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ABSTRACT

Diffusion models achieve superior generation quality but suffer from slow genera-
tion speed due to the iterative nature of denoising. In contrast, consistency models,
a new generative family, achieve competitive performance with significantly faster
sampling. These models are trained either through consistency distillation, which
leverages pretrained diffusion models, or consistency training/tuning directly from
raw data. In this work, we propose a novel framework for understanding con-
sistency models by modeling the denoising process of the diffusion model as a
Markov Decision Process (MDP) and framing consistency model training as the
value estimation through Temporal Difference (TD) Learning. More importantly,
this framework allows us to analyze the limitations of current consistency train-
ing/tuning strategies. Built upon Easy Consistency Tuning (ECT), we propose
Stable Consistency Tuning (SCT), which incorporates variance-reduced learning
using the score identity. SCT leads to significant performance improvements on
benchmarks such as CIFAR-10 and ImageNet-64. On ImageNet-64, SCT achieves
1-step FID 2.42 and 2-step FID 1.55, a new SoTA for consistency models.

1 INTRODUCTION

Diffusion models have significantly advanced the field of visual generation, delivering state-of-the-art
performance in images (Dhariwal & Nichol, 2021b; Rombach et al., 2022a; Song & Ermon, 2019;
Karras et al., 2022b; 2024b), videos (Shi et al., 2024; Blattmann et al., 2023; Singer et al., 2022;
Brooks et al., 2024; Bao et al., 2024), 3D (Gao et al., 2024; Shi et al., 2023), and 4D data (Ling et al.,
2024). The core principle of diffusion models is the iterative transformation of pure noise into clean
samples. However, this iterative nature comes with a tradeoff: while it enables superior generation
quality and training stability compared to traditional methods (Goodfellow et al., 2020; Sauer et al.,
2023a), it requires substantial computational resources and longer sampling time (Song et al., 2020a;
Ho et al., 2020a). This limitation becomes a substantial bottleneck when generating high-dimensional
data, such as high-resolution images and videos, where the increased generation cost slows practical
application.

Consistency models (Song et al., 2023a), an emerging generative family, largely address these
challenges by enabling high-quality, one-step generation without adversarial training. Recent stud-
ies (Song & Dhariwal, 2023; Geng et al., 2024) have shown that one-step and two-step performance
of consistency models can rival that of leading diffusion models, which typically require dozens or
even hundreds of inference steps, underscoring the tremendous potential of consistency models. The
primary training objective of consistency models is to enforce the self-consistency condition (Song
et al., 2023a), where predictions for any two points along the same trajectory of the probability
flow ODE (PF-ODE) converge to the same solution. To achieve this, consistency models adopt two
training methods: consistency distillation (CD) and consistency training/tuning (CT). Consistency
distillation leverages a frozen pretrained diffusion model to simulate the PF-ODE, while consistency
training/tuning directly learns from real data with no need for extra teacher models.

The motivation of this paper is to propose a novel understanding of consistency models from the
perspective of bootstrapping. Specifically, we first frame the numerical solving process of the PF-
ODE (i.e., the reverse diffusion process) as a Markov Decision Process (MDP), also indicated in
prior works (Black et al., 2023; Fan et al., 2024). The initial state of the MDP is randomly sampled
from Gaussian. The intermediate state consists of the denoised sample x; and the corresponding
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Figure 1: Stable consistency tuning (SCT) with variance reduced training target. SCT provides a
unifying perspective to understand different training strategies of consistency models.

conditional information, including the timestep ¢. The policy function of the MDP corresponds to
the action of applying the ODE solver to perform single-step denoising, resulting in the transition
to the new state. Building on this MDP, we show that the training of consistency models, including
consistency distillation, consistency training/tuning, and their variants, can be interpreted as Temporal
difference (TD) learning (Sutton & Barto, 2018), with specific reward and value functions aligned
with the PF-ODE. From this viewpoint, we can derive, as we will elaborate later, that the key
difference between consistency distillation and consistency learning lies in how the ground-truth
reward is estimated. The difference leads to distinct behaviors: Consistency distillation has a lower
performance upper bound (being limited by the performance of the pretrained diffusion model) but
exhibits lower variance and greater training stability. Conversely, consistency training/tuning offers a
higher performance upper bound but suffers from a larger variance in reward estimation, which can
lead to unstable training. Additionally, for both CD and CT, smaller ODE steps (i.e., At =t — r) can
improve the performance ceiling but complicate the optimization.

Building upon the foundation of Easy Consistency Tuning (ECT), we introduce Stable Consistency
Tuning (SCT), which incorporates several enhancements for variance reduction and faster conver-
gence: 1) We introduce a variance-reduced training target for consistency training/tuning via the
score identity (Vincent, 2011; Xu et al., 2023), which provides a better approximation of the ground
truth score. This helps improve training stability and facilitates better performance and convergence.
Additionally, we show that variance-reduced estimation can be applied to conditional generation
settings for the first time. 2) Our method adopts a smoother progressive training schedule that
facilitates training dynamics and reduces discretization error. 3) We extend the scope of ECT to
multistep settings, allowing for deterministic multistep sampling. Additionally, we investigate the
potential capacity and optimization challenges of multistep consistency models and propose an
edge-skipping multistep inference strategy to improve the performance of multistep consistency
models. 4) We validate the effectiveness of classifier-free guidance in consistency models, where
generation is guided by a sub-optimal version of the consistency model itself.

2 PRELIMINARIES ON CONSISTENCY MODELS

In this section, we present the essential background on consistency models to ensure a more self-
contained explanation.

Diffusion Models define a forward stochastic process with the intermediate distributions P;(x;|x)
conditioned on the initial data xg ~ Py (Lipman et al., 2022; Kingma et al., 2021a). The intermediate
states follow a general form x; = a;xg + o€ with x; ~ € ~ A(0, I). The forward process can be
described with the following stochastic differential equation (SDE):

dx; = fixodt + gidwy, (1
2
where wy is the standard Wiener process, f; = dli’igtat, and g? = d;; — 2d1‘(’§“t 2. For the above

forward SDE, a remarkable property is that there exists a reverse-time ODE trajectory for data
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sampling, which is termed as probability flow ODE (PF-ODE) (Song et al., 2023a) That is,

2
dx = [ fi— %vx log ]P’t(x)] dt. )

It allows for data sampling without introducing additional stochasticity while satisfying the pre-
defined marginal distributions P (x;) = Ep(x,|x,)[P(X¢ | X0)]. In diffusion models, a neural network
¢ is typically trained to approximate the score function s (x¢,t) ~ VxlogP:(x;), enabling us
to apply numerical solver to approximately solving the PF-ODE for sampling. Many works apply
epsilon-prediction €4 (xy,t) = —0,Vx log Py (x;) form for training.

Consistency Models propose a training approach that teaches the model to directly predict the
solution point of the PF-ODE, thus enabling 1-step generation. Specifically, for a given trajectory
{Xt }te[0,1]> the consistency model fog(x;, 1) is trained to satistfy fo(x¢,t) = X, Vt € [0, 1], where
X is the solution point on the same PF-ODE with x;. The training strategies of consistency models
can be categorized into consistency distillation and consistency training. But they share the same

training loss design,
d(f@(xtat)mf@* (X’r'aT)) ) (3)

where d(-, -) is the loss function, 0 < r < t < 1, 8~ is the EMA weight of € or simply set to 0
with gradient disabled for backpropagation. Both x; and x, should be approximately on the same
PF-ODE trajectory.

3 UNDERSTANDING CONSISTENCY MODELS

Consistency model as bootstrapping. For a general form of diffusion x; = a;xg + o€, there exists
an exact solution form of PF-ODE as shown in previous work (Song et al., 2021; Lu et al., 2022a),

« As
Xy = —X; — asf e_)‘e(xtth)d)\, @)
(673 e
where A\; = In(ay/0y), ty is the reverse function of ¢y, and €(x¢, 1) = —oy, V1og Py, (x4, ) is the

scaled score function. Consistency models aim to learn a x( predictor with only the information from
x¢, Vt € [0,1]. The left term is already known with x;, and thereby we can write the consistency
model-based x( prediction as

R 1
Xo(x¢,t;0) = PR he(x¢,1), (5)
t
where s is set to 0 with oy = 1, 0 is the model weights, and hg is applied to approximate the

weighted integral of € from ¢ to s = 0.

The loss of consistency models penalize the x( prediction distance between x; and x, at adjacent
timesteps,

Ko (x¢, 1, 0) < %o(x,,7507), (6)

where 0 < r < t and 8~ is the EMA weighg of 8. Therefore, we have the following learning target

1 a1
—X¢ — he(xta t) — —Xp — hG_ (er 7’) (7)
(673 Qg
. . . Ar
It is noting that x,, = 2x; — a, SM e

equation and have

€(x¢,,tx)dA\, and hence we replace the x,. in the above

fi
ho(xi,t) <=7+ ho- (x,,7), ®)
where r = S;\{ e e(x,,t\)dA. The above equation is a Bellman Equation. hg(x;, ) is the value
estimation at state x;, hg— (x,, ) is the value estimation at state x,., and r is the step ‘reward’.

Standard formulation. It is known that the diffusion generation process can be modeled as a Markov
Decision Process (MDP), and here we show that the training of consistency models can be viewed
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Table 1: The definition of symbols in the value estimation of the PF-ODE equivalent MDP.

MDP symbols Definition

Stn, (tN—n>Xtn_,)

At Xty no1 1= P(Xty_, tN—nsIN—n—1)
Po(so) (tx, N (0,1))

P(st, o [ stayae,)  (Oty_iiOxey )

m(ax, | st,) -

R(sy,,au,) Sifg::—l e Me(xs,, tx)dA

Vo (St") hg (XtN,,,L ) thn)

as a value estimation learning process, which is also known as Temporal Difference Learning (TD-
Learning), in the equivalent MDP. We show the standard formulation in Table 1. In Table 1, s,
and a;, are the state and action at timestep ¢,, %) and P are the initial state distribution and state
transition distribution, ®(x;,_, ,tN—n,tN—n—1) is the ODE solver, 7 is the policy following the
PF-ODE, reward R is equivalent to the r defined above and value function Vjp is corresponding to hg.
7 is the Dirac distribution ¢ due to the deterministic nature of PF-ODE.

From this perspective, we can have a unifying understanding of consistency model variants and their
behaviors. Fig. 1 provides a straightforward illustration of our insight. One of the most important
factors of the consistency model performance is how we estimate 7 in the equation.

Understanding consistency distillation. For consistency distillation, the approximation of » is
depent on the pretrained diffusion model €4 and the ODE solver applied. For instance, if the
first-order DDIM (Song et al., 2020a) is applied, then the approximation is formulated as,

A
ra e¢(xt,t)f

At

Ce A+ O — A)?). ©)

We can observe that the error comes from two aspects: one is the prediction error between the pre-
trained diffusion model €4 (%, t) and the ground truth e(x, t); the other is the first-order assumption
that e(xy, , t\) ~ €(xy,t), Vi € [t,r]. The first error indicates a better pretrained diffusion model
can lead to better performance of consistency distillation. The second error indicates that the distance
between ¢ and s should be small eough to eliminate errors caused by low-order approximation. This
perspective also connects the n-step TD algorithm with the consistency distllation. The n-step TD is
equivalent to apply multistep (n-step) ODE solver to compute the x,- from x;.

Understanding consistency training/tuning. For consistency training/tuning, the approximation of
r is achieved through approximating the groudtruth e(x;, t) with the conditional €(x, t; X ), where
xg is sampled from the dataset D and x; = a;xg + o€ with € ~ A(0,I). It is konwn that the
groudtruth €(xy, t) is equivalent to

€(x¢,t) = —0¢Vx, log Pr(xy)
= —01Ep, (xo|x,) [Vx, log P(x; | x0)]
Xt — X Xt — X
_O-t]E]P’(xo|xt) |:—1€2t0:| = EIP(x0|xt) |:t750:| = ]E]P’(x(,\xt) [G(Xtat; X())]
o} Ot
(10)

Y

where €(x¢, t;x0) = =%, In simple terms, the ground truth €(x, t) is the expectation of all pos-
sible conditional epsilon €(xy, t; Xq), Vxo € D. Instead, previous work on consistency training/tuning
apply the conditional epsilon to approximate the ground truth epsilon, which can be regarded as a
one-shot MCMC approximation. The approximation is formulated as,

Ar

v~ e(xe, £ x0) f A+ O((Ar — A0)?) (11

At
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Similarly, the error comes from two aspects: one is the difference between conditional epsilon
€(x¢,t;X0) and groudtruth epsilon €(x;, t); the other is the first-order approximation error. Even
though, it is shown by previous work that the final learning objective will converge to the gourd truth
under minor assumptions (e.g, L-Lipschitz continuity) (Song et al., 2023a).

Ar
ho(xt,t) = Ep(x,|x,) [€(%t, 15 %0)] J e M\ + he(x,,7). (12)
At

However, the variance of one-shot MCMC is large. This causes the consistency training/tuning is not
as stable as distillation methods even though it has a better upper bound.

Summary. In summary, the main performance bottlenecks in improving consistency training/tuning
can be attributed to two factors:

1. Training Variance: This refers to the gap between the conditional epsilon e(x;, ¢; X) and
the ground truth epsilon €(x;, t). Although, in theory, the conditional epsilon is expected
to match the ground truth epsilon on average, it exhibits higher variance, which introduces
instability and deviations during training.

2. Discretization Error: In the numerical solving of the ODE for consistency training/tuning,
only first-order solvers can be approximated. To push performance to its upper limit, the time
intervals between sampled points, ¢ and 7, must be minimized, i.e., d¢ = lim(¢t — r) — 0.
However, smaller d¢ results in a longer information propagation process (with large V). If
the training process lacks stability, error accumulation through bootstrapping may occur,
potentially causing training failure.

4 STABLE CONSISTENCY TUNING

Our method builds upon Easy Consistency Tuning (ECT) (Geng et al., 2024), chosen for its efficiency
in prototyping. Given our analysis of consistency models from the bootstrapping perspective, we
introduce several techniques to enhance performance.

4.1 REDUCING THE TRAINING VARIANCE

Previous research has shown that reducing the variance for diffusion training can lead to improved
training stability and performance (Xu et al., 2023). However, this technique has only been applied
to unconditional generation and diffusion model training. We generalize this technique to both
conditional/unconditional generation and consistency training/tuning for variance reduction. Let ¢
represent the conditional inputs (e.g., class labels). We begin with

Vi, logPi(x; | €) = Ep(xox;,c) [V, log Pi(x; | x0,€)]

[P(x0 | x¢,€)

= Ep(xy|c) Plxgc) |tc) Vi, log Py (x; | %o, ¢)
[ P(x; | x0,C)

= EIP(xo\C) mvxt log P, (Xt ‘ X0, C)
[ P(x; | Xo)

= Ep(xo|e) | P [ o) Vi, log P (x; | x0)

L1 TR ROu ) (13

logP (@)
P(xt|c) \Y ¢+ 108 t(xt‘XO )

n )
{x5)}~P(x0]c)

2

1=0,...n—1 (@)
1 P i
= s %0 ) 57— Vi, log P (x¢ | x{)
" {x{P}~P(x0]c) Zxéj)e{xéi)} P [x57,)

i=0,...n—1
DY
n

() <Plrole) Tt BOGE 135

P (1) i
(x¢ | x57) Vi, log Py (x; | X(()))
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Figure 2: Phasing the ODE path along the time axis for consistency training. We visualize both
training and inference techniques in discrete form for easier understanding.

The key difference between the variance-reduced score estimation of conditional generation and
unconditional generation is whether the samples utilized for computing the variance-reduced target
are sampled from the conditional distribution P(x¢ | ¢) or not. In the class-conditional generation,
this means we compute stable targets only within each class cluster. For text-to-image generation, we
might estimate probabilities using CLIP (Radford et al., 2021) text-image similarity, though we leave
this for future study. Therefore, the conditional epsilon estimation adopted in previous consistency
training/tuning can be replaced by our variance-reduced estimation:

€(x¢,t) = —0¢Vy, log P (x¢)

1 1=0,...n—1 P () )

S B IX0) (T, log B [ x5)
(<) ~Pxole) 2xPetn?y F Xt | X6

Q

(14)

n

1 n—1 @)
Z Wie(xe, t;x57))
i=0

P(xe|x”)

where W, = .
)
Zx[()j)e{x[()i)}P(xtlx((jj )

is the weight of conditional €(x, ¢; x((f)).

4.2 REDUCING THE DISCRETIZATION ERROR

As discussed earlier, to achieve higher performance, we need to minimize At = (¢ —r). On one hand,
when At is relatively large, the model suffers from increased discretization errors. On the other hand,
when At is too small, it may lead to error accumulation or even training failure. Previous works (Song
et al., 2023a; Song & Dhariwal, 2023; Geng et al., 2024) employ a progressive training strategy,
which has consistently been shown to be effective. The model is initially trained with a relatively
large At, and as training progresses, At is gradually reduced. Although a larger At introduces higher
discretization errors, it allows for faster optimization, enabling the model to quickly learn a coarse
solution. Gradually decreasing At allows the model to learn more fine-grained results, ultimately
improving performance. In the ECT, the training schedule is determined by

1
t ~ LogNormal(Pyean, Pya), 7:=ReLU|1— ———=n(t) |t (15)
q[1ter/dJ

, where ¢ is to determine the shrinking speed, d is to determine the shrinking frequency, ReLU is
equivalent to max(-,0), and n(t) is a pre-defined monotonic function. We note that it is beneficial to
apply a smoother shrinking process. That is, we reduce both g and d to obtain a smoother shrinking
process than the original ECT settings. This provides our method with a faster and smoother training
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process. In addition to the training schedule, training weight is important to balance the training across
different timesteps. We apply the weighting 1/(¢ — r) following previous work (Song & Dhariwal,
2023; Geng et al., 2024). Suppose r = at, the weighting can be decomposed into % X ﬁ The
weighting scheme has two key effects: First, 1/¢ assigns higher weights to smaller timesteps, where
uncertainty is lower. Predictions at smaller timesteps serve as teacher models for larger timesteps,
making stable training at these smaller steps crucial. Second, 1/(1 — «) ensures that as A¢ decreases,
the weight dynamically increases, preventing gradient vanishing during training. We apply a smooth
term 6 > 0 in the weighting function 1/(t — r + §) < % to avoid potential numerical issues and
instability when the At becomes too tiny.

4.3 PHASING THE ODE FOR CONSISTENCY TUNING

Previous works (Heek et al., 2024; Wang et al., 2024a) propose dividing the ODE path along the time
axis into multiple segments during training, enabling consistency models to support deterministic
multi-step sampling with improved performance. We test our method in this scenario and find
that, while this training approach increases the minimum required sampling steps, it improves
the fidelity and stability of the generated results. We apply the Euler solver to achieve multistep
re-parameterization, formulated as:

xs = Dg(x;) + ;(xt — Dg(x¢)), (16)

where Dg denotes the original consistency model, predicting the ODE solution point x, and s is the
edge timestep. We propose a new training schedule to adapt to the multistep training setting.
1
t ~ LogNormal(Pyean, Pya), 7 := ReLU <1 - Mn(t)) (t—s)+s 17
q 1ter,

4.4 EXPLORING BETTER INFERENCE FOR CONSISTENCY MODEL

Guiding consistency models with a bad version of itself. Previous work (Karras et al., 2024a)
demonstrates that even unconditional diffusion models can benefit from classifier-free guidance (Ho
& Salimans, 2022). It suggests that the unconditional outputs in classifier-free guidance can be
replaced with outputs from a sub-optimal version of the same diffusion model, thus extending the
applicability of classifier-free guidance.

(18)

P ) ¥
V"tlogPG(Xtcst)+thlog[ Polxilest) ] ,

Py« (x¢|c; t)
where w is the guidance strength, 0* is a sub-optimal version of 6, and c represents the optional

label conditions. Our empirical investigations confirm that this strategy can be applied to consistency
models, resulting in enhanced sample quality.

Edge-skipping inference for multistep consistency model. While segmenting the ODE path to
train a multistep consistency model can enhance generation quality, it may encounter optimization
challenges, especially around the edge timesteps {s;}_; withs; =1>-+- >3, > .- > 5, = 0.
For timesteps s;_; > t > s;, the consistency model learns to predict x,, from x;. However, for
s; = t' > s;11, the model learns to predict xs, 1 from xy. When ¢ and t' are very close to s;,
denoted as t = sj and t’ = s;, it is apparent that x_+ and x_- can be very similar. However, the
model is expected to predict two distinct results (x, and X, HL ) from very similar inputs (ij and
X ).

Neural networks typically follow L-Lipschitz continuity, where small input changes result in small
output changes. This property conflicts with the requirement to produce distinct outputs from similar
inputs near edge timesteps, potentially leading to insufficient training, particularly near s; . To
address this, we propose skipping the edge timesteps during multistep sampling. Specifically, even
though we aim for the model to perform sampling through the timesteps

s1:=1—>89 > 583> —5,:=0, (19)
we instead achieve multistep sampling via

s1:=1—-mnsg > ns3 — -+ > ns, =0, (20)
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Figure 3: FID vs Training iterations. SCT has faster convergence speed and better performance upper
bound than ECT.

where 1 > 0 is a scaling factor. When 7 is set to 1, the process reverts to normal multistep sampling.
This method works because the predictions of x,, and X,,,, are close when 7 is near 1, allowing for a
tolerable degree of approximation error. Fig. 2 illustrates this concept with a discrete example. The
model is designed to sample via the sequence x; — X376 — Xo; however, it instead samples through
the sequence x; — X3/ — Xo.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Evaluation Benchmarks. Following the evaluation protocols of iCT (Song & Dhariwal, 2023) and
ECT (Geng et al., 2024), we validate the effectiveness of SCT on CIFAR-10 (unconditional and
conditional) (Krizhevsky et al., 2009) and ImageNet-64 (conditional) (Deng et al., 2009). Performance
is measured using Frechet Inception Distance (FID, lower is better) (Heusel et al., 2017) consistent
with recent studies (Geng et al., 2024; Karras et al., 2024b).

Compared baselines. We compare our method against accelerated samplers (Lu et al., 2022a; Zhao
et al., 2024), state-of-the-art diffusion-based methods (Ho et al., 2020a; Song & Ermon, 2019; 2020;
Karras et al., 2022b), distillation methods (Zhou et al., 2024; Salimans & Ho, 2022a), alongside
consistency training and tuning approaches. Among these models, consistency training and tuning
methods serve as key baselines, including CT (LIPIPS) (Song et al., 2023a), iCT (Song & Dhariwal,
2023), ECT (Geng et al., 2024), and MCM (CT) (Heek et al., 2024). CT introduces the first
consistency training algorithm, utilizing LIPIPS loss to improve FID performance. iCT presents an
improved training strategy over CT, making the performance of consistency training comparable
to state-of-the-art diffusion models for the first time. MCM (CT) proposes segmenting the ODE
path for consistency training, while ECT introduces the concept of consistency tuning along with a
continuous-time training strategy, achieving notable results with significantly reduced training costs.

Model Architectures and Training Configurations From a model perspective, iCT is based on the
ADM (Dhariwal & Nichol, 2021b), ECT is built on EDM2 (Karras et al., 2024b), and MCM follows
the UViTs of Simple Diffusion (Hoogeboom et al., 2023). The model size of ECT is similar to that of
iCT, while MCM does not explicitly specify the model size. The iCT model is randomly initialized,
whereas both ECT and MCM use pretrained diffusion models for initialization. In terms of training
costs, iCT uses a batch size of 4096 across 800,000 iterations, MCM employs a batch size of 2048 for
200,000 iterations, and ECT utilizes a batch size of 128 for 100,000 iterations. SCT follows ECT’s
model architecture and training configuration.

5.2 RESULTS AND ANALYSIS

Training efficiency and efficacy. In Fig. 3b, we plot 1-step FID and 2-step FID for SCT and ECT
along the number of training epochs, under the same training configuration. From the figure, we
observe that SCT significantly improves convergence speed compared to ECT, demonstrating the
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reduced training target. step sampling.

efficiency and efficacy of SCT training. Additionally, the performance comparisons in Tables 2 and 3
also show that SCT outperforms ECT across different settings.

Quantitative evaluation. We present results in Table 2 and Table 3. Our approach consistently
outperforms ECT across various scenarios, achieving results comparable to advanced distillation
strategies and diffusion/score-based models.

The effectiveness of training variance reduc-
tion. It is worth noting that SCT and ECT em-
ploy different progressive training schedules. To ~ ~ Bl i

exclude this effect, we adopt ECT’s fixed train-
ing schedule, in which the 2-step FID surpasses
Consistency Distillation within a single A100
GPU hour. We use At = ¢/256 as a fixed par-
tition, with a batch size of 128, over 16k iter-
ations on CIFAR-10, while keeping all other
settings unchanged. For SCT models on CIFAR-
10, we calculate the variance-reduced target only
within the training batch, which is also the de-  Figure 6: The effectiveness of classifier-free guid-
fault setting of all our experiments on CIFAR- ance on Consistency models.

10. To further showcase the effectiveness of the

variance-reduced target, we use all 50,000 train-

ing samples as a reference to compute the target. Although more reference samples are used, they do
not directly influence the model’s computations; they are solely utilized for calculating the training
target. Fig. 4 presents a comparison of these three methods, showing that our approach achieves
notable improvements in both 1-step and 2-step FID. Notably, when using the entire sample set as the
reference batch, the improvement becomes more pronounced, with the 1-step FID dropping from
5.61 to 4.56.

CFG srength

The Effectiveness of CFG. Inspired by prior work Karras et al. (2024a), we adopt the outputs of the
sub-optimal version of the model as the negative part in classifier-free guidance (CFG). We set the
CFG strength as 1.2 and the sub-optimal version as the ema weight with half training iterations by
default. We investigate the influence of the two factors on SCT-S models on ImageNet. As illustrated
in Fig. 6, an appropriate CFG setting can significantly enhance the quality of generation.

Edge-skipping Multistep Sampling. To demonstrate the effectiveness of our method, we record the
4-step FID curve at various training stages, utilizing different n values for edge-skipping multistep
inference. We find that a smaller 7 at the beginning of training yields superior performance. As
training progresses, the model’s estimates of multi-stage results become increasingly accurate, and
larger 7 values gradually enhance performance. However, as previously analyzed, the multistep model
struggles to achieve perfect multistep training, leading to better overall performance for n = 0.9
compared to n = 1.0 (the default method).

Sample Quality of SCT. We showcase the generation results of SCT models in Fig. 7, Fig. 8, Fig. 9,
Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, and Fig. 15. The majority of generated samples show
favorable low-frequency compositions and high-frequency details.
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Table 2: Comparing the quality of samples on Table 3: Comparing the quality of class-

CIFAR-10. conditional samples on ImageNet-64.
METHOD NFE () FID (]) METHOD NFE (]) FID (])
Fast lers & distillation for diffusion models Fast samplers & distillation for diffusion models
DDIM (Song et al., 2020b) 10 13.36 DDIM (Song et al., 2020b) 50 137
DPM-solver-fast (Lu et al., 2022b) 10 4.70 10 18.3
3-DEIS (Zhang & Chen, 2022) 10 4.17 DPM solver (Lu et al., 2022b) 10 7.93
UniPC (Zhao et al., 2024) 10 3.87 20 342
Knowledge Distillation (Luhman & Luhman, 2021) 1 9.36 DEIS (Zhang & Chen, 2022) 10 6.65
DFNO (LPIPS) (Zheng et al., 2022) 1 378 20 3.10
2-Rectified Flow (+distill) (Liu et al., 2022) 1 4.85 DFNO (LPIPS) (Zheng et al., 2022) 1 7.83
TRACT (Berthelot et al., 2023) 1 3.78 TRACT (Berthelot et al., 2023) 1 7.43

2 3.32 2 4.97
Diff-Instruct (Luo et al., 2023) 1 4.53 BOOT (Gu et al., 2023) 1 16.3
PD (Salimans & Ho, 2022b) 1 8.34 Diff-Instruct (Luo et al., 2023) 1 5.57

2 5.58 PD (Salimans & Ho, 2022b) 1 15.39
CTM (Kim et al., 2023) 1 5.19 2 8.95

18 3.00 4 677
CTM (+GAN +CRJ) 1 1.98 CTM (+GAN + CRJ) (Kim et al., 2023) 1 1.92

5 1.87 SID (o = 1.0) (Zhou et al., 2024) 1 2.03
SID (o = 1.0) (Zhou et al., 2024) 1 203 PD (LPIPS) (Song et al., 2023b) 1 7.88
SiD (o = 1.2) (Zhou et al., 2024) 1 1.98 2 5.74
CD (LPIPS) (Song et al., 2023b) 1 3.55 4 4.92

2 293 CD (LPIPS) (Song et al., 2023b) 1 6.20
Direct Generation 2 4.70
Score SDE (Song ct al., 2021) 2000 238 Direct Generation 3 432
Score SDE (deep) (Song et al., 2021) 2000 220 .
DDPM (Ho et al., 2020b) 1000 317 RIN (Jabri et al., 2022) 1000 123
LSGM (Vahdat et al., 2021) 147 210 DDPM (Ho et al., 2020b) 250 11.0
PFGM (Xu et al., 2022) 110 335 iDDPM (Nichol & Dhariwal, 2021) 250 2.92
EDM (Karras et al., 2022a) 35 2.04 ADM (Dhariwal & Nichol, 2021a) 250 2.07
EDM-G-++ (Kim et al., 2022) 35 177 EDM (Karras et al., 2022a) 511 1.36
NVAE (Vahdat & Kautz, 2020) 1 235 EDM® (Heun) (Karras et al., 2022a) 79 244
Glow (Kingma & Dhariwal, 2018) i 489 E‘ng\N’deeg@,""Fk et al,, 2019) 1 406
Residual Flow (Chen et al., 2019) 1 onsistency Training/Tuning
BieGAN (Brock et al, 2019) | 147 CT (LPIPS) (Song et al., 2023b) 1 13.0
StyleGAN2 (Karras et al., 2020b) 1 8.32 . . . 2 11.1
StyleGAN2-ADA (Karras et al., 2020a) ! 292 ICT (Song & Dhariwal, 2023) ! 402
Consistency Training/Tuning i . 2 3.20

iCT-deep (Song & Dhariwal, 2023) 1 3.25

CT (LPIPS) (Song et al., 2023b) 1 8.70 ) e
) ) 2 5.83 MCM (CT) (Heek et al., 2024) 1 72
iCT (Song & Dhariwal, 2023) 1 2.83 5 27

2 2.46 1 s
iCT-deep (Song & Dhariwal, 2023) 1 2.51 ECT-S (Geng et al., 2024) 1 551

2 224 3 318
ECT (Geng et al., 2024) 1 378 ECT-M (Geng et al., 2024) 1 3.67

2 2.13 2 235
SCT 1 3.11(298) ECT-XL (Geng et al., 2024) 1 335

2 2.05(2.05) 2 1.96
scT 1 292@278) SCT-S 1510459

2 2.02(1.94) 2 3.05(298)
SCT (Phased) 4 1.95 4 251043

8 1.86 SCT-M 1 3.30(3.06)
Cond-SCT 1 3.03(2.94) 2 213209

2 1.88(1.86) 4 183(1.78)
Cond-SCT* 1 2.88(2.82) SCT-M* | 2420223)

2 1.87(1.84) 2 1.55(147)

Results for existing methods are taken from a previous papers. Results of SCT on CIFAR-10 without * are trained with batch size 128 for 200k
iterations. Results of SCT on CIFAR-10 with % are trained with batch size 512 for 300k iterations. Results of SCT on ImageNet-64 without x
are trained with batch size 128 for 100k iterations. Results of SCT on ImageNet-64 with * are trained with batch size 1024 for 100k iterations.
The metrics inside the parentheses were obtained using CFG. CTM applies classifier rejection sampling (CRJ) for better FID, which needs to
generate more samples than other methods.

6 CONCLUSION

In this work, we propose Stable Consistency Tuning (SCT), a novel approach that unifies and improves
consistency models. By addressing the challenges in training variance and discretization errors,
SCT achieves faster convergence and offers insights for further improvements. Our experiments
demonstrate state-of-the-art 1-step and few-step generative performance on both CIFAR-10 and
ImageNet-64 x 64, offering a new perspective for future studies on consistency models.
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APPENDIX

I RELATED WORKS

Diffusion Models. Diffusion models (Ho et al., 2020a; Song et al., 2021; Karras et al., 2022b) have
emerged as leading foundational models in image synthesis. Recent studies have developed their
theoretical foundations (Lipman et al., 2022; Chen & Lipman, 2023; Song et al., 2021; Kingma et al.,
2021b) and sought to expand and improve the sampling and design space of these models (Song
et al., 2020a; Karras et al., 2022b; Kingma et al., 2021b). Other research has explored architectural
innovations for diffusion models (Dhariwal & Nichol, 2021b; Peebles & Xie, 2023), while some
have focused on scaling these models for text-conditioned image synthesis and various real-world
applications (Shi et al., 2024; Rombach et al., 2022b; Podell et al., 2023). Efforts to accelerate the
sampling process include approaches at the scheduler level (Karras et al., 2022b; Lu et al., 2022a;
Song et al., 2020a) and the training level (Meng et al., 2023; Song et al., 2023a), with the former
often aiming to improve the approximation of the probability flow ODE (Lu et al., 2022a; Song et al.,
2020a). The latter primarily involves distillation techniques (Meng et al., 2023; Salimans & Ho,
2022a) or initializing diffusion model weights for GAN training (Sauer et al., 2023b; Lin et al., 2024).

Consistency Models. Consistency models are an emerging class of generative models (Song
et al., 2023a; Song & Dhariwal, 2023) for fast high-quality generation. It can be trained through
either consistency distillation or consistency training. Advanced methods have demonstrated that
consistency training can surpass diffusion model training in performance (Song & Dhariwal, 2023;
Geng et al., 2024). Several studies propose different strategies for segmenting the ODE (Kim et al.,
2023; Heek et al., 2024; Wang et al., 2024a), while others explore combining consistency training
with GANSs to enhance training efficiency (Kong et al., 2024). Additionally, the consistency model
framework has been applied to video generation (Wang et al., 2024b; Mao et al., 2024), language
modeling (Kou et al., 2024) and policy learning (Prasad et al., 2024).

II LIMITATIONS

The work is limited to traditional benchmarks with CIFAR-10 and ImageNet-64 to validate the
effectiveness of unconditional generation and class-conditional generation. However, previous works,
including iCT (Song & Dhariwal, 2023) and ECT (Geng et al., 2024), only validate their effectiveness
on these two benchmarks. We hope future research explores consistency training/tuning at larger
scales such as text-to-image generation.

III QUALITATIVE RESULTS
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Figure 7: 1-step samples from class-conditional SCT trained on CIFAR-10. Each row corresponds to
a different class.



Under review as a conference paper at ICLR 2025

Figure 8: 2-step samples from class-conditional SCT trained on CIFAR-10. Each row corresponds to
a different class.
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Figure 9: 1-step samples from unconditional SCT trained on CIFAR-10.
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Figure 10: 2-step samples from unconditional SCT trained on CIFAR-10.
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Figure 11: 4-step samples from unconditional SCT trained on CIFAR-10.
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Figure 12: 8-step samples from unconditional SCT trained on CIFAR-10.
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Figure 13: 1-step samples from class-conditional SCT trained on ImageNet-64 (FID 2.23). Each row
corresponds to a different class.



Under review as a conference paper at ICLR 2025

Figure 14: 2-step samples from class-conditional SCT trained on ImageNet-64 (FID 1.47). Each row
corresponds to a different class.
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Figure 15: 4-step samples from class-conditional SCT trained on ImageNet-64 (FID 1.78). Each row
corresponds to a different class.
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