WIMLE: UNCERTAINTY-AWARE WORLD MODELS WITH IMLE FOR SAMPLE-EFFICIENT CONTINUOUS CONTROL

Anonymous authors

Paper under double-blind review

ABSTRACT

Model-based reinforcement learning promises strong sample efficiency but often underperforms in practice due to compounding model error, unimodal world models that average over multi-modal dynamics, and overconfident predictions that bias learning. We introduce WIMLE, a model-based method that extends Implicit Maximum Likelihood Estimation (IMLE) to the model-based RL framework to learn stochastic, multi-modal world models without iterative sampling and to estimate predictive uncertainty via ensembles and latent sampling. During training, WIMLE weights each synthetic transition by its predicted confidence, preserving useful model rollouts while attenuating bias from uncertain predictions and enabling stable learning. Across 40 continuous-control tasks spanning DeepMind Control, MyoSuite, and HumanoidBench, WIMLE achieves superior sample efficiency and competitive or better asymptotic performance than strong model-free and model-based baselines. Notably, on the challenging Humanoidrun task, WIMLE improves sample efficiency by over 50% relative to the strongest competitor, and on HumanoidBench it solves 8 of 14 tasks (versus 4 for BRO and 5 for SimbaV2). These results highlight the value of IMLE-based multi-modality and uncertainty-aware weighting for stable model-based RL.

1 Introduction

Figure 1: Sample efficiency on challenging tasks from each benchmark suite. WIMLE achieves superior sample efficiency and asymptotic performance over strong model-free and model-based baselines. Y-axes show interquartile mean. Shaded areas indicate 95% confidence intervals.

Reinforcement learning has become a powerful framework for solving complex decision-making problems across diverse domains such as autonomous control (Kiumarsi et al., 2018), strategic game playing (Hosu & Rebedea, 2016), and natural language processing (Lambert, 2025; Cetina et al., 2021). However, a significant challenge in RL is the need for a substantial number of interactions with the environment to learn a good policy. Without a simulator, learning requires real-world trials, which are costly, slow, and risky (Chen et al., 2022; Weng et al., 2023; Hessel et al., 2018; Schulman et al., 2017b).

Model-based RL (MBRL) methods aim to address this sample efficiency issue by first learning a parametric world model from collected environment interactions, then leveraging this learned model to reduce real environment samples and accelerate policy learning (Hafner et al., 2020; 2021; 2023; Ye et al., 2021; Laskin et al., 2020). Common uses of the learned world model include (1)

generating synthetic rollouts that augment training data for policy learning (Janner et al., 2019; Ha & Schmidhuber, 2018; Hafner et al., 2020; Clavera et al., 2020) and (2) planning by simulating future trajectories to guide action selection (Zhu et al., 2023; Frauenknecht et al., 2025; Janner et al., 2019; Lowrey et al., 2019; Hafner et al., 2019; Argenson & Dulac-Arnold, 2021). In this work, we focus on the former.

Historically, MBRL has struggled to surpass strong model-free baselines, largely because compounding rollout errors bias training and mislead the policy (Janner et al., 2019; Xiao et al., 2019; Talvitie, 2017; Frauenknecht et al., 2025; Venkatraman et al., 2015; Asadi et al., 2018b;a). We attribute this to two key issues: (1) standard predictive models struggle when the same state–action pair yields different, conflicting supervision due to partial observability, contact-rich dynamics, or inherent stochasticity (Kurutach et al., 2018); and (2) a lack of uncertainty awareness in model predictions (Frauenknecht et al., 2025), which leads to overconfidence in regions with complex dynamics or limited data. Despite attempts to address these issues (Janner et al., 2019; Zhu et al., 2023; Frauenknecht et al., 2025; Somalwar et al., 2025; Hansen et al., 2022), MBRL methods have yet to consistently outperform strong model-free baselines in practice (Nauman et al., 2024; Lee et al., 2025b).

To address these issues, we propose WIMLE (World models with IMLE)—an uncertainty-aware model-based RL approach. We integrate IMLE (Li & Malik, 2018), a mode-covering generative model with demonstrated success in low-data regimes (Aghabozorgi et al., 2023; Vashist et al., 2024), into the MBRL framework. This allows us to learn world models that handle different, conflicting supervision and from which we extract predictive uncertainty estimates. We incorporate these uncertainty estimates into the RL objective to prevent overconfident predictions from biasing learning. To the best of our knowledge, this is the first work to extend IMLE for uncertainty-aware world models in MBRL.

We evaluate WIMLE on 40 tasks across DMC, HumanoidBench, and MyoSuite. WIMLE delivers considerable gains in sample efficiency and asymptotic performance over strong model-free and model-based baselines. Notably, on the notoriously challenging Humanoid-run task, WIMLE improves the sample efficiency of the most competitive method by over 50%. On HumanoidBench, WIMLE successfully solves 8 of 14 tasks, compared to 4 for BRO and 5 for SimbaV2 (Figure 10). Across suites, Figure 1 shows one example task per benchmark, each showing more than 50% sample-efficiency improvement for WIMLE over the strongest competing method.

2 Preliminaries

2.1 RL

We consider an infinite-horizon discounted Markov decision process (MDP) $(\mathcal{S}, \mathcal{A}, P, r, \gamma)$ (Bellman, 1957) with initial state distribution ρ_0 . At time t, the agent observes $s_t \in \mathcal{S}$, selects $a_t \sim \pi_\phi(a \mid s_t)$, receives reward $r_t = r(s_t, a_t)$, and the environment transitions as $s_{t+1} \sim P(\cdot \mid s_t, a_t)$. The objective is to learn a policy that maximizes the expected discounted return

$$J(\pi_{\phi}) = \mathbb{E}_{\tau \sim (\rho_0, P, \pi_{\phi})} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]. \tag{1}$$

In the continuous-control settings considered here, states and actions are real-valued. The discount factor satisfies $\gamma \in (0,1)$. We denote the action-value function under policy π by $Q^{\pi}(s,a)$:

$$Q^{\pi}(s, a) = \mathbb{E}_{\tau \sim (\pi, P)} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, a_{0} = a \right].$$
 (2)

2.2 MODEL-BASED RL

In model-based RL, we learn a parametric world model with parameters θ that approximates the unknown environment transition dynamics $P(s_{t+1}, r_t \mid s_t, a_t)$ through a learned conditional distribution

$$\hat{p}_{\theta}(s_{t+1}, r_t \mid s_t, a_t) \tag{3}$$

trained from limited environment interactions. A model rollout (prediction) of horizon H under a policy π_{ϕ} from s_0 is the sequence $\hat{\tau} = (s_0, a_0, r_0, s_1, \dots, s_H)$ generated by

 $a_t \sim \pi_\phi(\cdot \mid s_t), \quad (s_{t+1}, r_t) \sim \hat{p}_\theta(\cdot \mid s_t, a_t).$ (4)

Such rollouts are commonly used for planning or to provide synthetic transitions for RL training (Janner et al., 2019; Zhu et al., 2023).

2.3 IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION

Implicit Maximum Likelihood Estimation (IMLE) learns a latent-variable generator $g_{\theta}(z)$ that maps noise $z \sim \mathcal{N}(0, I)$ to data space. Given data $\{x_i\}_{i=1}^N$, the IMLE objective is:

$$\theta^{\star} = \arg\min_{\theta} \ \mathbb{E}_{\{z_j\}_{j=1}^m} \sum_{i=1}^N \min_{1 \le j \le m} \|g_{\theta}(z_j) - x_i\|^2.$$
 (5)

In practice, given current parameters θ , we realize this objective by drawing a pool of candidate latents $\{z_j\}_{j=1}^m$ i.i.d. from $\mathcal{N}(0,I)$ per data point and selecting the nearest generated sample; this step is gradient-free and fully parallelizable,

$$z_i^{\star} = \arg\min_{1 \le j \le m} \|g_{\theta}(z_j) - x_i\|^2,$$
 (6)

and minimizing the resulting empirical loss using stochastic gradient descent.

$$\theta \leftarrow \theta - \eta \, \nabla_{\theta} \, \frac{1}{|B|} \sum_{i \in B} \left\| g_{\theta}(z_i^{\star}) - x_i \right\|^2. \tag{7}$$

Optimizing Eq. equation 5 yields maximum likelihood estimation (MLE) of θ and ensures mode coverage (Aghabozorgi et al., 2023): each data point is represented by at least one generated sample. In practice, IMLE is sample efficient and effective for modeling multi-modal distributions. Conditional IMLE $g_{\theta}(c,z)$ models multi-modal conditional distributions; we adopt this form in WIMLE. For a more detailed discussion of IMLE, we refer readers to (Li & Malik, 2018; Aghabozorgi et al., 2023).

3 WIMLE

WIMLE addresses the key limitations of traditional MBRL through three main components: (1) IMLE-trained stochastic world models that capture complex multi-modal transition dynamics, (2) predictive uncertainty estimation that reflects the model's confidence in its predictions, and (3) uncertainty-weighted learning that scales the influence of synthetic data based on model confidence. We detail each component below.

3.1 IMLE WORLD MODEL

Recent MBRL approaches span autoregressive sequence models, latent-variable generators, diffusion models, and planning-centric objectives (Ha & Schmidhuber, 2018; Hafner et al., 2019; 2020; 2021; Robine et al., 2023; Micheli et al., 2023; Zhang et al., 2023; Hansen et al., 2024; Huang et al., 2024). Diffusion models are effective but rely on iterative sampling, which limits their usage in the online RL setting where rollout throughput is critical (Huang et al., 2024; Karras et al., 2022). Despite progress, these methods often require substantial data and still struggle to consistently surpass strong model-free baselines (Nauman et al., 2024; Lee et al., 2025b). Moreover, simple and sample-efficient unimodal Gaussian world models underfit inherently multi-modal, complex dynamics in partially observable or contact-rich settings, exacerbating model bias and compounding errors (Janner et al., 2019; Zhu et al., 2023).

On the other hand, we leverage IMLE to learn transitions, a one-step generative method that—unlike diffusion models—avoids iterative sampling and enables fast online rollouts. In practice, IMLE yields strong rollout throughput; Figure 2 reports wall-clock time among model-based methods. We represent the world model as a conditional stochastic generator g_{θ} that maps a state—action pair and latent noise to the next outcome:

$$(\tilde{s}_{t+1}, \, \tilde{r}_t) = g_\theta(s_t, a_t, z), \quad z \sim \mathcal{N}(0, I). \tag{8}$$

Figure 2: Wall-clock comparison among model-based methods (3 seeds) on a single NVIDIA L40S GPU. Y-axis shows interquartile mean; shaded areas indicate 95% confidence intervals.

Here, the latent variable z induces a distribution over next outcomes for the same state–action pair, capturing inherent stochasticity and multi-modality in the dynamics.

IMLE Training Procedure. Given a dataset of transitions $\{(s_t, a_t, r_t, s_{t+1})\}_{i=1}^N$, we form targets $y_i = [r_t, s_{t+1}]$ and train g_θ using the IMLE objective. The training proceeds in two alternating steps:

Assignment Step: For each data point y_i , we sample m candidate latents $\{z_j\}_{j=1}^m$ and assign the nearest candidate that minimizes the prediction error:

$$z_i^{\star} = \arg\min_{1 \le j \le m} \|g_{\theta}(s_i, a_i, z_j) - y_i\|^2.$$
 (9)

This assignment step is computationally efficient as it requires no gradient computation, is fully parallelizable across data points, and typically uses small values of m (e.g., 5-10) in conditional IMLE settings.

Update Step: We then perform gradient descent on the empirical loss using the assigned latents:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \frac{1}{|B|} \sum_{i \in B} \left\| g_{\theta}(s_i, a_i, z_i^{\star}) - y_i \right\|^2, \tag{10}$$

where B is a minibatch of indices and $\eta > 0$ is the learning rate.

This procedure ensures *mode coverage* by matching each data point to at least one generated sample, avoiding collapse to a single mean prediction. In contrast, a standard Gaussian regression model trained with least squares (Janner et al., 2019) predicts the conditional mean; in multi-modal settings this falls between modes and produces averaged, often implausible next states—known as regression to the mean (Galton, 1886; Barnett et al., 2005)—that compound over rollouts. IMLE's per-sample latent assignment avoids this averaging and yields sharper, mode-consistent predictions (Aghabozorgi et al., 2023; Vashist et al., 2024).

Inference and Rollouts. After training, we generate rollouts following the procedure described in Section 2.2. Multi-step rollouts of horizon H are generated by initializing from a real state s_0 and iteratively applying: $a_t \sim \pi_{\phi}(\cdot|s_t)$, $z_t \sim \mathcal{N}(0, I)$, $(s_{t+1}, r_t) = g_{\theta}(s_t, a_t, z_t)$ for $t = 0, \dots, H - 1$.

3.2 Uncertainty Estimation

Reliable uncertainty estimation is crucial for deciding when to trust model predictions. We therefore compute a predictive uncertainty for each synthetic transition and use it to reweight the RL objective. Each transition's contribution is scaled by its estimated confidence. This preserves useful rollouts and reduces bias from uncertain predictions without changing the underlying algorithm. Alternative integrations exist. For example, Infoprop (Frauenknecht et al., 2025) computes an information-theoretic corruption measure and uses it to truncate rollouts during generation. In contrast, we integrate uncertainty directly into the learning objective via confidence weights.

We use a single predictive uncertainty measure $\sigma(s,a)$ that reflects the model's confidence in its next-step prediction. Concretely, we maintain an ensemble of K IMLE world models (see Section 3.5.1) and, for each model, draw m latent samples, yielding predictions:

$$\{g_{\theta_k}(s, a, z_j)\}_{k=1..K, j=1..m}$$
 (11)

We define $\sigma(s, a)$ as the standard deviation across these predictions—a direct measure of model agreement (see Algorithm 1, lines 12–13):

$$\sigma(s,a) = \operatorname{std}_{k,j} [g_{\theta_k}(s,a,z_j)]$$
(12)

In practice, we compute per-dimension standard deviations for the predicted reward and next state and average them to obtain a single scalar for the transition. $\sigma(s,a)$ decreases when models agree and increases when predictive uncertainty is high (e.g., limited data or complex dynamics).

For each synthetic transition (s_i, a_i, r_i, s_i') , we compute a per-transition confidence weight using the predictive uncertainty defined above: $w_i = \frac{1}{\sigma(s_i, a_i) + 1}$. The "+1" term both avoids division by zero and bounds the weight in (0, 1]; higher uncertainty yields smaller weights, and zero uncertainty yields weight 1 (see Algorithm 1). This functional form is a simple, monotonic mapping to (0, 1] that introduces no additional hyperparameters and, in our experiments, yields reasonable weights across tasks. We next detail how $\sigma(s_i, a_i)$ enters the training objective.

3.3 Uncertainty-weighted Learning

Having defined a single predictive uncertainty $\sigma(s,a)$, we now describe how it enters learning. The key idea is simple: weight each synthetic transition by the model's confidence so reliable predictions contribute more and uncertain ones less, preserving useful signal. This weighting mitigates bias from overconfident model predictions while letting trustworthy rollouts accelerate training. Because uncertainty typically grows with rollout horizon due to error accumulation, later steps in the rollout receive progressively smaller weights; this dynamically down-weights distant predictions while still letting them contribute proportionally to their reliability. As training proceeds and more real data are collected, $\sigma(s,a)$ decreases in visited regions, the confidence weights increase, and synthetic transitions contribute more where the model has gained confidence (Figure 6).

During rollout generation, we compute per-transition weights $w_i = 1/(\sigma(s_i, a_i) + 1)$ for each synthetic transition (s_i, a_i, r_i, s_i') using the predictive uncertainty defined above. We incorporate these weights into the RL objective by modifying the temporal difference (TD) loss:

$$\mathcal{L}_{\text{critic}} = \mathbb{E}_{(s_i, a_i, r_i, s_i') \sim \mathcal{D}} \left[w_i \cdot \delta_i^2 \right], \tag{13}$$

where $\delta_i = r_i + \gamma Q_\phi(s_{i+1}, a_{i+1}) - Q_\phi(s_i, a_i)$ is the TD error for transition i, with $a_{i+1} \sim \pi_\phi(\cdot \mid s_{i+1})$, Q_ϕ is a parameterized Q-function, and w_i is the corresponding uncertainty weight. For real environment data, $w_i = 1$; synthetic transitions receive $w_i < 1$ depending on model confidence in that prediction.

This approach enables the algorithm to effectively leverage synthetic rollouts while maintaining learning stability—longer, more uncertain rollouts contribute with appropriately reduced influence, reducing the bias and distribution shift that typically plague model-based methods.

3.4 Algorithm

Algorithm 1 presents the overall WIMLE procedure. For a more complete implementation of the algorithm, including training frequencies and hyperparameters, see Algorithm 3 in Appendix A.

The algorithm maintains the underlying RL method as a black box through the weighted loss function \mathcal{L} , where ℓ_{RL} represents any standard RL objective (e.g., TD error for critics, policy gradient for actors). The key insight is that uncertainty weights w_t automatically scale the contribution of each synthetic transition—high-confidence predictions receive higher weights while uncertain predictions contribute proportionally less.

3.5 Design Choices

3.5.1 Training

Model Rollouts. We experiment with synthetic rollouts using horizons up to H=8. All rollouts are initialized from real environment states sampled uniformly from the environment dataset \mathcal{D}_{env} , following standard practice in model-based RL to ensure rollouts start from the data distribution. We select task-specific rollout horizons through empirical experimentation as described in Appendix C.

RL Training. We use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) with distributional Q-learning (Bellemare et al., 2017) as our underlying RL algorithm. Following recent work that has demonstrated the effectiveness of distributional RL for continuous control (Nauman et al., 2024; Lee et al., 2025b; Dabney et al., 2018a), we specifically adapt quantile Q-learning (Dabney et al., 2018b; Nauman et al., 2024).

 $\mathcal{L} = \mathbb{E}_{(s,a,r,s',w) \sim \text{batch}}[w \cdot \ell_{RL}(s,a,r,s')]$

270 Algorithm 1 WIMLE: World Models with Implicit Maximum Likelihood Estimation 271 1: **Input:** Rollout horizon H, ensemble size K, number of rollouts M, number of latent codes m272 2: initialize ensemble world models $\{g_{\theta_k}\}_{k=1}^K$, environment and model datasets \mathcal{D}_{env} , $\mathcal{D}_{\text{model}}$ 273 3: **for** environment steps **do** 274 Collect environment transitions using π_{ϕ} ; add to \mathcal{D}_{env} 275 5: // IMLE World Model Training 276 Train ensemble $\{g_{\theta_k}\}_{k=1}^K$ in parallel on bootstrap samples of \mathcal{D}_{env} using IMLE (Eqs. 9, 10) 6: 277 7: for M model rollouts do 278 8: Sample starting state s_0 from \mathcal{D}_{env} 9: for t = 0 to H - 1 do 279 10: $a_t \sim \pi_\phi(\cdot|s_t)$ Sample m latents $\{z_j\}_{j=1}^m \sim \mathcal{N}(0, I)$ 11: 281 Generate predictions $\{g_{\theta_k}(s_t, a_t, z_j)\}_{k=1, j=1}^{K, m}$ from all ensemble members 282 12: 283 Compute predictive uncertainty: $\sigma_t = \operatorname{std}_{k,j} [g_{\theta_k}(s_t, a_t, z_j)]$ {aggregated over ensem-13: 284 bles and latents 285 Set weight $w_t = 1/(\sigma_t + 1)$ 14: Add weighted transition $(s_t, a_t, r_t, s_{t+1}, w_t)$ to $\mathcal{D}_{\text{model}}$ 15: // Uncertainty-Weighted Policy Learning 16: 287 17: Sample batch from $\mathcal{D}_{env} \cup \mathcal{D}_{model}$ (real data has w = 1) 18: Update policy using weighted RL objective: 289

Figure 3: WIMLE world model architecture.

Ensemble Training. We train an ensemble of K=7 IMLE world models in parallel to improve predictive uncertainty estimation and calibration (Section 3.2). Each ensemble member is initialized with different random parameters and trained on bootstrap samples of the environment data. The parallel training of ensemble members is computationally efficient and scales well with available compute resources, enabling reliable predictive uncertainty without significant computational overhead.

3.5.2 ARCHITECTURE

19:

290291292293

295296297298299300

301 302 303

304

305

306

307

308

309

310 311

312

313

314

315

316

317

318

319 320 321

322

323

Figure 3 illustrates the WIMLE world model architecture. The network takes as input state s_t , action a_t , and latent variable z, followed by a dense layer that maps to a 512-dimensional hidden representation. The core of the architecture consists of three residual blocks, each containing dense layers with ReLU activations and L2 normalization. Following recent findings by Lee et al. (2025b), we employ L2 normalization within the residual blocks, which has been shown to improve stability and performance in RL settings. The network outputs separate predictions for rewards and next states through dedicated dense heads.

4 EXPERIMENTS

We evaluate WIMLE across diverse continuous-control benchmarks—DeepMind Control Suite (including Dog and Humanoid), MyoSuite, and HumanoidBench (Tassa et al., 2018; Caggiano et al., 2022; Sferrazza et al., 2024). Across 40 tasks spanning locomotion and dexterous manipulation with high-dimensional state/action spaces and sparse rewards, we compare against strong model-

free and model-based methods, including MR.Q, PPO, SAC, Simba, SimbaV2, BRO, TD-MPC2, and DreamerV3 (Fujimoto et al., 2025; Schulman et al., 2017a; Haarnoja et al., 2018; Lee et al., 2025a;b; Nauman et al., 2024; Hansen et al., 2024; Hafner et al., 2023), and present per-benchmark results. Through our experiments, we aim to answer: (i) How does WIMLE compare to strong model-free and model-based methods? (ii) How does IMLE-based multi-modality in the world model affect results compared to standard unimodal Gaussian models? (iii) How do uncertainty estimates evolve during training, and how do they affect performance?

4.1 EXPERIMENTAL SETUP

All experiments are run for 1M environment steps with 10 random seeds unless otherwise specified. We report the interquartile mean (IQM) and 95% confidence intervals computed with RLiable (Agarwal et al., 2021), using stratified bootstrap across tasks and seeds. Following BRO and SimbaV2 (Nauman et al., 2024; Lee et al., 2025b), we aggregate normalized scores per BRO/SimbaV2 protocol (DMC [0,1], MyoSuite success, HumanoidBench success-normalized). Where official baseline results are available, we report the authors' numbers; otherwise, we run public implementations with their recommended settings. We provide full details about the experimental setup, hyperparameters, and baselines in Section C and D of the appendix.

4.2 Comparison to Baselines

Figure 4: Aggregate results across benchmarks. WIMLE outperforms strong model-free and model-based baselines overall. Gains are most pronounced on the challenging Dog & Humanoid subset, where it achieves superior sample efficiency and asymptotic performance. On MyoSuite, it performs asymptotically on par with strong baselines that are already near the maximum score (1.0), and on HumanoidBench it significantly outperforms the baselines, solving 8/14 tasks versus BRO 4 and SimbaV2 5. Y-axes show interquartile mean; shaded areas denote 95% confidence intervals.

We summarize aggregate performance across benchmarks in Figure 4 and provide detailed per-task results in Section B of the appendix. WIMLE consistently leads among strong model-free and model-based methods on Dog & Humanoid, the full DMC suite, and HumanoidBench, while performing asymptotically on par with strong MyoSuite baselines that are already close to the maximum score (1.0). Notably, gains are largest on the high-dimensional and challenging Dog & Humanoid tasks (Dog: $|\mathcal{S}|$ =223, $|\mathcal{A}|$ =38; Humanoid: $|\mathcal{S}|$ =67, $|\mathcal{A}|$ =24). On HumanoidBench, WIMLE significantly outperforms baselines, solving 8 of 14 tasks versus BRO 4 and SimbaV2 5 (Figure 10). We summarize performance across timesteps in Section D.1, where WIMLE performs best or competitively across most evaluations. We attribute these improvements to IMLE-driven multi-modality in the world model and uncertainty-weighted learning that scales the influence of synthetic rollouts by model confidence, mitigating bias from overconfident predictions while preserving useful signal, which we discuss in more detail in the next section. Per-task performance is reported in Figures 7, 8, 9 and 10.

4.3 METHOD ANALYSIS

We analyze how uncertainty-aware weighting and multi-modal dynamics modeling impact performance and how predictive uncertainty evolves during training.

Effect of uncertainty-aware weighting Figure 5 (Left) compares WIMLE with uncertainty-aware weighting to an unweighted variant that is *identical in every respect except that all pertransition weights are fixed to* w_i =1.0. The unweighted curve lags and can even underperform a strong model-free baseline early on, indicating that ignoring predictive uncertainty significantly biases learning and hinders performance. Figure 5 (Right) studies rollout sensitivity. Increasing the model rollout horizon from H=1 to H=4 to H=6 improves performance, and extending to H=8

maintains performance rather than showing the severe degradation typically observed in model-based methods when increasing rollout length (Janner et al., 2019). This improved stability at longer horizons demonstrates that uncertainty-aware weighting reduces the model bias typically introduced by longer horizon errors, enabling us to leverage longer synthetic rollouts without considerable performance degradation.

Impact of IMLE-based multi-modality Figure 6 (Left) contrasts WIMLE (IMLE world model) with an otherwise identical unimodal Gaussian world model (MBPO-style; (Janner et al., 2019)), with both variants using uncertainty-aware weighting. The IMLE variant significantly outperforms the Gaussian, underscoring the value of modeling multi-modal transition dynamics for uncertainty estimation in complex, contact-rich control. Figure 6 (Right) shows how weights evolve. During a brief warm-up with limited environment samples and training, both models are uncalibrated and weights can appear transiently high; as data accumulates and the estimators calibrate, weights drop to reflect high uncertainty and low confidence. As training progresses and more data are collected, IMLE's weights increase to reflect higher confidence in the predictions, whereas the Gaussian's remain relatively flat, indicating limited calibration. Together, these results show that multi-modal modeling improves both performance and the quality of uncertainty estimates, reducing the risk of overconfident, biased predictions misleading the policy.

Figure 5: Uncertainty-aware weighting reduces model bias and enables stable training at longer horizons on Humanoid-run. Left: Uncertainty-aware WIMLE compared to an unweighted variant that is identical except all per-transition weights are fixed to $w_i = 1.0$ and a model-free variant; the unweighted curve lags and can even underperform the model-free variant early on, indicating that ignoring uncertainty will bias learning and hinder performance. Right: Rollout ablation (H = 1,4,6,8) for WIMLE: increasing the model rollout horizon from H = 1 to H = 4 to H = 6 improves performance, and extending to H = 8 does not substantially degrade performance, suggesting that uncertainty-aware weighting mitigates harm from error accumulation at longer horizons. All plots are on DMC's Humanoid-run task with 5 seeds.

Figure 6: Multi-modality strengthens model-based learning. **Left:** WIMLE (IMLE world model) versus an otherwise identical unimodal Gaussian world model (MBPO-style; (Janner et al., 2019); both use uncertainty-aware weighting): the IMLE variant significantly outperforms the Gaussian, highlighting the value of multi-modal modeling and IMLE's efficacy. **Right:** Weight dynamics: After a brief warm-up phase, IMLE's weights are lower when uncertainty is high and increase as training progresses and more data are collected, reflecting growing model confidence; the unimodal Gaussian fails to capture this evolution, yielding relatively flat weights over time. All plots are on Humanoid-run.

5 RELATED WORK

Model-free RL. Foundational model-free methods such as PPO (Schulman et al., 2017a) and SAC (Haarnoja et al., 2018) remain strong references for continuous control. Recent advances focus on scaling and regularization: BRO (Nauman et al., 2024) scales critic networks to 5M parameters with strong regularization and optimistic exploration, achieving state-of-the-art performance. Simba (Lee et al., 2025a) introduces an architecture that embeds simplicity bias through running statistics

normalization, residual feedforward blocks, and layer normalization, enabling effective parameter scaling; SimbaV2 (Lee et al., 2025b) further constrains feature and weight norms via hyperspherical normalization. Contemporary work like MR.Q (Fujimoto et al., 2025) explores improved value estimation for better sample efficiency. Collectively, these methods provide strong model-free baselines.

Model-based RL. Model-based RL methods learn world models to improve sample efficiency via synthetic rollouts and planning. DreamerV3 (Hafner et al., 2023) learns a latent world model and achieves strong performance in continuous control with large-scale training. MBPO (Janner et al., 2019) uses short model-generated rollouts branched from real data to avoid model exploitation while maintaining sample efficiency. TD-MPC2 (Hansen et al., 2024) learns implicit world models through joint-embedding prediction and performs local trajectory optimization in latent space for scalable multi-task learning. STORM (Zhang et al., 2023) combines Transformer-based sequence modeling with categorical VAEs for efficient world model learning in visual domains. Diffusion-based world models generate trajectories via iterative denoising and incur high inference cost, which hinders online RL (Janner et al., 2022; Ajay et al., 2023; He et al., 2023). Despite these algorithmic advances, model-based methods have struggled to consistently surpass recent model-free approaches like BRO (Nauman et al., 2024) and SimbaV2 (Lee et al., 2025b).

Model Bias. Model bias and error accumulation remain fundamental challenges in MBRL. Trajectory models (Asadi et al., 2019; Lambert et al., 2021) address the compounding-error problem by learning multi-step models that directly predict outcomes of action sequences, avoiding the accumulation of one-step prediction errors. Self-correcting models (Talvitie, 2017) train models to correct themselves when producing errors. Infoprop (Frauenknecht et al., 2025) integrates uncertainty by truncating rollouts using information-theoretic corruption measures, but is not competitive on complex, high-dimensional tasks such as Humanoid-run (see Figure 1). In contrast, we estimate a single predictive uncertainty and weight each synthetic transition accordingly, integrating this directly into the learning objective to preserve useful synthetic data while reducing the influence of uncertain predictions. This yields state-of-the-art results on challenging tasks (Figures 1 and 4).

Implicit Maximum Likelihood Estimation. IMLE (Li & Malik, 2018) trains implicit generative models by minimizing the expected distance from each data point to its nearest generated sample, avoiding mode-collapse and GAN (Goodfellow et al., 2014) training issues. Adaptive IMLE (Aghabozorgi et al., 2023) extends this with adaptive thresholding and curriculum learning for better few-shot performance. These methods demonstrate that likelihood-based objectives can achieve good sample quality without adversarial training on low-data settings.

6 LIMITATIONS AND FUTURE WORK

WIMLE uses world models solely to generate synthetic rollouts. Other uses, such as planning with the model or integrating the model into policy-gradient formulations, remain unexplored here. Future work should evaluate WIMLE in these settings. Our experiments use proprioceptive state observations only. Extending WIMLE to image-based control is an important direction, especially since IMLE has been shown to be effective in few-shot image synthesis (Aghabozorgi et al., 2023; Vashist et al., 2024). Finally, similar to MBPO (Janner et al., 2019) and POMP (Zhu et al., 2023), the rollout horizon is a task-dependent hyperparameter. Learning to adapt the horizon online based on model confidence is a promising avenue for future research.

7 Conclusion

WIMLE advances model-based reinforcement learning by extending IMLE to learn stochastic, multi-modal world models and by weighting synthetic data with predictive confidence. This reduces model bias and stabilizes learning while retaining the benefits of synthetic rollouts. Across 40 continuous-control tasks in DMC, MyoSuite, and HumanoidBench, WIMLE achieves superior sample efficiency and competitive or higher asymptotic performance than strong model-free and model-based baselines. Gains are largest on challenging Dog and Humanoid locomotion tasks. On HumanoidBench, WIMLE significantly outperforms baselines and solves 8 of 14 tasks. The approach integrates cleanly with standard RL objectives and scales with compute through ensembles and parallel latent sampling. We hope these results renew interest in practical world models for challenging continuous control.

REFERENCES

- Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep reinforcement learning at the edge of the statistical precipice. *Advances in neural information processing systems*, 34:29304–29320, 2021.
- Mehran Aghabozorgi, Shichong Peng, and Ke Li. Adaptive IMLE for few-shot pretraining-free generative modelling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 248–264. PMLR, 2023. URL https://proceedings.mlr.press/v202/aghabozorgi23a.html.
- Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is conditional generative modeling all you need for decision-making? *International Conference on Learning Representations*, 2023.
- Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. *ArXiv*, abs/2008.05556, 2021.
- Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L. Littman. Towards a Simple Approach to Multi-step Model-based Reinforcement Learning. *arXiv*, 2018a.
- Kavosh Asadi, Dipendra Misra, and Michael L. Littman. Lipschitz Continuity in Model-based Reinforcement Learning. *arXiv*, 2018b.
- Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L. Littman. Combating the Compounding-Error Problem with a Multi-step Model. *arXiv*, 2019.
- Adrian G Barnett, Jolieke C Van Der Pols, and Annette J Dobson. Regression to the mean: what it is and how to deal with it. *International journal of epidemiology*, 34(1):215–220, 2005.
- Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017*, volume 70 of *Proceedings of Machine Learning Research*, pp. 449–458. PMLR, 2017. URL http://proceedings.mlr.press/v70/bellemare17a.html.
- Richard Bellman. A markovian decision process. *Indiana Univ. Math. J.*, 6:679–684, 1957. ISSN 0022-2518.
- Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Kumar. Myosuite: A contact-rich simulation suite for musculoskeletal motor control. In Roya Firoozi, Negar Mehr, Esen Yel, Rika Antonova, Jeannette Bohg, Mac Schwager, and Mykel J. Kochenderfer (eds.), Learning for Dynamics and Control Conference, L4DC 2022, 23-24 June 2022, Stanford University, Stanford, CA, USA, volume 168 of Proceedings of Machine Learning Research, pp. 492–507. PMLR, 2022. URL https://proceedings.mlr.press/v168/caggiano22a.html.
- Víctor Uc Cetina, Nicolás Navarro-Guerrero, Ana Martín-González, Cornelius Weber, and Stefan Wermter. Survey on reinforcement learning for language processing. *Artificial Intelligence Review*, 56:1543–1575, 2021. URL https://api.semanticscholar.org/CorpusID: 233210638.
- Jie Chen, Jian Sun, and Gang Wang. From unmanned systems to autonomous intelligent systems. Engineering, 12:16–19, 2022.
 - Ignasi Clavera, Yao Fu, and P. Abbeel. Model-augmented actor-critic: Backpropagating through paths. *ArXiv*, abs/2005.08068, 2020.
 - Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for distributional reinforcement learning, 2018a. URL https://arxiv.org/abs/1806.06923.

- Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement learning with quantile regression. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 2892–2901. AAAI Press, 2018b. doi: 10.1609/AAAI.V32I1.11791. URL https://doi.org/10.1609/aaai.v32i1.11791.
 - Bernd Frauenknecht, Devdutt Subhasish, Friedrich Solowjow, and Sebastian Trimpe. On rollouts in model-based reinforcement learning. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenReview.net, 2025. URL https://openreview.net/forum?id=Uh5GRmLlvt.
 - Scott Fujimoto, Pierluca D'Oro, Amy Zhang, Yuandong Tian, and Michael Rabbat. Towards general-purpose model-free reinforcement learning. *arXiv preprint arXiv:2501.16142*, 2025.
 - Francis Galton. Regression towards mediocrity in hereditary stature. *The Journal of the Anthropological Institute of Great Britain and Ireland*, 15:246–263, 1886.
 - Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https://arxiv.org/abs/1406.2661.
 - David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In *Advances in Neural Information Processing Systems 31*, pp. 2451–2463. Curran Associates, Inc., 2018.
 - Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1856–1865. PMLR, 2018. URL http://proceedings.mlr.press/v80/haarnoja18b.html.
 - Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. Learning latent dynamics for planning from pixels. In *International Conference on Machine Learning*, pp. 2555–2565, 2019.
 - Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behaviors by latent imagination. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=S110TC4tDS.
 - Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world models. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=0oabwyZbOu.
 - Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through world models. *arXiv preprint arXiv:2301.04104*, 2023.
- Nicklas Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive control. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 8387–8406. PMLR, 2022. URL https://proceedings.mlr.press/v162/hansen22a.html.
- Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: scalable, robust world models for continuous control. In *The Twelfth International Conference on Learning Representations, ICLR* 2024, *Vienna, Austria, May* 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=Oxh5CstDJU.
- Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement learning. *Advances in Neural Information Processing Systems*, 2023.

- Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
 Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
 deep reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 volume 32, 2018.
 - Ionel-Alexandru Hosu and Traian Rebedea. Playing atari games with deep reinforcement learning and human checkpoint replay. CoRR, abs/1607.05077, 2016. URL http://arxiv.org/ abs/1607.05077.
 - Renming Huang, Yunqiang Pei, Guoqing Wang, Yangming Zhang, Yang Yang, Peng Wang, and Hengtao Shen. Diffusion models as optimizers for efficient planning in offline rl, 2024. URL https://arxiv.org/abs/2407.16142.
 - Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy optimization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 12498–12509, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html.
 - Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible behavior synthesis. *International Conference on Machine Learning*, 2022.
 - Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models, 2022. URL https://arxiv.org/abs/2206.00364.
 - Bahare Kiumarsi, Kyriakos G. Vamvoudakis, Hamidreza Modares, and Frank L. Lewis. Optimal and autonomous control using reinforcement learning: A survey. *IEEE Transactions on Neural Networks and Learning Systems*, 29:2042–2062, 2018. URL https://api.semanticscholar.org/CorpusID:21709652.
 - Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble trust-region policy optimization. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=SJJinbWRZ.
 - Nathan Lambert. Reinforcement learning from human feedback, 2025. URL https://arxiv.org/abs/2504.12501.
 - Nathan O. Lambert, Albert Wilcox, Howard Zhang, Kristofer S. J. Pister, and Roberto Calandra. Learning Accurate Long-term Dynamics for Model-based Reinforcement Learning. *IEEE Conf on Decision and Control*, 2021.
 - Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for reinforcement learning. In *International Conference on Machine Learning*, pp. 5639–5650. PMLR, 2020.
 - Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling up parameters in deep reinforcement learning. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenReview.net, 2025a. URL https://openreview.net/forum?id=jXLiDKsuDo.
 - Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical normalization for scalable deep reinforcement learning. *CoRR*, abs/2502.15280, 2025b. doi: 10.48550/ARXIV.2502.15280. URL https://doi.org/10.48550/arXiv.2502.15280.
 - Ke Li and Jitendra Malik. Implicit maximum likelihood estimation. *CoRR*, abs/1809.09087, 2018. URL http://arxiv.org/abs/1809.09087.

- Kendall Lowrey, Aravind Rajeswaran, Sham M. Kakade, Emanuel Todorov, and Igor Mordatch. Plan online, learn offline: Efficient learning and exploration via model-based control. *ArXiv*, abs/1811.01848, 2019.
- Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL https://openreview.net/forum?id=vhFu1Acb0xb.
- Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Milos, and Marek Cygan. Bigger, regularized, optimistic: scaling for compute and sample efficient continuous control. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/cd3b5d2ed967e906af24b33d6a356cac-Abstract-Conference.html.
- Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models are happy with 100k interactions. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.* OpenReview.net, 2023. URL https://openreview.net/forum?id=TdBaDGCpjly.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017a.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017b.
- Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. In Dana Kulic, Gentiane Venture, Kostas E. Bekris, and Enrique Coronado (eds.), *Robotics: Science and Systems XX, Delft, The Netherlands, July 15-19*, 2024, 2024. doi: 10.15607/RSS.2024.XX.061. URL https://doi.org/10.15607/RSS.2024.XX.061.
- Anne Somalwar, Bruce D. Lee, George J. Pappas, and Nikolai Matni. Learning with imperfect models: When multi-step prediction mitigates compounding error. *CoRR*, abs/2504.01766, 2025. doi: 10.48550/ARXIV.2504.01766. URL https://doi.org/10.48550/arXiv.2504.01766.
- Erik Talvitie. Self-correcting models for model-based reinforcement learning. In Satinder Singh and Shaul Markovitch (eds.), *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence*, *February 4-9*, 2017, San Francisco, California, USA, pp. 2597–2603. AAAI Press, 2017. doi: 10.1609/AAAI.V31I1.10850. URL https://doi.org/10.1609/aaai.v31i1.10850.
- Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller. Deepmind control suite. *CoRR*, abs/1801.00690, 2018. URL http://arxiv.org/abs/1801.00690.
- Chirag Vashist, Shichong Peng, and Ke Li. Rejection sampling IMLE: designing priors for better few-shot image synthesis. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), Computer Vision ECCV 2024 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XXI, volume 15079 of Lecture Notes in Computer Science, pp. 441–456. Springer, 2024. doi: 10.1007/978-3-031-72664-4_25. URL https://doi.org/10.1007/978-3-031-72664-4_25.
- Arun Venkatraman, Martial Hebert, and J. Bagnell. Improving Multi-Step Prediction of Learned Time Series Models. *AAAI*, 2015.
- Boxi Weng, Jian Sun, Gao Huang, Fang Deng, Gang Wang, and Jie Chen. Competitive metalearning. *IEEE/CAA Journal of Automatica Sinica*, 10(9):1902–1904, 2023.

Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Müller. Learning to combat compounding-error in model-based reinforcement learning. *CoRR*, abs/1912.11206, 2019. URL http://arxiv.org/abs/1912.11206.

- Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games with limited data. *Advances in Neural Information Processing Systems*, 34:25476–25488, 2021.
- Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. STORM: efficient stochastic transformer based world models for reinforcement learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/5647763d4245b23e6a1cb0a8947b38c9-Abstract-Conference.html.
- Jinhua Zhu, Yue Wang, Lijun Wu, Tao Qin, Wengang Zhou, Tie-Yan Liu, and Houqiang Li. Making better decision by directly planning in continuous control. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL https://openreview.net/forum?id=r8Mu7idxyF.

AUTHOR STATEMENT: USE OF LANGUAGE MODELS

We used large language models to help polish writing and improve clarity. All ideas, methods, experiments, and analyses were created and verified by the authors. Any suggested text was reviewed and edited by the authors for accuracy and originality.

ALGORITHM DETAILS

756

757 758

760

761 762

763 764

765

766

767 768

769

770

771

772

773

774

775

776

777

778

779

780

781 782 783

784 785

786

787

789

790

791

792

793

794

797

800

801

802

803

804

808

809

Algorithm 3 provides the detailed implementation of WIMLE, including training frequencies, batch sizes, and other practical considerations omitted from the main algorithm for clarity. The IMLE training procedure is detailed in Algorithm 2. Hyperparameters are provided in Section C.

Algorithm 2 IMLE World Model Training

```
1: Input: Environment dataset \mathcal{D}_{env}, ensemble \{g_{\theta_k}\}_{k=1}^K, number of latent codes m, number of
   updates U, learning rate \eta
```

```
2: for u = 1 to U do
```

- Sample minibatch $\{(s_i, a_i, r_i, s_{i+1})\}_{i \in B}$ with replacement from \mathcal{D}_{env}
- Form targets $y_i = [r_i, s_{i+1}]$ for all $i \in B$
- // Assignment Step (Eq. 9)
- Sample m candidate latents $\{z_j\}_{j=1}^m \sim \mathcal{N}(0, I)$ 6:
- for k = 1 to K in parallel do 7:
- $z_{i,k}^\star = \arg\min_{1\le j\le m} \|g_{\theta_k}(s_i,a_i,z_j)-y_i\|^2$ for all $i\in B$ // Update Step (Eq. 10) 8:
- 9:
- for k = 1 to K in parallel do 10:
 - $\theta_k \leftarrow \theta_k \eta \nabla_{\theta_k}^1 \frac{1}{|B|} \sum_{i \in B} \|g_{\theta_k}(s_i, a_i, z_{i,k}^{\star}) y_i\|^2$ 11:

Algorithm 3 WIMLE: Detailed Implementation

- 1: **Input:** Rollout horizon H, ensemble size K = 7, batch size B, model training frequency train_freq, number of latent codes m, number of model updates U
- 2: Initialize policy π_{ϕ} , ensemble of IMLE world models $\{g_{\theta_k}\}_{k=1}^K$, environment dataset \mathcal{D}_{env} , model dataset \mathcal{D}_{model}
- 3: for environment steps do
- 4: Collect environment transition using π_{ϕ} ; add to \mathcal{D}_{env}
- if step $mod train_freq = 0$ then 5:
- 6: // IMLE World Model Training
- Train ensemble $\{g_{\theta_k}\}_{k=1}^K$ in parallel using Algorithm 2 // Uncertainty-Aware Rollout Generation 7:
- 8:
- 9: Clear $\mathcal{D}_{\text{model}}$
- Sample batch of starting states $\{s_0^{(i)}\}_{i=1}^B$ with replacement from \mathcal{D}_{env} 10:
- 11:
- for t=0 to H-1 do $a_t^{(i)} \sim \pi_\phi(\cdot|s_t^{(i)})$ for all $i \in \{1,\dots,B\}$ Sample m latents $\{z_j\}_{j=1}^m \sim \mathcal{N}(0,I)$ 12:
- 798 13: 799
 - Generate predictions $\{g_{\theta_k}(s_t^{(i)}, a_t^{(i)}, z_j)\}_{k=1,j=1}^{K,m}$ from all ensemble members for all i14:
 - Compute predictive uncertainty: $\sigma_t^{(i)} = \operatorname{std}_{k,i} [g_{\theta_k}(s_t^{(i)}, a_t^{(i)}, z_i)]$ {aggregated over en-15: sembles and latents}
 - 16:
 - Set weight $w_t^{(i)} = 1/(\sigma_t^{(i)} + 1)$ Select transitions $(s_{t+1}^{(i)}, r_t^{(i)})$ from predictions 17:
- Add weighted transitions $\{(s_t^{(i)}, a_t^{(i)}, r_t^{(i)}, s_{t+1}^{(i)}, w_t^{(i)})\}_{i=1}^B$ to $\mathcal{D}_{\text{model}}$ 805 18: 806
 - 19: // Uncertainty-Weighted Policy Learning
 - 20: Sample batch from $\mathcal{D}_{\text{env}} \cup \mathcal{D}_{\text{model}}$ (real data has w = 1)
 - 21: Update policy using weighted RL objective:
 - $\mathcal{L} = \mathbb{E}_{(s,a,r,s',w) \sim \text{batch}}[w \cdot \ell_{RL}(s,a,r,s')]$ 22:

B PER-TASK RESULTS

We present detailed per-task performance results for WIMLE and other baselines across all benchmarks. The performance on each individual task is shown in Figures 7, 8, 9, and 10.

Figure 7: Per-task results for high-dimensional Dog & Humanoid tasks from DeepMind Control Suite. We present the IQM of rewards and 95% confidence intervals for BRO and other baselines run for 1M steps.

Figure 8: Per-task results for DeepMind Control Suite tasks with low-dimensional state/action spaces. We present the IQM of rewards and 95% confidence intervals for WIMLE and other baselines run for 1M steps.

Figure 9: Per-task results for MyoSuite tasks. We present the IQM of success rate and 95% confidence intervals for WIMLE and other baselines run for 1M steps.

Figure 10: Per-task results for HumanoidBench tasks. We present the IQM of rewards and 95% confidence intervals for WIMLE and other baselines run for 1M steps. The red dashed line indicates the success threshold for each task.

C HYPERPARAMETERS

Table 1 lists the common hyperparameters used across all tasks. These parameters were selected through hyperparameter tuning based on standard practices in RL.

Based on our empirical evaluations, we found that increasing the model batch size to the maximum extent allowed by available GPU resources while proportionally decreasing the number of model

918 919 920

Table 1: Common hyperparameters used across all tasks.

_	
9	21
9	22
9	23
9	24
9	25
9	26
9	27

935 936 937

942

950

959

964 965 966

967 968 969

970 971

Parameter	Value
SAC Parameters	
Batch size	128
Actor learning rate	3×10^{-4}
Critic learning rate	3×10^{-4}
Number of quantiles	100
Updates per step	10
World Model Parameters	
Model learning rate	1×10^{-3}
Model batch size	512
Model updates	100
Number of latent codes	4
Model training frequency	1000
Number of rollouts	200
Number of ensembles	7

updates can achieve similar performance with improved training speed. When scaling the batch size in this manner, the model learning rate should be adjusted accordingly following standard Machine Learning practices.

Rollout Length Selection We select task-specific rollout horizons H through experimentation. For easier tasks where baselines already saturate near the maximum score (e.g., MyoSuite manipulation tasks), we start with short horizons (H=1-2) and increase only if performance benefits are observed, as longer horizons may still introduce slight performance degradation—though not to the extent seen in traditional MBRL methods. For harder tasks requiring longer-term planning (e.g., HumanoidBench, Dog & Humanoid), we begin with longer horizons (H=8) and decrease only if performance gains are seen empirically. However, we note that even simpler tasks may benefit from longer horizons in some cases, reflecting the task-specific nature of optimal rollout length. This selection balances the benefits of synthetic data augmentation with computational cost, as the marginal benefit of additional rollout steps diminishes beyond each task's optimal horizon. We cap H at 8 to maintain rollout throughput and because we observe diminishing returns beyond task-specific optima; Tables 6, 7, and 8 report the chosen H per task. An interesting future direction would be to dynamically adjust rollout horizons based on the model's uncertainty level, potentially allowing for adaptive rollout lengths that scale with model confidence.

D EXPERIMENT DETAILS

This section provides detailed descriptions of the benchmark environments used in our evaluation. We explain the task suites, their characteristics, and the normalization procedures used for fair comparison across different score scales. The following subsections describe each benchmark suite with complete task lists and their state/action dimensions.

D.1 DETAILED RESULTS

We present comprehensive IQM results for WIMLE and baseline methods across all benchmark suites at 100k, 200k, 500k, and 1M environment steps. The best performing method for each step count is highlighted in bold and the second best are underlined. WIMLE performs better across most evaluations.

D.2 DEEPMIND CONTROL SUITE

DeepMind Control Suite (Tassa et al., 2018, DMC) is a standard continuous control benchmark encompassing locomotion and manipulation tasks with varying complexity. We evaluate 16 tasks from

Table 2: IQM results for DMC suite. Best scores are highlighted in bold, second best are underlined.

Method	100k	200k	500k	1M
MR.Q	0.153	0.362	0.714	0.830
SAC	0.037	0.082	0.210	0.326
SimBA	0.120	0.263	0.522	0.691
SimBAV2	0.235	0.495	0.730	0.845
BRO	0.294	0.519	0.542	0.846
DreamerV3	0.051	0.075	0.165	0.286
TD-MPC2	0.152	0.374	0.566	0.696
WIMLE	0.332	0.575	0.812	0.871

Table 3: IQM results for Dog & Humanoid suite. Best scores are highlighted in bold, second best are underlined.

Method	100k	200k	500k	1M
MR.Q	0.042	0.127	0.557	0.796
SAC	0.007	0.008	0.043	0.069
SimBA	0.067	0.173	0.533	0.773
SimBAV2	0.082	0.200	0.601	0.808
BRO	0.086	0.290	0.355	0.864
DreamerV3	0.006	0.006	0.007	0.010
TD-MPC2	0.014	0.058	0.302	0.527
WIMLE	0.140	0.389	0.803	0.897

Table 4: IQM results for MyoSuite. Best scores are highlighted in bold, second best are underlined.

Method	100k	200k	500k	1M
SAC	0.038	0.350	0.622	0.714
SimBA	0.566	0.728	0.912	0.952
SimBAV2	0.724	0.830	0.956	0.990
BRO	0.440	0.736	0.816	0.980
DreamerV3	0.028	0.044	0.181	0.466
TD-MPC2	0.088	0.394	0.688	0.775
WIMLE	0.460	0.620	0.928	0.980

Table 5: IQM results for HumanoidBench. Best scores are highlighted in bold, second best are underlined.

Method	100k	200k	500k	1M
SAC	0.008	0.020	0.060	0.168
SimBA	0.070	0.164	0.322	0.521
SimBAV2	0.059	0.179	0.488	0.799
BRO	0.064	0.127	0.100	0.530
DreamerV3	0.003	0.003	0.005	0.007
TD-MPC2	0.023	0.064	0.382	0.734
WIMLE	0.056	0.258	0.735	0.876

DMC, focusing on the most challenging locomotion tasks including Dog and Humanoid embodiments. All returns are normalized by dividing by 1000 to scale performance to [0,1]. The complete list of tasks with their observation and action dimensions is provided in Table 6.

D.3 MYOSUITE

MyoSuite (Caggiano et al., 2022) provides high-fidelity musculoskeletal simulations for dexterous manipulation tasks. We evaluate 10 tasks including both fixed-goal and randomized-goal (hard)

Table 6: **DMC Tasks.** Complete list of 16 DMC tasks evaluated, with state and action dimensions and rollout lengths.

Task	State dim $ \mathcal{S} $	Action dim $ \mathcal{A} $	Н
acrobot-swingup	6	1	8
cheetah-run	17	6	1
finger-turn_hard	12	2	1
fish-swim	24	5	8
hopper-hop	15	4	1
pendulum-swingup	3	1	1
quadruped-run	78	12	2
reacher-hard	6	2	1
walker-run	24	6	1
humanoid-stand	67	24	2
humanoid-walk	67	24	6
humanoid-run	67	24	6
dog-stand	223	38	6
dog-walk	223	38	4
dog-run	223	38	6
dog-trot	223	38	4

settings. Performance is measured using success rates, which naturally scale to [0,1]. The complete list of tasks with their observation and action dimensions is provided in Table 7.

Table 7: **MyoSuite Tasks.** Complete list of 10 MyoSuite tasks evaluated, with state and action dimensions and rollout lengths.

Task	State dim $ \mathcal{S} $	Action dim $ \mathcal{A} $	Н
myo-key-turn	93	39	6
myo-key-turn-hard	93	39	1
myo-obj-hold	91	39	4
myo-obj-hold-hard	91	39	1
myo-pen-twirl	83	39	2
myo-pen-twirl-hard	83	39	1
myo-pose	108	39	2
myo-pose-hard	108	39	1
myo-reach	115	39	4
myo-reach-hard	115	39	1

D.4 HUMANOIDBENCH

HumanoidBench (Sferrazza et al., 2024) provides locomotion tasks for the UniTree H1 humanoid robot. We evaluate 14 tasks spanning balance, locomotion, and manipulation. For fair comparison across tasks with different score scales, all HumanoidBench scores are normalized using each task's target success score and random score following the same procedure as in (Lee et al., 2025a;b):

$$\mbox{Success-Normalized}(x) := \frac{x - \mbox{random score}}{\mbox{Target success score} - \mbox{random score}}$$

The complete list of tasks with their observation and action dimensions is provided in Table 8, and the random scores and target success scores used for normalization are listed in Table 9.

Table 8: **HumanoidBench Tasks.** Complete list of 14 HumanoidBench tasks evaluated, with state and action dimensions and rollout lengths.

Task	State dim $ \mathcal{S} $	Action dim $ \mathcal{A} $	Н
h1-balance-simple	64	19	1
h1-balance-hard	77	19	6
h1-crawl	51	19	6
h1-hurdle	51	19	8
h1-maze	51	19	6
h1-pole	51	19	8
h1-reach	57	19	4
h1-run	51	19	8
h1-slide-v0	51	19	8
h1-slide-v1	51	19	8
h1-sit-hard	51	19	8
h1-stair	51	19	8
h1-stand	51	19	8
h1-walk	51	19	8

Table 9: **HumanoidBench Normalization Scores.** Random scores and target success scores used for normalization.

Task	Random Score	Target Success Score
h1-balance-simple	9.391	800
h1-balance-hard	9.044	800
h1-crawl	272.658	700
h1-hurdle	2.214	700
h1-maze	106.441	1200
h1-pole	20.09	700
h1-reach	260.302	12000
h1-run	2.02	700
h1-slide-v0	2.02	700
h1-slide-v1	2.02	700
h1-sit-hard	10.545	800
h1-stair	2.214	700
h1-stand	10.545	800
h1-walk	2.377	700