
0 q

(13)
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𝐱! 𝐱 ⁄𝟓 𝟔 𝐱 ⁄𝟒 𝟔 𝐱 ⁄𝟑 𝟔 𝐱 ⁄𝟐 𝟔 𝐱 ⁄𝟏 𝟔 𝐱)

𝐱! 𝐱 ⁄𝟓 𝟔 𝐱 ⁄𝟒 𝟔 𝐱 ⁄𝟑 𝟔 𝐱 ⁄𝟐 𝟔 𝐱 ⁄𝟏 𝟔 𝐱)

Consistency Model

Multistep (Phased) Consistency Model
Edge-skipping multistep inference.

One-step inference.

ODE solving Bootstrapping Prediction Inference

Figure 2: Phasing the ODE path along the time axis for consistency training. We visualize both
training and inference techniques in discrete form for easier understanding.

The key difference between the variance-reduced score estimation of conditional generation and
unconditional generation is whether the samples utilized for computing the variance-reduced target
are sampled from the conditional distribution Ppx0 | cq or not. In the class-conditional generation,
this means we compute stable targets only within each class cluster. For text-to-image generation, we
might estimate probabilities using CLIP (Radford et al., 2021) text-image similarity, though we leave
this for future study. Therefore, the conditional epsilon estimation adopted in previous consistency
training/tuning can be replaced by our variance-reduced estimation:

ϵpxt, tq “ ´σt∇xt logPtpxtq

«
1

n

i“0,...n´1
ÿ

tx
piq

0 u„Ppx0|cq

Ppxt | x
piq
0 q

ř

x
pjq

0 Ptx
piq

0 u
Ppxt | x

pjq

0 q
p´σt∇xt

logPtpxt | x
piq
0 qq

“
1

n

n´1
ÿ

i“0

Wiϵpxt, t;x
piq
0 qq ,

(14)

where Wi “
Ppxt|x

piq

0 q
ř

x
pjq
0 Ptx

piq
0 u

Ppxt|x
pjq

0 q
is the weight of conditional ϵpxt, t;x

piq
0 q.

4.2 REDUCING THE DISCRETIZATION ERROR

As discussed earlier, to achieve higher performance, we need to minimize ∆t “ pt´ rq. On one hand,
when ∆t is relatively large, the model suffers from increased discretization errors. On the other hand,
when ∆t is too small, it may lead to error accumulation or even training failure. Previous works (Song
et al., 2023a; Song & Dhariwal, 2023; Geng et al., 2024) employ a progressive training strategy,
which has consistently been shown to be effective. The model is initially trained with a relatively
large ∆t, and as training progresses, ∆t is gradually reduced. Although a larger ∆t introduces higher
discretization errors, it allows for faster optimization, enabling the model to quickly learn a coarse
solution. Gradually decreasing ∆t allows the model to learn more fine-grained results, ultimately
improving performance. In the ECT, the training schedule is determined by

t „ LogNormalpPmean, Pstdq, r :“ ReLU
ˆ

1 ´
1

qtiter{du
nptq

˙

t (15)

, where q is to determine the shrinking speed, d is to determine the shrinking frequency, ReLU is
equivalent to maxp¨, 0q, and nptq is a pre-defined monotonic function. We note that it is beneficial to
apply a smoother shrinking process. That is, we reduce both q and d to obtain a smoother shrinking
process than the original ECT settings. This provides our method with a faster and smoother training

6
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process. In addition to the training schedule, training weight is important to balance the training across
different timesteps. We apply the weighting 1{pt ´ rq following previous work (Song & Dhariwal,
2023; Geng et al., 2024). Suppose r “ αt, the weighting can be decomposed into 1

t ˆ 1
p1´αq

. The
weighting scheme has two key effects: First, 1{t assigns higher weights to smaller timesteps, where
uncertainty is lower. Predictions at smaller timesteps serve as teacher models for larger timesteps,
making stable training at these smaller steps crucial. Second, 1{p1 ´ αq ensures that as ∆t decreases,
the weight dynamically increases, preventing gradient vanishing during training. We apply a smooth
term δ ą 0 in the weighting function 1{pt ´ r ` δq ď 1

δ to avoid potential numerical issues and
instability when the ∆t becomes too tiny.

4.3 PHASING THE ODE FOR CONSISTENCY TUNING

Previous works (Heek et al., 2024; Wang et al., 2024a) propose dividing the ODE path along the time
axis into multiple segments during training, enabling consistency models to support deterministic
multi-step sampling with improved performance. We test our method in this scenario and find
that, while this training approach increases the minimum required sampling steps, it improves
the fidelity and stability of the generated results. We apply the Euler solver to achieve multistep
re-parameterization, formulated as:

xs “ Dθpxtq `
s

t
pxt ´ Dθpxtqq, (16)

where Dθ denotes the original consistency model, predicting the ODE solution point x0, and s is the
edge timestep. We propose a new training schedule to adapt to the multistep training setting.

t „ LogNormalpPmean, Pstdq, r :“ ReLU
ˆ

1 ´
1

qtiter{du
nptq

˙

pt ´ sq ` s (17)

4.4 EXPLORING BETTER INFERENCE FOR CONSISTENCY MODEL

Guiding consistency models with a bad version of itself. Previous work (Karras et al., 2024a)
demonstrates that even unconditional diffusion models can benefit from classifier-free guidance (Ho
& Salimans, 2022). It suggests that the unconditional outputs in classifier-free guidance can be
replaced with outputs from a sub-optimal version of the same diffusion model, thus extending the
applicability of classifier-free guidance.

∇xt
logPθpxt|c; tq ` ∇xt

log

„

Pθpxt|c; tq

Pθ‹ pxt|c; tq

ȷω

, (18)

where ω is the guidance strength, θ‹ is a sub-optimal version of θ, and c represents the optional
label conditions. Our empirical investigations confirm that this strategy can be applied to consistency
models, resulting in enhanced sample quality.

Edge-skipping inference for multistep consistency model. While segmenting the ODE path to
train a multistep consistency model can enhance generation quality, it may encounter optimization
challenges, especially around the edge timesteps tsiu

n
i“1 with s1 “ 1 ą ¨ ¨ ¨ ą si ą ¨ ¨ ¨ ą sn “ 0.

For timesteps si´1 ě t ą si, the consistency model learns to predict xsi from xt. However, for
si ě t1 ą si`1, the model learns to predict xsi`1

from xt1 . When t and t1 are very close to si,
denoted as t “ s`

i and t1 “ s´
i , it is apparent that xs`

i
and xs´

i
can be very similar. However, the

model is expected to predict two distinct results (xsi and xsi`1) from very similar inputs (xs`
i

and
xs´

i
).

Neural networks typically follow L-Lipschitz continuity, where small input changes result in small
output changes. This property conflicts with the requirement to produce distinct outputs from similar
inputs near edge timesteps, potentially leading to insufficient training, particularly near s´

i . To
address this, we propose skipping the edge timesteps during multistep sampling. Specifically, even
though we aim for the model to perform sampling through the timesteps

s1 :“ 1 Ñ s2 Ñ s3 Ñ ¨ ¨ ¨ Ñ sn :“ 0 , (19)

we instead achieve multistep sampling via

s1 :“ 1 Ñ ηs2 Ñ ηs3 Ñ ¨ ¨ ¨ Ñ ηsn :“ 0 , (20)
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Figure 3: FID vs Training iterations. SCT has faster convergence speed and better performance upper
bound than ECT.

where η ą 0 is a scaling factor. When η is set to 1, the process reverts to normal multistep sampling.
This method works because the predictions of xsi and xηsi are close when η is near 1, allowing for a
tolerable degree of approximation error. Fig. 2 illustrates this concept with a discrete example. The
model is designed to sample via the sequence x1 Ñ x3{6 Ñ x0; however, it instead samples through
the sequence x1 Ñ x2{6 Ñ x0.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Evaluation Benchmarks. Following the evaluation protocols of iCT (Song & Dhariwal, 2023) and
ECT (Geng et al., 2024), we validate the effectiveness of SCT on CIFAR-10 (unconditional and
conditional) (Krizhevsky et al., 2009) and ImageNet-64 (conditional) (Deng et al., 2009). Performance
is measured using Frechet Inception Distance (FID, lower is better) (Heusel et al., 2017) consistent
with recent studies (Geng et al., 2024; Karras et al., 2024b).

Compared baselines. We compare our method against accelerated samplers (Lu et al., 2022a; Zhao
et al., 2024), state-of-the-art diffusion-based methods (Ho et al., 2020a; Song & Ermon, 2019; 2020;
Karras et al., 2022b), distillation methods (Zhou et al., 2024; Salimans & Ho, 2022a), alongside
consistency training and tuning approaches. Among these models, consistency training and tuning
methods serve as key baselines, including CT (LIPIPS) (Song et al., 2023a), iCT (Song & Dhariwal,
2023), ECT (Geng et al., 2024), and MCM (CT) (Heek et al., 2024). CT introduces the first
consistency training algorithm, utilizing LIPIPS loss to improve FID performance. iCT presents an
improved training strategy over CT, making the performance of consistency training comparable
to state-of-the-art diffusion models for the first time. MCM (CT) proposes segmenting the ODE
path for consistency training, while ECT introduces the concept of consistency tuning along with a
continuous-time training strategy, achieving notable results with significantly reduced training costs.

Model Architectures and Training Configurations From a model perspective, iCT is based on the
ADM (Dhariwal & Nichol, 2021b), ECT is built on EDM2 (Karras et al., 2024b), and MCM follows
the UViTs of Simple Diffusion (Hoogeboom et al., 2023). The model size of ECT is similar to that of
iCT, while MCM does not explicitly specify the model size. The iCT model is randomly initialized,
whereas both ECT and MCM use pretrained diffusion models for initialization. In terms of training
costs, iCT uses a batch size of 4096 across 800,000 iterations, MCM employs a batch size of 2048 for
200,000 iterations, and ECT utilizes a batch size of 128 for 100,000 iterations. SCT follows ECT’s
model architecture and training configuration.

5.2 RESULTS AND ANALYSIS

Training efficiency and efficacy. In Fig. 3b, we plot 1-step FID and 2-step FID for SCT and ECT
along the number of training epochs, under the same training configuration. From the figure, we
observe that SCT significantly improves convergence speed compared to ECT, demonstrating the

8
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step sampling.

efficiency and efficacy of SCT training. Additionally, the performance comparisons in Tables 2 and 3
also show that SCT outperforms ECT across different settings.

Quantitative evaluation. We present results in Table 2 and Table 3. Our approach consistently
outperforms ECT across various scenarios, achieving results comparable to advanced distillation
strategies and diffusion/score-based models.
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Figure 6: The effectiveness of classifier-free guid-
ance on consistency models.

The effectiveness of training variance reduc-
tion. It is worth noting that SCT and ECT em-
ploy different progressive training schedules. To
exclude this effect, we adopt ECT’s fixed train-
ing schedule, in which the 2-step FID surpasses
Consistency Distillation within a single A100
GPU hour. We use ∆t “ t{256 as a fixed par-
tition, with a batch size of 128, over 16k iter-
ations on CIFAR-10, while keeping all other
settings unchanged. For SCT models on CIFAR-
10, we calculate the variance-reduced target only
within the training batch, which is also the de-
fault setting of all our experiments on CIFAR-
10. To further showcase the effectiveness of the
variance-reduced target, we use all 50,000 train-
ing samples as a reference to compute the target. Although more reference samples are used, they do
not directly influence the model’s computations; they are solely utilized for calculating the training
target. Fig. 4 presents a comparison of these three methods, showing that our approach achieves
notable improvements in both 1-step and 2-step FID. Notably, when using the entire sample set as the
reference batch, the improvement becomes more pronounced, with the 1-step FID dropping from
5.61 to 4.56.

The Effectiveness of CFG. Inspired by prior work Karras et al. (2024a), we adopt the outputs of the
sub-optimal version of the model as the negative part in classifier-free guidance (CFG). We set the
CFG strength as 1.2 and the sub-optimal version as the ema weight with half training iterations by
default. We investigate the influence of the two factors on SCT-S models on ImageNet. As illustrated
in Fig. 6, an appropriate CFG setting can significantly enhance the quality of generation.

Edge-skipping Multistep Sampling. To demonstrate the effectiveness of our method, we record the
4-step FID curve at various training stages, utilizing different η values for edge-skipping multistep
inference. We find that a smaller η at the beginning of training yields superior performance. As
training progresses, the model’s estimates of multi-stage results become increasingly accurate, and
larger η values gradually enhance performance. However, as previously analyzed, the multistep model
struggles to achieve perfect multistep training, leading to better overall performance for η “ 0.9
compared to η “ 1.0 (the default method).

Sample Quality of SCT. We showcase the generation results of SCT models in Fig. 7, Fig. 8, Fig. 9,
Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, and Fig. 15. The majority of generated samples show
favorable low-frequency compositions and high-frequency details.
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Table 2: Comparing the quality of samples on
CIFAR-10.

METHOD NFE (Ó) FID (Ó)

Fast samplers & distillation for diffusion models
DDIM (Song et al., 2020b) 10 13.36
DPM-solver-fast (Lu et al., 2022b) 10 4.70
3-DEIS (Zhang & Chen, 2022) 10 4.17
UniPC (Zhao et al., 2024) 10 3.87
Knowledge Distillation (Luhman & Luhman, 2021) 1 9.36
DFNO (LPIPS) (Zheng et al., 2022) 1 3.78
2-Rectified Flow (+distill) (Liu et al., 2022) 1 4.85
TRACT (Berthelot et al., 2023) 1 3.78

2 3.32
Diff-Instruct (Luo et al., 2023) 1 4.53
PD (Salimans & Ho, 2022b) 1 8.34

2 5.58
CTM (Kim et al., 2023) 1 5.19

18 3.00
CTM (+GAN +CRJ) 1 1.98

2 1.87
SiD (α “ 1.0) (Zhou et al., 2024) 1 2.03
SiD (α “ 1.2) (Zhou et al., 2024) 1 1.98
CD (LPIPS) (Song et al., 2023b) 1 3.55

2 2.93
Direct Generation
Score SDE (Song et al., 2021) 2000 2.38
Score SDE (deep) (Song et al., 2021) 2000 2.20
DDPM (Ho et al., 2020b) 1000 3.17
LSGM (Vahdat et al., 2021) 147 2.10
PFGM (Xu et al., 2022) 110 2.35
EDM (Karras et al., 2022a) 35 2.04
EDM-G++ (Kim et al., 2022) 35 1.77
NVAE (Vahdat & Kautz, 2020) 1 23.5
Glow (Kingma & Dhariwal, 2018) 1 48.9
Residual Flow (Chen et al., 2019) 1
BigGAN (Brock et al., 2019) 1 14.7
StyleGAN2 (Karras et al., 2020b) 1 8.32
StyleGAN2-ADA (Karras et al., 2020a) 1 2.92
Consistency Training/Tuning
CT (LPIPS) (Song et al., 2023b) 1 8.70

2 5.83
iCT (Song & Dhariwal, 2023) 1 2.83

2 2.46
iCT-deep (Song & Dhariwal, 2023) 1 2.51

2 2.24
ECT (Geng et al., 2024) 1 3.78

2 2.13
SCT 1 3.11 (2.98)

2 2.05 (2.05)
SCT‹ 1 2.92 (2.78)

2 2.02 (1.94)
SCT (Phased) 4 1.95

8 1.86
Cond-SCT 1 3.03 (2.94)

2 1.88 (1.86)
Cond-SCT‹ 1 2.88 (2.82)

2 1.87 (1.84)

Table 3: Comparing the quality of class-
conditional samples on ImageNet-64.

METHOD NFE (Ó) FID (Ó)

Fast samplers & distillation for diffusion models
DDIM (Song et al., 2020b) 50 13.7

10 18.3
DPM solver (Lu et al., 2022b) 10 7.93

20 3.42
DEIS (Zhang & Chen, 2022) 10 6.65

20 3.10
DFNO (LPIPS) (Zheng et al., 2022) 1 7.83
TRACT (Berthelot et al., 2023) 1 7.43

2 4.97
BOOT (Gu et al., 2023) 1 16.3
Diff-Instruct (Luo et al., 2023) 1 5.57
PD (Salimans & Ho, 2022b) 1 15.39

2 8.95
4 6.77

CTM (+GAN + CRJ) (Kim et al., 2023) 1 1.92
SID (α “ 1.0) (Zhou et al., 2024) 1 2.03
PD (LPIPS) (Song et al., 2023b) 1 7.88

2 5.74
4 4.92

CD (LPIPS) (Song et al., 2023b) 1 6.20
2 4.70
3 4.32

Direct Generation
RIN (Jabri et al., 2022) 1000 1.23
DDPM (Ho et al., 2020b) 250 11.0
iDDPM (Nichol & Dhariwal, 2021) 250 2.92
ADM (Dhariwal & Nichol, 2021a) 250 2.07
EDM (Karras et al., 2022a) 511 1.36
EDM˚ (Heun) (Karras et al., 2022a) 79 2.44
BigGAN-deep (Brock et al., 2019) 1 4.06
Consistency Training/Tuning
CT (LPIPS) (Song et al., 2023b) 1 13.0

2 11.1
iCT (Song & Dhariwal, 2023) 1 4.02

2 3.20
iCT-deep (Song & Dhariwal, 2023) 1 3.25

2 2.77
MCM (CT) (Heek et al., 2024) 1 7.2

2 2.7
4 1.8

ECT-S (Geng et al., 2024) 1 5.51
2 3.18

ECT-M (Geng et al., 2024) 1 3.67
2 2.35

ECT-XL (Geng et al., 2024) 1 3.35
2 1.96

SCT-S 1 5.10 (4.59)
2 3.05 (2.98)
4 2.51 (2.43)

SCT-M 1 3.30 (3.06)
2 2.13 (2.09)
4 1.83 (1.78)

SCT-M‹ 1 2.42 (2.23)
2 1.55 (1.47)

Results for existing methods are taken from a previous papers. Results of SCT on CIFAR-10 without ‹ are trained with batch size 128 for 200k
iterations. Results of SCT on CIFAR-10 with ‹ are trained with batch size 512 for 300k iterations. Results of SCT on ImageNet-64 without ‹

are trained with batch size 128 for 100k iterations. Results of SCT on ImageNet-64 with ‹ are trained with batch size 1024 for 100k iterations.
The metrics inside the parentheses were obtained using CFG. CTM applies classifier rejection sampling (CRJ) for better FID, which needs to
generate more samples than other methods.

6 CONCLUSION

In this work, we propose Stable Consistency Tuning (SCT), a novel approach that unifies and improves
consistency models. By addressing the challenges in training variance and discretization errors,
SCT achieves faster convergence and offers insights for further improvements. Our experiments
demonstrate state-of-the-art 1-step and few-step generative performance on both CIFAR-10 and
ImageNet-64ˆ64, offering a new perspective for future studies on consistency models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao,
Shilong Liu, Yaole Wang, and Jun Zhu. Vidu: a highly consistent, dynamic and skilled text-to-
video generator with diffusion models. arXiv preprint arXiv:2405.04233, 2024. 1

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023. 10

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023. 1

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22563–22575, 2023. 1

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=B1xsqj09Fm. 10

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators. 1

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv preprint
arXiv:2302.03660, 2023. 1

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows
for invertible generative modeling. In Advances in Neural Information Processing Systems, pp.
9916–9926, 2019. 10

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009. 8

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021a. 10

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. NeurIPS,
34:8780–8794, 2021b. 1, 8

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. Advances in Neural Information Processing Systems, 36,
2024. 1

Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
diffusion models. arXiv preprint arXiv:2405.10314, 2024. 1

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J. Zico Kolter. Consistency models
made easy, 2024. URL https://arxiv.org/abs/2406.14548. 1, 5, 6, 7, 8, 10

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020. 1

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. BOOT: Data-
free distillation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on
Structured Probabilistic Inference tz&u Generative Modeling, 2023. 10

11

https://openreview.net/forum?id=B1xsqj09Fm
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://arxiv.org/abs/2406.14548


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv preprint
arXiv:2403.06807, 2024. 7, 8, 10, 1

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017. 8

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022. 7

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020a. 1, 8

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Advances in
Neural Information Processing Systems, 33, 2020b. 10

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. arXiv preprint arXiv:2301.11093, 2023. 8

Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972, 2022. 10

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104–12114, 2020a. 10

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2020b. 10

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proc. NeurIPS, 2022a. 10

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. edm. NeurIPS, 35:26565–26577, 2022b. 1,
8

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself. arXiv preprint arXiv:2406.02507, 2024a. 7,
9

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024b. 1, 8

Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon. Refining gen-
erative process with discriminator guidance in score-based diffusion models. arXiv preprint
arXiv:2211.17091, 2022. 10

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023. 10, 1

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021a. 2

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. On density estimation with diffusion
models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), NeurIPS, 2021b.
URL https://openreview.net/forum?id=2LdBqxc1Yv. 1

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in Neural Information Processing Systems 31, pp. 10215–10224, 2018. 10

Fei Kong, Jinhao Duan, Lichao Sun, Hao Cheng, Renjing Xu, Hengtao Shen, Xiaofeng Zhu, Xi-
aoshuang Shi, and Kaidi Xu. Act-diffusion: Efficient adversarial consistency training for one-step
diffusion models, 2024. 1

12

https://openreview.net/forum?id=2LdBqxc1Yv


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models, 2024. 1

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009. 8

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024. 1

Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, and Karsten Kreis. Align your
gaussians: Text-to-4d with dynamic 3d gaussians and composed diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8576–8588, 2024.
1

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022. 2, 1

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022. 10

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. NeurIPS, 35:5775–5787,
2022a. 3, 8, 1

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022b. 10

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021. 10

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models. arXiv
preprint arXiv:2305.18455, 2023. 10

Xiaofeng Mao, Zhengkai Jiang, Fu-Yun Wang, Wenbing Zhu, Jiangning Zhang, Hao Chen, Mingmin
Chi, and Yabiao Wang. Osv: One step is enough for high-quality image to video generation. arXiv
preprint arXiv:2409.11367, 2024. 1

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In CVPR, pp. 14297–14306, 2023. 1

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021. 10

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, pp.
4195–4205, October 2023. 1

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023. 1

Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy:
Accelerated visuomotor policies via consistency distillation, 2024. 1

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICLR, pp. 8748–8763. PMLR, 2021. 6

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022a. 1

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022b.
1

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022a. 8, 1

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022b. URL https://openreview.
net/forum?id=TIdIXIpzhoI. 10

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Unlocking the
power of gans for fast large-scale text-to-image synthesis. In ICLR, pp. 30105–30118. PMLR,
2023a. 1

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023b. 1

Xiaoyu Shi, Zhaoyang Huang, Fu-Yun Wang, Weikang Bian, Dasong Li, Yi Zhang, Manyuan Zhang,
Ka Chun Cheung, Simon See, Hongwei Qin, et al. Motion-i2v: Consistent and controllable
image-to-video generation with explicit motion modeling. In ACM SIGGRAPH 2024 Conference
Papers, pp. 1–11, 2024. 1

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
diffusion for 3d generation. arXiv preprint arXiv:2308.16512, 2023. 1

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. arXiv preprint arXiv:2209.14792, 2022. 1

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a. 1, 4

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020b. 10

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023. 1, 6, 7, 8, 10

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11918–11930, 2019. 1, 8

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020. 8

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS. 3, 10, 1

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023a. 1, 3, 5, 6, 8

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023b. 10

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018. 2

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Advances in
neural information processing systems, 2020. 10

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021. 10

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23:1661–1674, 2011. URL https://api.semanticscholar.org/CorpusID:
5560643. 2

14

https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://api.semanticscholar.org/CorpusID:5560643
https://api.semanticscholar.org/CorpusID:5560643


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency model.
arXiv preprint arXiv:2405.18407, 2024a. 7, 1

Fu-Yun Wang, Zhaoyang Huang, Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, and Hongsheng
Li. Animatelcm: Accelerating the animation of personalized diffusion models and adapters with
decoupled consistency learning. arXiv preprint arXiv:2402.00769, 2024b. 1

Yilun Xu, Ziming Liu, Max Tegmark, and Tommi S. Jaakkola. Poisson flow generative models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=voV_TRqcWh. 10

Yilun Xu, Shangyuan Tong, and Tommi Jaakkola. Stable target field for reduced variance score
estimation in diffusion models. arXiv preprint arXiv:2302.00670, 2023. 2, 5

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022. 10

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36, 2024. 8, 10

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. arXiv preprint arXiv:2211.13449, 2022. 10

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024. 8, 10

15

https://openreview.net/forum?id=voV_TRqcWh
https://openreview.net/forum?id=voV_TRqcWh


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

I RELATED WORKS

Diffusion Models. Diffusion models (Ho et al., 2020a; Song et al., 2021; Karras et al., 2022b) have
emerged as leading foundational models in image synthesis. Recent studies have developed their
theoretical foundations (Lipman et al., 2022; Chen & Lipman, 2023; Song et al., 2021; Kingma et al.,
2021b) and sought to expand and improve the sampling and design space of these models (Song
et al., 2020a; Karras et al., 2022b; Kingma et al., 2021b). Other research has explored architectural
innovations for diffusion models (Dhariwal & Nichol, 2021b; Peebles & Xie, 2023), while some
have focused on scaling these models for text-conditioned image synthesis and various real-world
applications (Shi et al., 2024; Rombach et al., 2022b; Podell et al., 2023). Efforts to accelerate the
sampling process include approaches at the scheduler level (Karras et al., 2022b; Lu et al., 2022a;
Song et al., 2020a) and the training level (Meng et al., 2023; Song et al., 2023a), with the former
often aiming to improve the approximation of the probability flow ODE (Lu et al., 2022a; Song et al.,
2020a). The latter primarily involves distillation techniques (Meng et al., 2023; Salimans & Ho,
2022a) or initializing diffusion model weights for GAN training (Sauer et al., 2023b; Lin et al., 2024).

Consistency Models. Consistency models are an emerging class of generative models (Song
et al., 2023a; Song & Dhariwal, 2023) for fast high-quality generation. It can be trained through
either consistency distillation or consistency training. Advanced methods have demonstrated that
consistency training can surpass diffusion model training in performance (Song & Dhariwal, 2023;
Geng et al., 2024). Several studies propose different strategies for segmenting the ODE (Kim et al.,
2023; Heek et al., 2024; Wang et al., 2024a), while others explore combining consistency training
with GANs to enhance training efficiency (Kong et al., 2024). Additionally, the consistency model
framework has been applied to video generation (Wang et al., 2024b; Mao et al., 2024), language
modeling (Kou et al., 2024) and policy learning (Prasad et al., 2024).

II LIMITATIONS

The work is limited to traditional benchmarks with CIFAR-10 and ImageNet-64 to validate the
effectiveness of unconditional generation and class-conditional generation. However, previous works,
including iCT (Song & Dhariwal, 2023) and ECT (Geng et al., 2024), only validate their effectiveness
on these two benchmarks. We hope future research explores consistency training/tuning at larger
scales such as text-to-image generation.

III QUALITATIVE RESULTS
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Figure 7: 1-step samples from class-conditional SCT trained on CIFAR-10. Each row corresponds to
a different class.
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Figure 8: 2-step samples from class-conditional SCT trained on CIFAR-10. Each row corresponds to
a different class.
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Figure 9: 1-step samples from unconditional SCT trained on CIFAR-10.

4



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: 2-step samples from unconditional SCT trained on CIFAR-10.
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Figure 11: 4-step samples from unconditional SCT trained on CIFAR-10.
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Figure 12: 8-step samples from unconditional SCT trained on CIFAR-10.
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Figure 13: 1-step samples from class-conditional SCT trained on ImageNet-64 (FID 2.23). Each row
corresponds to a different class.
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Figure 14: 2-step samples from class-conditional SCT trained on ImageNet-64 (FID 1.47). Each row
corresponds to a different class.
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Figure 15: 4-step samples from class-conditional SCT trained on ImageNet-64 (FID 1.78). Each row
corresponds to a different class.
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