
Independence Tests for Language Models

Sally Zhu * 1 Ahmed Ahmed * 1 Rohith Kuditipudi * 1 Percy Liang 1

Abstract
Motivated by liability and intellectual property
concerns over open-weight models we consider
the following problem: given the weights of two
models, can we test whether they were trained
independently—i.e., from independent random
initializations? We consider two settings: con-
strained and unconstrained. In the constrained
setting, we make assumptions about model archi-
tecture and training and propose statistical tests
that yield exact p-values with respect to the null
hypothesis that the models are trained from inde-
pendent random initializations. We compute the
p-values by simulating exchangeable copies of
each model under our assumptions and compar-
ing various similarity measures between the orig-
inal two models versus these copies. We report
p-values on pairs of 21 open-weight models (210
total pairs) and find we correctly identify all pairs
of non-independent models. In the unconstrained
setting we make none of the prior assumptions
and allow for adversarial evasion attacks that do
not change model output. We thus propose a new
test which matches hidden activations between
two models, which is robust to these transforma-
tions and to changes in model architecture and
can also identify specific non-independent com-
ponents of models. Though we no longer obtain
exact p-values from this test, empirically we find
it reliably distinguishes non-independent models
like a p-value. Notably, we can use the test to
identify specific parts of one model that are de-
rived from another (e.g., how Llama 3.1-8B was
pruned to initialize Llama 3.2-3B, or shared layers
between Mistral-7B and StripedHyena-7B), and
it is even robust to retraining individual layers of
either model from scratch.

*Equal contribution 1Department of Computer Sci-
ence, Stanford University, Stanford, US. Correspondence
to: Sally Zhu <salzhu@stanford.edu>, Ahmed Ahmed
<ahmedah@cs.stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Consider the ways in which two models could be related:
one model may be a finetune of the other; one could be
spliced and pruned from certain parts of the other; both
models could be separately fine-tuned from a common an-
cestor; finally, they could be independently trained from
each other. We consider the problem of determining whether
two models are independently trained versus not from their
weights, which we formalize as a hypothesis testing prob-
lem in which the null hypothesis is that the weights of the
two models are independent. We concretely treat only the
weight initialization as random and thus consider two mod-
els with different random initial seeds as independent, even
if both models were trained on the same data, or one model
was distilled from the outputs of the other.

A solution to this independence testing problem would help
auditors track provenance of open-weight models. This is
pertinent because while open-weight models enable broader
access and customization, they also pose potential risks for
misuse as they cannot be easily monitored or moderated
(Kapoor et al., 2025). Model developers would also gain an
enhanced ability to protect their intellectual property (IP)
(Mensch, 2024; Peng et al., 2023) and enforce custom model
licenses (Dubey et al., 2024; DeepSeek-AI et al., 2024).

We consider two settings of the independence testing prob-
lem. In the constrained setting, we make assumptions on
training and initialization (essentially, that the training al-
gorithm is equivariant to permuting the hidden units of the
random initialization) that enable us to obtain provably valid
p-values. The main idea is that under these assumptions
we can cheaply simulate many exchangeable copies of each
model’s weights and compare the value of some test statistic
(e.g., cosine similarity of model weights) on each of these
copies with the original model pair. The assumptions gener-
ally hold in practice but preclude robustness to adversarial
evasion attacks and architectural changes.

For the constrained setting, we evaluate various test statis-
tics on 21 models of the Llama 2 architecture (Touvron et al.,
2023), including 12 fine-tunes of Llama 2 and nine indepen-
dently trained models, obtaining extremely small p-values

We share code at https://github.com/
ahmeda14960/model-tracing.

1

https://github.com/ahmeda14960/model-tracing
https://github.com/ahmeda14960/model-tracing

Independence Tests for Language Models

Figure 1. Given the weights of two models, what relationships can we derive?

for all 69 non-independent model pairs. Notably, our tests
retain low p-values over different fine-tuning methods (e.g.,
different optimizers) and on models fine-tuned for many
tokens from the base model such as Llemma (Azerbayev
et al., 2024), which was fine-tuned on an additional 750B
tokens from Llama 2 (i.e., 37.5% of the Llama 2 training
budget). We also confirm that the leaked Miqu-70B model
from Mistral is derived from Llama 2-70B.

For the unconstrained setting we develop a test robust to
simple modifications to model weights and architecture,
such as permuting hidden units, that can violate the assump-
tions of the constrained setting if an adversary applies them
after fine-tuning. Though we are not able to obtain prov-
ably exact p-values in the unconstrained setting, we derive
a test whose output empirically behaves like a p-value and
reliably distinguishes non-independent models from inde-
pendent models. In particular, we first align the hidden units
of two models—which may each have different activation
types and hidden dimensions—and then compute some mea-
sure of similarity between the aligned models. Because of
the alignment step, the test is robust to changes in model
architecture and various adversarial evasion attacks (includ-
ing those that break prior work). Moreover, it can localize
the dependence: we can identify specific components or
weights that are not independent between two models, even
when they have different architectures.

We evaluate our unconstrained setting test on 141 indepen-
dent model pairs and find that its output empirically behaves
like a p-value in the sense that it is close to uniformly dis-
tributed in [0, 1] over these pairs. In contrast, it is almost
zero for all dependent pairs we test (including those for
which we simulate a somewhat strong adversary by retrain-
ing entire layers from scratch). We also employ our test to
identify pruned model pairs, which occur when one reduces
the layer dimensions by retaining only select activations and
weights from a pre-trained model; for example, we identi-
fied the precise layers of Llama 3.1 8B from which each
Llama 3.2 3B and Llama 3.2 1B layer was derived.

The work most closely related to ours is due to Zeng et al.
(2024), who considered our constrained setting; they de-
velop various tests to determine whether a model as a whole
is independent of another by computing the cosine similarity
of the products of certain weight matrices in both models.
They show that their tests are robust to simple adversar-
ial transformations of model weights that preserve model
output; however, we detail in Appendix G.1 other transfor-
mations to perturb dependent models that evades detection
by their tests. Additionally, unlike Zeng et al. (2024), in
the constrained setting we obtain exact p-values from our
tests. Jin et al. (2024) propose crafting specific queries that
are likely to produce different responses among indepen-
dently trained models; their method does not require access
to weights but also does not produce exact p-values.

2. Methods
2.1. Problem formulation

Let f : Θ × X → Y denote a model mapping parameters
θ ∈ Θ and an input X ∈ X to an output f(X; θ) ∈ Y .
We represent a model training or fine-tuning process as a
learning algorithm A : Θ→ Θ that takes as input a set of
initial parameters corresponding to either a random initial-
ization or, in the case of fine-tuning, base model parameters.
Specifically, A includes the choice of training data, ordering
of minibatches, and all other design decisions and even the
randomness used during training—everything other than the
initial model weights.

Given two models θ1, θ2 ∼ P for some joint distribution
P ∈ P(Θ1 ×Θ2), our goal is to test the null hypothesis

H0 : θ1 ⊥ θ2, (1)

where ⊥ denotes independence of two random variables.
One example of a case where θ1 and θ2 might not be in-
dependent is if θ2 is fine-tuned from θ1, i.e., Θ1 = Θ2

(meaning the two models share the same architecture) and
θ2 = A(θ1) for some learning algorithm A. We treat

2

Independence Tests for Language Models

learning algorithms as deterministic functions. Thus, for
θ1 = A1(θ

0
1) and θ2 = A2(θ

0
2), then θ01 ⊥ θ02 (i.e. two

models with independent random initializations) implies
our null hypothesis.

Deep learning models are often nested in nature. For exam-
ple, Transformer models include self-attention layers and
MLP layers as submodels. We formalize the notion of a
submodel via the following definition.

Definition 1. A model f : Θ×X → Y contains a submodel
g : Θ′ × X ′ → Y ′ if there exists a projection operator
proj : Θ→ Θ′ such that for all θ ∈ Θ we have

f(x; θ) = fout(g(fin(x); proj(θ)))

for some functions fin : X → X ′ and fout : Y ′ → Y (which
may depend on θ).

Many of our experiments will involve Transformer models
specifically containing MLP layers with Gated Linear Unit
(GLU) activations, which are widely used among language
models. It thus will be useful to define this type of MLP
presently through the following example.

Example 1: (GLU MLP) Let G,U ∈ Rh×d and D ∈
Rd×h. Let σ : R → R be an element-wise activation
function. For x ∈ Rd and θ = (G,U,D) ∈ Θh

mlp, let
fmlp(x; θ) := D(σ(Gx)⊙ (Ux)). Likewise, for X ∈ Rs×d

let fmlp(X; θ) ∈ Rs×d denote the result of broadcasting
fmlp over the rows of X . ♢

In addition to the basic independence testing problem above,
we also consider the problem of localized testing: testing
whether various pairs of submodels among two overall mod-
els are independent or not. A prototypical example of a
localized testing problem is identifying which layers of a
larger model (e.g., Llama 3.1-8B) were used to initialize a
smaller model (e.g., Llama 3.2-3B) (in this case, we treat
the layers as different submodels).

2.2. Constrained Setting

2.2.1. TESTING FRAMEWORK

Algorithm 1 (PERMTEST) encapsulates our framework for
computing p-values against the null hypothesis in the con-
strained setting, wherein we simulate T exchangeable copies
of the first model θ1 by applying transformations to its
weights. The exchangeability of these copies holds under
some assumptions on the learning algorithm and random
initialization that produced the original model. We capture
these assumptions in the following definitions; together, they
define the constrained setting.

Definition 2 (Π-invariance). Let Π ⊂ Θ→ Θ. A distribu-
tion P ∈ P(Θ) is Π-invariant if for θ ∼ P and any π ∈ Π,
the parameters θ and π(θ) are identically distributed.

Algorithm 1: Test for computing p-values (PERMTEST)
Input: Model weights θ1, θ2
Parameters : test statistic ϕ; discrete transformation

class Π; permutation count T
Output: p-value p̂ ∈ (0, 1]

1 n ties← 0;
2 for t ∈ 1, . . . , T do
3 πt ∼ Unif(Π);
4 ϕt ← ϕ(πt(θ1), θ2);
5 s← s+ 1{ϕt = ϕ(θ1, θ2)};
6 ξ ∼ Unif({0, ..., n ties}) // break ties

7 p̂← 1− 1
T+1 (1 + ξ +

∑T
t=1 1{ϕt < ϕ(θ1, θ2)};

8 return p̂

Definition 3 (Π-equivariance). Let Π ⊂ Θ → Θ, π ∈ Π,
and θ0 ∈ Θ. A learning algorithm A is Π-equivariant if and
only if π(A(θ0)) = A(π(θ0)).

The main idea underlying PERMTEST is that so long as
θ1 = A(θ01) and θ01 ∼ P for some Π-equivariant learning
algorithm A and Π-invariant distribution P , we can simulate
T exchangeable (but not independent) copies {πt(θ1)}Tt=1

of θ1 by sampling πt
i.i.d.∼ Unif(Π). This allows us to effi-

ciently compute an exact p-value without actually repeating
the training process of θ1. In effect, Definitions 2 and 3 im-
ply that π commutes with A—i.e., π(A(θ01)) = A(π(θ01)).
Under exchangeability, the p-value output by PERMTEST

will be uniformly distributed over {(i+ 1)/(T + 1)}Ti=0.

Standard initialization schemes for feedforward networks
are symmetric over the hidden units of the network, and so
one example of a class of transformations with respect to
which any such initialization is invariant is the set of permu-
tations over the hidden units of the network. Moreover, the
gradient of the model’s output with respect to the hidden
units is permutation equivariant; thus, any learning algo-
rithm whose update rule is itself a permutation equivariant
function of gradients (e.g., SGD, Adam, etc.) satisfies Defi-
nition 3 with respect to these transformations. A (contrived)
example of a learning algorithm that is not permutation
equivariant is one that uses different learning rates for each
hidden unit depending on the index of the hidden unit.

Example 2 (Permuting hidden units): Let θ = (G,U,D) ∈
Θh

mlp parameterize a GLU MLP, where recall fmlp(x; θ) :=
D(σ(Gx)⊙ (Ux)) for some element-wise activation func-
tion σ : R→ R. Abusing notation, let Π be the set of h× h
permutation matrices such that for π ∈ Π we define π(θ) =
(πG, πU,DπT). Observe fmlp(x; θ) = fmlp(x;π(θ)) and
π(∇θfmlp(x; θ)) = ∇π(θ)f(x;π(θ)) for all inputs x. ♢

The assumptions we make in the constrained setting suffice
for PERMTEST to produce a valid p-value, as we show in

3

Independence Tests for Language Models

the following theorem, whose proof uses symmetry of the
initialization and training process (full proof in Appendix
A).1 Importantly, the result of the theorem holds (under the
null hypothesis) without any assumptions on θ2; so, a model
developer of θ1 testing other models with our methods can
have confidence in the validity of our test without trusting
the provider of θ2. Of course, if θ2 does not satisfy the
equivariance assumption on training (as in the unconstrained
setting), then PERMTEST is unlikely to produce a low p-value
even in cases where θ1 and θ2 are not independent (e.g., if an
adversary finetunes θ2 from θ1 but then afterwards randomly
permutes its hidden units).

Theorem 1. Let ϕ : Θ × Θ → R be a test statistic
and Π ⊂ Θ → Θ be finite. Let A : Θ → Θ be
Π-equivariant and let P ∈ P(Θ) be Π-invariant. For
θ01 ∼ P , let θ1 = A(θ01). Let θ2 ∈ Θ be independent
of θ1. Then p̂ = PERMTEST(θ1, θ2) is uniformly distributed
on { i+1

T+1}
T
i=0.

We also generalize Theorem 1 to apply to randomized
learning algorithms that satisfy a notion of equivariance
in distribution (including dropout) in Appendix B. However,
throughout the main text we will continue to treat learning
algorithms as deterministic for the sake of simplicity.

2.2.2. TEST STATISTICS

We have shown PERMTEST produces a valid p-value regard-
less of the test statistic ϕ we use. The sole objective then in
designing a test statistic is to achieve high statistical power:
we would like p̂ = PERMTEST(θ1, θ2) to be small when θ1
and θ2 are not independent. The statistics in this section
apply to any model pair sharing the same architecture.

Prior work (Xu et al., 2024) proposed testing whether two
models are independent or not based on the ℓ2 distance
between their weights, summed over layers. Specifically, for
a model with L layers parameterized by Θ = Θ1× ...×ΘL,
with θ1 = (θ

(ℓ)
1)Lℓ=1 and θ2 = (θ

(ℓ)
2)Lℓ=1, let ϕℓ2(θ1, θ2) :=

−
∑L

i=1 ℓ2(θ
(ℓ)
1 , θ

(ℓ)
2). We can obtain p-values from ϕℓ2 by

using it within PERMTEST. However, a major limitation is
that in order to obtain a p-value less than 1/(T +1) we must
recompute ϕℓ2 at least T times; then the statistical power of
our test using ϕℓ2 is therefore bottlenecked by computation.

To address this limitation, we propose a family of test statis-
tics whose distribution under the null is identical for any
model pair. The test statistics all share the following general
form based on Algorithm 2 (MATCH): for m,n ∈ N and
M : Θ→ Rn×m, let

ϕM (θ1, θ2) := SPEARMAN(MATCH(M(θ1),M(θ2)),

[1, ..., n]), (2)

1As a result of the test yielding exact p-values, we can directly
control for the false positive rate via the significance threshold.

where SPEARMAN is the Spearman rank correlation (Algo-
rithm 3). Equation (2) is applicable to any model architec-
ture Θ for which we can define a suitable matrix valued
function M of model parameters. For example, M could
extract a weight matrix or activation matrix (based on some
set of inputs) from a layer of the model, where each row
corresponds to a hidden unit of the model. We use MATCH
to align the rows of the two extracted matrices and compute
the Spearman correlation of this alignment with the identity
map between rows. We describe matching in Algorithm 2,
wherein cossim denotes cosine similarity function and LAP

denotes the algorithm of Ramshaw & Tarjan (2012) we use
to solve the matching problem.

The idea is that for two dependent models, each row of
M(θ1) should be similar to its counterpart in M(θ2); thus,
the alignment found by SPEARMAN will be close to the iden-
tity map. Meanwhile, so long as M is a Π-equivariant map
(Definition 4), then ϕM (θ1, θ2) under the null yields valid
p-values (see Theorem 2 and proof in Appendix A); so we
can use the more computationally-efficient Algorithm 3 to
convert statistics to p-values instead of running PERMTEST.

Definition 4. (equivariant map) A matrix-valued function
M : Θ → Rn×m is Π-equivariant with respect to a class
of transformations Π : Θ → Θ if there exists a bijection
between Π and the set of n× n permutation matrices such
that M(π(θ)) = πM(θ) for all θ ∈ Θ and π ∈ Π.

Theorem 2. Let M : Θ → Rn×m be a Π equivariant
map and let P ∈ P(Θ) be Π-invariant. Let θ1, θ2 ∈ Θ
be independent random variables, with θ1 = A(θ01) for
θ01 ∼ P1. Then ϕM (θ1, θ2) is uniformly distributed on
[0, 1).

Algorithm 2: Cosine similarity matching (MATCH)
Input: Matrices W1,W2 with h rows
Output: Permutation π : [h]→ [h]

1 for i ∈ 1, . . . , h do
2 for j ∈ 1, . . . , h do
3 Ci,j ← cossim((W1)i, (W2)j);
4 π ← LAP(C);
5 return π

Taking various such functions M yields different test statis-
tics. We focus our experiments on Transformer models con-
sisting of a series of L Transformer blocks that each contain
a GLU MLP submodel, and we take M(θ) to be either the
up projection weights or the hidden-layer activations of one
of these MLP submodels. In particular, let U (ℓ)(θ) ∈ Rh×d

denote the first layer up projection weights of the MLP in
the ℓ-th block, where h is the hidden dimension and d is the
input dimension, and let H(ℓ)(θ) ∈ Rh×(N ·s) denote the
(flattened) hidden activations that obtain from passing N
length s input sequences X ∈ RN×s×d to the same MLP

4

Independence Tests for Language Models

module (the test is valid for any X; we will specify later
how we choose X in our experiments). The two main test
statistics we employ in our experiments are ϕU(ℓ) and ϕH(ℓ) .

Both U (ℓ) and H(ℓ) are equivariant with respect to permut-
ing the hidden units of the corresponding MLP, so we can
directly interpret the outputs of ϕU(ℓ) and ϕH(ℓ) as p-values.
Moreover, we can separately permute the hidden units of
the MLP in the ℓ-th block without changing the inputs or
outputs of the other blocks. Thus, as we show in Theo-
rem 3 (proof in Appendix A), we can aggregate the p-values
from ϕU(ℓ) and ϕH(ℓ) across blocks using Fisher’s method
((Mosteller & Fisher, 1948)) to obtain a more powerful test
in Algorithm 4 (FISHER).

Algorithm 3: Deriving p-values from Spearman corre-
lation (SPEARMAN)
Input: Permutations π1, π2 : [h]→ [h]
Output: p-value p̂ ∈ (0, 1]

1 r ← 1− 6
∑

(π1[i]−π2[i])
2

h(h2−1) ;

2 t← r
√

h−2
1−r2 ;

3 p̂← P(Tn−2 > t) ;
4 return p̂

Algorithm 4: Aggregating p-values (FISHER)

Input: p-values {p̂(i)}Li=1

Output: p-value p̂ ∈ (0, 1]

1 ξ ←
∑L

i=1 log p̂
(i);

2 p̂← 1− P(χ2
2L < −2ξ);

3 return p̂

Theorem 3. Consider block indices i, j ∈ [L] with i ̸= j
for models with L blocks. Suppose for ℓ ∈ {i, j} that

1. M (ℓ) : Θ→ Rh×N is equivariant with respect to Π(ℓ),
i.e., for any θ ∈ Θ and π(ℓ) ∈ Π(ℓ) we have

M(π(ℓ)(θ)) = π(ℓ)M(θ).

2. A is a Π(ℓ)-equivariant learning algorithm and P ∈
P(Θ) is a Π(ℓ)-invariant distribution.

Let θ1, θ2 ∈ Θ. If θ1 ⊥ θ2 for θ1 = A(θ01) with θ01 ∼ P ,
then

MATCH(M (i)(θ1),M
(i)(θ2)) ⊥ MATCH(M (j)(θ1),M

(j)(θ2)).

Recall ϕU(ℓ) and ϕH(ℓ) are functions of
MATCH(M (ℓ)(θ1),M

(ℓ)(θ2)) respectively for M (ℓ) = U (ℓ)

and M (ℓ) = H(ℓ), both of which satisfy the assumptions of
the theorem. Thus, the result of the theorem applies to both

these test statistics, and the independence of the p-values
from these test statistics across blocks follows directly from
the independence of the statistics themselves.

2.3. Unconstrained Setting

For the unconstrained setting, our goal is to design a ro-
bust test that applies to models of different architectures
and is robust to output-preserving transformations of model
weights. Recall our tests for the constrained setting satisfy
neither of these desiderata: these tests assume both models
have the same number of hidden units, and it is easy to fool
them without changing the output of a model by permuting
the order of the hidden units in the model.

Our robust test reposes on the design of ϕM in equation (2).
The goal is to identify two matrix valued functions of model
parameters M,M ′ : Θ → Rn×m that jointly satisfy the
following condition: any output-preserving transformation
of model parameters must transform both M and M ′ in the
same way. Then, whereas previously we would correlate
MATCH(M(θ1),M(θ2)) with the identity permutation, we
instead define

ϕM,M ′ := SPEARMAN(MATCH(M(θ1),M(θ2)),

MATCH(M ′(θ1),M
′(θ2)). (3)

The above goal is aspirational in the sense that for any
nontrivial deep learning model we are not able to fully enu-
merate the set of transformations of model parameters to
which model output is invariant; nonetheless, it will serve as
a useful guiding principle for designing our robust test under
the framework of equation (3). We organize the description
of our full robust test—which is generally applicable to
a variety of model architectures—into two parts: first, in
Section 2.3.1 we instantiate equation (3) to obtain a test for
GLU MLP models. Then, in Section 2.3.2 we use our GLU
MLP test as a primitive for designing a test that applies to
general deep learning models (including those which do not
contain any GLU MLP submodels).

2.3.1. TESTING GLU MODELS

Recalling our definition of a GLU MLP model in Example 1,
for k ∈ {1, 2} let θk = (Gk, Uk, Dk) ∈ Θhk

mlp, and with in-
puts X ∈ Rd×N let Hup(θk) = UkX ∈ Rmax{h1,h2}×N be
the output of the up projection operation and let Hgate(θk) =
GkX ∈ Rmax{h1,h2}×N be the output of the gate projection
operation (with appropriate zero-padding when h1 ̸= h2).
Due to the element-wise product operation, we conjecture
that in general it is not possible to permute the rows of Gk

while preserving the output of θi without permuting the rows
Uk in the same way, and so we use ϕM,M ′ with M = Hgate
and M ′ = Hup for our GLU MLP test. Henceforth, we will
shorthand this test as ϕMATCH.

5

Independence Tests for Language Models

As with the constrained setting, we focus much of our ex-
periments on Transformer models, which recall consist of
a series of L Transformer blocks that each contain a GLU
MLP submodel. Adopting the notational conventions of
Section 2.2.2, we can apply our GLU MLP test to the ℓ-th
block by taking M = H

(ℓ)
gate and M ′ = H

(ℓ)
up , where like

before (in the case of ϕH(ℓ)) we obtain the activation inputs
for each block by computing a forward pass through the full
model over a set of length s sequences of input tokens.

We can aggregate the results of these tests over blocks using
FISHER, like we do for ϕU(ℓ) and ϕH(ℓ) in the constrained
setting. Alternatively, we can apply the test to all possible
O(L2) pairs of blocks between two Transformer models if
we suspect that certain blocks from one model served as
the initializations for different blocks in the other model.
Specifically, we can test the i-th block of θ1 and the j-th
block of θ2 using

ϕ
(i,j)
MATCH := SPEARMAN(MATCH(H

(i)
gate(θ1), H

(j)
gate(θ2)),

MATCH(H(i)
up (θ1), H

(j)
up (θ2))).

This test is relevant for pruned models, where only select
blocks (layers) of θ2 may be used to initialize the smaller
θ1; or, if an adversary takes only certain layers, or even only
certain activations, of a pre-trained model and injects other
layers.

2.3.2. BEYOND GLU MODELS

Thus far we have focused on models f : X × Θ → Y
containing a GLU MLP submodel. In particular, recalling
Definition 1, we have assumed for some projmlp : Θ→ Θh

mlp
that

f(x; θ) = fout(fmlp(fin(x); projmlp(θ))). (4)

Now, our goal is to test more general types of models. In
particular, we generalize to an arbitrary alternative submodel
falt : Rd ×Θalt → Rd with projalt : Θ→ Θalt such that

f(x; θ) = fout(falt(fin(x); projalt(θ))). (5)

In order to test whether two models θ1, θ2 ∈ Θ of the more
general form in equation (5) are independent, we will first
construct proxy models of the form in equation (4) and
then apply our previous test ϕMATCH to these proxy models.
We construct these proxy models by leveraging the fact
that falt shares the same input and output space with fmlp.
Specifically, for k ∈ {1, 2} we first learn parameters θ̂k ∈
Θh

mlp so that fmlp(· ; θ̂k) approximates falt(· ; projalt(θk)).

We then return ϕMATCH(θ̂1, θ̂2). We capture this two-stage
process in Algorithm 5.

Perhaps surprisingly, we show that Algorithm 5 is effective
in practice at distinguishing independent versus non indepen-
dent models. The hidden dimension h and input distribution

Algorithm 5: Generalized robust test
Input: Model parameters θ1, θ2 ∈ Θ
Parameters :distribution P over Rd

Output: p̂ ∈ [0, 1]
1 for k ∈ {1, 2} do
2 θ̂i ←

argminθ̂ Ex∼P

[∥∥∥falt(x; projalt(θk))− fmlp(x; θ̂k)
∥∥∥2]

3 return p̂← ϕMATCH(θ̂1, θ̂2)

P with which we learn the GLU MLP are hyperparameters
of the test. See Section 3.2 for details.

3. Experimental Results
3.1. Constrained setting

We first validate validate the effectiveness of our tests in
the constrained setting on open-weight language models
— 21 models trained with the Llama-7B architecture with
public documentation on ground truth model independence.
These models all contain L = 32 GLU MLPs, each part of
its own Transformer block. We run experiments with three
different tests. Each test comprises two elements: a test
statistic along with a method for computing p-values from
the statistic. For the first test, we use ϕℓ2 and compute p-
values via PERMTEST with T = 100. For the other two tests,
we compute p-values by directly aggregating the outputs of
(respectively) ϕU(ℓ) and ϕH(ℓ) over ℓ ∈ [L] using FISHER.
We obtain the inputs to the GLU MLP in the ℓ-th required to
compute ϕH(ℓ) by sampling sequences of tokens uniformly
at random from the models’ vocabulary and computing a
forward pass through the full model while storing the MLP
hidden layer activations. The equivariant transformation
class Π is the set of permutations over both the hidden units
of each MLP (see Example 2) and the embedding dimension
of the model (i.e., the inputs passed to the both the MLP
and self-attention layers in each block); we defer the precise
definition of Π in this case to Appendix D.

3.1.1. BASELINE STATISTICS

We employ two test statistics from prior work as baselines:
Jensen-Shannon divergence between next token output dis-
tributions (ϕJSD, (Lin, 2006)), and ϕℓ2 (Xu et al., 2024))
with PERMTEST (details in Section 3.2.2). We computed
ϕJSD using input sequences sampled from WikiText-103
(Merity et al., 2017; Xu et al., 2024) (consistent with prior
work). Since the Jensen-Shannon divergence is (by defini-
tion) invariant to any transformation of weights that does
not affect model output, we cannot compute meaningful
p-values using PERMTEST; instead, in our experiments we
report the raw value of the test statistic itself.

6

Independence Tests for Language Models

3.1.2. LLAMA FAMILY EXPERIMENTAL RESULTS

The 21 models we evaluated include 6 base models (trained
from scratch), so we have six disjoint sets of the models
based on Llama-2-7b-hf stemming from a diverse mix
of industry labs and non-profits (Azerbayev et al., 2024;
Sudalairaj et al., 2024; Liu et al., 2024; Li et al., 2023). We
consider any pair of models in the same tree as dependent
and all other pairs as independent. We include examples
of further fine-tunes (e.g., llemma 7b) of fine-tunes (e.g.,
CodeLlama-7b-hf) among the models we test. We will
mostly refer to models using by their Huggingface identi-
fiers, without the organization names for clarity.

We evaluated four test statistics: ϕU(ℓ) (cosine similarity
of weights), ϕH(ℓ) (cosine similarity of hidden activations),
ϕℓ2 (ℓ2 distance), and ϕJSD (Jensen-Shannon Divergence).
As we describe in Section 2.2.2, for ϕU(ℓ) and ϕH(ℓ) we
report aggregated p-values over all blocks using FISHER.
We report results for a subset of these pairs involving base
model Llama-2-7b-hf in Table 1 while deferring the
rest and the full experimental setup details to Appendix E.

θ1 = Llama-2-7b-hf, p-values
θ2 =? Indep.? ϕJSD (log) ϕℓ2

ϕ
U(ℓ) ϕ

H(ℓ)

llama-7b-hf ✓ -11.10 0.98 0.60 0.25
vicuna-7b-v1.1 ✓ -10.40 0.63 0.16 0.64

Amber ✓ -10.69 0.75 0.36 0.88
open-llama-7b ✓ -8.38 0.26 0.36 0.71
vicuna-7b-v1.5 ✗ -10.87 0.01 ε ε
CodeLlama-7b-hf ✗ -10.62 0.01 ε ε

llemma-7b ✗ -10.24 0.01 ε ε
Orca-2-7b ✗ -10.34 0.01 ε ε

Table 1. We report various constrained setting test statistics with
θ1 as Llama-2-7b-hf and θ2 ranging over the listed models.
The “independent” column is the ground truth. Here, ε = 2.2e-308
(numerical underflow for a 64-bit float). We find our proposed tests
ϕU(ℓ) and ϕH(ℓ) distinguish independent versus non-independent
model pairs with high statistical power.

Consistent with prior work (Xu et al., 2024), we find that
ϕJSD does not reliably distinguish independent versus depen-
dent model pairs. For example, CodeLlama-7b-hf ex-
hibits a larger divergence with Llama-2-7b-hf than the
independently-trained models llama-7b-hf and Amber.

All other test statistics reliably distinguish independent ver-
sus dependent pairs; in particular, the p-values we obtain
using the other test statistics are negligible for all depen-
dent pairs (for ϕℓ2 , because we run PERMTEST with T = 99
for computational reasons, we cannot obtain a p-value less
than 0.01.Notably, in contrast to our findings, prior work
(Xu et al., 2024) argued that the ℓ2 distance between model
parameters is not a reliable indicator of independence, in
the sense that the ℓ2 distance between dependent pairs is
sometimes larger than that of independent pairs (similar to
the case of ϕJSD); the key difference is that Xu et al. (2024)
report the raw ℓ2 distance whereas we obtain p-values from
the raw distances using PERMTEST. We hypothesize that

PERMTEST effectively standardizes the raw distances. We
further evaluated the efficacy of our tests through ablations
by training two models with the same OLMo-7B architec-
ture on the same dataset that only differ on the choice of
random initialization of randomness, and report results in
Appendix E.1. We also verify that Miqu-70B is not indepen-
dent from Llama 2-70B (Mensch, 2024) and report further
details in Appendix E.2.

3.2. Unconstrained setting

For the unconstrained setting, we first assess the previous 21
models of the Llama-7B architecture. We compute ϕMATCH
with the gate and up-projection matrices M = Hℓ

gate and
M ′ = Hℓ

up of each MLP in block ℓ ∈ [L], and aggregate
them with FISHER. We obtain the activations in the MLPs
by using input sequences sampled from WikiText-103 and
computing a forward pass through the full model, with re-
sults on all model pairs in Appendix F.

We find that the distribution of ϕMATCH on independent
model pairs is close to uniform (Figure 2), whereas across
all non-independent model pairs the statistic is at most ε.
Unlike the constrained setting, where the p-values are valid
by construction, the output of the robust test does not enjoy
such theoretical guarantees; however, Figure 2 suggests
that even in the unconstrained setting our statistic ϕMATCH
behaves like a p-value.

(a) Plot of x ∈ [0, 1) vs. the
fraction of ϕ

(i)
MATCH (across all

MLP blocks) of independent
model pairs less than x.

(b) Plot of x ∈ [0, 1) vs. the
fraction of ϕMATCH (ϕ(i)

MATCH ag-
gregated with FISHER) of inde-
pendent model pairs less than x.

Figure 2. We plot the fraction of ϕMATCH less than x ∈ [0, 1),
aggregated with FISHER for independent model pairs. Both plots
roughly follow the line y = x, i.e. a uniform distribution in [0, 1)
under the null, meaning ϕMATCH empirically acts as a p-value.

We also validated our tests on the Mistral
architecture—we compared the weights of the hy-
brid StripedHyena-Nous-7B (Poli et al., 2023) with
Mistral-7B-v0.1 and find non-independent parame-
ters via ϕU(ℓ) . We compute ϕU(ℓ) on all parameters, which
allows us to identify non-independence between specific
parameters of the models — such as the self-attention
matrices — rather than as models as a whole, and report
values of ϕU(ℓ) among certain parameters in Table 6 in

7

Independence Tests for Language Models

Appendix F.1. From the small p-values, we infer that the
embedding layer and some self-attention matrices were
likely shared between the two models.

3.2.1. SIMULATING STRONG-ISH ADVERSARIES

A significant difficulty in evaluating the robustness of our
test ϕMATCH to adversarial transformations is that we cannot
exhaustively enumerate all such transformations. Recalling
that ϕMATCH specifically considers the MLP layers contained
within two models, we attempt to fool it by randomly reini-
tializing and retraining these MLP layers individually, thus
simulating a somewhat strong adversary.

We reinitialize the first GLU MLP module of a model θ1
with an MLP with double the width, and using Algorithm
5 (generalized robust test), we train θ̂1 with random Gaus-
sians as the training distribution P . We retrain each of the 32
MLPs (keeping other layers fixed) of vicuna-7b-v1.5
(a finetune of Llama-2-7b-hf) for 10k gradient steps
(until the loss curve plateus). (Additional hyperparameters
and a learning curve are in Appendix F.2.) For all 32 runs,
we compute ϕMATCH for the retrained model with the origi-
nal Llama-2-7b-hf and find ϕMATCH remains very small
between the non-independent models even after an MLP
has been retrained. For example, retraining the first MLP
module, ϕ(1)

MATCH on the first MLP was less than ε = 2.2e-
308, indicating that the two models are not independent.
We find the same is true for the other MLP layers as well
(i.e. ϕ(ℓ)

MATCH when evaluated on retrained layer ℓ), with full
results in Table 7 of Appendix F.2.

3.2.2. GENERALIZING TO DIFFERENT ARCHITECTURES

As we describe in Section 2.3.2, we can also apply our test
to model architectures which do not contain GLU MLP
submodels. For example, the GPT-2 architecture uses a
standard 2-layer MLP rather than a GLU MLP. We apply
our test (Algorithm 5) to GPT2 PMC and gpt2, where the
former is a finetune of the latter (Radford et al., 2019).
We use 30k training steps with an isotropic Gaussian input
distribution to learn the GLU MLP parameters with which
we replace the original MLP submodels in each model. The
test yields a value of 3.034e-61, thus distinguishing the
two models as dependent. We show additional results on
independent and non-independent models (of Llama and
GPT architectures) in Appendix F.4.

3.3. Fine-grained forensics and Localized testing

Finally, we use ϕMATCH on models pairs with different di-
mensions, specifically on pruned model pairs, when model
dimensions are reduced by preserving only select weights.

In particular, we were able to identify the specific
Transformer blocks of Llama-3.1-8B whose weights

were likely used in initializing Llama-3.2-3B and
Llama-3.2-1B, as Meta reported that the first two mod-
els were pruned from the third (MetaAI, 2024). We match
ϕ
(i,j)
MATCH with block i from θ1 and j from θ2, such that

ϕ
(i,j)
MATCH is less than 1e-4. We report the matched layers

between the Llama-3.1 and Llama-3.2 models in Fig-
ure 3 and in Appendix F.3.

Figure 3. We evaluate ϕ
(i,j)
MATCH between all pairs of GLU MLPs of

Llama 3.1-8B and Llama 3.2-3B. Arrows indicate if ϕ(i,j)
MATCH <

1e-4 and suggest which Transformer blocks of Llama 3.1-8B were
kept in the pruning process to initialize Llama 3.2-3B.

We also identify which hidden units were most likely
shared between the blocks when MLP dimension is re-
duced (from 14336 to 8192) during pruning, from the
permutation π returned from the up projection matching,
MATCH(H

(ℓ)
θ1,up, H

(ℓ)
θ2,up).We plot the activation matching for

Llama-3.1-8B and Llama-3.2-3B in Appendix F.3.

4. Related & Future Work
A related line of work known as model fingerprinting (Xu
et al., 2024; Zhang et al., 2025; Jin et al., 2024; Yang & Wu,
2024) plants a secret signal in the weights of a model so that
anyone who knows the key can detect the fingerprint from
query access to the model (or fine-tunes of the model). For
example, Xu et al. (2024) propose fingerprinting a model by
fine-tuning on a secret random string; fingerprint detection
then resolves to prompting a putative fingerprinted model
with a prefix of the string. Unlike Xu et al. (2024), we do
not intervene on the training process of the models we test;
however, we do require access to model weights.

Finally, a separate line of work on text watermarking aims
to attribute model-generated text by planting a watermark
when sampling text from the model (Christ et al., 2024;
Kirchenbauer et al., 2023; Kuditipudi et al., 2024; Aaronson
& Kirchner, 2023). Because it intervenes on sampling, text
watermarking is inapplicable to open-weight models, the
focus of both model fingerprinting and our setting. Recent
work demonstrates that models can directly learn to generate
watermarked text but also finds the learned watermark is not
robust to further fine-tuning (Gu et al., 2024).

Future work can consider differentiating between fine-tunes
of the same base model to reconstruct a complete “family
tree” of model lineage is possible (e.g. infer Llemma is
a direct fine-tune of CodeLlama) (Yax et al., 2025), and
whether robustness against adversarial attacks is solvable
with exact guarantees warrants further exploration.

8

Independence Tests for Language Models

Acknowledgments
We gratefully acknowledge the support of this work by
an NSF Frontier Award (NSF Grant no. 1805310) and
Omidyar. Sally Zhu was supported by a Stanford CURIS
Fellowship. Ahmed Ahmed is grateful to be supported by an
NSF Graduate Research Fellowship and a Knight-Hennessy
Fellowship.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, some of which we discuss in the
introduction and none which we feel must be specifically
highlighted here.

References
Aaronson, S. and Kirchner, H. Watermarking GPT Outputs,

2023.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S. M., Jiang, A. Q., Deng, J., Biderman, S.,
and Welleck, S. Llemma: An Open Language Model for
Mathematics. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=4WnqRR915j.

Christ, M., Gunn, S., and Zamir, O. Undetectable Water-
marks for Language Models. In Agrawal, S. and Roth,
A. (eds.), Proceedings of Thirty Seventh Conference on
Learning Theory, volume 247 of Proceedings of Ma-
chine Learning Research, pp. 1125–1139. PMLR, 30 Jun–
03 Jul 2024. URL https://proceedings.mlr.
press/v247/christ24a.html.

DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B.,
Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D.,
Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai,
F., Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao,
H., Xu, H., Wang, H., Zhang, H., Ding, H., Xin, H., Gao,
H., Li, H., Qu, H., Cai, J. L., Liang, J., Guo, J., Ni, J., Li,
J., Wang, J., Chen, J., Chen, J., Yuan, J., Qiu, J., Li, J.,
Song, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang,
K., Yu, K., Wang, L., Zhang, L., Xu, L., Xia, L., Zhao,
L., Wang, L., Zhang, L., Li, M., Wang, M., Zhang, M.,
Zhang, M., Tang, M., Li, M., Tian, N., Huang, P., Wang,
P., Zhang, P., Wang, Q., Zhu, Q., Chen, Q., Du, Q., Chen,
R. J., Jin, R. L., Ge, R., Zhang, R., Pan, R., Wang, R.,
Xu, R., Zhang, R., Chen, R., Li, S. S., Lu, S., Zhou, S.,
Chen, S., Wu, S., Ye, S., Ye, S., Ma, S., Wang, S., Zhou,
S., Yu, S., Zhou, S., Pan, S., Wang, T., Yun, T., Pei, T.,
Sun, T., Xiao, W. L., Zeng, W., Zhao, W., An, W., Liu,
W., Liang, W., Gao, W., Yu, W., Zhang, W., Li, X. Q.,
Jin, X., Wang, X., Bi, X., Liu, X., Wang, X., Shen, X.,

Chen, X., Zhang, X., Chen, X., Nie, X., Sun, X., Wang,
X., Cheng, X., Liu, X., Xie, X., Liu, X., Yu, X., Song,
X., Shan, X., Zhou, X., Yang, X., Li, X., Su, X., Lin, X.,
Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang,
Y., Xu, Y., Xu, Y., Huang, Y., Li, Y., Zhao, Y., Sun, Y.,
Li, Y., Wang, Y., Yu, Y., Zheng, Y., Zhang, Y., Shi, Y.,
Xiong, Y., He, Y., Tang, Y., Piao, Y., Wang, Y., Tan, Y.,
Ma, Y., Liu, Y., Guo, Y., Wu, Y., Ou, Y., Zhu, Y., Wang,
Y., Gong, Y., Zou, Y., He, Y., Zha, Y., Xiong, Y., Ma, Y.,
Yan, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Wu, Z. F.,
Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z., Huang, Z.,
Zhang, Z., Xie, Z., Zhang, Z., Hao, Z., Gou, Z., Ma, Z.,
Yan, Z., Shao, Z., Xu, Z., Wu, Z., Zhang, Z., Li, Z., Gu,
Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Gao, Z.,
and Pan, Z. DeepSeek-V3 Technical Report, 2024. URL
https://arxiv.org/abs/2412.19437.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Roziere, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak,
C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret,
C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Al-
lonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D.,
Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino,
D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F.,
Synnaeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon,
G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H.,
Xu, H., Touvron, H., Zarov, I., Ibarra, I. A., Kloumann,
I., Misra, I., Evtimov, I., Copet, J., Lee, J., Geffert, J.,
Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der
Linde, J., Billock, J., Hong, J., Lee, J., Fu, J., Chi, J.,
Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak,
J., Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Al-
wala, K. V., Upasani, K., Plawiak, K., Li, K., Heafield,
K., Stone, K., El-Arini, K., Iyer, K., Malik, K., Chiu, K.,
Bhalla, K., Rantala-Yeary, L., van der Maaten, L., Chen,
L., Tan, L., Jenkins, L., Martin, L., Madaan, L., Malo, L.,
Blecher, L., Landzaat, L., de Oliveira, L., Muzzi, M., Pa-
supuleti, M., Singh, M., Paluri, M., Kardas, M., Oldham,
M., Rita, M., Pavlova, M., Kambadur, M., Lewis, M.,
Si, M., Singh, M. K., Hassan, M., Goyal, N., Torabi, N.,
Bashlykov, N., Bogoychev, N., Chatterji, N., Duchenne,
O., Çelebi, O., Alrassy, P., Zhang, P., Li, P., Vasic, P.,
Weng, P., Bhargava, P., Dubal, P., Krishnan, P., Koura,
P. S., Xu, P., He, Q., Dong, Q., Srinivasan, R., Ganapa-
thy, R., Calderer, R., Cabral, R. S., Stojnic, R., Raileanu,
R., Girdhar, R., Patel, R., Sauvestre, R., Polidoro, R.,
Sumbaly, R., Taylor, R., Silva, R., Hou, R., Wang, R.,
Hosseini, S., Chennabasappa, S., Singh, S., Bell, S., Kim,
S. S., Edunov, S., Nie, S., Narang, S., Raparthy, S., Shen,

9

https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://proceedings.mlr.press/v247/christ24a.html
https://proceedings.mlr.press/v247/christ24a.html
https://arxiv.org/abs/2412.19437

Independence Tests for Language Models

S., Wan, S., Bhosale, S., Zhang, S., Vandenhende, S.,
Batra, S., Whitman, S., Sootla, S., Collot, S., Gururangan,
S., Borodinsky, S., Herman, T., Fowler, T., Sheasha, T.,
Georgiou, T., Scialom, T., Speckbacher, T., Mihaylov, T.,
Xiao, T., Karn, U., Goswami, V., Gupta, V., Ramanathan,
V., Kerkez, V., Gonguet, V., Do, V., Vogeti, V., Petrovic,
V., Chu, W., Xiong, W., Fu, W., Meers, W., Martinet, X.,
Wang, X., Tan, X. E., Xie, X., Jia, X., Wang, X., Gold-
schlag, Y., Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang,
Y., Li, Y., Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z.,
Papakipos, Z., Singh, A., Grattafiori, A., Jain, A., Kelsey,
A., Shajnfeld, A., Gangidi, A., Victoria, A., Goldstand,
A., Menon, A., Sharma, A., Boesenberg, A., Vaughan,
A., Baevski, A., Feinstein, A., Kallet, A., Sangani, A.,
Yunus, A., Lupu, A., Alvarado, A., Caples, A., Gu, A.,
Ho, A., Poulton, A., Ryan, A., Ramchandani, A., Franco,
A., Saraf, A., Chowdhury, A., Gabriel, A., Bharambe, A.,
Eisenman, A., Yazdan, A., James, B., Maurer, B., Leon-
hardi, B., Huang, B., Loyd, B., Paola, B. D., Paranjape, B.,
Liu, B., Wu, B., Ni, B., Hancock, B., Wasti, B., Spence,
B., Stojkovic, B., Gamido, B., Montalvo, B., Parker, C.,
Burton, C., Mejia, C., Wang, C., Kim, C., Zhou, C., Hu,
C., Chu, C.-H., Cai, C., Tindal, C., Feichtenhofer, C.,
Civin, D., Beaty, D., Kreymer, D., Li, D., Wyatt, D.,
Adkins, D., Xu, D., Testuggine, D., David, D., Parikh,
D., Liskovich, D., Foss, D., Wang, D., Le, D., Holland,
D., Dowling, E., Jamil, E., Montgomery, E., Presani, E.,
Hahn, E., Wood, E., Brinkman, E., Arcaute, E., Dunbar,
E., Smothers, E., Sun, F., Kreuk, F., Tian, F., Ozgenel, F.,
Caggioni, F., Guzmán, F., Kanayet, F., Seide, F., Florez,
G. M., Schwarz, G., Badeer, G., Swee, G., Halpern, G.,
Thattai, G., Herman, G., Sizov, G., Guangyi, Zhang, Lak-
shminarayanan, G., Shojanazeri, H., Zou, H., Wang, H.,
Zha, H., Habeeb, H., Rudolph, H., Suk, H., Aspegren, H.,
Goldman, H., Molybog, I., Tufanov, I., Veliche, I.-E., Gat,
I., Weissman, J., Geboski, J., Kohli, J., Asher, J., Gaya,
J.-B., Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein,
J., Teboul, J., Zhong, J., Jin, J., Yang, J., Cummings, J.,
Carvill, J., Shepard, J., McPhie, J., Torres, J., Ginsburg,
J., Wang, J., Wu, K., U, K. H., Saxena, K., Prasad, K.,
Khandelwal, K., Zand, K., Matosich, K., Veeraraghavan,
K., Michelena, K., Li, K., Huang, K., Chawla, K., Lakho-
tia, K., Huang, K., Chen, L., Garg, L., A, L., Silva, L.,
Bell, L., Zhang, L., Guo, L., Yu, L., Moshkovich, L.,
Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M., Tsim-
poukelli, M., Mankus, M., Hasson, M., Lennie, M., Reso,
M., Groshev, M., Naumov, M., Lathi, M., Keneally, M.,
Seltzer, M. L., Valko, M., Restrepo, M., Patel, M., Vy-
atskov, M., Samvelyan, M., Clark, M., Macey, M., Wang,
M., Hermoso, M. J., Metanat, M., Rastegari, M., Bansal,
M., Santhanam, N., Parks, N., White, N., Bawa, N., Sing-
hal, N., Egebo, N., Usunier, N., Laptev, N. P., Dong, N.,
Zhang, N., Cheng, N., Chernoguz, O., Hart, O., Salpekar,
O., Kalinli, O., Kent, P., Parekh, P., Saab, P., Balaji, P.,

Rittner, P., Bontrager, P., Roux, P., Dollar, P., Zvyagina,
P., Ratanchandani, P., Yuvraj, P., Liang, Q., Alao, R.,
Rodriguez, R., Ayub, R., Murthy, R., Nayani, R., Mitra,
R., Li, R., Hogan, R., Battey, R., Wang, R., Maheswari,
R., Howes, R., Rinott, R., Bondu, S. J., Datta, S., Chugh,
S., Hunt, S., Dhillon, S., Sidorov, S., Pan, S., Verma,
S., Yamamoto, S., Ramaswamy, S., Lindsay, S., Lindsay,
S., Feng, S., Lin, S., Zha, S. C., Shankar, S., Zhang, S.,
Zhang, S., Wang, S., Agarwal, S., Sajuyigbe, S., Chin-
tala, S., Max, S., Chen, S., Kehoe, S., Satterfield, S.,
Govindaprasad, S., Gupta, S., Cho, S., Virk, S., Subrama-
nian, S., Choudhury, S., Goldman, S., Remez, T., Glaser,
T., Best, T., Kohler, T., Robinson, T., Li, T., Zhang, T.,
Matthews, T., Chou, T., Shaked, T., Vontimitta, V., Ajayi,
V., Montanez, V., Mohan, V., Kumar, V. S., Mangla, V.,
Ionescu, V., Poenaru, V., Mihailescu, V. T., Ivanov, V.,
Li, W., Wang, W., Jiang, W., Bouaziz, W., Constable, W.,
Tang, X., Wang, X., Wu, X., Wang, X., Xia, X., Wu, X.,
Gao, X., Chen, Y., Hu, Y., Jia, Y., Qi, Y., Li, Y., Zhang, Y.,
Zhang, Y., Adi, Y., Nam, Y., Yu, Wang, Hao, Y., Qian, Y.,
He, Y., Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang,
Z., and Zhao, Z. The Llama 3 Herd of Models, 2024.
URL https://arxiv.org/abs/2407.21783.

Groeneveld, D., Beltagy, I., Walsh, E., Bhagia, A., Kin-
ney, R., Tafjord, O., Jha, A., Ivison, H., Magnusson, I.,
Wang, Y., Arora, S., Atkinson, D., Authur, R., Chandu,
K., Cohan, A., Dumas, J., Elazar, Y., Gu, Y., Hessel,
J., Khot, T., Merrill, W., Morrison, J., Muennighoff, N.,
Naik, A., Nam, C., Peters, M., Pyatkin, V., Ravichan-
der, A., Schwenk, D., Shah, S., Smith, W., Strubell, E.,
Subramani, N., Wortsman, M., Dasigi, P., Lambert, N.,
Richardson, K., Zettlemoyer, L., Dodge, J., Lo, K., Sol-
daini, L., Smith, N., and Hajishirzi, H. OLMo: Acceler-
ating the science of language models. In Ku, L.-W., Mar-
tins, A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15789–15809,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. doi: 10.18653/v1/2024.acl-long.
841. URL https://aclanthology.org/2024.
acl-long.841/.

Gu, C., Li, X. L., Liang, P., and Hashimoto, T. On the
Learnability of Watermarks for Language Models. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=9k0krNzvlV.

Jin, H., Zhang, C., Shi, S., Lou, W., and Hou, Y. T.
ProFLingo: A Fingerprinting-based Intellectual Property
Protection Scheme for Large Language Models. In 2024
IEEE Conference on Communications and Network Secu-
rity (CNS), pp. 1–9, 2024. doi: 10.1109/CNS62487.2024.
10735575.

10

https://arxiv.org/abs/2407.21783
https://aclanthology.org/2024.acl-long.841/
https://aclanthology.org/2024.acl-long.841/
https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=9k0krNzvlV

Independence Tests for Language Models

Kapoor, S., Bommasani, R., Klyman, K., Longpre, S., Ra-
maswami, A., Cihon, P., Hopkins, A., Bankston, K., Bi-
derman, S., Bogen, M., Chowdhury, R., Engler, A., Hen-
derson, P., Jernite, Y., Lazar, S., Maffulli, S., Nelson, A.,
Pineau, J., Skowron, A., Song, D., Storchan, V., Zhang,
D., Ho, D. E., Liang, P., and Narayanan, A. Position: On
the Societal Impact of Open Foundation Models. In Pro-
ceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2025.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I.,
and Goldstein, T. A Watermark for Large Language
Models. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 17061–17084. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/kirchenbauer23a.html.

Kuditipudi, R., Thickstun, J., Hashimoto, T., and Liang, P.
Robust Distortion-free Watermarks for Language Mod-
els. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.
net/forum?id=FpaCL1MO2C.

Li, G., Hammoud, H., Itani, H., Khizbullin, D., and
Ghanem, B. CAMEL: Communicative Agents
for ”Mind” Exploration of Large Language Model
Society. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Ad-
vances in Neural Information Processing Systems,
volume 36, pp. 51991–52008. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/
a3621ee907def47c1b952ade25c67698-Paper-Conference.
pdf.

Lin, J. Divergence measures based on the Shannon entropy.
IEEE Trans. Inf. Theor., 37(1):145–151, September 2006.
ISSN 0018-9448. doi: 10.1109/18.61115. URL https:
//doi.org/10.1109/18.61115.

Liu, Z., Qiao, A., Neiswanger, W., Wang, H., Tan, B., Tao,
T., Li, J., Wang, Y., Sun, S., Pangarkar, O., Fan, R., Gu, Y.,
Miller, V., Zhuang, Y., He, G., Li, H., Koto, F., Tang, L.,
Ranjan, N., Shen, Z., Iriondo, R., Mu, C., Hu, Z., Schulze,
M., Nakov, P., Baldwin, T., and Xing, E. P. LLM360:
Towards Fully Transparent Open-Source LLMs. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=QdWhj0QZFw.

Mensch, A. Mistral CEO confirms Miqu model leak, August
2024. URL https://x.com/arthurmensch/
status/1752737462663684344. Accessed: 2024-
08-15.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
Sentinel Mixture Models. In International Conference
on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

MetaAI. Llama 3.2: Revolutionizing edge AI and vision
with open, customizable models, 2024. URL https:
//ai.meta.com/blog.

Mosteller, F. and Fisher, R. A. Questions and An-
swers. The American Statistician, 2(5):30–31, 1948.
ISSN 00031305. URL http://www.jstor.org/
stable/2681650.

Peng, S., Chen, Y., Xu, J., et al. Intellectual
Property Protection of DNN Models. World Wide
Web, 26:1877–1911, July 2023. doi: 10.1007/
s11280-022-01113-3. URL https://doi.org/10.
1007/s11280-022-01113-3.

Poli, M., Wang, J., Massaroli, S., Quesnelle, J., Carlow,
R., Nguyen, E., and Thomas, A. StripedHyena: Mov-
ing Beyond Transformers with Hybrid Signal Process-
ing Models, 12 2023. URL https://github.com/
togethercomputer/stripedhyena.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language Models are Unsupervised Multi-
task Learners. 2019. URL https://cdn.openai.
com/better-language-models/language_
models_are_unsupervised_multitask_
learners.pdf.

Ramshaw, L. and Tarjan, R. E. On Minimum-
Cost Assignments in Unbalanced Bipartite Graphs.
2012. URL https://api.semanticscholar.
org/CorpusID:6964149.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkin-
son, D., Authur, R., Bogin, B., Chandu, K., Dumas, J.,
Elazar, Y., Hofmann, V., Jha, A., Kumar, S., Lucy, L.,
Lyu, X., Lambert, N., Magnusson, I., Morrison, J., Muen-
nighoff, N., Naik, A., Nam, C., Peters, M., Ravichan-
der, A., Richardson, K., Shen, Z., Strubell, E., Sub-
ramani, N., Tafjord, O., Walsh, E., Zettlemoyer, L.,
Smith, N., Hajishirzi, H., Beltagy, I., Groeneveld, D.,
Dodge, J., and Lo, K. Dolma: an Open Corpus of
Three Trillion Tokens for Language Model Pretraining
Research. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 15725–15788, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.840. URL https:
//aclanthology.org/2024.acl-long.840/.

11

https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://openreview.net/forum?id=QdWhj0QZFw
https://openreview.net/forum?id=QdWhj0QZFw
https://x.com/arthurmensch/status/1752737462663684344
https://x.com/arthurmensch/status/1752737462663684344
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://ai.meta.com/blog
https://ai.meta.com/blog
http://www.jstor.org/stable/2681650
http://www.jstor.org/stable/2681650
https://doi.org/10.1007/s11280-022-01113-3
https://doi.org/10.1007/s11280-022-01113-3
https://github.com/togethercomputer/stripedhyena
https://github.com/togethercomputer/stripedhyena
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://api.semanticscholar.org/CorpusID:6964149
https://api.semanticscholar.org/CorpusID:6964149
https://aclanthology.org/2024.acl-long.840/
https://aclanthology.org/2024.acl-long.840/

Independence Tests for Language Models

Sudalairaj, S., Bhandwaldar, A., Pareja, A., Xu, K., Cox,
D. D., and Srivastava, A. LAB: Large-Scale Alignment
for ChatBots, 2024. URL https://arxiv.org/
abs/2403.01081.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open Foundation and Fine-
Tuned Chat Models, 2023. URL https://arxiv.
org/abs/2307.09288.

Xu, J., Wang, F., Ma, M., Koh, P. W., Xiao, C., and
Chen, M. Instructional Fingerprinting of Large Lan-
guage Models. In Duh, K., Gomez, H., and Bethard,
S. (eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 3277–3306, Mexico
City, Mexico, June 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.naacl-long.
180. URL https://aclanthology.org/2024.
naacl-long.180/.

Yang, Z. and Wu, H. A Fingerprint for Large Language Mod-
els, 2024. URL https://arxiv.org/abs/2407.
01235.

Yax, N., Oudeyer, P.-Y., and Palminteri, S. PhyloLM: Infer-
ring the Phylogeny of Large Language Models and Pre-
dicting their Performances in Benchmarks. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
forum?id=rTQNGQxm4K.

Zeng, B., Wang, L., Hu, Y., Xu, Y., Zhou, C., Wang, X., Yu,
Y., and Lin, Z. HuRef: HUman-REadable Fingerprint for
Large Language Models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=RlZgnEZsOH.

Zhang, J., Liu, D., Qian, C., Zhang, L., Liu, Y., Qiao, Y.,
and Shao, J. REEF: Representation Encoding Finger-
prints for Large Language Models. In The Thirteenth

International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=SnDmPkOJ0T.

12

https://arxiv.org/abs/2403.01081
https://arxiv.org/abs/2403.01081
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://aclanthology.org/2024.naacl-long.180/
https://aclanthology.org/2024.naacl-long.180/
https://arxiv.org/abs/2407.01235
https://arxiv.org/abs/2407.01235
https://openreview.net/forum?id=rTQNGQxm4K
https://openreview.net/forum?id=rTQNGQxm4K
https://openreview.net/forum?id=RlZgnEZsOH
https://openreview.net/forum?id=RlZgnEZsOH
https://openreview.net/forum?id=SnDmPkOJ0T
https://openreview.net/forum?id=SnDmPkOJ0T

Independence Tests for Language Models

A. Proofs of Main Theorems
Proof of Theorem 1. From our assumptions on A and P and the fact that {πt}Tt=1 are independently drawn, it follows
that the collection {πt(θ1)}Tt=1 comprises T exchangeable copies of θ1. The independence of θ1 and θ2 thus implies
{(πt(θ1), θ2)}Tt=1 comprises T exchangeable copies of (θ1, θ2), and so the claim follows by symmetry — ϕ(θ1, θ2) is
identically distributed as {ϕ(πt(θ1), θ2)}Tt=1, so ϕ(θ1, θ2) will have uniform rank among the other values. Ties (ϕt =
ϕ(θ1, θ2)) randomly contribute to p̂, so symmetry still holds and the p-values will be uniformly distributed under the
null.

Proof of Theorem 2. As M is a Π-equivariant map, if θ1 ⊥ θ2 then letting π = LAP(C) in MATCH is equivalent in distribution
to sampling π ∼ Unif(Π). Then the output of MATCH is identical in distribution for any pair of independent models, and can
be converted to a p-value using SPEARMAN and the distribution for the Spearman correlation coefficient (t-distribution with
h− 2 degrees of freedom).

Proof of Theorem 3. Let θ′1 ∼ A(π
(i)
1 ◦π

(j)
2 (θ01)) for π1, π2

i.i.d.∼ Unif(Π). Then θ′1 is an independent copy of θ1 since taking
the composition π

(i)
1 ◦π

(j)
2 (θ1) yields an independent copy of θ1 for any π1, π2 ∈ Π. From θ1 ⊥ θ2, it follows for ℓ ∈ {i, j}

that MATCH(M (ℓ)(θ′1),M
(ℓ)(θ2)) is identically distributed to MATCH(M (ℓ)(θ1),M

(ℓ)(θ2)). The result then follows from
the fact MATCH is equivariant with respect to permuting the rows of its arguments: in particular, for any π ∈ Π we have
MATCH(πW1,W2) = πMATCH(W1,W2).

B. Randomized Learning Algorithms
One notable (non-contrived) category of deep learning algorithms that are not permutation equivariant are those with random dropout
masks to hidden units during training. In particular, once we fix a specific setting of mask values to specify a deterministic learning
algorithm, this algorithm will not be permutation equivariant unless the individual dropout masks are all permutation invariant (which is
highly unlikely). We provide a generalized statement of Theorem 1 for randomized algorithms.
Definition 5. Let Π ⊂ Θ → Θ. Let π ∈ Π and θ0 ∈ Θ, with θ̄ ∼ A(θ0), θ = π(θ̄) and θ′ ∼ A(π(θ0)). A randomized learning

algorithm A : Θ → P(Θ) is Π-equivariant if and only if θ d
= θ′.

Theorem 4. Let ϕ : Θ×Θ → R be a test statistic and Π ⊂ Θ → Θ be finite. Let A : Θ → P(Θ) be Π-equivariant and let P ∈ P(Θ)
be Π-invariant. Let θ1, θ2 ∈ Θ be independent random variables, with θ1 ∼ A(θ01) for θ01 ∼ P1. Then p̂ = PERMTEST(θ1, θ2) is
uniformly distributed on { i

T+1
}Ti=1.

Proof. The proof is identical to that of Theorem 1.

C. Transformer Architecture and Notation
We consider models with the Llama Transformers architecture and define the notation henceforth, although this can easily be extended to
other Transformer architectures.

Following the definition of fmlp in Example 1, we can define an abstraction of the full Llama language model architecture consisting
of L Transformer blocks sandwiched between an input and output layer. For the sequel, we will abuse notation in applying fmlp to
multi-dimensional tensors by broadcasting along the last axis. We use d, n ∈ N to respectively denote the model dimension and sequence
length, where ΘLM = Θin ×Θ×L

block ×Θout with Θblock denoting the parameter space of each Transformer block and Θin,Θout denoting the
parameter spaces the input and output layers. We decompose Θblock = Θattn ×Θmlp and use frest : Θattn × Rn×d → Rn×d to denote all
remaining parts of the Transformer besides the MLP. The inputs to frest are the input and output of the MLP, and the output of frest is fed
directly to the MLP of the next layer. In particular, frest takes the input and output to the MLP of layer i, and first performs the residual
connection following the MLP of layer i, then the self-attention and normalization components of layer i+ 1, and returns the input to the
MLP of layer i+ 1. We use fin : Θin ×X → Rn×d and fout : Θ

(L)
block × Rn×d → Y to respectively denote the input and output layers, i.e.

the elements before the first MLP and after the last MLP. Putting everything together gives the following definition of the model; we
introduce the notation X

(i)
θ in the definition as a matter of convenience to track intermediate activations.

Definition 6. (GLU Transformer model) Let θ = (θin, {θ(i)block}
L
i=1, θout) ∈ ΘLM and X ∈ X , with θ

(i)
block = (θ

(i)
attn, θ

(i)
mlp). Then

fLM(X; θ) = fout(X
(L)
θ ; θout) for X(0)

θ = fin(X; θin) and

X
(i)
θ = frest(X

(i−1)
θ , fmlp(X

(i−1)
θ)). (6)

For a Llama model, table 2 describes the shapes of the model weight matrices for i = 1, . . . , L, for V (vocab size), demb (the
hidden dimension), and dmlp (MLP hidden dimension). Following Definition 6, we have θin = (E), θ

(i)
block = (θ

(i)
attn, θ

(i)
mlp) where

13

Independence Tests for Language Models

Parameter name Notation
embedding E ∈ RV×demb

input layernorm γinput,i ∈ R1×demb

attention query matrix WQ,i ∈ Rdemb×demb

attention key matrix WK,i ∈ Rdemb×demb

attention value matrix WV,i ∈ Rdemb×demb

attention output matrix WO,i ∈ Rdemb×demb

post-attention layernorm γpost-attn, i ∈ R1×demb

MLP gate projection Gi ∈ Rdmlp×demb

MLP up projection Ui ∈ Rdmlp×demb

MLP down projection Di ∈ Rdemb×dmlp

final layernorm γfinal ∈ R1×demb

linear output O ∈ Rdemb×V

Table 2. Llama model architecture and dimensions.

θ
(i)
attn = (γinput,i,WQ,i,WK,i,WV,i,WO,i, γ

(i)
post-attn), θ

(i)
mlp = (Gi, Ui, Di), and θout = (γfinal, L). We now describe a forward pass of the

model.

We define the softmax function on a vector v = (v1, . . . , vn), softmax(v), as

softmax(v)i =
evi∑n

k=1 e
vk

.

On batched input X ∈ RN×n×m where each X(b) = [w1| . . . |wm] ∈ Rn×m with column vectors wi, we define the softmax as

softmax(X(b)) = [softmax(w1)| . . . |softmax(wm)],

softmax(X) = [softmax(X(1))| . . . |softmax(X(N))].

For a forward pass of the model fLM(X; θ), consider an input sequence of tokens X ∈ {0, 1}N×V as one-hot vectors where n is sequence
length. Then

We feed the input through:

1. (fin) Embedding layer:
X

(0)
θ = fin(X; θin) = XE ∈ RN×demb

2. (fattn, fmlp, fpost) For each Transformer block i = 0, 1, . . . , L, through fattn, fmlp, and fpost:

(a) Input layernorm:

X
(i)
LN1

=
X

(i)
θ√

Var(X(i)
θ) + ε

⊙ γinput,i

(with variance over the last axis) for some offset ε (typically 1e-6).

(b) Causal multi-head self-attention: Split X(i)
LN1

on the first axis into nheads X(i)
LN1,j

, . . . , X
(i)
LN1,nheads. On each head X

(i)
LN1,j

,

X
(i)
SA,j = self-attn(X(i)

LN1,j
) = softmax

(
X

(i)
LN1,j

WT
Q,i(X

(i)
LN1,j

WT
K,i)

T

√
demb

)
X

(i)
LN1,j

WT
V,iW

T
O,i

and concatenate X
(i)
SA,j along the first axis again as X(i)

SA .

(c) Dropout and residual connection: X(i)
DR1

= X
(i)
LN1

+ Dropout(X(i)
SA)

(d) Post-attention layernorm:

X
(i)
LN2

=
X

(i)
DR1√

Var(X(i)
DR1

) + ε
⊙ γpost-attn,i

(with variance over the last axis) for some offset ε. Then we have

fattn(X
(i−1)
θ ; θ

(i)
attn) = X

(i)
LN2

.

14

Independence Tests for Language Models

Parameter name θ πemb(θ) πmlp(θ)
embedding E Eπemb E

input layernorm γinput,i γinput,iπemb γinput,i
attention query matrix WQ,i WQ,iπemb WQ,i

attention key matrix WK,i WK,iπemb WK,i

attention value matrix WV,i WV,iπemb WV,i

attention output matrix WO,i πT
embWO,i WO,i

post-attention layernorm γpost-attn, i γpost-attn, iπemb γpost-attn, i

MLP gate projection Gi Giπemb πmlp,iGi

MLP up projection Ui Uiπemb πmlp,iUi

MLP down projection Di πT
embDi Diπ

T
mlp,i

final layernorm γfinal γfinalπemb γfinal
linear output O πT

embO O

Table 3. Transformations πemb and πmlp applied to a Llama-architecture model.

(e) Next, we feed through fmlp, the multi-layer perceptron:

fmlp(X
(i)
LN2

; θ
(i)
mlp) = XMLP

i = [σ(XLN2
i GT

i)⊙ (XLN2
i UT

i)]DT
i

for some activation σ (e.g., SiLU).
(f) Finally, we feed through fpost, dropout and the residual connection:

fpost(θ
(i)
mlp) = X

(i+1)
θ = XDR1

i + Dropout(XMLP
i)

3. (fout) Final layernorm on the output X(N+1)
θ from the final Transformer block:

X
(L)
LN =

X
(L)
θ√

Var(X(L)
θ) + ε

⊙ γfinal

(with variance over the last axis) for some offset ε. Then, linear output embedding and softmax mapping to output probabilities:

fout(X
(L)
θ) = softmax(X(L)

LN OT),

which defines the entire forward pass fLM(X; θ).

D. Model Transformation Class
We describe two sets of equivariant transformations Π on a Transformer model as described in Appendix C. (Abusing notation), the first
set, Πemb, consists of elements πemb where πemb ∈ Rdemb×demb is a permutation matrix. The second set, Πmlp, consists of elements πmlp

where πmlp ∈ Rdmlp×dmlp is a permutation matrix.

1. πemb(θ): Applying an embedding permutation πemb ∈ Rdemb×demb by left or right multiplying all relevant matrices by ξembed
(permuting rows or columns).

2. πmlp(θ): Applying MLP permutations πmlp,i ∈ Rdmlp×dmlp to MLP layers.

These permutations are applied such that the outputs of the original model θ and the permuted model Π(θ) remain aligned. We describe
the details in Table 3.

E. Additional Constrained Setting Experimental Results
We report p-values from the statistics ϕℓ2 , ϕU(ℓ) , and ϕH(ℓ) on all 210 model pairs (from 21 Llama 2-architecture models) in Figures 4, 5,
and 6, where the model names are colored by base model (ground truth). For all statistics, the p-values on independent model pairs are
uniformly distributed, while they are all significant at 0.01 (smaller for ϕU(ℓ) and ϕH(ℓ)) for fine-tuned model pairs.

15

Independence Tests for Language Models

Figure 4. Results of p-values from ϕℓ2 on all model pairs.

16

Independence Tests for Language Models

Figure 5. Results of p-values from ϕU(ℓ) on all model pairs, where ε = 2.2e-308.

17

Independence Tests for Language Models

Figure 6. Results of p-values from ϕH(ℓ) on all model pairs, where ε = 2.2e-308.

18

Independence Tests for Language Models

train tokens ϕU(ℓ) ϕH(ℓ) ϕℓ2 ϕMATCH ϕJSD (log)
100M 0.641 0.119 0.07 0.809 -11.81

1B 0.789 0.483 0.06 0.443 -11.05
10B 0.707 0.277 0.93 0.343 -11.28
18B 0.819 0.141 0.64 0.027 -11.03

Table 4. Results for ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH evaluated on training checkpoints between two independently-trained OLMo models.

θ1 = Llama-2-70b-hf, θ2 = ϕU(ℓ)

miqu-1-70b-pytorch ε
Llama-3.1-70B 0.571

Palmyra-Fin-70B-32K 0.539

Table 5. Results of ϕU(ℓ) (aggregated with FISHER) with θ1 as Llama-2-70b-hf and θ2 ranging over the listed models.

E.1. Identically distributed, Independent models

We further evaluated the efficacy of our tests through ablations by training two models with the same architecture on the same dataset that
only differ on the choice of random initialization of randomness. Specifically, we ensure that our test does not incorrectly detect two
similar (trained using the same learning algorithm) but independent (randomly initialized) models, as non-independent.

To verify this, we randomly initialized a model with the OLMo (7B) architecture (Groeneveld et al., 2024) and trained it on the Dolma
v1 7 dataset ((Soldaini et al., 2024)). We trained a second model with independently chosen initialization and data ordering.

We keep checkpoints for both seeds after 100M, 1B, 10B, and 18B train tokens and evaluate the statistics ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH on
the two models at each training checkpoint, reported in Table 4. We highlight that the p-values are broadly distributed, validating our tests
support independence even on two similarly-trained but independent models.

E.2. Tests for Larger Models

Next, we evaluated our tests on larger models. We ran ϕU(ℓ) on four 70B parameter models with the Llama 2-70B architecture shown in
Table 5, and in particular, we verify that Miqu-70B is not independent from Llama 2-70B.

F. Additional Unconstrained Setting Experimental Results
We report values of ϕMATCH on all model pairs in Figure 7. The statistic is low (< ε = 10−308) for all non-independent model pairs, and
uniformly distributed for independent model pairs, empirically acting as a p-value.

F.1. Striped Hyena Experiments

We report ϕU(ℓ) on specific parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1 shown in Table 6. We no longer
only evaluate ϕU(ℓ) on MLP up projection matrices, so that we can investigate similarity in other parameters as well. These p-values no
longer satisfy the independence requirement of Theorem 2, so we do not aggregate them with FISHER.

Parameter name Notation ϕU(ℓ)

embedding E 1.61e-16
attention query matrix W

(1)
Q 6.17e-190

attention key matrix W
(1)
K 1.47e-7

attention value matrix W
(1)
V 1.56e-114

attention query matrix W
(1)
Q 6.17e-190

attention output matrix W
(1)
O 0.010

MLP gate projection G(1) 0.517
MLP up projection U (1) 0.716

MLP down projection D(1) 6.03e-80

Table 6. ϕU(ℓ) on parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1, some with low p-values.

19

Independence Tests for Language Models

Figure 7. Results of values of ϕMATCH on all model pairs, where ε = 2.2e-308.

20

Independence Tests for Language Models

MLP Loss log10(ϕ
(i)
MATCH)

1 0.0048 −479
2 0.012 −485
3 0.0026 −614
4 0.0034 −580
5 0.0030 −523
6 0.0035 −513
7 0.0041 −533
8 0.0042 −464
9 0.0050 −439

10 0.0050 −377
11 0.0060 −365

MLP Loss log10(ϕ
(i)
MATCH)

12 0.0060 −342
13 0.0058 −330
14 0.0066 −323
15 0.0063 −414
16 0.0061 −394
17 0.0063 −445
18 0.0055 −515
19 0.0045 −571
20 0.0045 −512
21 0.0047 −595
22 0.0043 −555

MLP Loss log10(ϕ
(i)
MATCH)

23 0.0043 −593
24 0.0047 −542
25 0.0050 −497
26 0.0051 −534
27 0.0052 −482
28 0.0061 −477
29 0.0065 −433
30 0.0098 −361
31 2.313 −26.4
32 0.0114 −174

Table 7. ϕMATCH on individual blocks between Llama-2-7b-hf and vicuna-7b-v1.5 after retraining MLP layers.

F.2. MLP Retraining Experiments

We retrain each of the 32 MLP layers by feeding in random inputs through the original MLP (gate, up, and down projection matrices.) We
train for 10000 gradient steps using MSE loss and an Adam Optimizer with a learning rate of 0.001 and batch size of 5000. A sample
learning curve is in Figure 8.

Figure 8. Learning curve for MLP retraining.

The MLP retraining results for all 32 MLP layers of vicuna-7b-v1.5, compared with Llama-2-7b-hf are in Table 7, showing
that the statistic is robust to retraining of all layers.

F.3. Localized Testing

As described in 4.4.2, we can run ϕMATCH on all pairs of Transformer blocks between two models (of different architecture), as long
as they share the GLU structure. In addition to the Llama 3 results, we report results of matched blocks on the Sheared-LLaMa and
Nvidia-Minitron models, which are both pruned from Llama models.

In particular, we were able to identify the specific Transformer blocks of θ8B = Llama-3.1-8B whose weights were likely used in
initializing θ3B = Llama-3.2-3B and θ1B = Llama-3.2-1B, as Meta reported that the Llama-3.2-3B and Llama-3.2-1B
models were pruned from Llama-3.1-8B ((MetaAI, 2024)). We use ϕMATCH on all pairs of MLP blocks, where (dθ8B , hθ8B , Nθ8B) =
(4096, 14336, 32),(dθ3B , hθ3B , Nθ3B) = (3072, 8192, 28), and (dθ1B , hθ1B , Nθ1B) = (2048, 8192, 16). We match blocks when the
statistic ϕ

(i,j)
MATCH from block i of model 1 and block j of model 2 is less than 1e-4, reported in Tables 8 and 9 (with the same for the other

matchings in this section).

21

Independence Tests for Language Models

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ8B , θ3B) < 1e− 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ8B , θ3B) < 1e− 4 16 17 18 19 20 21 22 23 24 25 26 27 28

Table 8. θ8B = Llama-3.1-8B blocks matched with θ3B = Llama-3.2-3B blocks using ϕMATCH

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ8B , θ1B) < 1e− 4 1 2 3 4 5 6 7 8 9

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ8B , θ1B) < 1e− 4 10 11 15 16

Table 9. θ8B = Llama-3.1-8B blocks matched with θ1B = Llama-3.2-1B blocks using ϕMATCH

Next, we have Sheared-LLaMa 2.7B, with 32 Transformer blocks, hidden dimension 2560 and MLP dimension 6912. All 32 blocks align
with the 32 blocks of Llama 2 7B, although both hidden and MLP dimensions have been reduced through pruning.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Table 10. θ1 = Sheared-LLaMa 1.3B blocks matched with θ2 = Llama-2-7B blocks using ϕMATCH

Next, we have Sheared-LLaMa 1.3B, with 24 Transformer blocks, hidden dimension 2048 and MLP dimension 5504.

i 1 2 3 4 5 6 7 8 9 10 11 12
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 5 1 2 3 4 5 6 7 8 10 12 16

i 13 14 15 16 17 18 19 20 21 22 23 24
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 5 17 18 19 20 21 22 25 27 28 29 31 32

Table 11. θ1 = Sheared-LLaMa 1.3B blocks matched with θ2 = Llama-2-7B blocks using ϕMATCH

Finally, we compare Llama 3.1 8B with nvidia/Llama-3.1-Minitron-4B-Depth-Base, a pruned model by reducing from 32
to 16 Transformer blocks and are able to identify the likely shared blocks.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32

Table 12. θ1 = nvidia/Llama-3.1-Minitron-4B-Depth-Base blocks matched with θ2 = Llama-2-7B blocks using
ϕMATCH

F.4. MLP Distillation Experiments

As we mentioned in section 3.2.2, we present further results on experiments where we distill a model without a GLU MLP and then
test the efficacy of our approach. These models do not use GLU MLPS (instead, a different feed-forward network) and a GLU MLP is
distilled as the first FFN using Algorithm 5. The cases of two non-independent models still have very small values of ϕ(1)

MATCH.

22

Independence Tests for Language Models

θ1 θ2 Independent? ϕ
(1)
MATCH

gpt2 GPT2 PMC ✗ 3.034e-61
gpt2 artgpt2tox ✗ 1.049e-75
gpt2 distilgpt2 ✗ 1.079e-63

Llama-3.2-1B Llama-3.2-3B ✗ 2.011e-70
openai-gpt gpt2 ✓ 0.359
openai-gpt distilgpt2 ✓ 0.770

gpt Llama-3.2-1B ✓ 0.481

Table 13. ϕ(1)
MATCH on models distilled with a GLU MLP.

Parameter name θ Rot(θ) = θ′

embedding E ERemb
input layernorm γinput, i γ′

input, i
attention query matrix WQ,i Ri WQ,i diag(γinput, i) Remb diag(1

γ′
input, i

)

attention key matrix WK,i Ri WK,i diag(γinput, i) Remb diag(1
γ′

input, i
)

attention value matrix WV,i WV,i diag(γinput, i) Remb diag(1
γ′

input, i
)

attention output matrix WO,i RT
emb WO,i

post-attention layernorm γpost-attn, i γ′
post-attn, i

MLP gate projection Gi Gi diag(γpost-attn,i) Remb diag(1
γ′

post-attn,i
)

MLP up projection Ui ciUi diag(γpost-attn,i) Remb diag(1
γ′

post-attn,i
)

MLP down projection Di
1
ci

RT
emb Di

final layernorm γfinal γ′
final

linear output O O diag(γfinal) Remb diag(1
γ′

final
)

Table 14. Output-preserving rotation applied to a Llama-architecture model.

G. Output-Preserving Transformations
An adversary could apply a particular rotation scheme by multiplying weight matrices by an orthogonal rotation matrix U that will
also preserve outputs. We describe such a transformation which breaks the invariants proposed by (Zeng et al., 2024) by manipulating
layernorms. While this list may not be exhaustive, the following six transformations (with the first two described previously) “camouflage”
the language model while preserving outputs:

T1. Permuting the rows of the embedding matrix (and subsequent matrices due to residual connections) by a permutation ξemb ∈
Rdemb×demb

T2. Permuting the MLP matrices (N different permutations for each Transformer block) by permutations ξ1, . . . , ξN ∈ Rdmlp×dmlp

T3. Rotating the embedding matrix (and subsequent matrices due to residual connections) by an orthogonal rotation matrix Remb ∈
Rdemb×demb

T4. Rotating the query and key attention matrices (N different rotations for each Transformer block) by orthogonal rotation matrices
R1, . . . , RN ∈ Rdemb×demb

T5. Replacing all layernorms (input, post-attention, final) with vectors in R1×demb with non-zero elements

T6. Scaling the MLP matrices by a constant non-zero factor

Consider a model θ of Llama architecture (Appendix C). Consider orthogonal matrices Remb, R1, . . . R32 as described, as well as
new layernorms γ′

input,1, . . . , γ
′
input,32, γ

′
post-attn,1, . . . , γ

′
post-attn,32 in R1×demb with non-zero elements. Finally, consider non-zero constants

c1, . . . , c32, which we use to transform the layernorms. We apply the rotation with these parameters to θ, to get a new “rotated” model,
Rot(θ). We generalize the set of transformations above as applying Rot(θ) to a model θ”.

We transform all the original matrices of θ as in Table 14 (for i = 1, . . . , 32). Note that the transformations T1 and T2 are elements of
Πemb and Πmlp and the remaining transformations T3 to T6 are described in Table 14. Importantly, T5 is the transformation that (Zeng
et al., 2024)’s invariants are not robust to; our unconstrained setting test ϕMATCH is robust to all 6 transformations, which we show in Table
15.

23

Independence Tests for Language Models

G.1. Breaking HuREF Invariants

Only transformations T3 and T5 are required to break the invariants from (Zeng et al., 2024). Their first invariant is Ma =
E(WQ,i)

TWK,i)E
T at layer i, and for M ′ with an embedding matrix rotation Remb where the layernorms γinput,i are replaced with

γ′
input,i, we have the invariant is

Ma = E′(W ′
Q,i)

T ((W ′
K,i)

T)TE′T

M ′
a = (ERemb)

(
diag(

1

γ′
input,i

)RT
embdiag(γinput,i)W

T
Q,iR

T
i

)(
RiWK,idiag(γinput,i)Rembdiag(

1

γ′
input,i

)

)
(RT

embE)

= ERembdiag(
1

γ′
input,i

)RT
embdiag(γinput,i)W

T
Q,iWK,idiag(γinput,i)Rembdiag(

1

γ′
input,i

)RT
embE,

and in general Ma ̸= M ′
a unless the layernorm weights are equal constants. The other two invariants also do not hold due to changing

the layernorms. (Note that our notation for Transformers is different than theirs.) Assuming in their invariant Mf that W1 and W2 are
the gate and down projection matrices of an MLP (this is not stated explicitly in the paper but can be inferred from experiments), the
remaining invariants do not hold either.

Empirically, we compute the invariants between Llama2-7b and independently trained models and between Llama2-7b and rotated
finetuned models (including Llama2-7b) in Table 15. We can see there is little distinction between the independent vs. non-independent
model pairs.

θ1 = Llama-2-7b-hf, θ2 = Independent? Ma Mb Mc ϕMATCH ϕU(ℓ) ϕH(ℓ) ϕJSD

vicuna-7b-v1.5 ✗ 1.0 0.9883 0.9922 < ε < ε < ε -10.874
Nous-Hermes-llama-2-7b ✗ 1.0 1.0 1.0 < ε < ε < ε -12.101

llama-7b-hf ✓ 0.0884 0.0250 0.0400 0.049 0.595 0.253 -11.102
AmberChat ✓ 0.1289 -0.0093 0.0198 0.941 0.460 0.279 -10.281

Openllama-v1 ✓ 0.1084 0.0076 0.0057 0.286 0.357 0.703 -8.381
Rotated Llama-2-7b-hf ✗ 0.0767 0.0908 0.1011 < ε 0.517 0.323 −∞

Rotated vicuna-7b-v1.5 ✗ 0.1553 0.0933 0.0977 < ε 0.688 0.857 -10.874
Rotated Nous-Hermes-llama-2-7b ✗ 0.0332 0.0718 0.1060 < ε 0.772 0.240 -12.101

Table 15. Results for the three invariants Ma,Mb,Mc from (Zeng et al., 2024) between Llama-2-7b-hf and independent and non-
independent models.

G.2. Invariance of Outputs under Rotation

These transformations are particularly important because they preserve outputs as we show in Theorem ??, and hence generally can go
undetected, though ϕMATCH is robust to them.

Theorem 5. For any input sequence X ∈ {0, 1}n×V , the outputs of models θ and Rot(θ) = θ′ are aligned, i.e. fLM(X; θ) = fLM(X; θ′).

Proof. First, note that an element-wise product of two one-dimensional vectors is equivalent to multiplying by the diagonal matrix of the
second vector, i.e. for v, γ ∈ R1×m,

v ∗ γ = vdiag(γ).

We use this in our layernorm calculations.

Let the output from the unrotated embedding layer be y = fin(X,E) = EX (for X ∈ {0, 1}n×V). Then the output from the rotated
embedding layer is y′ = fin(X,E′) = (ERemb)(x) = yRemb. Now consider Transformer block i with input y and the rotated Transformer
block with input yRemb. y is passed into the input layernorm, which returns

z = LNi(y) =
y√

Var(y) + ε
⊙ γinput,i =

y√
Var(y) + ε

diag(γinput,i).

The rotated input layernorm on y′ returns

z′ = LN ′
i(y

′) =
y′√

Var(y′) + ε
⊙ γ′

input,i =
yRemb√

Var(yRemb) + ε
⊙ γ′

input,i

=
y√

Var(y) + ε
Rembdiag(γ′

input,i) = z diag(
1

γinput,i
)Rembdiag(γ′

input,i),

24

Independence Tests for Language Models

which follows from Remb being orthogonal. Then we have the output from the unrotated self-attention is

w = softmax

(
zWT

Q,i(zW
T
K,i)

T√
dkey

)
zWT

V,iW
T
O,i,

and the output from the rotated self-attention with input z′ is

softmax

z′(RiWQ,idiag(γinput, i)Rembdiag(1
γ′

input, i
))T (z′(RiWK,idiag(γinput, i)Rembdiag(1

γ′
input, i

))T)T√
dkey


z′(WV,idiag(γinput, i)Rembdiag(

1

γ′
input, i

))T (RT
embWO,i)

T

= softmax

z′diag(1
γ′

input, i
)RT

embdiag(γinput, i)W
T
Q,iR

T
i (z

′diag(1
γ′

input, i
)RT

embdiag(γinput, i)W
T
K,iR

T
i)

T√
dkey


z′diag(

1

γ′
input, i

)RT
embdiag(γinput, i)W

T
V,iW

T
O,iRemb

= softmax

z′diag(1
γ′

input, i
)RT

embdiag(γinput, i)W
T
Q,iWK,idiag(γinput, i)Rembdiag(1

γ′
input, i

)(z′)T√
dkey

 zWT
V,iW

T
O,iRemb

= softmax

(
zWQ,iW

T
K,iz

T√
dkey

)
zWT

V,iW
T
O,iRemb

= wRemb = w′.

Then y and y′ respectively from before the layernorm are added as residual connections as v = y + w and v′ = y′ + w′ = vRemb. v is
passed into the post-attention layernorm, which returns

u = LNi(v) =
v√

Var(v) + ε
⊙ γpost-attn,i =

v√
Var(v) + ε

diag(γpost-attn,i).

Similar to the input layernorm, the rotated post-attention layernorm on v′ returns

u′ = LN ′
i(v

′) =
v′√

Var(v′) + ε
⊙ γ′

post-attn,i =
vRemb√

Var(vRemb) + ε
⊙ γ′

post-attn,i

=
v√

Var(v) + ε
Rembdiag(γ′

post-attn,i) = u diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i).

Then the output from the unrotated MLP layer on u is

t = [σ(uGT
i)⊙ (uUT

i)]DT
i

and the output from the rotated MLP on u′ is

t′ = [σ(u′(Gidiag(γpost-attn,i)Rembdiag(
1

γ′
post-attn,i

))T ⊙ (u′(ciUidiag(γpost-attn,i)Rembdiag(
1

γ′
post-attn,i

))T)](
1

ci
RT

embDi)
T

= [σ(u diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i)diag(
1

γ′
post-attn,i

)RT
embdiag(γpost-attn,i)G

T
i)⊙

(ciu diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i)diag(
1

γ′
post-attn,i

)RT
embdiag(γpost-attn,i))U

T
i]

1

ci
DT

i Remb

= [ciσ(uG
T
i)⊙ (uUT

i)]
1

ci
DT

i Remb = tRemb.

Then the output from the self-attention is added as a residual connection, and the final output from the unrotated Transformer block is
s = t+ v, and the output from the rotated Transformer block is s′ = t′ + v′ = sRemb.

Suppose a is the output after all Transformer layers in θ and a′ is the output after all Transformer layers in θ′. Then the outputs after the
final layernorms are

b =
v√

Var(a) + ε
diag(γfinal)

25

Independence Tests for Language Models

b′ = b diag(
1

γfinal
)Rembdiag(γ′

final),

and the logits from the linear output layer are

bOT = b diag(
1

γfinal
)Rembdiag(γ′

final)diag(γfinal)R
T
embdiag(

1

γ′
final

)OT

= b′(O′)T ,

which are the same for both models.

We attempted to undo such a transformation that an adversary may apply by solving the least squares problem: We solve for a rotation
A that minimizes |AX − Y | where X is a weight matrix of the first model and Y is the corresponding weight matrix of the second
model. Although this will provide a potential rotation to undo this transformation, we find that this solution will also find a matrix A that
aligns two independent model pairs as well. This makes undo-ing the rotation this way unreliable. The same holds for X and Y that are
activations over multiple inputs.

26

