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ABSTRACT

Model-based reinforcement learning promises strong sample efficiency but of-
ten underperforms in practice due to compounding model error, unimodal world
models that average over multi-modal dynamics, and overconfident predictions
that bias learning. We introduce WIMLE, a model-based method that extends
Implicit Maximum Likelihood Estimation (IMLE) to the model-based RL frame-
work to learn stochastic, multi-modal world models without iterative sampling
and to estimate predictive uncertainty via ensembles and latent sampling. During
training, WIMLE weights each synthetic transition by its predicted confidence,
preserving useful model rollouts while attenuating bias from uncertain predic-
tions and enabling stable learning. Across 40 continuous-control tasks spanning
DeepMind Control, MyoSuite, and HumanoidBench, WIMLE achieves superior
sample efficiency and competitive or better asymptotic performance than strong
model-free and model-based baselines. Notably, on the challenging Humanoid-
run task, WIMLE improves sample efficiency by over 50% relative to the strongest
competitor, and on HumanoidBench it solves 8 of 14 tasks (versus 4 for BRO and
5 for SimbaV2). These results highlight the value of IMLE-based multi-modality
and uncertainty-aware weighting for stable model-based RL.

1 INTRODUCTION

Humanoid-run (DMC) H1-slide-v0 (HumanoidBench) Myo-key-turn-hard (MyoSuite)

Figure 1: Sample efficiency on challenging tasks from each benchmark suite. WIMLE achieves
superior sample efficiency and asymptotic performance over strong model-free and model-based
baselines. Y-axes show interquartile mean. Shaded areas indicate 95% confidence intervals.

Reinforcement learning has become a powerful framework for solving complex decision-making
problems across diverse domains such as autonomous control (Kiumarsi et al., 2018), strategic game
playing (Hosu & Rebedea, 2016), and natural language processing (Lambert, 2025; Cetina et al.,
2021). However, a significant challenge in RL is the need for a substantial number of interactions
with the environment to learn a good policy. Without a simulator, learning requires real-world trials,
which are costly, slow, and risky (Chen et al., 2022; Weng et al., 2023; Hessel et al., 2018; Schulman
et al., 2017b).

Model-based RL (MBRL) methods aim to address this sample efficiency issue by first learning
a parametric world model from collected environment interactions, then leveraging this learned
model to reduce real environment samples and accelerate policy learning (Hafner et al., 2020; 2021;
2023; Ye et al., 2021; Laskin et al., 2020). Common uses of the learned world model include (1)
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generating synthetic rollouts that augment training data for policy learning (Janner et al., 2019; Ha &
Schmidhuber, 2018; Hafner et al., 2020; Clavera et al., 2020) and (2) planning by simulating future
trajectories to guide action selection (Zhu et al., 2023; Frauenknecht et al., 2025; Janner et al., 2019;
Lowrey et al., 2019; Hafner et al., 2019; Argenson & Dulac-Arnold, 2021). In this work, we focus
on the former.

Historically, MBRL has struggled to surpass strong model-free baselines, largely because com-
pounding rollout errors bias training and mislead the policy (Janner et al., 2019; Xiao et al., 2019;
Talvitie, 2017; Frauenknecht et al., 2025; Venkatraman et al., 2015; Asadi et al., 2018b;a). We at-
tribute this to two key issues: (1) standard predictive models struggle when the same state–action
pair yields different, conflicting supervision due to partial observability, contact-rich dynamics, or
inherent stochasticity (Kurutach et al., 2018); and (2) a lack of uncertainty awareness in model
predictions (Frauenknecht et al., 2025), which leads to overconfidence in regions with complex dy-
namics or limited data. Despite attempts to address these issues (Janner et al., 2019; Zhu et al., 2023;
Frauenknecht et al., 2025; Somalwar et al., 2025; Hansen et al., 2022), MBRL methods have yet to
consistently outperform strong model-free baselines in practice (Nauman et al., 2024; Lee et al.,
2025b).

To address these issues, we propose WIMLE (World models with IMLE)—an uncertainty-aware
model-based RL approach. We integrate IMLE (Li & Malik, 2018), a mode-covering generative
model with demonstrated success in low-data regimes (Aghabozorgi et al., 2023; Vashist et al.,
2024), into the MBRL framework. This allows us to learn world models that handle different,
conflicting supervision and from which we extract predictive uncertainty estimates. We incorporate
these uncertainty estimates into the RL objective to prevent overconfident predictions from biasing
learning. To the best of our knowledge, this is the first work to extend IMLE for uncertainty-aware
world models in MBRL.

We evaluate WIMLE on 40 tasks across DMC, HumanoidBench, and MyoSuite. WIMLE deliv-
ers considerable gains in sample efficiency and asymptotic performance over strong model-free and
model-based baselines. Notably, on the notoriously challenging Humanoid-run task, WIMLE im-
proves the sample efficiency of the most competitive method by over 50%. On HumanoidBench,
WIMLE successfully solves 8 of 14 tasks, compared to 4 for BRO and 5 for SimbaV2 (Figure 10).
Across suites, Figure 1 shows one example task per benchmark, each showing more than 50%
sample-efficiency improvement for WIMLE over the strongest competing method.

2 PRELIMINARIES

2.1 RL

We consider an infinite-horizon discounted Markov decision process (MDP) (S,A, P, r, γ) (Bell-
man, 1957) with initial state distribution ρ0. At time t, the agent observes st ∈ S, selects at ∼
πϕ(a | st), receives reward rt = r(st, at), and the environment transitions as st+1 ∼ P (· | st, at).
The objective is to learn a policy that maximizes the expected discounted return

J(πϕ) = Eτ∼(ρ0,P,πϕ)

[ ∞∑
t=0

γt r(st, at)

]
. (1)

In the continuous-control settings considered here, states and actions are real-valued. The discount
factor satisfies γ ∈ (0, 1). We denote the action-value function under policy π by Qπ(s, a):

Qπ(s, a) = Eτ∼(π,P )

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
. (2)

2.2 MODEL-BASED RL

In model-based RL, we learn a parametric world model with parameters θ that approximates the
unknown environment transition dynamics P (st+1, rt | st, at) through a learned conditional distri-
bution

p̂θ
(
st+1, rt | st, at

)
(3)
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trained from limited environment interactions. A model rollout (prediction) of horizon H under a
policy πϕ from s0 is the sequence τ̂ = (s0, a0, r0, s1, . . . , sH) generated by

at ∼ πϕ(· | st), (st+1, rt) ∼ p̂θ(· | st, at). (4)

Such rollouts are commonly used for planning or to provide synthetic transitions for RL training
(Janner et al., 2019; Zhu et al., 2023).

2.3 IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION

Implicit Maximum Likelihood Estimation (IMLE) learns a latent-variable generator gθ(z) that maps
noise z ∼ N (0, I) to data space. Given data {xi}Ni=1, the IMLE objective is:

θ⋆ = argmin
θ

E{zj}m
j=1

N∑
i=1

min
1≤j≤m

∥∥gθ(zj)− xi

∥∥2. (5)

In practice, given current parameters θ, we realize this objective by drawing a pool of candidate
latents {zj}mj=1 i.i.d. from N (0, I) per data point and selecting the nearest generated sample; this
step is gradient-free and fully parallelizable,

z⋆i = arg min
1≤j≤m

∥∥gθ(zj)− xi

∥∥2, (6)

and minimizing the resulting empirical loss using stochastic gradient descent.

θ ← θ − η∇θ
1

|B|
∑
i∈B

∥∥gθ(z⋆i )− xi

∥∥2. (7)

Optimizing Eq. equation 5 yields maximum likelihood estimation (MLE) of θ and ensures mode
coverage (Aghabozorgi et al., 2023): each data point is represented by at least one generated sample.
In practice, IMLE is sample efficient and effective for modeling multi-modal distributions. Condi-
tional IMLE gθ(c, z) models multi-modal conditional distributions; we adopt this form in WIMLE.
For a more detailed discussion of IMLE, we refer readers to (Li & Malik, 2018; Aghabozorgi et al.,
2023).

3 WIMLE

WIMLE addresses the key limitations of traditional MBRL through three main components: (1)
IMLE-trained stochastic world models that capture complex multi-modal transition dynamics, (2)
predictive uncertainty estimation that reflects the model’s confidence in its predictions, and (3)
uncertainty-weighted learning that scales the influence of synthetic data based on model confidence.
We detail each component below.

3.1 IMLE WORLD MODEL

Recent MBRL approaches span autoregressive sequence models, latent-variable generators, diffu-
sion models, and planning-centric objectives (Ha & Schmidhuber, 2018; Hafner et al., 2019; 2020;
2021; Robine et al., 2023; Micheli et al., 2023; Zhang et al., 2023; Hansen et al., 2024; Huang et al.,
2024). Diffusion models are effective but rely on iterative sampling, which limits their usage in
the online RL setting where rollout throughput is critical (Huang et al., 2024; Karras et al., 2022).
Despite progress, these methods often require substantial data and still struggle to consistently sur-
pass strong model-free baselines (Nauman et al., 2024; Lee et al., 2025b). Moreover, simple and
sample-efficient unimodal Gaussian world models underfit inherently multi-modal, complex dynam-
ics in partially observable or contact-rich settings, exacerbating model bias and compounding errors
(Janner et al., 2019; Zhu et al., 2023).

On the other hand, we leverage IMLE to learn transitions, a one-step generative method that—unlike
diffusion models—avoids iterative sampling and enables fast online rollouts. In practice, IMLE
yields strong rollout throughput; Figure 2 reports wall-clock time among model-based methods. We
represent the world model as a conditional stochastic generator gθ that maps a state–action pair and
latent noise to the next outcome:

(s̃t+1, r̃t) = gθ
(
st, at, z

)
, z ∼ N (0, I). (8)

3
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Figure 2: Wall-clock comparison among model-based methods (3 seeds) on a single NVIDIA L40S
GPU for the humanoid-run task. Y-axis shows interquartile mean; shaded areas indicate 95% confi-
dence intervals.

Here, the latent variable z induces a distribution over next outcomes for the same state–action pair,
capturing inherent stochasticity and multi-modality in the dynamics.

IMLE Training Procedure. Given a dataset of transitions {(st, at, rt, st+1)}Ni=1, we form targets
yi = [rt, st+1] and train gθ using the IMLE objective. The training proceeds in two alternating steps:

Assignment Step: For each data point yi, we sample m candidate latents {zj}mj=1 and assign the
nearest candidate that minimizes the prediction error:

z⋆i = arg min
1≤j≤m

∥∥gθ(si, ai, zj)− yi
∥∥2. (9)

This assignment step is computationally efficient as it requires no gradient computation, is fully
parallelizable across data points, and typically uses small values of m (e.g., 5-10) in conditional
IMLE settings.

Update Step: We then perform gradient descent on the empirical loss using the assigned latents:

θ ← θ − η∇θ
1

|B|
∑
i∈B

∥∥gθ(si, ai, z⋆i )− yi
∥∥2, (10)

where B is a minibatch of indices and η > 0 is the learning rate.

This procedure ensures mode coverage by matching each data point to at least one generated sam-
ple, avoiding collapse to a single mean prediction. In contrast, a standard Gaussian regression model
trained with least squares (Janner et al., 2019) predicts the conditional mean; in multi-modal settings
this falls between modes and produces averaged, often implausible next states—known as regression
to the mean (Galton, 1886; Barnett et al., 2005)—that compound over rollouts. IMLE’s per-sample
latent assignment avoids this averaging and yields sharper, mode-consistent predictions (Aghabo-
zorgi et al., 2023; Vashist et al., 2024).

Inference and Rollouts. After training, we generate rollouts following the procedure described in
Section 2.2. Multi-step rollouts of horizon H are generated by initializing from a real state s0 and
iteratively applying: at ∼ πϕ(·|st), zt ∼ N (0, I), (st+1, rt) = gθ(st, at, zt) for t = 0, . . . , H − 1.

3.2 UNCERTAINTY ESTIMATION

Reliable uncertainty estimation is crucial for deciding when to trust model predictions. We there-
fore compute a predictive uncertainty for each synthetic transition and use it to reweight the RL
objective. Each transition’s contribution is scaled by its estimated confidence. This preserves
useful rollouts and reduces bias from uncertain predictions without changing the underlying al-
gorithm. Alternative integrations exist. For example, Infoprop (Frauenknecht et al., 2025) computes
an information-theoretic corruption measure and uses it to truncate rollouts during generation. In
contrast, we integrate uncertainty directly into the learning objective via confidence weights.

We use a single predictive uncertainty measure σ(s, a) that reflects the model’s confidence in its
next-step prediction. Concretely, we maintain an ensemble of K IMLE world models (see Sec-
tion 3.6.1) and, for each model, draw m latent samples, yielding predictions:

{gθk(s, a, zj)}k=1..K, j=1..m (11)
We define σ(s, a) as the standard deviation across these predictions—a direct measure of model
agreement (see Algorithm 1, lines 13–14):

σ(s, a) = stdk,j

[
gθk(s, a, zj)

]
(12)
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In practice, we compute per-dimension standard deviations for the predicted reward and next state
and average them to obtain a single scalar for the transition. σ(s, a) decreases when models agree
and increases when predictive uncertainty is high (e.g., limited data or complex dynamics). By the
law of total variance we can decompose σ2(s, a) into epistemic and aleatoric components,

σ2(s, a) = Vark
[
Ez

[
gθk(s, a, z)

]]︸ ︷︷ ︸
ensemble / epistemic

+Ek

[
Varz

[
gθk(s, a, z)

]]︸ ︷︷ ︸
latent / aleatoric

, (13)

Following recent insights on uncertainty from Smith et al. (2024), this total predictive variance is
the Bayes risk of acting under a squared-error loss.

3.3 UNCERTAINTY-WEIGHTED LEARNING

Having defined a single predictive uncertainty σ(s, a), we now describe how it enters learning.
The key idea is simple: weight each synthetic transition by the model’s confidence so reliable pre-
dictions contribute more and uncertain ones less. Because uncertainty typically grows with roll-
out horizon due to error accumulation, later steps in the rollout receive smaller weights, naturally
down-weighting distant, noisier predictions.

To choose these weights, we invoke a standard heteroscedastic regression result (formalized in Sec-
tion 3.4): when estimating a scalar quantity from independent noisy observations with different
noise variances, the unique minimum-variance linear unbiased estimator weights each observation
inversely to its variance. We use this principle as guidance and map each predictive variance σ(s, a)
to a bounded, inverse-variance weight

w(s, a) =
1

σ(s, a) + 1
, (14)

which preserves the inverse-variance ordering and keeps w ∈ (0, 1], avoiding exploding gradients.

During rollout generation, we compute per-transition weights wi = w(si, ai) for each synthetic tran-
sition (si, ai, ri, s

′
i) using the predictive uncertainty defined above. We incorporate these weights

into the RL objective by modifying the temporal difference (TD) loss:
Lcritic = E(si,ai,ri,s′i)∼D

[
wi · δ2i

]
, (15)

where δi = ri + γQϕ(si+1, ai+1) −Qϕ(si, ai) is the TD error for transition i, with ai+1 ∼ πϕ(· |
si+1), Qϕ is a parameterized Q-function, and wi is the corresponding uncertainty weight. For real
environment data, we simply use wi = 1.

This approach lets us leverage synthetic rollouts while keeping TD updates well-conditioned: high-
variance, uncertain transitions have a smaller impact on the stochastic gradients, while the Bellman
fixed point remains unchanged, so we tame noisy (including purely stochastic) updates without
discarding or biasing them.

3.4 THEORETICAL ANALYSIS

To make the effect of our weighting more concrete, we provide a theoretical analysis of its properties.
First, we establish that multiplying each squared Bellman error (y −Q(s, a))2 by a positive weight
w(s, a) preserves the Bellman fixed point. Second, in a tractable setting where the critic is linear in
a feature representation, we demonstrate that choosing weights inversely proportional to the (total)
target noise variance minimizes the variance of the learned parameters, thereby improving conver-
gence rate and sample efficiency. The lemmas below formalize these results: the first shows that any
strictly positive reweighting leaves the Bellman target Q⋆ unchanged, and the second shows that,
in the linear-critic regime, inverse-variance weighting wi ∝ 1/σ2

i yields the minimum-covariance
linear unbiased estimator. Full proofs are provided in Appendix B.

Lemma (Positive weights preserve the Bellman target). Let y = r+γV (s′) denote the one-step
Bellman target for a value function V with conditional mean µ(s, a) = E[y | s, a]. Given a strictly
positive weight function w(s, a) > 0, the corresponding population weighted Bellman squared loss
is

Lw(Q) = E(s,a)∼dπ E(r,s′)∼P (·|s,a)
[
w(s, a) (y −Q(s, a))2

]
. (16)

Then the unique minimizer of Lw(Q) over all action-value functions Q is Q⋆(s, a) = µ(s, a) for
all (s, a), i.e., any strictly positive reweighting leaves the Bellman fixed point unchanged and only
re-emphasizes different regions of (s, a). A full proof is given in Appendix B.
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Lemma (Linear critics, inverse-variance weighting). Consider the setting where (1) the action-
value function is linear in some feature representation ϕ(s, a) ∈ Rd, i.e., Qθ(s, a) = ϕ(s, a)⊤θ
for parameters θ ∈ Rd, and (2) for a batch of m transitions xi = (si, ai) the TD targets satisfy
yi = µ(xi) + εi with E[εi | xi] = 0, Var(εi | xi) = σ2

i , and independent noise terms εi. Among
all linear unbiased estimators of θ, the inverse-variance choice wi ∝ 1/σ2

i yields the minimum
covariance matrix for θ̂. A proof follows the classical Gauss–Markov theorem and is provided in
Appendix B.

Proof sketch. Stacking targets into a vector y and features into a design matrix Φ, minimizing∑
i wi(yi − Qθ(xi))

2 yields the weighted least-squares estimator θ̂w = (Φ⊤WΦ)−1Φ⊤Wy with
W = diag(wi). Choosing W proportional to the inverse noise covariance Σ−1 = diag(1/σ2

i )

yields an estimator whose covariance Cov(θ̂w) is minimal among all linear unbiased estimators by
the Gauss–Markov theorem. We refer to Appendix B for a full derivation.

Implications for WIMLE. Here σ2
i is the total predictive variance at (si, ai), which can include

both epistemic and aleatoric components (Eq. 13). The lemma above shows that, in the linear-critic
regime, weighting each transition inversely to this total variance minimizes the covariance of the
learned parameters, independently of the source of the noise. Lower parameter variance means
fewer samples are needed to reach a given accuracy, i.e., inverse-variance weighting is provably
more sample-efficient in this regime. Combined with the Bellman fixed-point lemma above (proved
in Appendix B), this means our choice of w(s, a) shrinks update variance without ever changing
the Bellman solution—even in the limit of a perfect world model where all uncertainty (and thus
down-weighted noise) is purely aleatoric.

3.5 ALGORITHM

Algorithm 1 presents the overall WIMLE procedure. For a more complete implementation of the
algorithm, including training frequencies and hyperparameters, see Algorithm 3 in Appendix A.

Algorithm 1 WIMLE: World Models with Implicit Maximum Likelihood Estimation

1: Input: Rollout horizon H , ensemble size K, number of rollouts M , number of latent codes m
2: {Red text indicates steps that fundamentally differ from MBPO.}
3: initialize ensemble world models {gθk}Kk=1, environment and model datasets Denv, Dmodel
4: for environment steps do
5: Collect environment transitions using πϕ; add to Denv
6: // IMLE World Model Training
7: Train ensemble {gθk}Kk=1 in parallel on bootstrap samples of Denv using IMLE (Eqs. 9, 10)
8: for M model rollouts do
9: Sample starting state s0 from Denv

10: for t = 0 to H − 1 do
11: at ∼ πϕ(·|st)
12: Sample m latents {zj}mj=1 ∼ N (0, I)

13: Generate predictions {(s̃t+1, r̃t)k,j}K,m
k=1,j=1 = {gθk(st, at, zj)}

K,m
k=1,j=1 from all ensem-

ble members
14: Compute predictive uncertainty: σt = stdk,j

[
gθk(st, at, zj)

]
{aggregated over ensem-

bles and latents}
15: Set weight wt = 1/(σt + 1)
16: Add weighted transition (st, at, rt, st+1, wt) to Dmodel
17: // Uncertainty-Weighted Policy Learning
18: Sample batch from Denv ∪ Dmodel (real data has w = 1)
19: Update policy using weighted RL objective:
20: L = E(s,a,r,s′,w)∼batch[w · ℓRL(s, a, r, s

′)]

The algorithm maintains the underlying RL method as a black box through the weighted loss func-
tion L, where ℓRL represents any standard RL objective (e.g., TD error for critics, policy gradient for
actors). The key insight is that uncertainty weights wt automatically scale the contribution of each

6
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[st, at, z]

Dense Layer
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ReLU
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+

L2-Norm

y

Residual Block

Figure 3: WIMLE world model architecture.

synthetic transition—high-confidence predictions receive higher weights while uncertain predictions
contribute proportionally less.

3.6 DESIGN CHOICES

3.6.1 TRAINING

Model Rollouts. We experiment with synthetic rollouts using horizons up to H = 8. All roll-
outs are initialized from real environment states sampled uniformly from the environment dataset
Denv, following standard practice in model-based RL to ensure rollouts start from the data distri-
bution. We select task-specific rollout horizons through empirical experimentation as described in
Appendix D.1.

RL Training. We use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) with distributional Q-learning
(Bellemare et al., 2017) as our underlying RL algorithm. Following recent work that has demon-
strated the effectiveness of distributional RL for continuous control (Nauman et al., 2024; Lee et al.,
2025b; Dabney et al., 2018a), we specifically adapt quantile Q-learning (Dabney et al., 2018b; Nau-
man et al., 2024).

Ensemble Training. We train an ensemble of K = 7 IMLE world models in parallel to improve
predictive uncertainty estimation and calibration (Section 3.3). Each ensemble member is initial-
ized with different random parameters and trained on bootstrap samples of the environment data.
The parallel training of ensemble members is computationally efficient and scales well with avail-
able compute resources, enabling reliable predictive uncertainty without significant computational
overhead.

3.6.2 ARCHITECTURE

Figure 3 illustrates the WIMLE world model architecture. The network takes as input state st,
action at, and latent variable z, followed by a dense layer that maps to a 512-dimensional hidden
representation. The core of the architecture consists of three residual blocks, each containing dense
layers with ReLU activations and L2 normalization. Following recent findings by Lee et al. (2025b),
we employ L2 normalization within the residual blocks, which has been shown to improve stability
and performance in RL settings. The network outputs separate predictions for rewards and next
states through dedicated dense heads.

4 EXPERIMENTS

We evaluate WIMLE across diverse continuous-control benchmarks—DeepMind Control Suite (in-
cluding Dog and Humanoid), MyoSuite, and HumanoidBench (Tassa et al., 2018; Caggiano et al.,
2022; Sferrazza et al., 2024). Across 40 tasks spanning locomotion and dexterous manipulation
with high-dimensional state/action spaces and sparse rewards, we compare against strong model-
free and model-based methods, including MR.Q, PPO, SAC, Simba, SimbaV2, BRO, TD-MPC2,
and DreamerV3 (Fujimoto et al., 2025; Schulman et al., 2017a; Haarnoja et al., 2018; Lee et al.,
2025a;b; Nauman et al., 2024; Hansen et al., 2024; Hafner et al., 2023), and present per-benchmark
results. Through our experiments, we aim to answer: (i) How does WIMLE compare to strong
model-free and model-based methods? (ii) How does IMLE-based multi-modality in the world
model affect results compared to standard unimodal Gaussian models? (iii) How do uncertainty
estimates evolve during training, and how do they affect performance?

7
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4.1 EXPERIMENTAL SETUP

All experiments are run for 1M environment steps with 10 random seeds unless otherwise specified.
We report the interquartile mean (IQM) and 95% confidence intervals computed with RLiable (Agar-
wal et al., 2021), using stratified bootstrap across tasks and seeds. Following BRO and SimbaV2
(Nauman et al., 2024; Lee et al., 2025b), we aggregate normalized scores per BRO/SimbaV2 proto-
col (DMC [0,1], MyoSuite success, HumanoidBench success-normalized). Where official baseline
results are available, we report the authors’ numbers; otherwise, we run public implementations with
their recommended settings. We provide full details about the experimental setup, hyperparameters,
and baselines in Section D and E of the appendix.

4.2 COMPARISON TO BASELINES
Dog & Humanoid (7 tasks) DMC (16 tasks) MyoSuite (10 tasks) HumanoidBench (14 tasks)

Figure 4: Aggregate results across benchmarks. WIMLE outperforms strong model-free and model-
based baselines overall. Gains are most pronounced on the challenging Dog & Humanoid subset,
where it achieves superior sample efficiency and asymptotic performance. On MyoSuite, it performs
asymptotically on par with strong baselines that are already near the maximum score (1.0), and on
HumanoidBench it significantly outperforms the baselines, solving 8/14 tasks versus BRO 4 and
SimbaV2 5. Y-axes show interquartile mean; shaded areas denote 95% confidence intervals.

We summarize aggregate performance across benchmarks in Figure 4 and provide detailed per-task
results in Section C of the appendix. WIMLE consistently leads among strong model-free and
model-based methods on Dog & Humanoid, the full DMC suite, and HumanoidBench, while per-
forming asymptotically on par with strong MyoSuite baselines that are already close to the maximum
score (1.0). Notably, gains are largest on the high-dimensional and challenging Dog & Humanoid
tasks (Dog: |S|=223, |A|=38; Humanoid: |S|=67, |A|=24). On HumanoidBench, WIMLE sig-
nificantly outperforms baselines, solving 8 of 14 tasks versus BRO 4 and SimbaV2 5 (Figure 10).
We summarize performance across timesteps in Section E.1, where WIMLE performs best or com-
petitively across most evaluations. We attribute these improvements to IMLE-driven multi-modality
in the world model and uncertainty-weighted learning that scales the influence of synthetic roll-
outs by model confidence, mitigating bias from overconfident predictions while preserving useful
signal, which we discuss in more detail in the next section. Per-task performance is reported in
Figures 7, 8, 9 and 10.

4.3 METHOD ANALYSIS

We analyze how uncertainty-aware weighting and multi-modal dynamics modeling impact perfor-
mance and how predictive uncertainty evolves during training.

Effect of uncertainty-aware weighting Figure 5 (Left) compares WIMLE with uncertainty-
aware weighting to an unweighted variant that is identical in every respect except that all per-
transition weights are fixed to wi=1.0. The unweighted curve lags and can even underperform a
strong model-free baseline early on, indicating that ignoring predictive uncertainty significantly bi-
ases learning and hinders performance. Figure 5 (Right) studies rollout sensitivity. Increasing the
model rollout horizon from H=1 to H=4 to H=6 improves performance, and extending to H=8
maintains performance rather than showing the severe degradation typically observed in model-
based methods when increasing rollout length (Janner et al., 2019). This improved stability at longer
horizons demonstrates that uncertainty-aware weighting reduces the model bias typically introduced
by longer horizon errors, enabling us to leverage longer synthetic rollouts without considerable per-
formance degradation.

Impact of IMLE-based multi-modality Figure 6 (Left) contrasts WIMLE (IMLE world model)
with an otherwise identical unimodal Gaussian world model (MBPO-style; (Janner et al., 2019)),
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with both variants using uncertainty-aware weighting. The IMLE variant significantly outperforms
the Gaussian, underscoring the value of modeling multi-modal transition dynamics for uncertainty
estimation in complex, contact-rich control. Figure 6 (Right) shows how weights evolve. During
a brief warm-up with limited environment samples and training, both models are uncalibrated and
weights can appear transiently high; as data accumulates and the estimators calibrate, weights drop
to reflect high uncertainty and low confidence. As training progresses and more data are collected,
IMLE’s weights increase to reflect higher confidence in the predictions, whereas the Gaussian’s
remain relatively flat, indicating limited calibration. Together, these results show that multi-modal
modeling improves both performance and the quality of uncertainty estimates, reducing the risk of
overconfident, biased predictions misleading the policy.

Uncertainty-aware vs. unweighted Rollout sensitivity

Figure 5: Uncertainty-aware weighting reduces model bias and enables stable training at longer
horizons on Humanoid-run. Left: Uncertainty-aware WIMLE compared to an unweighted variant
that is identical except all per-transition weights are fixed to wi = 1.0 and a model-free variant
that is identical except that it does not use the model; the unweighted curve lags and can even
underperform the model-free variant early on, indicating that ignoring uncertainty will bias learning
and hinder performance. Right: Rollout ablation (H = 1, 4, 6, 8) for WIMLE: increasing the
model rollout horizon from H=1 to H=4 to H=6 improves performance, and extending to H=8
does not substantially degrade performance, suggesting that uncertainty-aware weighting mitigates
harm from error accumulation at longer horizons. All variants use the same SAC backbone and
distributional critics; only the ablated components differ. All plots are on DMC’s Humanoid-run
task with 5 seeds.

IMLE vs. Gaussian (performance) IMLE vs. Gaussian (weights)

Figure 6: Multi-modality strengthens model-based learning. Left: WIMLE (IMLE world model)
versus an otherwise identical unimodal Gaussian world model (MBPO-style; (Janner et al., 2019);
both use uncertainty-aware weighting): the IMLE variant significantly outperforms the Gaussian,
highlighting the value of multi-modal modeling and IMLE’s efficacy. Right: Weight dynamics:
After a brief warm-up phase, IMLE’s weights are lower when uncertainty is high and increase as
training progresses and more data are collected, reflecting growing model confidence; the unimodal
Gaussian fails to capture this evolution, yielding relatively flat weights over time. All plots are on
Humanoid-run.

5 RELATED WORK

Model-free RL. Foundational model-free methods such as PPO (Schulman et al., 2017a) and
SAC (Haarnoja et al., 2018) remain strong references for continuous control. Recent advances focus
on scaling and regularization: BRO (Nauman et al., 2024) scales critic networks to 5M parameters
with strong regularization and optimistic exploration, achieving state-of-the-art performance. Simba
(Lee et al., 2025a) introduces an architecture that embeds simplicity bias through running statistics
normalization, residual feedforward blocks, and layer normalization, enabling effective parameter
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scaling; SimbaV2 (Lee et al., 2025b) further constrains feature and weight norms via hyperspheri-
cal normalization. Contemporary work like MR.Q (Fujimoto et al., 2025) explores improved value
estimation for better sample efficiency. Collectively, these methods provide strong model-free base-
lines.

Model-based RL. Model-based RL methods learn world models to improve sample efficiency
via synthetic rollouts and planning. DreamerV3 (Hafner et al., 2023) learns a latent world model
and achieves strong performance in continuous control with large-scale training. MBPO (Janner
et al., 2019) uses short model-generated rollouts branched from real data to avoid model exploitation
while maintaining sample efficiency. TD-MPC2 (Hansen et al., 2024) learns implicit world models
through joint-embedding prediction and performs local trajectory optimization in latent space for
scalable multi-task learning. STORM (Zhang et al., 2023) combines Transformer-based sequence
modeling with categorical VAEs for efficient world model learning in visual domains. Diffusion-
based world models generate trajectories via iterative denoising and incur high inference cost, which
hinders online RL (Janner et al., 2022; Ajay et al., 2023; He et al., 2023). Despite these algorithmic
advances, model-based methods have struggled to consistently surpass recent model-free approaches
like BRO (Nauman et al., 2024) and SimbaV2 (Lee et al., 2025b).

Model Bias. Model bias and error accumulation remain fundamental challenges in MBRL. Tra-
jectory models (Asadi et al., 2019; Lambert et al., 2021) address the compounding-error problem by
learning multi-step models that directly predict outcomes of action sequences, avoiding the accumu-
lation of one-step prediction errors. Self-correcting models (Talvitie, 2017) train models to correct
themselves when producing errors. Infoprop (Frauenknecht et al., 2025) integrates uncertainty by
truncating rollouts using information-theoretic corruption measures, but is not competitive on com-
plex, high-dimensional tasks such as Humanoid-run (see Figure 1). In contrast, we estimate a single
predictive uncertainty and weight each synthetic transition accordingly, integrating this directly into
the learning objective to preserve useful synthetic data while reducing the influence of uncertain
predictions. This yields state-of-the-art results on challenging tasks (Figures 1 and 4).

Implicit Maximum Likelihood Estimation. IMLE (Li & Malik, 2018) trains implicit generative
models by minimizing the expected distance from each data point to its nearest generated sam-
ple, avoiding mode-collapse and GAN (Goodfellow et al., 2014) training issues. Adaptive IMLE
(Aghabozorgi et al., 2023) extends this with adaptive thresholding and curriculum learning for bet-
ter few-shot performance. These methods demonstrate that likelihood-based objectives can achieve
good sample quality without adversarial training on low-data settings.

6 LIMITATIONS AND FUTURE WORK

WIMLE uses world models solely to generate synthetic rollouts. Other uses, such as planning
with the model or integrating the model into policy-gradient formulations, remain unexplored here.
Future work should evaluate WIMLE in these settings. Our experiments use proprioceptive state
observations only. Extending WIMLE to image-based control is an important direction, especially
since IMLE has been shown to be effective in few-shot image synthesis (Aghabozorgi et al., 2023;
Vashist et al., 2024). Finally, similar to MBPO (Janner et al., 2019) and POMP (Zhu et al., 2023),
the rollout horizon is a task-dependent hyperparameter. Learning to adapt the horizon online based
on model confidence is a promising avenue for future research.

7 CONCLUSION

WIMLE advances model-based reinforcement learning by extending IMLE to learn stochastic,
multi-modal world models and by weighting synthetic data with predictive confidence. This re-
duces model bias and stabilizes learning while retaining the benefits of synthetic rollouts. Across
40 continuous-control tasks in DMC, MyoSuite, and HumanoidBench, WIMLE achieves superior
sample efficiency and competitive or higher asymptotic performance than strong model-free and
model-based baselines. Gains are largest on challenging Dog and Humanoid locomotion tasks. On
HumanoidBench, WIMLE significantly outperforms baselines and solves 8 of 14 tasks. The ap-
proach integrates cleanly with standard RL objectives and scales with compute through ensembles
and parallel latent sampling. We hope these results renew interest in practical world models for
challenging continuous control.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Mehran Aghabozorgi, Shichong Peng, and Ke Li. Adaptive IMLE for few-shot pretraining-free
generative modelling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 248–264. PMLR, 2023. URL https://proceedings.mlr.press/v202/
aghabozorgi23a.html.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision-making? International Conference on
Learning Representations, 2023.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. ArXiv, abs/2008.05556,
2021.

Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L. Littman. Towards a Simple Approach
to Multi-step Model-based Reinforcement Learning. arXiv, 2018a.

Kavosh Asadi, Dipendra Misra, and Michael L. Littman. Lipschitz Continuity in Model-based
Reinforcement Learning. arXiv, 2018b.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L. Littman. Combating the
Compounding-Error Problem with a Multi-step Model. arXiv, 2019.

Adrian G Barnett, Jolieke C Van Der Pols, and Annette J Dobson. Regression to the mean: what it
is and how to deal with it. International journal of epidemiology, 34(1):215–220, 2005.
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AUTHOR STATEMENT: USE OF LANGUAGE MODELS

We used large language models to help polish writing and improve clarity. All ideas, methods, ex-
periments, and analyses were created and verified by the authors. Any suggested text was reviewed
and edited by the authors for accuracy and originality.

A ALGORITHM DETAILS

Algorithm 3 provides the detailed implementation of WIMLE, including training frequencies, batch
sizes, and other practical considerations omitted from the main algorithm for clarity. The IMLE
training procedure is detailed in Algorithm 2. Hyperparameters are provided in Section D.

Algorithm 2 IMLE World Model Training

1: Input: Environment dataset Denv, ensemble {gθk}Kk=1, number of latent codes m, number of
updates U , learning rate η

2: for u = 1 to U do
3: Sample minibatch {(si, ai, ri, si+1)}i∈B with replacement from Denv
4: Form targets yi = [ri, si+1] for all i ∈ B
5: // Assignment Step (Eq. 9)
6: Sample m candidate latents {zj}mj=1 ∼ N (0, I)
7: for k = 1 to K in parallel do
8: z⋆i,k = argmin1≤j≤m ∥gθk(si, ai, zj)− yi∥2 for all i ∈ B
9: // Update Step (Eq. 10)

10: for k = 1 to K in parallel do
11: θk ← θk − η∇θk

1
|B|

∑
i∈B ∥gθk(si, ai, z⋆i,k)− yi∥2

Algorithm 3 WIMLE: Detailed Implementation

1: Input: Rollout horizon H , ensemble size K = 7, batch size B, model training frequency
train freq, number of latent codes m, number of model updates U

2: Initialize policy πϕ, ensemble of IMLE world models {gθk}Kk=1, environment dataset Denv,
model dataset Dmodel

3: for environment steps do
4: Collect environment transition using πϕ; add to Denv
5: if step mod train freq = 0 then
6: // IMLE World Model Training
7: Train ensemble {gθk}Kk=1 in parallel using Algorithm 2
8: // Uncertainty-Aware Rollout Generation
9: Clear Dmodel

10: Sample batch of starting states {s(i)0 }Bi=1 with replacement from Denv
11: for t = 0 to H − 1 do
12: a

(i)
t ∼ πϕ(·|s(i)t ) for all i ∈ {1, . . . , B}

13: Sample m latents {zj}mj=1 ∼ N (0, I)

14: Generate predictions {gθk(s
(i)
t , a

(i)
t , zj)}K,m

k=1,j=1 from all ensemble members for all i

15: Compute predictive uncertainty: σ(i)
t = stdk,j

[
gθk(s

(i)
t , a

(i)
t , zj)

]
{aggregated over en-

sembles and latents}
16: Set weight w(i)

t = 1/(σ
(i)
t + 1)

17: Select transitions (s(i)t+1, r
(i)
t ) from predictions

18: Add weighted transitions {(s(i)t , a
(i)
t , r

(i)
t , s

(i)
t+1, w

(i)
t )}Bi=1 to Dmodel

19: // Uncertainty-Weighted Policy Learning
20: Sample batch from Denv ∪ Dmodel (real data has w = 1)
21: Update policy using weighted RL objective:
22: L = E(s,a,r,s′,w)∼batch[w · ℓRL(s, a, r, s

′)]
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B THEORETICAL ANALYSIS OF RISK-WEIGHTED BELLMAN ESTIMATION

Bellman fixed point under positive reweighting. Fix a policy π and a target value function V .
Recall the one-step Bellman target

y = r + γV (s′), (17)

with conditional mean

µ(s, a) = E[y | s, a] = E(r,s′)∼P (·|s,a)[r + γV (s′)]. (18)

Given a strictly positive weight function w : S × A → (0,∞), the corresponding population
weighted Bellman regression loss for an arbitrary action-value function Q is

Lw(Q) = E(s,a)∼dπ E(r,s′)∼P (·|s,a)
[
w(s, a) (y −Q(s, a))2

]
. (19)

Lemma (Weights do not change the Bellman target). Assume that w(s, a) > 0 for all (s, a) in the
support of dπ . Then the unique minimizer of Lw(Q) over all action-value functions Q : S×A → R
is

Q⋆(s, a) = µ(s, a) for all (s, a), (20)

which is the same minimizer as for the unweighted objective (obtained by setting w ≡ 1).

Proof. Fix (s, a) and consider the conditional risk as a function of a scalar q ∈ R:

ℓs,a(q) = E
[
w(s, a) (y − q)2

∣∣ s, a] = w(s, a)E
[
(y − q)2 | s, a

]
. (21)

Since w(s, a) is a strictly positive constant with respect to the inner expectation, it does not affect
the minimizer in q. The derivative of the unweighted term with respect to q is

∂

∂q
E
[
(y − q)2 | s, a

]
= 2

(
q − E[y | s, a]

)
= 2

(
q − µ(s, a)

)
, (22)

which vanishes if and only if q = µ(s, a). Thus, for each fixed (s, a), the unique minimizer of
ℓs,a(q) is q = µ(s, a), independently of the choice of w(s, a) > 0.

The global objective Lw(Q) in Eq. 19 is the expectation of ℓs,a(Q(s, a)) under dπ . For any action-
value function Q, we can write

ℓs,a(Q(s, a))− ℓs,a(µ(s, a)) = w(s, a)E
[
(Q(s, a)− µ(s, a))2 | s, a

]
≥ 0, (23)

with equality if and only if Q(s, a) = µ(s, a). Integrating this inequality with respect to dπ shows
that Lw(Q) ≥ Lw(µ), with strict inequality whenever Q differs from µ on a set of positive dπ-
measure. Hence, Q⋆ = µ is the unique minimizer of Lw, and this minimizer does not depend on the
particular choice of strictly positive weights. □

Proof of the linear-critic GLS lemma. We restate the setting from the main text. Let xi = (si, ai)
denote m state–action pairs with feature vectors ϕ(xi) ∈ Rd, and let yi be the corresponding one-
step TD targets. Assume a linear value model

yi = ϕ(xi)
⊤θ⋆ + εi, (24)

where θ⋆ ∈ Rd is the true parameter vector, the noise satisfies E[εi | xi] = 0, and the conditional
variances are Var(εi | xi) = σ2

i . Collect the targets into a vector y ∈ Rm, the features into a design
matrix Φ ∈ Rm×d whose i-th row is ϕ(xi)

⊤, and define the noise vector ε = (ε1, . . . , εm)⊤. Then

y = Φθ⋆ + ε, (25)

with E[ε] = 0 and covariance

Σ = Cov(ε) = diag(σ2
1 , . . . , σ

2
m). (26)

We assume that Φ has full column rank so that all normal equations below are solvable.
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Linear unbiased estimators and GLS. Consider linear estimators of θ⋆ of the form

θ̂ = Ay, (27)

for some matrix A ∈ Rd×m. Unbiasedness for all θ⋆ requires

E[θ̂] = E[A(Φθ⋆ + ε)] = AΦθ⋆ = θ⋆ for all θ⋆, (28)

which is equivalent to the constraint
AΦ = Id. (29)

Under this constraint, the covariance of θ̂ is

Cov(θ̂) = ACov(y)A⊤ = AΣA⊤. (30)

The generalized least-squares (GLS) estimator corresponds to the specific choice

AGLS =
(
Φ⊤Σ−1Φ

)−1
Φ⊤Σ−1, (31)

so that
θ̂GLS = AGLSy. (32)

It is immediate that AGLSΦ = Id, so θ̂GLS is linear and unbiased. Its covariance is

Cov(θ̂GLS) = AGLSΣA
⊤
GLS =

(
Φ⊤Σ−1Φ

)−1
. (33)

Optimality of GLS. Let θ̃ = Ay be any other linear unbiased estimator, so that AΦ = Id by
equation 29. Define

C = A−AGLS. (34)

Then
CΦ = AΦ−AGLSΦ = Id − Id = 0. (35)

The covariance of θ̃ can be expanded as

Cov(θ̃) = AΣA⊤ (36)

= (AGLS + C)Σ (AGLS + C)⊤ (37)

= AGLSΣA
⊤
GLS +AGLSΣC

⊤ + CΣA⊤
GLS + CΣC⊤. (38)

We now show that the cross terms vanish. Using the definition of AGLS,

AGLSΣ =
(
Φ⊤Σ−1Φ

)−1
Φ⊤Σ−1Σ =

(
Φ⊤Σ−1Φ

)−1
Φ⊤, (39)

and similarly
ΣA⊤

GLS = ΣΣ−1Φ
(
Φ⊤Σ−1Φ

)−1
= Φ

(
Φ⊤Σ−1Φ

)−1
. (40)

Therefore,

AGLSΣC
⊤ =

(
Φ⊤Σ−1Φ

)−1
Φ⊤C⊤ =

(
Φ⊤Σ−1Φ

)−1
(CΦ)⊤ = 0, (41)

CΣA⊤
GLS = CΦ

(
Φ⊤Σ−1Φ

)−1
= 0, (42)

where we used equation 35. Thus

Cov(θ̃) = Cov(θ̂GLS) + CΣC⊤. (43)

For any vector v ∈ Rd,
v⊤CΣC⊤v = (C⊤v)⊤Σ(C⊤v) ≥ 0, (44)

because Σ is positive semidefinite. Hence CΣC⊤ is positive semidefinite, and we have

Cov(θ̂GLS) ⪯ Cov(θ̃), (45)

with equality if and only if C = 0, i.e., A = AGLS. This establishes that GLS has minimum
covariance among all linear unbiased estimators.
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Connection to inverse-variance weighting. In our setting, weighted least squares with per-
sample weights wi > 0 corresponds to minimizing

m∑
i=1

wi

(
yi − ϕ(xi)

⊤θ
)2

= (y − Φθ)⊤W (y − Φθ), (46)

where W = diag(w1, . . . , wm). The normal equations yield the estimator

θ̂W = (Φ⊤WΦ)−1Φ⊤Wy. (47)
Choosing weights wi ∝ 1/σ2

i makes W proportional to Σ−1, so that

θ̂W = (Φ⊤Σ−1Φ)−1Φ⊤Σ−1y = θ̂GLS. (48)
Thus inverse-variance weights wi ∝ 1/σ2

i recover the GLS estimator and, by the argument above,
minimize the covariance matrix among all linear unbiased estimators. □

C PER-TASK RESULTS

We present detailed per-task performance results for WIMLE and other baselines across all bench-
marks. The performance on each individual task is shown in Figures 7, 8, 9, and 10.

Figure 7: Per-task results for high-dimensional Dog & Humanoid tasks from DeepMind Control
Suite. We present the IQM of rewards and 95% confidence intervals for BRO and other baselines
run for 1M steps.

Figure 8: Per-task results for DeepMind Control Suite tasks with low-dimensional state/action
spaces. We present the IQM of rewards and 95% confidence intervals for WIMLE and other base-
lines run for 1M steps.
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Figure 9: Per-task results for MyoSuite tasks. We present the IQM of success rate and 95% confi-
dence intervals for WIMLE and other baselines run for 1M steps.

Figure 10: Per-task results for HumanoidBench tasks. We present the IQM of rewards and 95%
confidence intervals for WIMLE and other baselines run for 1M steps. The red dashed line indicates
the success threshold for each task.

D HYPERPARAMETERS

Table 1 lists the common hyperparameters used across all tasks. These parameters were selected
through hyperparameter tuning based on standard practices in RL.

Based on our empirical evaluations, we found that increasing the model batch size to the maximum
extent allowed by available GPU resources while proportionally decreasing the number of model
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Table 1: Common hyperparameters used across all tasks.

Parameter Value
SAC Parameters

Batch size 128
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Number of quantiles 100
Updates per step 10

World Model Parameters
Model learning rate 1× 10−3

Model batch size 512
Model updates 100
Number of latent codes 4
Model training frequency 1000
Number of rollouts 200
Number of ensembles 7

updates can achieve similar performance with improved training speed. When scaling the batch size
in this manner, the model learning rate should be adjusted accordingly following standard Machine
Learning practices.

D.1 ROLLOUT LENGTH SELECTION

We select task-specific rollout horizons H through experimentation. For easier tasks where base-
lines already saturate near the maximum score (e.g., MyoSuite manipulation tasks), we start with
short horizons (H=1-2) and increase only if performance benefits are observed, as longer horizons
may still introduce slight performance degradation—though not to the extent seen in traditional
MBRL methods. For harder tasks requiring longer-term planning (e.g., HumanoidBench, Dog &
Humanoid), we begin with longer horizons (H=8) and decrease only if performance gains are seen
empirically. However, we note that even simpler tasks may benefit from longer horizons in some
cases, reflecting the task-specific nature of optimal rollout length. This selection balances the ben-
efits of synthetic data augmentation with computational cost, as the marginal benefit of additional
rollout steps diminishes beyond each task’s optimal horizon. We cap H at 8 to maintain rollout
throughput and because we observe diminishing returns beyond task-specific optima; Tables 6, 7,
and 8 report the chosen H per task. An interesting future direction would be to dynamically adjust
rollout horizons based on the model’s uncertainty level, potentially allowing for adaptive rollout
lengths that scale with model confidence.
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Figure 11: Rollout length sensitivity on h1-hurdle-v0 task of HumanoidBench up to H = 40.
WIMLE remains stable at longer horizons without rollout scheduling.

E EXPERIMENT DETAILS

This section provides detailed descriptions of the benchmark environments used in our evaluation.
We explain the task suites, their characteristics, and the normalization procedures used for fair com-
parison across different score scales. The following subsections describe each benchmark suite with
complete task lists and their state/action dimensions.

E.1 DETAILED RESULTS

We present comprehensive IQM results for WIMLE and baseline methods across all benchmark
suites at 100k, 200k, 500k, and 1M environment steps. The best performing method for each step
count is highlighted in bold and the second best are underlined. WIMLE performs better across
most evaluations.

Table 2: IQM results for DMC suite. Best scores are highlighted in bold, second best are underlined.

Method 100k 200k 500k 1M

MR.Q 0.153 0.362 0.714 0.830
SAC 0.037 0.082 0.210 0.326
SimBA 0.120 0.263 0.522 0.691
SimBAV2 0.235 0.495 0.730 0.845
BRO 0.294 0.519 0.542 0.846
DreamerV3 0.051 0.075 0.165 0.286
TD-MPC2 0.152 0.374 0.566 0.696
WIMLE 0.332 0.575 0.812 0.871

E.2 DEEPMIND CONTROL SUITE

DeepMind Control Suite (Tassa et al., 2018, DMC) is a standard continuous control benchmark en-
compassing locomotion and manipulation tasks with varying complexity. We evaluate 16 tasks from
DMC, focusing on the most challenging locomotion tasks including Dog and Humanoid embodi-
ments. All returns are normalized by dividing by 1000 to scale performance to [0,1]. The complete
list of tasks with their observation and action dimensions is provided in Table 6.
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Table 3: IQM results for Dog & Humanoid suite. Best scores are highlighted in bold, second best
are underlined.

Method 100k 200k 500k 1M

MR.Q 0.042 0.127 0.557 0.796
SAC 0.007 0.008 0.043 0.069
SimBA 0.067 0.173 0.533 0.773
SimBAV2 0.082 0.200 0.601 0.808
BRO 0.086 0.290 0.355 0.864
DreamerV3 0.006 0.006 0.007 0.010
TD-MPC2 0.014 0.058 0.302 0.527
WIMLE 0.140 0.389 0.803 0.897

Table 4: IQM results for MyoSuite. Best scores are highlighted in bold, second best are underlined.

Method 100k 200k 500k 1M

SAC 0.038 0.350 0.622 0.714
SimBA 0.566 0.728 0.912 0.952
SimBAV2 0.724 0.830 0.956 0.990
BRO 0.440 0.736 0.816 0.980
DreamerV3 0.028 0.044 0.181 0.466
TD-MPC2 0.088 0.394 0.688 0.775
WIMLE 0.460 0.620 0.928 0.980

Table 5: IQM results for HumanoidBench. Best scores are highlighted in bold, second best are
underlined.

Method 100k 200k 500k 1M

SAC 0.008 0.020 0.060 0.168
SimBA 0.070 0.164 0.322 0.521
SimBAV2 0.059 0.179 0.488 0.799
BRO 0.064 0.127 0.100 0.530
DreamerV3 0.003 0.003 0.005 0.007
TD-MPC2 0.023 0.064 0.382 0.734
WIMLE 0.056 0.258 0.735 0.876

E.3 MYOSUITE

MyoSuite (Caggiano et al., 2022) provides high-fidelity musculoskeletal simulations for dexterous
manipulation tasks. We evaluate 10 tasks including both fixed-goal and randomized-goal (hard)
settings. Performance is measured using success rates, which naturally scale to [0,1]. The complete
list of tasks with their observation and action dimensions is provided in Table 7.

E.4 HUMANOIDBENCH

HumanoidBench (Sferrazza et al., 2024) provides locomotion tasks for the UniTree H1 humanoid
robot. We evaluate 14 tasks spanning balance, locomotion, and manipulation. For fair comparison
across tasks with different score scales, all HumanoidBench scores are normalized using each task’s
target success score and random score following the same procedure as in (Lee et al., 2025a;b):

Success-Normalized(x) :=
x− random score

Target success score− random score

The complete list of tasks with their observation and action dimensions is provided in Table 8, and
the random scores and target success scores used for normalization are listed in Table 9.
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Table 6: DMC Tasks. Complete list of 16 DMC tasks evaluated, with state and action dimensions
and rollout lengths.

Task State dim |S| Action dim |A| H
acrobot-swingup 6 1 8
cheetah-run 17 6 1
finger-turn hard 12 2 1
fish-swim 24 5 8
hopper-hop 15 4 1
pendulum-swingup 3 1 1
quadruped-run 78 12 2
reacher-hard 6 2 1
walker-run 24 6 1
humanoid-stand 67 24 2
humanoid-walk 67 24 6
humanoid-run 67 24 6
dog-stand 223 38 6
dog-walk 223 38 4
dog-run 223 38 6
dog-trot 223 38 4

Table 7: MyoSuite Tasks. Complete list of 10 MyoSuite tasks evaluated, with state and action
dimensions and rollout lengths.

Task State dim |S| Action dim |A| H
myo-key-turn 93 39 6
myo-key-turn-hard 93 39 1
myo-obj-hold 91 39 4
myo-obj-hold-hard 91 39 1
myo-pen-twirl 83 39 2
myo-pen-twirl-hard 83 39 1
myo-pose 108 39 2
myo-pose-hard 108 39 1
myo-reach 115 39 4
myo-reach-hard 115 39 1

Table 8: HumanoidBench Tasks. Complete list of 14 HumanoidBench tasks evaluated, with state
and action dimensions and rollout lengths.

Task State dim |S| Action dim |A| H
h1-balance-simple 64 19 1
h1-balance-hard 77 19 6
h1-crawl 51 19 6
h1-hurdle 51 19 8
h1-maze 51 19 6
h1-pole 51 19 8
h1-reach 57 19 4
h1-run 51 19 8
h1-slide-v0 51 19 8
h1-slide-v1 51 19 8
h1-sit-hard 51 19 8
h1-stair 51 19 8
h1-stand 51 19 8
h1-walk 51 19 8
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Table 9: HumanoidBench Normalization Scores. Random scores and target success scores used
for normalization.

Task Random Score Target Success Score
h1-balance-simple 9.391 800
h1-balance-hard 9.044 800
h1-crawl 272.658 700
h1-hurdle 2.214 700
h1-maze 106.441 1200
h1-pole 20.09 700
h1-reach 260.302 12000
h1-run 2.02 700
h1-slide-v0 2.02 700
h1-slide-v1 2.02 700
h1-sit-hard 10.545 800
h1-stair 2.214 700
h1-stand 10.545 800
h1-walk 2.377 700

F ADDITIONAL RESULTS

Figure 12 compares standard WIMLE (mixed real + imagined data) against an “imagined-only” vari-
ant whose critic and actor are trained exclusively on model-generated rollouts. Removing real tran-
sitions does reduce performance slightly, but the imagined-only curve remains close to the original
WIMLE results, underscoring that our synthetic trajectories are strong enough to sustain competitive
learning.

Figure 14 and Table 10 illustrate the wall-clock efficiency of WIMLE. Despite the overhead of
ensemble training, WIMLE’s superior sample efficiency results in a significantly lower total time-
to-solution compared to baselines.

Figure 12: Imagined-only WIMLE (no real data in critic/actor updates) achieves performance com-
parable to the standard configuration, highlighting the strength of the generated rollouts.
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Figure 13: Humanoid (Mujoco) comparison against InfoProp for 4 seeds. Unlike InfoProp, which
uses task-specific termination functions for synthetic rollouts, WIMLE runs with the generic setup
used for our DMC experiments yet still matches or exceeds InfoProp.

Method Step 300k Step 500k Step 1000k
Time (h) IQM Time (h) IQM Time (h) IQM

Infoprop 11.49 0.044 19.15 0.102 38.30 0.077
DreamerV3 3.90 0.001 6.50 0.001 13.00 0.001
TD-MPC2 3.43 0.001 5.72 0.038 11.43 0.190
Ours 4.74 0.168 7.91 0.345 15.81 0.561

Table 10: Performance and time at different training milestones.

Figure 14: Projected total wall-clock time (algorithm compute + data collection) on Humanoid-run,
assuming a 5Hz control rate. WIMLE reaches asymptotic performance significantly faster than BRO
(the fastest model-free baseline) because its superior sample efficiency drastically reduces the time
spent collecting real-world data, outweighing its higher per-update compute cost.
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