
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISENTANGLED REPRESENTATION LEARNING FOR
PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural operators (NOs) have demonstrated remarkable success in learning map-
pings between function spaces, serving as efficient approximators for the forward
solutions of complex physical systems governed by partial differential equations
(PDEs). However, while effective as black-box solvers, they offer limited in-
sight into the underlying physical mechanism, due to the lack of interpretable
representations of the physical parameters that drive the system. To tackle this
challenge, we propose a new paradigm for learning disentangled representations
from neural operator parameters, thereby effectively solving an inverse problem.
Specifically, we introduce DisentangO, a novel hyper-neural operator architecture
designed to unveil and disentangle the latent physical factors of variation embed-
ded within the black-box neural operator parameters. At the core of DisentangO
is a multi-task neural operator architecture that distills the varying parameters of
the governing PDE through a task-wise adaptive layer, coupled with a variational
autoencoder that disentangles these variations into identifiable latent factors. By
learning these disentangled representations, our model not only enhances physical
interpretability but also enables more robust generalization across diverse physical
systems. Empirical evaluations across supervised, semi-supervised, and unsuper-
vised learning contexts show that DisentangO effectively extracts meaningful and
interpretable latent features, bridging the gap between predictive performance and
physical understanding in neural operator frameworks.

1 INTRODUCTION

Interpretability in machine learning (ML) refers to the ability to understand and explain how models
make decisions (Rudin et al., 2022; Molnar, 2020). As ML systems grow more complex, especially
with the use of deep learning and ensemble methods (Sagi & Rokach, 2018), the reasoning behind
their predictions can become opaque. Interpretability addresses this challenge by making the models
more transparent, enabling users to trust the outcomes, detect biases, and identify potential flaws. It
is a critical factor in applying AI responsibly, especially in fields where accountability and fairness
are essential (Cooper et al., 2022). In physics, where models endeavor to capture the governing laws
and physical principles, understanding how a model arrives at its predictions is vital for verifying
that it aligns with known scientific theories. Interpretable models also allow researchers to gain
insights into the learned relationships, ensuring that the predictions are physically meaningful and
consistent with real-world behaviors. This transparency is key for advancing scientific discovery,
validating results, and enhancing trust in models used for complex physical systems.

Discovering interpretable representations of physical parameters in learning physical systems is
challenging due to the intricate nature of real-world phenomena and the often implicit relationships
between variables. In physics, parameters like force, energy, and velocity are governed by well-
established laws, and extracting these parameters in a way that aligns with physical intuition requires
models that go beyond mere pattern recognition. Traditional ML models may fit the data but fail to
represent these parameters in a physically interpretable way. To address this, recent developments
include the integration of physical constraints into the learning process (Raissi et al., 2019), such
as embedding conservation laws (Liu et al., 2023; 2024a), symmetries (Mattheakis et al., 2019), or
invariances (Cohen & Welling, 2016) directly into model architectures. Additionally, methods like
symbolic regression (Biggio et al., 2021) and sparse modeling (Carroll et al., 2009) aim to discover
simple, interpretable expressions that capture the underlying dynamics. However, balancing model
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complexity with interpretability remains a significant challenge, as overly complex models may ob-
scure the true physical relationships, while oversimplified models risk losing critical details of the
system’s behavior.

In this work, we introduce DisentangO, a novel variational hyper-neural operator architecture to
disentangle physical factors of variation from black-box neural operator parameters for solving
parametric PDEs. Neural operators (NOs) (Li et al., 2020a;c) learn mappings between infinite-
dimensional function spaces in the form of integral operators, making them powerful tools for dis-
covering continuum physical laws by manifesting the mappings between spatial and/or spatiotem-
poral data; see You et al. (2022a); Liu et al. (2024a;b; 2023); Ong et al. (2022); Cao (2021); Lu
et al. (2019; 2021); Goswami et al. (2022); Gupta et al. (2021) and references therein. However,
most NOs play the role of efficient forward surrogates for the underlying physical system under a
supervised learning setting. As a result, they act as black-box universal approximators for a single
physical system governed by a fixed set of PDE parameters, and lack interpretability with respect
to the underlying physical laws. In contrast, the key innovation of DisentangO lies in its use of a
hypernetwork architecture that distills the varying physical parameters of the governing PDE from
multiple physical systems through an unsupervised learning setting. The distilled variations are
further disentangled into distinct physical factors to enhance physical understanding and promote
robust generalization. Consequently, DisentangO effectively extracts meaningful and interpretable
physical features, thereby simultaneously solving both the forward and inverse problems. Our key
contributions are:

• We bridge the divide between predictive accuracy and physical interpretability, and intro-
duce a new paradigm that simultaneously performs physics modeling (i.e., as a forward
PDE solver) and governing physical mechanism discovery (i.e., as an inverse PDE solver).

• We propose a novel variational hyper-neural operator architecture, which we coin Disen-
tangO. DisentangO extracts the key physical factors of variation from black-box neural
operator parameters of multiple physical systems. These factors are then disentangled into
distinct latent factors that enhance physical interpretation and robust generalization.

• We provide theoretical analysis on the component-wise identifiability of the true generative
factors in physics modeling: by learning from multiple physical systems, the variability of
hidden physical states in these systems promotes identifiability.

• We explore the practical utility of disentanglement rather than pursuing it as an end goal,
and perform experiments across a broad range of settings including supervised, semi-
supervised, and unsupervised learning. Our results show that DisentangO effectively ex-
tracts meaningful and interpretable physical features for enhanced interpretability.

2 BACKGROUND AND RELATED WORK
Neural operators. Learning complex physical systems directly from data is crucial in many scien-
tific and engineering applications (Ghaboussi et al., 1998; Liu et al., 2024c; Ghaboussi et al., 1991;
Carleo et al., 2019; Karniadakis et al., 2021; Zhang et al., 2018; Cai et al., 2022; Pfau et al., 2020;
He et al., 2021; Jafarzadeh et al., 2024). Often, the governing laws of these systems are unknown
and must be inferred from data through learning models that are both resolution-invariant to ensure
consistent performance across various levels of discretizations and interpretable to domain experts.
Neural operators (NOs) address the first aim by learning mappings between infinite-dimensional
function spaces (Li et al., 2020a;b;c; You et al., 2022a; Ong et al., 2022; Cao, 2021; Lu et al., 2019;
2021; Goswami et al., 2022; Gupta et al., 2021). By capturing the relationship between spatial and
spatio-temporal data, NOs offer a promising approach to discovering continuum physical surrogates,
enabling more accurate and consistent predictions of the underlying responses of complex systems.
Nevertheless, NOs lack an interpretable representation of the physical states driving the system, and
as a result offer limited insight into the underlying physical mechanisms.

Hypernetworks. Hypernetworks (Ha et al., 2016; Schmidhuber, 1992; Stanley et al., 2009;
Chauhan et al., 2024) are a class of neural network architectures that use one network to generate
weights for another neural network. Then, both networks can be trained in an end-to-end differ-
entiable manner. As such, hypernetworks allow soft weight sharing across different tasks, which
makes them useful for transfer learning and dynamic information sharing (Chauhan et al., 2023).
Hypernetworks can also be employed as a versatile technique in existing neural network architec-
tures. For instance, in Nguyen et al.; Oh & Peng (2022), a hypernetwork is employed to generate
parameters for a VAE model and enable multi-task learning. Similarly, Lee et al. (2023) integrates
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the hypernetwork architecture with neural operators. However, none of the existing work discusses
the capability of hypernetworks in hidden physics discovery from data.

Forward and inverse PDE learning. Existing NOs focus on providing efficient surrogates for
the underlying physical systems as forward PDE solvers. They are often employed as black-box
universal approximators but lack interpretability of the underlying physical principles. On the other
hand, several deep learning methods have been developed as inverse PDE solvers (Fan & Ying,
2023; Molinaro et al., 2023; Jiang et al., 2022; Chen et al., 2023), aiming to reconstruct the PDE
parameters from solution data. However, the inverse problem is typically more challenging due to its
ill-posedness. To tackle this pathology, many NOs incorporate prior information via governing PDEs
(Yang et al., 2021; Li et al., 2021), regularizers (Dittmer et al., 2020; Obmann et al., 2020; Ding et al.,
2022; Chen et al., 2023), or additional operator structures (Uhlmann, 2009; Lai et al., 2019; Yilmaz,
2001). However, all these work rely on prior information on the operator form, which is not realistic
in many real-world problems where neither the parameter field nor the model form are available.
Worth noting is a recent work that leverages the attention mechanism to build a nonlinear kernel map
in NO (Yu et al., 2024), with which a data-dependent kernel can be constructed to characterize the
inverse mapping from data to the hidden governing mechanism. While effective, this approach does
not disentangle the learned kernel or extract physically interpretable parameters. To the best of our
knowledge, our proposed DisentangO is the first that tackles both forward (i.e., physics prediction)
and inverse (i.e., physics discovery) PDE learning problems, while simultaneously inferring the
governing distinct physical parameters from the learned NO.

Disentangled representation learning. Disentangled representation learning seeks to separate data
into distinct, interpretable factors, where each factor captures an independent aspect of variation in
the input. This area has critical implications for transfer learning, generative modeling, and fairness
in AI, as it allows models to generalize across tasks by leveraging isolated features, making them
more interpretable and modular. Disentangled representation learning has seen significant advances,
primarily driven by models like β-VAE (Higgins et al., 2017), FactorVAE (Kim & Mnih, 2018), and
InfoGAN (Chen et al., 2016), who encourage disentanglement by controlling the trade-off between
reconstruction accuracy and latent regularization, or introduce mutual information constraints to en-
courage the discovery of interpretable latent factors. Early work in disentanglement largely focus
on supervised or semi-supervised approaches (Ridgeway & Mozer, 2018; Shu et al., 2019; Mathieu
et al., 2019), requiring labeled data for factors of variation. However, more recent advancements
have concentrated on unsupervised learning methods (Duan et al., 2019), where disentanglement
is achieved without explicit labels. Despite these efforts, fully unsupervised disentanglement re-
mains challenging (Locatello et al., 2019), with ongoing research focusing on improving metrics,
robustness, and applicability to more complex and high-dimensional data. In this context, although
a large body of research has been done in disentanglement, its applications remain largely confined
to fields like computer vision and robotics, where the latent dimensions typically correspond to
human-interpretable (often visually recognizable) features, with very limited exploration in areas
such as physical system learning (cf. Lingsch et al. (2024); Tong et al. (2024); Fotiadis et al. (2023)
in supervised learning). Moreover, existing work focuses on disentangling from data, whereas our
work is the first attempt that explores disentanglement from black-box neural network parameters.

3 DISENTANGO
We consider a series of complex systems with different hidden physical parameters:

Kb[u](x) = f(x) , x ∈ Ω . (3.1)
Here, Ω ⊂ Rs is the domain of interest, f(x) is a function representing the loading on Ω, and
u(x) is the corresponding solution of this system. Kb represents the unknown governing law, e.g.,
balance laws, which is determined by the (possibly unknown and high-dimensional) parameter field
b. For instance, in a material modeling problem, Kb often stands for the constitutive law and b can
be a vector (b ∈ Rdb ) representing the homogenized material parameter field or a vector-valued
function (b ∈ L∞(Ω;Rdb)) representing the heterogeneous material properties. Both scenarios are
considered in our empirical experiments in Section 4.

Many physical modeling tasks can be formulated as either a forward or an inverse PDE-solving
problem. In a forward problem setting, one aims to find the PDE solution when given PDE informa-
tion, including coefficient functions, boundary conditions, initial conditions, and loading sources.
That means, given the governing operators K, the parameter (field) b, and loading field f(x) in
equation 3.1, the goal is to solve for the corresponding solution field u(x), through classical PDE
solvers (Brenner & Scott, 2007) or data-driven approaches (Lu et al., 2019; Li et al., 2020c). As a
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Figure 1: Illustration of DisentangO’s architecture. The encoder disentangles meaningful physical factors from
multiple physical systems, whereas the first and second decoders reconstruct the NO lifting-layer parameters
θηP and the forward map G, respectively. Black arrows indicate forward computations, red arrow denotes where
interpretable physics discovery occurs, and dashed arrows mark the sources of loss function computation.

result, a forward map is constructed:
G : (b,f) → u . (3.2)

Here, b and f are input vectors/functions, and u is the output function.

Conversely, solving an inverse PDE problem involves reconstructing the underlying full or partial
PDE information from PDE solutions, where one seeks to construct an inverse map:

H : (u,f) → b . (3.3)
Unfortunately, solving an inverse problem is typically more challenging due to the ill-posed nature
of the PDE model. In general, a small number of function pairs (u,f) from a single system does
not suffice in inferring the underlying parameter field b, making the inverse problem generally non-
identifiable (Molinaro et al., 2023). Herein, we propose a novel neural architecture to alleviate the
curse of ill-posedness without requiring prior knowledge. The key ingredients are: 1) the construc-
tion of a multi-task NO architecture, which solves both the forward (physics prediction) and inverse
(physics discovery) problems simultaneously from multiple systems, and 2) a generative model to
disentangle the features from NO parameters that contain critical information of b.

3.1 VARIATIONAL HYPER-NEURAL OPERATOR AS A MULTI-TASK SOLVER

Formally, we consider S training datasets from different systems, each of which contains ntrain

function pairs (u,f) ∈ U × F :
Dtr = {{(uη

i (x),f
η
i (x))}

ntrain
i=1 }Sη=1 . (3.4)

The index η corresponds to different hidden PDE parameter field/set bη ∈ B. Here, U ⊂
L2(Ω;Rdu), F ⊂ L2(Ω;Rdf ) represent the (infinite-dimensional) Banach spaces of the solution
function u and loading function f , respectively, and B is a finite-dimensional manifold where the
hidden parameter b takes values on. We further assume that the data satisfies the following generat-
ing process:

b ∼ Pb , z ∼ p(z|b) , (3.5)
where z ∈ Z ⊂ Rdz is the latent embedding of b. Then, we assume for each bη that there exists an
underlying parametric PDE system of equation 3.1. Each function pair (uη

i ,f
η
i ) satisfies:

u|f = K−1
z [f ] , f ∼ Pf , (3.6)

where K−1
z is the ground-truth solution operator of the parametric PDE system of equation 3.1 with

a given set of parameters b.

Our first objective is to construct a surrogate operator of K−1
z : F → U , as the forward PDE solver

for each system:
G[fη

i ; θ
η
i ](x) ≈ uη

i (x) , (3.7)
where θηi denotes the corresponding trainable parameter set. Then, as the second objective, we
construct an inverse map by discovering the hidden parameter field/set from θηi :

H(θηi ; ΘH) ≈ z̃η
i . (3.8)
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Here, ΘH is the trainable parameters of H, and z̃η
i ∈ Rdz denotes the learned latent variables, which

can be transformed to the ground-truth latent variable zη
i via an invertible function h. The goal of

disentanglement is not to discover bη , since some features may not be identifiable. For instance,
in a Dirichlet boundary condition problem, uη

i (x) = 0 for all x ∈ ∂Ω, making bη not learnable
on ∂Ω. Hence, a more realistic goal is to discover the underlying mechanism of b in the space of
identifiability, i.e., z, or its equivalent transformation z̃, together with the solution operator K−1

z .
Note that in the first objective of equation 3.7, one is interested in finding the solution operator Gη

under a supervised setting, in the form of function-to-function mappings, for all (hidden) parameters
bη in the range of interest; while in the second objective of equation 3.8, the goal is to construct a
vector-to-vector mapping from θη to z̃η , which is unsupervised due to the hidden physics nature. We
propose to employ variational autoencoder (VAE) (Kingma & Welling, 2013) as the representation
learning approach for the second objective, and a meta-learned NO architecture as a universal solu-
tion operator for the first objective. The key is to pair these architectures as a hyper-neural operator,
which simultaneously solves both forward and inverse modeling problems.

We now define the learning architecture. The overall objective is to maximize the log data likelihood:
maxE(log(p(θ,D))) = max [E(log(p(u|f , θ) + log(p(θ|f)) + log(p(f))] .

Note that p(f) remains constant over different θ, and the assumption in eq. 3.6 yields log(p(θ|f)) =
log(p(θ)). Additionally, the assumption in eq. 3.5 guarantees that θ is generated from the latent space
over z, hence log(p(θ)) = log

∫
z
p(θ|z)p(z)dz. The overall objective then becomes:

maxE(log(p(θ,D))) =max

[
E(log(p(u|f , θ))) + E

(
log

∫
z

p(θ|z)p(z)dz
)]

. (3.9)

However, the second term in this formulation is generally intractable. We use a variational posterior
q(θ|z) to approximate the actual posterior p(θ|z) and maximize the evidence lower bound (ELBO):

LELBO =
1

S

S∑
η=1

[
Eq(zη|θη) log p(θ

η|zη)−DKL (q(zη|θη)||p(zη))
]

,

with DKL(·||·) denoting the KL divergence between two distributions. Putting everything together,
we obtain the loss functional:

Lloss =
1

S

S∑
η=1

[
−E(log(p(u|f , θη)))− Eq(zη|θη) log p(θ

η|zη) +DKL (q(zη|θη)||p(zη))
]
. (3.10)

The above formulation naturally lends itself to a hierarchical variational autoencoder (HVAE) ar-
chitecture (Vahdat & Kautz, 2020). The encoder aims to obtain the posterior qµz,Σz

(zη|θηP ), which
estimates the inverse map H: ẑ ∼ qµz,Σz (ẑ

η|θηP ) . (3.11)
Then, the first decoder ĝ processes the estimated latent variable ẑ and reconstructs the corresponding
NO parameter θ̂P :

θ̂P = ĝ(ẑ) . (3.12)
Lastly, the second decoder reconstructs the forward map G, by further taking the estimated θ̂P and
the loading function f and estimating the output function u:

û = Ĝ[f ; θ̂P ] . (3.13)
For this purpose, we employ the implicit Fourier neural operator (IFNO)*, which is a provably
universal approximator for PDE solution operators with a relatively small number of trainable pa-
rameters (You et al., 2022b). To provide a universal Ĝ for different domains, a multi-task learning
strategy is adopted following MetaNO (Zhang et al., 2023), which applies task-wise adaptation only
to the first layer of NOs. Specifically, an L-layer multi-task IFNO has the following form:

G[f ; θη](x) = G[f ; θηP , θJ , θQ](x) := QθQ ◦ (JθJ )
L ◦ Pθη

P
[f ](x) , (3.14)

where P , Q are shallow-layer MLPs that map a low-dimensional vector to a high-dimensional vector
and vice versa, parameterized by θQ and θηP , respectively. Each intermediate layer, J , is constructed
as a mimetic of a fixed-point iteration step and parameterized by θJ . Supported by the universal ap-
proximator analysis (Zhang et al., 2023), different PDEs share common iterative (θJ ) and projection
(θQ) parameters, with all the information about parameter b embedded in the task-wise lifting pa-
rameters θηP . Hence, the encoder and first decoder structure only need to encode and reconstruct θηP ,
since all other NO parameters are invariant to the change of z. This construction substantially re-
duces the degree of freedoms in θη , making the invertibility assumption in the next section feasible.
As suggested by MetaNO, we train one neural network for each task, i.e., assuming θηi = θη . Then,
the lifting layer parameter θηP is taken as the task-wise parameter† where zη is estimated from.

*We point out that the proposed strategy is generic and hence also applicable to other neural operators.
†With a slight abuse of notation, in the following contents we use θη to denote θηP .
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3.2 DISENTANGLING THE UNDERLYING MECHANISM

The proposed DisentangO aims to identify and disentangle the components of the latent represen-
tation z, which serves as an inverse PDE solver. However, to capture the true physical mechanism,
a natural question arises: is it really possible to identify the latent variables of interest (i.e., z) with
only observational data Dtr? We now show that, by learning the model (pẑ, ĝ, Ĥ, Ĝ) that matches
the true marginal data distribution in all domains, we can indeed achieve this identifiability for the
generating process proposed in equation 3.5 and equation 3.6. Before the formal theorem, we first
state our assumptions:
Assumption 1. (Density Smoothness and Positivity) pθ and pz are both smooth and positive.

Assumption 2. (Invertibility) The task-wise parameter θ can be generated by z through an invertible
and smooth function H−1. Moreover, for each given f , we denote Gf (θ) := G[f ; θ](x) as the
operator mapping from Rdθ to U . Gf is also one-to-one with respect to θ.

Assumption 3. (Conditional Independence) Conditioned on b, each component of z is independent
of each other: log pz|b(z|b) =

∑dz

i=1 log pzi|b(zi|b).
Assumption 4. (Linear independence) There exists 2dz + 1 values of b, such that the 2dz vectors
w(z, bj)− w(z, b0) with j = 1, · · · , 2dz are linearly independent. Here,

w(z, bj) :=

(
∂q1(z1, b

j)

∂z1
, · · · , ∂qdz (zdz , b

j)

∂zdz
,
∂2q1(z1, b

j)

∂z21
, · · · , ∂

2qdz (zdz , b
j)

∂z2dz

)
, (3.15)

with qi(zi, b) := log pzi|b.

First, we show that the latent variable z can be identified up to an invertible component-wise trans-
formation: for the true latent variable z ∈ Rdz , there exists an invertible function h : Rdz → Rdz ,
such that ẑ = h(z).
Theorem 1. We follow the data-generating process in equation 3.5 and equation 3.6, and Assump-
tions 1-2. Then, by learning (pẑ, ĝ, Ĥ, Ĝ) to achieve:

pû|f = pu|f , (3.16)
where u and û are generated from the true process and the estimated model, respectively, z is
identifiable up to an invertible function h.

Proof: Please see Appendix A.
Additionally, with additional assumptions on conditional independence and datum variability, we
can further obtain the following theoretical results on component-wise identifiability: for each true
component zi, there exists a corresponding estimated component ẑj and an invertible function hi :
R → R, such that zi = hi(ẑj).
Theorem 2. We follow the data-generating process in equation 3.5 and equation 3.6 and Assump-
tions 1-4. Then, by learning (pẑ, ĝ, Ĥ, Ĝ) to achieve equation 3.16, z is component-wise identifiable.

Proof: Please see Appendix A.
Discussion on assumptions. Intuitively, Assumptions 1-2 are required to guarantee that there exists
a smooth and injective mapping between the ground-truth latent embedding z and the learned em-
bedding ẑ. Then, Assumption 4 indicates sufficient variability across physical systems (tasks). This
is a common assumption in the nonlinear ICA literature for domain adaptation (Hyvarinen et al.,
2019; Khemakhem et al., 2020; Kong et al., 2023). Further discussions and validation on these as-
sumptions are provided in Appendix A. To our best knowledge, this is the first time the component-
wise identifiability results are discussed in the context of multi-task neural operator learning.

3.3 A GENERIC ALGORITHM FOR DIFFERENT SUPERVISION SCENARIOS

In this section, we discuss the practical utility of DisentangO under three scenarios:
• (SC1: Supervised) The value of bη is given.
• (SC2: Semi-supervised) The value of bη is not given, but a label c(bη) (e.g., a classification

of bη) is given.
• (SC3: Unsupervised) No value or label is given for bη for each task.

The architecture is shown in Figure 1, with a pseudo algorithm provided in Algorithm 1 of Appendix.

To obtain the posterior q in equation 3.11, we assume that each latent variable satisfies a Gaussian
distribution of distinct means and diagonal covariance, i.e., qµz,Σz (ẑ|θ) := N (µz(θP ),Σ

2
z(θP )),

6
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then estimate its mean and covariance using an MLP. As a result, the KL-divergence term in the
ELBO admits a closed form:

SC2/SC3: DKL (q(ẑ|θ)||p(z)) = 1

2

dz∑
i=1

(
(Σz)

2
i + (µz)

2
i − 2 log((Σz)i)− 1

)
.

In the supervised setting, we take z = b, and set µz(θ
η
P ) = bη , then:

SC1: DKL (q(ẑ|θ)||p(z)) = 1

2

dz∑
i=1

(
(Σz)

2
i + (µz − b)2i − 2 log((Σz)i)− 1

)
.

For the first decoder, the likelihood p(θηP |zη) is a factorized Gaussian with mean µθ and covariance
Σθ, computed from another MLP. By taking as input Monte Carlo samples once for each z, the
reconstruction accuracy term can be approximated as:

Eq(z|θP ) log p(θP |z) ≈ −
dθ∑
i=1

(
((θP )i − (µθ)i)

2

2(Σθ)2i
+ log(Σθ)i + c

)
,

where dθ is the dimension of θP , and c is a constant.

For the second decoder, we parameterize it as a multi-task NO in equation 3.14, and model the
discrepancy between Ĝ[θ̂η

P ,θI ,θQ][g
η
j ](xk) and the ground truth u(xk) as an additive independent

unbiased Gaussian random noise ϵ, with

Ĝ[θ̂η
P ,θI ,θQ][g

η
j ](xk)) = uη

j (xk) + ϵη,j,k , ϵη,j,k ∼ N (0, ϖ2) ,

where ϖ is a tunable hyperparameter. Then, with a uniform spatial discretization of size ∆x in a
domain Ω ⊂ Rdu , the log likelihood after eliminating the constant terms can be written as:

1

2ϖ2∆x2du

S∑
η=1

ntrain∑
j=1

∣∣∣∣∣∣Ĝ[θ̂
η
P
,θI ,θQ][g

η
j ](xk)− uη

j (xk)
∣∣∣∣∣∣2

L2(Ω)
.

In our empirical tests in Section 4, for the unsupervised and semi-supervised scenarios we choose
q as a standard Gaussian distribution following the independence assumption of Theorem 2. Addi-
tionally, to avoid overparameterization, we take Σθ = σ2

θI, with σθ being a tunable hyperparameter.
In this case, the total objective can be further simplified as:

Lloss =
1

S

S∑
η=1

(
βd

ntrain∑
j=1

∣∣∣∣∣∣Ĝ[θ̂
η
P
,θI ,θQ][g

η
j ]− uη

j

∣∣∣∣∣∣2
L2(Ω)

+
∣∣∣∣∣∣θ̂ηP − µη

θ

∣∣∣∣∣∣2 + βKL||µη
z||2
)

,

for the unsupervised scenario, and

Lloss =
1

S

S∑
η=1

(
βd

ntrain∑
j=1

∣∣∣∣∣∣Ĝ[θ̂
η
P
,θI ,θQ][g

η
j ]− uη

j

∣∣∣∣∣∣2
L2(Ω)

+
∣∣∣∣∣∣θ̂ηP − µη

θ

∣∣∣∣∣∣2 + βKL||µη
z − bη||2

)
,

for the fully supervised scenario. Here, βd :=
σ2
θ

ϖ2∆x2du
and βKL := σ2

θ are treated as tunable
hyperparameters. In the semi-supervised scenario, we incorporate partial supervision by equipping
the above loss with a constraint following Locatello et al. (2020):

Lloss =
1

S

S∑
η=1

(
βd

ntrain∑
j=1

∣∣∣∣∣∣Ĝ[θ̂
η
P
,θI ,θQ][g

η
j ]− uη

j

∣∣∣∣∣∣2
L2(Ω)

+
∣∣∣∣∣∣θ̂ηP − µη

θ

∣∣∣∣∣∣2 + βKL||µη
z||2 + βclsLc(z

η, c(βη))
)

where βcls is a tunable hyperparameter, and Lc(z
η, c(βη)) is the corresponding loss term depending

on the provided information. For instance, when taking c as the classification label of βη , Lc can be
taken as the cross-entropy loss.

We note that the coefficient βKL is closely connected to the adjustable hyperparameter in β−VAE
(Higgins et al., 2017). Taking a larger βKL encourages disentanglement (Locatello et al., 2019),
while it also adds additional constraint on the implicit capacity of the latent bottleneck that results
in information loss (Burgess et al., 2018). On the other hand, the data reconstruction term forces the
latent factors to contribute to the “reconstruction” of the more complicated solution field in a global
perspective, and hence increasing βd is anticipated to alleviate information loss. In our empirical
studies, we demonstrate the interplay between these two tunable hyperparameters.

4 EXPERIMENTS

We assess the performance of DisentangO across a variety of physics modeling and discovery
datasets. In the following, we denote a DisentangO model with a latent dimension of n as
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DisentangO-n. Our evaluation focuses on the following key aspects. Firstly, we demonstrate the
capability of DisentangO in forward PDE learning, and compare its performance with a number of
relevant baselines. In particular, we select five NO-related baselines, i.e., FNO (Li et al., 2020c),
NIO (Molinaro et al., 2023), MetaNO (Zhang et al., 2023), FUSE (Lingsch et al., 2024) and its
extension, as well as four non-NO baselines, i.e., InVAErt (Tong et al., 2024), two VAE variants
(Kingma & Welling, 2013) and β-VAE (Higgins et al., 2017). Secondly, we showcase the merits of
DisentangO in inverse modeling for interpretable physics discovery. Thirdly, we perform parametric
studies on the associated disentanglement hyperparameters. Lastly, we provide interpretations of the
disentangled parameters and point out future directions. Further details are provided in Appendix B.
4.1 SUPERVISED FORWARD AND INVERSE PDE LEARNING

Table 1: Test errors and the number of trainable parameters in experi-
ment 1. Bold number highlights the best method.

Models #param per-epoch Test errors
time (s) data latent z (SC1)

DisentangO 697,383 12.2 1.65% 4.63%
MetaNO 295,842 9.8 1.59% -

NIO 709,260 5.6 - 15.16%
FNO 698,284 9.1 2.45% 14.55%

InVAErt 706,761 0.1 - 5.16%
FUSE 706,151 2.2 - 4.99%

FUSE-f 707,271 11.4 16.33% 6.19%
VAE 697,672 2.8 49.97% 16.34%

convVAE 663,551 2.8 81.11% 16.27%
β-VAE 697,672 2.8 51.16% 16.47%

We start by investigating Dis-
entangO’s capability in solving
both forward and inverse PDE
problems in a fully supervised
setting. Specifically, we con-
sider the constitutive modeling of
anisotropic fiber-reinforced hyper-
elastic materials governed by the
Holzapfel–Gasser–Ogden (HGO)
model, where the data-generating
process is controlled by sampling
the governing material parameter
set {E, ν, k1, k2, α} and the la-
tent factors can be learned conse-
quently in a supervised fashion. In
this setting, the model takes as input the padded traction field and learns to predict the displacement.

As the number of latent factors is fixed for supervised learning in this experiment, we defer our
ablation study to the second experiment. We report in Table 1 our experimental results. Note that
only FNO, FUSE-f, VAE and its variations are able to handle both forward and inverse problems,
whereas MetaNO can only solve the forward problem, and NIO, InVAErt, and FUSE can only solve
the inverse problem. With this caveat in mind, MetaNO achieves the best performance in forward
PDE learning, with DisentangO performing comparably well and beating the third best model by
32.7% in accuracy. In terms of inverse modeling with full latent supervision (SC1), DisentangO is
the only method that can hold the error well below 5%, outperforming the second best method by
7.2% and the second best joint (i.e., simultaneous forward and inverse) solver by 25.2%.

4.2 SEMI-SUPERVISED MECHANICAL MNIST BENCHMARK

We next explore in the context of semi-supervised learning and apply DisentangO and relevant base-
lines to the benchmark Mechanical MNIST (MMNIST) dataset (Lejeune, 2020). MMNIST com-
prises 70,000 heterogeneous material specimens undergoing large deformation, each governed by a
material model of the Neo-Hookean type with a varying modulus converted from the MNIST bitmap
images. In our experiment, we take 500 images (with a 420/40/40 split for training/validation/test)
and generate 200 loading/response data pairs per sample on a 29 × 29 structured grid, simulating
uniaxial extension, shear, equibiaxial extension, and confined compression load scenarios. Since
only partial knowledge is available for each image (i.e., the corresponding digit), we apply semi-
supervised learning to the latent factors to classify the digits.
Table 2: Test errors and number of trainable parameters in experiment 2. DisentangO is abbreviated as DNO
due to space limit. Bold number highlights the best method that can handle both forward and inverse settings.

Models DNO-2 DNO-5 DNO-10 DNO-15 VAE β-VAE MetaNO
#param (M) 0.66 0.97 1.49 2.02 2.02 2.02 0.35

Error

βd = 1 12.82% 9.56% 7.36% 6.29% 16.34% 17.13% 2.68%
βd = 10 11.51% 9.16% 6.62% 5.95% - - -
βd = 100 11.49% 8.43% 6.65% 5.48% - - -
βd = 1000 11.62% 8.22% 6.50% 5.80% - - -

Ablation study. Firstly, we investigate DisentangO’s predictability in forward PDE learning by
comparing its performance to MetaNO (i.e., the base meta-learnt NO model without the hypenet-
work structure). As seen in Table 2, MetaNO achieves a forward prediction error of 2.68%, which
serves as the optimal bound for DisentangO. As we increase the latent dimension in DisentangO
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Figure 2: MMNIST unsupervised scores against βd with DisentangO-2 (left) and DisentangO-15 (right). By
comparing βd = 1 (solid lines) with βd = 100 (dashed lines), increasing βd forces the latent factors to
maximize the contained information and in turn decreases MI, thus encouraging disentanglement.
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Figure 3: MMNIST scatterplot with DisentangO-2 and βd = 1: left: (βkl = 1, βcls = 100) (data test error
18.81%), middle: (βkl = 10, βcls = 10) (data test error 16.94%), right: fully unsupervised DisentangO-2
without classification loss (βkl = 100) (data test error 12.65%).

from 2 to 15, the prediction error drops from 11.49% to 5.48% and converges to the optimal bound.
Next, we study the role of the data loss term in disentanglement by gradually varying βd from βd = 1
to βd = 1000. In Table 2 we observe a consistent improvement in accuracy with the increase in
βd, where the boost in accuracy becomes marginal or slightly deteriorates beyond βd = 100. We
thus choose βd = 100 as the best DisentangO model in this case. Besides offering an increased
accuracy in forward modeling, the data loss term also enhances disentanglement as discussed in
Section 3.2. This is evidenced by the illustration in Figure 2, where the unsupervised mutual in-
formation (MI) score that measures the amount of MI across latent factors consistently decreases in
both DisentangO-2 and DisentangO-15 as we increase βd from βd = 1 (solid lines) to βd = 100
(dashed lines). On the contrary, the classification term poses a negative effect on disentanglement,
as indicated by the increase in βcls leading to an increase in MI scores. This is reasonable because
the classifier linearly combines all the latent factors to make a classification. The more accurate the
classification, the stronger the correlation across latent factors. We then move on to study the effect
of semi-supervised learning by comparing the model’s performance with and without latent partial
supervision. While the models without semi-supervision is slightly more accurate in that the forward
prediction accuracy with βd = 1 reaches 12.60% and 6.16% in DisentangO-2 and DisentangO-15,
respectively, the latent scatterplot in Figure 3 reveals the inability of the DisentangO model without
latent semi-supervision to acquire the partial knowledge of the embedded digits from data. In con-
trast, although the accuracy of DisentangO with latent semi-supervision slightly deteriorates due to
the additional regularization effect from the classification loss term, it is able to correctly recognize
the embedded digits and leverage this partial knowledge in disentangling meaningful latent factors.

Comparison with additional baselines. We compare the performance of DisentangO with rele-
vant additional baselines, i.e., VAE and β-VAE. We abandon the three NO-related baselines in this
and the following experiments because they are black-box approximators and do not possess any
mechanism to extract meaningful information without supervision. In this context, even the least
accurate DisentangO-2 model (i.e., with βd = 1) with significantly fewer parameters outperforms
the two selected baselines in Table 2 by 21.5% and 25.2%, respectively, with the best performing
DisentangO-15 model beating the two baselines by 66.5% and 68.0% in accuracy, respectively. We
do not proceed to compare the physics discovery capability between them as the baseline models
are considerably inaccurate in forward prediction.

9
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Interpretable physics discovery. To showcase the interpretability of DisentangO, we visualize
its latent variables through latent traversal based on a randomly picked loading field as input in
DisentangO-2, as displayed in Figure 6 of Appendix B.3. One can clearly see that the digit changes
from “6” to “0” and then “2” from the top left moving down, and from “6” to “1” and then “7”
moving to the right. Other digits are visible as well such as “7”, “9”, “4” and “8” in the right-most
column. This corresponds well to the distribution of the latent clustering in Figure 3. More discus-
sions on the interpretability of DisentangO-15 can be found in Figures 7 and 8 in Appendix B.3.

4.3 UNSUPERVISED HETEROGENEOUS MATERIAL LEARNING

We now demonstrate the applicability of DisentangO in unsupervised learning in the context of
learning synthetic human tissues that exhibit highly organized structures, with collagen fiber ar-
rangements varying spatially. In this subject, it is critical to understand the underlying low-
dimensional disentangled properties in the hidden latent space of this complex, high-dimensional
microstructure, as inferred from experimental mechanical measurements. We generate two datasets,
each containing 500 specimens and 100 loading/displacement pairs. The first dataset features varia-
tions in fiber orientation distributions using a Gaussian Random Field (GRF) and the second differs
fiber angles in two segmented regions, separated by a centerline with a randomly rotated orientation.

Table 3: Test errors and number of trainable parameters in
experiment 3. DisentangO is abbreviated as DNO due to
space limit. Bold number highlights the best method that
can handle both forward and inverse settings.

Models #param (M) Test error
βd = 1 βd = 100

DNO-2 0.63 26.33% 25.18%
DNO-5 0.94 17.51% 15.75%
DNO-10 1.46 10.76% 10.01%
DNO-15 1.98 7.11% 7.02%
DNO-30 3.55 5.33% 5.28%

VAE 3.55 61.10% -
β-VAE 3.55 57.04% -

MetaNO 0.32 2.67% -
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Figure 4: Unsupervised MI score against βkl with
DisentangO-2 in heterogeneous material learning.

We report in Table 3 our experimental results of DisentangO with different latent dimensions and
data loss strength βd, along with comparisons with the baseline model results. Consistent with the
findings in the second experiment, increasing βd results in a boost in accuracy by comparing the rows
in the table. The model’s predictive performance also converges to the optimal bound of MetaNO
as we increase the latent dimension from 2 to 30, where the model’s prediction error improves from
25.18% to 5.28%. This significantly outperforms the best baseline model by 90.7%. On the other
hand, the effect of the data loss term on disentanglement is further proved in Figure 4, where in-
creasing βd leads to a decrease in MI between the latent factors, thus encouraging disentanglement.
Lastly, we interpret the mechanism of the learned latent factors in DisentangO-3 via learning a map-
ping between the learned latent factors and the underlying material microstructure and subsequently
performing latent traversal in each dimension. The results are shown in Figure 5, where the three
latent factors manifest control on the border rotation between the two segments, the relative fiber
orientation between the two segments, and the fiber orientation of the top segment, respectively.

5 CONCLUSION

We present DisentangO, a novel hyper-neural operator architecture designed to disentangle latent
physical factors embedded within black-box neural operator parameters. DisentangO leverages a
hypernetwork-type neural operator architecture that extracts varying parameters of the governing
PDE through a task-wise adaptive layer, then further disentangles these variations into distinct la-
tent factors. By learning these disentangled representations, DisentangO not only enhances physical
interpretability but also enables more robust generalization across diverse physical systems. We per-
form empirical evaluations across supervised, semi-supervised, and unsupervised learning contexts.

Limitations: Due to limited computational resource, our experiments are focused on learning a
small-to-medium number (< 500). Expanding the coverage to encompass a broader range of physi-
cal systems and enabling learning across more diverse parameters would be beneficial.
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A IDENTIFIABILITY ANALYSIS

A.1 PROOF OF THE MAIN THEOREMS

We first provide the proof of Theorem 1:

Proof: With equation 3.16, we have:

pG[f ;θ]|f = pĜ[f ;θ̂]|f ⇔ pGf (θ)|f = pĜf (θ̂)|f ⇔ pθ|f = pG−1
f ◦Ĝf (θ̂)|f .

Note that the parameter θ varies with the change of b. Per the data generating process in equation 3.6,
the distribution of b is invariant to f . Therefore, the distribution of θ is also invariant to f :

pθ = pθ|f = pG−1
f ◦Ĝf (θ̂)|f = pG−1

f ◦Ĝf (θ̂)
, ∀f ∈ F .

Denoting r := Gf ◦ Ĝ−1
f , it is the transformation between the true θ and the estimated one, and it is

invertible and invariant with respect to f .

We proceed to derive the relation between z and ẑ: since θ = r(θ̂), with the invertibility assumption
θ = H−1(z) and θ̂ = Ĥ−1(ẑ), we obtain:

z = H(θ) = H ◦ r(θ̂) = H ◦ r ◦ Ĥ−1(ẑ).

Denoting h := H◦r◦Ĥ−1, it is the transformation between the true latent variable and the estimated
one, and it is invertible because r, H and Ĥ are all invertible.

We now show the proof of Theorem 2.

Proof: With the independence relation assumption, we have

pz|b(z|b) =
∏
i

pzi|b(zi), pẑ|b(ẑ|b) =
∏
i

pẑi|b(ẑi) .

Denoting q̂i := log pẑi|b, it yields:

log pz|b(z|b) =
∑
i

qi(zi, b), log pẑ|b(ẑ|b) =
∑
i

q̂i(ẑi, b) .

With the change of variables we have

pz|b = ph(ẑ)|b = pẑ|b · |Jh−1 | ⇔
∑
i

qi(zi, b) + log |Jh| =
∑
i

q̂i(ẑi, b) ,

where |Jh−1 | stands for the absolute value of the Jacobian matrix determinant of h−1. Differentiating
the above equation twice with respect to ẑk and ẑq , k ̸= q, yields∑

i

(
∂2qi(zi, b)

∂z2i

∂zi
∂ẑk

∂zi
∂ẑq

+
∂qi(zi, b)

∂zi

∂2zi
∂ẑk∂ẑq

)
+

∂2 log |Jh|
∂ẑk∂ẑq

= 0 . (A.1)

To show the identifiability, one can rewrite the Jacobian Jh as:

Jh =

[
∂z

∂ẑ

]
.

The invertibility results shown in Theorem 1 indicates that it is full rank. Next, we will use the linear
independence assumption to show that there exists one and only one non-zero component in each

row of
∂z

∂ẑ
.

Taking b = b0, · · · , b2dz in equation A.1 and subtracting them from each other, we have

dz∑
i=1

((
∂2qi(zi, b

j)

∂z2i
− ∂2qi(zi, b

0)

∂z2i

)
∂zi
∂ẑk

∂zi
∂ẑq

+

(
∂qi(zi, b

j)

∂zi
− ∂qi(zi, b

0)

∂zi

)
∂2zi

∂ẑk∂ẑq

)
= 0 ,
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where j = 1, · · · , 2dz . With the linear independence condition for w, this is a 2dz × 2dz linear
system, and therefore the only solution is

∂zi
∂ẑk

∂zi
∂ẑq

= 0 ,
∂2zi

∂ẑk∂ẑq
= 0 ,

for i = 1, · · · , dz . The first part implies that, for the i−th row of the Jacobian matrix Jh, we have
∂zi
∂ẑk

̸= 0 for at most one element k ∈ {1, · · · , dz}, hence z is identifiable up to permutation and

component-wise invertible transformation.

A.2 FURTHER DISCUSSION ON THE ASSUMPTIONS

Herein, we provide additional discussion on the validity and emprical validation for Assumptions
1-4.

As seen in the proof above, Assumptions 1 (Density Smoothness and Positivity) and 2 (Invertibil-
ity) are required to guarantee that there exists a smooth and injective mapping h := H ◦ r ◦ Ĥ−1,
from the ground-truth latent embedding z to the learned embedding ẑ. Furthermore, the smoothness
assumption further makes it feasible to take derivatives of z with respect to ẑ, which supports the
permutation-wise identifiability proof for Theorem 2. Here, we note that the smoothness assumption
may possibly be relaxed to C2. Assumptions 3 (Conditional Independence) and 4 (Linear Indepen-
dence) are needed to show that the Jacobian of h has one and only one non-zero component for each
column. Without these assumptions, it is possible that the data from different b lack variability.

While the first three assumptions are common in many VAE architectures, the last assumption is
plausible for many real-world data distributions. For instance, when the prior on the latent vari-
ables p(z|b) is conditionally factorial, where each element zi has a univariate exponential family
distribution given conditioning variable b:

p(z|b) =
∏
i

Qi(zi)

Zi(b)
exp

 k∑
j=1

Ti,j(zi)λi,j(b)

 ,

where Qi is the base measure, Zi(b) is the normalizing constant, Ti,j are the sufficient statistics,
and λi,j are the corresponding parameters depending on b. This exponential family has universal
approximation capabilities. Additionally, we note that this distribution is conditionally independent
with

qi = log(Qi(zi))− log(Zi(b)) +

 k∑
j=1

Ti,j(zi)λi,j(b)

 ,

and the linear independence indicates that the matrix formed by

ω(z, bη)− ω(z, b0) =
(
T′(λ(bη)− λ(b0)),T′′(λ(bη)− λ(b0))

)
, η = 1, · · · , S

has full rank 2dz .

In the fully supervised case, the conditional independence and linear independence assumptions are
automatically guaranteed by picking proper distributions p(z|b) when designing the VAE architec-
ture. In the semi-supervised and unsupervised cases, one can also validate these assumptions when
the true values of b is given on some tasks, by inferring an empirical distribution of p(z|b) from
these tasks. To investigate such a capability, in the additional synthetic experiment in Appendix C.4,
we consider an unsupervised setting, estimate p(z|b) from the trained model, and check the linear
independence condition by calculating the vector in equation 3.15 for each task bη and forming an
S×2dz matrix from all tasks. When the rank of this matrix is 2dz , it means that we can select 2dz+1
tasks from them with sufficient variability, such that the linear independence condition is satisfied.
As a demonstration, in Appendix C.4 we validate this assumption on a synthetic dataset and show
that the identifiability can be largely achieved with Gaussian distributions of distinct means and
variances.
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Figure 5: Latent traversal of DisentangO-3 in unsupervised heterogeneous material learning, where the three
latent dimensions control the border rotation between the two segments (top), the relative fiber orientation
between the two segments (middle), and the fiber orientation of the top segment (bottom), respectively. Legend
indicates fiber orientation ranging from 0 to π.

B ADDITIONAL EXPERIMENTAL DETAILS, RESULTS AND DISCUSSION

Herein, we provide additional details in training and baseline models, as well as more results as a
supplement of Section 4.

B.1 TRAINING DETAILS

In all experiments, we adopt the Adam optimizer for optimization and use a 16-layer DisentangO
model. For fair comparison across different models, we tune the hyperparameters, including the
learning rates, the decay rates, and the regularization parameters, to minimize the validation loss.
Experiments are conducted on a single NVIDIA Tesla A100 GPU with 40 GB memory. A pseudo
algorithm of all three scenarios is summarized in Algorithm 1.

Algorithm 1 A pseudo algorithm of DisentangO.

1: Denote data reconstruction loss Ldata, task-wise NO parameter reconstruction loss Lrecon, KL
loss LKL and semi-supervision loss Lsemi as:

Ldata =
1

S

S∑
η=1

[−E(log(p(u|f , θη)))] , Lrecon =
1

S

S∑
η=1

[
−Eq(zη|θη) log p(θ

η|zη)
]

,

LKL =
1

S

S∑
η=1

[DKL (q(zη|θη)||p(zη))] , Lsemi = Lc(z
η, c(bη)) .

2: SC1: Supervised/SC3: Unsupervised
3: The total loss is comprised of the data loss, the NO parameter reconstruction loss, and the KL

loss: Lloss = βdLdata + Lrecon + βKLLKL.
4: SC2: Semi-supervised
5: The total loss is comprised of the data loss, the NO parameter reconstruction loss, the KL loss,

and a semi-supervised loss: Lloss = βdLdata + Lrecon + βKLLKL + βclsLsemi.

B.2 SUPERVISED FORWARD AND INVERSE PDE LEARNING

The parameter of each baseline is given in the following, where the parameter choice of each model
is selected by tuning the number of layers and the width (channel dimension), keeping the total
number of parameters on the same magnitude.

• MetaNO: We use a 8-layer IFNO model with the lifting layer as the adaptive layer. We keep
the total number of parameters in MetaNO the same as the number of parameters used in
forward PDE learning in DisentangO.

• NIO: We closely follow the setup in Molinaro et al. (2023), where two neural operators
(DeepONet and FNO) are stacked together to realize the operator-to-function intuition. The
first operator maps multiple solution functions to a set of representations (which can be seen
as an analog of eigenfunctions), and the second operator infers the underlying parameter
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field from the mixed representations. As NIO requires the solution field as input, it cannot
be used as a forward solver. Hence, NIO only solves the inverse PDE problem, and it can
only be applied to the fully supervised setting. Specifically, we use four convolution blocks
as the encoder for the branch net and a fully connected neural network with two hidden
layers of 256 neurons as the trunk net, with the number of basis functions set to 50. For the
FNO part, we use one Fourier layer with width 32 and modes 8, as suggested in Molinaro
et al. (2023).

• FNO: Since FNO is originally designed as a function-to-function mapping, we consider the
inverse optimization procedure following Lee et al. (2024), and develop a two-phase pro-
cess to solve the forward and inverse problems sequentially. In the first phase, we construct
the forward mapping from the loading field f and the ground-truth material parameter b
to the corresponding solution u as: GFNO[f , b; θFNO](x) = u(x). This can be seen as
an analog of the operator G in our equation 3.7. Then, with the trained FNO as a surro-
gate for the forward solution operator, we fix its NN parameters θFNO, and use it together
with gradient-based optimization to solve for the optimal material parameters as an inverse
solver. Specifically, given a set of loading/solution data pairs {(fi, ui)}Ni=1, we start from
a random guess of the underlying material parameters (typically chosen as the average of
all available instances of material parameters for fast convergence), and minimize the dif-
ference between the predicted displacement field from FNO and the ground-truth one:

b∗ = argminb

N∑
i=1

∥ui − GFNO[fi, b; θ
FNO]∥2.

As the FNO parameters are fixed, we can back propagate this loss and optimize the input
material parameters in an iterative fashion. We adopt a 4-layer FNO with width 26 and
modes 8. For the forward model, in addition to the loading field and the coordinates as
input, we also concatenate the ground-truth material properties to form the final input.
For the inverse model, we employ an iterative gradient-based optimization to solve for
the optimal material parameters for physics discovery. For fair comparison, in terms of the
averaged per-epoch runtime, we report the sum of both the forward and inverse solvers. The
averaged per-epoch runtimes for the forward solver and the inverse solver are 6.2 seconds
and 2.9 seconds, respectively, accounting for the total per-epoch runtime of 9.1 seconds in
Table 1.

• FUSE: For the forward model, we take three Fourier layers in addition to the first band-
limited lifting layer that increases the dimension of the parameters and performs an in-
verse Fourier transform. On the other hand, the inverse model maps the functional input
to the parameter space by employing a concatenation of two Fourier layers and a band-
limited forward Fourier transform that generates a fixed-size latent representation of the
input function, followed by a flow-matching posterior estimation (FMPE) that maps to the
final parameter output. All Fourier layers have a latent width of 32 and 8 modes, while the
FMPE flow has 4 layers of width 360.

• FUSE-f: Since the original FUSE model assumes a constant loading field, it cannot handle
situations where the input loading field changes that create multiple instances of a PDE
system. We therefore create a FUSE variation (denoted as “FUSE-f”) that takes a concate-
nation of both the displacement field and the loading field as input to the inverse model.
For the forward model, we concatenate the loading field to the output of the first band-
limited lifting layer and subsequently use a one-layer MLP to map it back to the original
dimension. All other settings are the same as the original FUSE baseline.

• InVAErt: We directly take the InVAErt implementation from Lingsch et al. (2024) and de-
fine the encoder, the VAE encoder and the decoder as 4-layer MLPs with hidden dimension
96 and silu activation function.

• VAE: We use a 2-layer MLP of size [1681, 136, 30] as the encoder, and another 2-layer
MLP of size [30, 136, 1681] as the decoder, with the size of the bottleneck layer being 30.

• convVAE: We use a convolutional layer with 136 kernels of size 3 × 3 with a stride of 2
pixels and a fully connected layer of size [59976, 5] as the encoder, and a fully connected
layer of size of [5, 59976] and a transposed convolutional layer with 2 kernels of size 3× 3
as the decoder.
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Figure 6: MMNIST latent traversal based on a randomly picked loading field as DisentangO-2 input.

• β-VAE: The parameter choice of the β-VAE baseline is the same as the VAE baseline,
except that we tune the β hyperparameter.

B.3 MECHANICAL MNIST BENCHMARK

Herein, we demonstrate the latent traversal based on a randomly picked loading field as DisentangO-
2 input. One can clearly see that the digit changes from “6” to “0” and then “2” from the top left
moving down, and from “6” to “1” and then “7” moving to the right. Other digits are visible as well
such as “7”, “9”, “4” and “8” in the right-most column. This corresponds well to the distribution of
the latent clustering in Figure 3. We also provide two exemplary MMNIST latent interpretations of
the learned DisentangO-15 in Figures 7 and 8.

B.4 LATENT VISUALIZATION AND PHYSICAL INTERPRETATION

As the hidden parameter field bη of the PDE is generally not accessible, especially in the semi-
supervised or unsupervised settings, one cannot directly reconstruct bη from the learned latent vari-
ables z. Through disentangled representation learning, the latent variables z are anticipated to con-
tain critical information of bη , but there does not exist a direct and explicit mapping from z to bη . As
a result, one cannot directly reconstruct bη from z. However, there are several tricks one can play
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Figure 7: Exemplary MMNIST latent interpretation of DisentangO-15: dimension 10 encodes the information
for digit ‘8’, as is evidenced by the fact that all y < −0.4 regions on the scatterplots contain only digit ‘8’.

with to obtain meaningful interpretations from the learned z. On one hand, one can feed a randomly
selected input into DisentangO and manually define a desired z in the latent space and perform a for-
ward pass using the trained DisentangO. bη can then be visualized from the output, as demonstrated
in Figure 6 in the MMNIST experiment. On the other hand, one can also train a simple MLP and
construct a mapping from z to bη , provided that bη is available. With this mapping at hand, one can
then traverse z and visualize what each dimension of z controls. This is demonstrated in Figure 5 in
the third experiment.
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Figure 8: Exemplary MMNIST latent interpretation of DisentangO-15: dimension 12 encodes the information
for digit ‘3’, as is evidenced by the fact that all y < −0.45 regions on the scatterplots contain only digit ‘3’.

C DATA GENERATION

C.1 EXPERIMENT 1 - SUPERVISED FORWARD AND INVERSE PDE LEARNING

we consider the constitutive modeling of anisotropic fiber-reinforced hyperelastic materials gov-
erned by the Holzapfel–Gasser–Ogden (HGO) model, whose strain energy density function can be

22
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written as:

η =
E

4(1 + ν)
(Ī1 − 2)− E

2(1 + ν)
ln J

+
k1
2k2

(ek2⟨S(α)⟩2 + ek2⟨S(−α)⟩2 − 2) +
E

6(1− 2ν)
(
J2 − 1

2
− ln J) , (C.1)

where ⟨·⟩ indicates the Macaulay bracket, α, k1 and k2 are the fiber angle, modulus and expo-
nential coefficient, respectively, E denotes the Young’s modulus of the matrix, ν is Poisson’s ra-
tio, and S(α) describes the fiber strain of the two fiber groups, S(α) = Ī4(α)−1+|Ī4(α)−1|

2 . Īi is
the ith invariant of the right Cauchy-Green tensor C, Ī1 = tr(C) and Ī4 = nT (α)Cn(α), with
n(α) = [cos(α), sin(α)]T . In this context, the data generation process is controlled by sampling
the material set {E, ν, k1, k2, α}, and the latent factors can be learned consequently in a supervised
fashion. The physical parameters are sampled from k1

k2
∼ U [90, 100] ,k2 ∼ U [0.001, 0.1], E ∼

U [0.5001, 0.6001], ν ∼ U [0.2, 0.3], and α ∼ U [π/10, π/2]. To generate the high-fidelity (ground-
truth) dataset, we sample 220 material sets, which are split into 200/10/10 for training/validation/test,
respectively. For each material set, we sample 50 different vertical traction conditions Ty(x) on the
top edge from a random field, following the algorithm in Lang & Potthoff (2011b); Yin et al. (2022).
Ty(x) is taken as the restriction of a 2D random field, ϕ(x) = F−1(γ1/2F(Γ))(x), on the top
edge. Here, Γ(x) is a Gaussian white noise random field on R2, γ = (w2

1 + w2
2)

− 2
4 represents a

correlation function, and w1, w2 are the wave numbers on x and y directions, respectively. Then, for
each sampled traction loading, we solve the displacement field on the entire domain by minimizing
the potential energy using the finite element method implemented in FEniCS (Alnæs et al., 2015).
Sample data of the obtained dataset is illustrated in Figure 9. In this setting, the model takes as input
the padded traction field and learns to predict the resulting displacement field.

Figure 9: Illustration of the HGO data, loading and displacement pairs of three materials bη , η = 1, 2, 3.
Top: three instances of different loadings Ty(x), which corresponds to different fi. Bottom: corresponding
displacement solutions uη

i , illustrating the impacts of system (bη) variability in solution operators.

C.2 EXPERIMENT 2 - MECHANICAL MNIST BENCHMARK

Mechanical MNIST is a benchmark dataset of heterogeneous material undergoing large deformation,
modeled by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap
images (Lejeune, 2020). It contains 70,000 heterogeneous material specimens, and each specimen is
governed by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap
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(a) MMNIST material microstructure

(b) Loading #38 and the corresponding displacement field

(c) Loading #123 and the corresponding displacement field

Figure 10: Illustration of exemplar MMNIST samples in the semi-supervised scenario. (a): material parameter
field corresponding to different bη . (b): displacement fields (second row) uη

38 corresponding to the same
loading field (first row) f38. (c): displacement fields (second row) uη

138 corresponding to the same loading
field (first row) f138.

images. We illustrate samples from the MMNIST dataset in Figure 10, including the underlying
microstructure, two randomly picked loading fields, and the corresponding displacement fields.

C.3 EXPERIMENT 3 - UNSUPERVISED HETEROGENEOUS MATERIAL LEARNING

We generate two sets of datasets in this case, varying the material microstructure in the following
two ways.
Varying fiber orientation distribution. We generate the samples by controlling the predefined
parameters of Gaussian Random Field (GRF). With the GRF sharpened by the thresholding, the
values to binary field represent two distinct fiber orientations. The binary field is smoothed using a
windowed convolution. To address boundary conditions, the matrix is padded with replicated edge
values, ensuring that the convolution works uniformly across the entire grid. After the smoothing
process, the padded sections are removed, and the remaining field is used to construct the fiber field.
We use two fixed fiber angles π

3 ,
2π
3 for the corresponding binary field. We generate 300 material

sets, each with 500 loading/displacement pairs, and divide these into training, validation, and test
sets in a 200/50/50 split. Exemplar Samples from this dataset are illustrated in Figure 11. These
samples demonstrate the variability of b, which is of critical for the latent variable identifiability in
unsupervised learning settings, as proved in Theorem 2.

Varying fiber orientation magnitude and segmentation line rotation. Instead of controlling the
fiber orientation angles on the binary field as two constant values, we sample the orientation distri-
bution consisting of two segments with orientations α1 and α2 on each side, respectively, separated
by a line passing through the center. The values of α1 and α2 are independently sampled from a uni-
form distribution over [0, 2π], and the centerline’s rotation is sampled from [0, π]. We generate 300
material sets, each with 500 loading/displacement pairs, and divide these into training, validation,
and test sets in a 200/50/50 split.

Loading and displacement pairs for one microstructure. After generating the specimens with
varying fiber orientations, we feed the bη(x) as the α(x) to the HGO model, and keep the material
property set {E, ν, k1, k2} as constant. For each microstructure, we randomly sample loading and
displacement pairs for each microstructure from the previous step.
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Figure 11: Illustration of fiber orientation magnitude and segmentation line rotation. Upper: three different
loading instances of fi. Bottom left: three different microstructure instances of bη . Bottom right: correspond-
ing solution fields uη

i .

The loading in this example is taken as the body load, f(x). Each instance is generated as the
restriction of a 2D random field, ϕ(x) = F−1(γ1/2F(Γ))(x). Here, Γ(x) is a Gaussian white
noise random field on R2, γ = (w2

1 + w2
2)

− 5
4 represents a correlation function, w1 and w2 are the

wave numbers on x and y directions, respectively, and F and F−1 denote the Fourier transform
and its inverse, respectively. This random field is anticipated to have a zero mean and covariance
operator C = (−∆)−2.5, with ∆ being the Laplacian with periodic boundary condition on [0, 2]2,
and we then further restrict it to Ω. For the detailed implementation of Gaussian random field
sample generation, we refer interested readers to Lang & Potthoff (2011a). Then, for each sampled
loading fi(x) and microstructure field bη(x), we solve for the displacement field uη

i (x) on the
entire domain.

C.4 EXPERIMENT 4 - SYNTHETIC DATASET FOR IDENTIFIABILITY DEMONSTRATION

We demonstrate using experiment 4 that the disentangled latent factors from DisentangO correspond
to the true generative factors. We generate synthetic data following the process in equation C.2. We
work with latent variables z of dimension 2 and sample from z ∼ N (µb, σ

2
bI) ∈ R2 where for

each microstructure b, we sample µb ∼ U [−4, 4] and σb ∼ U [1, 10] and f ∼ U [0, 1] ∈ R3,
M ∼ U [0, 1] ∈ R2×2, A = [I, 2I, 3I, 4I]T , M ∈ R8×2, b ∼ U [0, 1] ∈ R8, W ∼ U [0, 1] ∈ R4×1,
l ∼ U [0, 1] ∈ R,

θP =Az , (C.2)
u =Wσ(θP 1f + θP 2) + l . (C.3)

We generate 700 data pairs of (z, θP ) corresponding to 700 tasks, and for each task, we generate
200 samples of (f, u) pairs.

d 3 5 7 9
MCC 0.7836 0.8013 0.8237 0.9121
R2 0.5673 0.6026 0.6473 0.8242

Rank(w) 3 4 4 4

Table 4: The MCC and R2 scores to evaluate identifiability on the synthetic dataset in experiment 4.
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Figure 12: The scatter plot of the true generative variables z and the disentangled latent variables ẑ from the
synthetic dataset with d = 9 in experiment 4.

We conduct experiments on the synthetic dataset and split the tasks into d/100/500 for training,
validation and test, respectively, with d chosen from the set of (3, 5, 7, 9) to investigate the effect
of the number of training tasks on the identifiability. In particular, we measure the component-wise
identifiability of the latent variables z by computing the Mean Correlation Coefficient (MCC) and
the coefficient of determination R2 scores on the test dataset, and report the results in Table 4, where
we observe a monotonic growth on both MCC and R2 with the increase of the number of training
tasks d. Figure 12 illustrates the alignment on the test dataset between the true generative factors
z and the disentangled factors ẑ from DisentangO in the case of d = 9. To verify Assumption 4,
we calculate the rank of the matrix w(z, b). Specifically, for each θp, with the VAE encoder, we

calculate the µb and σb, sample z, and calculate the corresponding
∂qi(zi, b

j)

∂zi
and

∂2qi(zi, b
j)

∂z2i
,

where i = 1, · · · dz, j = 1 · · · d.
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