
Under review as a conference paper at ICLR 2024

LEARNING TO SELECT CAMERA VIEWS: EFFICIENT
MULTIVIEW UNDERSTANDING AT FEW GLANCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Multiview camera setups have proven useful in many computer vision applications
for reducing ambiguities, mitigating occlusions, and increasing field-of-view cov-
erage. However, the high computational cost associated with multiple views cre-
ates a significant challenge for end devices with limited computational resources.
To address this issue, we propose a view selection approach that analyzes the tar-
get object or scenario from given views and selects the next-best-view for recog-
nition or detection. Our approach features a reinforcement learning based camera
selection module, MVSelect1, that not only selects views but also facilitates joint
training with the task network. Experimental results on multiview classification
and detection tasks show that our approach achieves promising performance while
using only 2 or 3 out of N available views, significantly reducing computational
costs. Furthermore, analysis on the selected views reveals that certain cameras
can be shut off with minimal performance impact, shedding light on future cam-
era layout optimization for multiview systems.

1 INTRODUCTION

Multiple camera views (multiview) are popular in computer vision systems for their ability to address
challenges such as occlusions, ambiguities, and limited field-of-view (FoV) coverage. Tasks like
classification (Su et al., 2015; Qi et al., 2016) and detection (Chavdarova et al., 2018; Hou et al.,
2020) have shown significant benefits from using multiple cameras (Fig. 1). With reduced hardware
cost and easy deployment, real-world products now include more cameras at larger scales.

However, the use of multiple cameras comes at a high computational cost, which can be a significant
challenge for end devices with limited computational resources, especially with higher image reso-
lutions and deeper neural network backbones. Limiting image resolution or using lighter networks
(Molchanov et al., 2016; Howard et al., 2017) are current options to reduce computation, but they
may impede the progress in camera sensors or neural network architecture.

To address this challenge, this paper introduces a new angle to efficient multiview understanding
by selecting only the most useful views. To identify the best views, this approach leverages camera
layouts, which is a key aspect overlooked by existing alternatives. With known camera layouts,
networks should be able to infer what each camera view looks like and then choose accordingly, as
previous works (Kanezaki et al., 2018) have shown that networks can associate images with camera
poses. Existing work on active vision (Aloimonos et al., 1988; Findlay & Gilchrist, 2003; Chen
et al., 2011) indicates that it is possible to find next-best-views for reconstruction with 3D sensors.
In this paper, we focus on recognition and detection problems using multiple RGB cameras, where
a side view may confuse a guitar with a mandolin (Fig. 2). However, prior knowledge of the camera
layout should inform the system that the front view can clear the ambiguities and should be queried.

To achieve this goal, this paper proposes a novel view selection module, MVSelect, that chooses the
best camera views from any initial view. The proposed module first analyzes the target object or
scenario using the given view and then selects the next view that best helps the task (classification
or detection) network. To navigate through the non-differentiable view selection (the system only
looks at selected cameras, so not-selected views cannot back propagate gradients to the controller),

1Code available at https://anonymous.4open.science/r/MVSelect-38B8.
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Figure 1: Example of multiview camera setups.
Left: multiview classification jointly considers
multiple camera views (blue dots) to identify
the object. Right: multiview detection esti-
mates pedestrian occupancy from multiple cam-
eras (blue FoV maps) over bird’s-eye-view (bot-
tom colored image). For both classification
and detection tasks, due to hardware constraints,
camera layouts are usually pre-defined.

Q: guitar                or mandolin        ? A: guitar!

initial view selected view

MVSelect

𝑁𝑁 total views

Figure 2: Efficient multiview understanding
with two glances. Instead of using all N views
at once, a more efficient approach is to first ex-
amine one view and then select another view to
resolve ambiguities from the initial glance. If
the initial side view cannot distinguish between
a guitar and a mandolin (a round-shaped instru-
ment that may also have a flat back), we can then
query the front view.

following Mnih et al. (2014), we train the controller via trial-and-error. This process is formulated
as a reinforcement learning problem aiming to maximize the final recognition or detection accuracy.

On both multiview classification and detection tasks, our experimental results show that MVSelect
can provide a good strategy for fixed task networks, while also capable of joint training with the task
network for further performance improvements. Specifically, when joint training both MVSelect and
the task network, the resulting system can achieve competitive performance to using all N cameras,
while using only 2 views for classification tasks and 3 views for detection tasks, respectively.

The computational overhead of MVSelect is very small, as it shares the feature extraction backbone
with the task network and only has a few learnable layers. For the entire system, the computa-
tional cost is roughly proportional to the number of views used, e.g., approximately 2/N of the total
computation when 2 views are used, a significant efficiency boost.

The MVSelect policy also enables study on multiview camera layout. In fact, we find that many
of the N cameras are rarely chosen and can be shut off for further operational cost improvements,
which can serve as a starting point for future study on multiview camera layout optimization.

2 BACKGROUND

Multiview classification. One effective way for 3D shape recognition is to capture the object in
multiple camera views. MVCNN (Su et al., 2015) extracts feature vectors from the input views, and
then uses max pooling to aggregate across multiple views for classification. Based on MVCNN,
many alternative approaches are proposed. Qi et al. (2016) propose sphere rendering at different
volume resolutions. GVCNN (Feng et al., 2018) investigates hierarchical information between dif-
ferent views by grouping the image features before the final aggregation. RotationNet (Kanezaki
et al., 2018) introduces a multi-task objective by jointly considering classification and camera poses.
ViewGCN (Wei et al., 2020) uses a Graph Convolution Network (GCN) (Kipf & Welling, 2016)
instead of the max pooling layer to aggregate across views. Recently, Hamdi et al. (2021) propose
the MVTN network to estimate the best viewpoints for 3D point cloud models.

Multiview detection. Occlusion is a key issue for object detection using only one camera view. To
deal with this problem, researchers investigate multiview approaches for pedestrian detection and
estimate occupancy from the bird’s-eye-view (BEV). For this task, some methods (Fleuret et al.,
2007; Roig et al., 2011; Xu et al., 2016) aggregate single-view detection results. Others find single-
view detection results unreliable and instead aggregate the features. Hou et al. (2020) introduce
MVDet, the first fully deep-learning approach, which projects feature maps from each camera view
to the BEV. Based on MVDet, researchers develop other deep methods. SHOT (Song et al., 2021)
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Figure 3: Multiview classification with
MVCNN (Su et al., 2015).
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Figure 4: Multiview detection with MVDet
(Hou et al., 2020).

projects the image feature map at different heights and stacks them together to improve performance.
MVDeTr (Hou & Zheng, 2021) deals with distinct distortion patterns from the projection. Qiu et al.
(2022) investigate data augmentation with simulated occlusion over multiple views.

Camera viewpoint study. For reconstruction with structure-from-motion, Cao & Snavely (2014)
finds a representative set of 3D point clouds. Active vision community investigates next-best-view
planning with 3D sensors like RGBD cameras or LiDAR for scene reconstruction (Scott et al.,
2003; Chen et al., 2011; Border et al., 2018). In multiview classification, RotationNet (Kanezaki
et al., 2018) makes some pioneering work on limited view numbers by taking a random partial set
of all N views of the image. MVTN (Hamdi et al., 2021) uses the 3D point cloud as initial input and
then estimates the best camera layout for multiview classification, but its moving camera assumption
is hard to met in real-world systems. In multiview detection, Vora et al. (2021) investigate camera
layout generalization by randomly dropping camera views from both training and testing. For 3D
human pose estimation, Pirinen et al. (2019) actively select cameras over a dome.

Reinforcement learning (RL) directs an agent to interact with the environment in a manner that
maximizes cumulative rewards. State s ∈ S , action a ∈ A, and reward r ∈ R are key concepts
to model the interaction between agent and environment. In a certain state s, policy π (a|s) records
the probability for each action, and state value function V (s) estimates the future rewards when
following the corresponding policy. To learn the best policy, Q-learning and DQN (Mnih et al.,
2013) optimize the action value function Q (s, a), which describes the estimated future return for a
specific action a at state s. Policy gradient methods like REINFORCE (Williams, 1992) and PPO
(Schulman et al., 2017) directly optimize for the polity π (a|s).

3 MULTIVIEW NETWORK REVISIT

3.1 MULTIVIEW CLASSIFICATION WITH MVCNN

MVCNN (Su et al., 2015) (Fig. 3) is a classic architecture which many multiview classification
networks build upon. Given N input images xn, n ∈ {1, . . . , N}, first, MVCNN uses its feature
extractor f (·) to calculate the feature vectors,

hn = f (xn) , (1)

where the feature vector hn ∈ RD is D-dimensional. Secondly, it uses max pooling to aggregate
multiple views into an overall feature descriptor ĥ ∈ RD,

ĥ = max
n

{hn}, (2)

where max{· · · } takes the maximum along each of the D dimensions. Lastly, it applies the output
head g (·) to produce the classification result ŷ,

ŷ = g
(
ĥ
)
. (3)

In training, the original design by Su et al. (2015) adopts a 2-stage paradigm by first training on
individual views and then considering multiple views. In this paper, we skip the first stage and
directly train MVCNN on all N views,

LMVCNN = LCE (ŷ,y) , (4)
where LCE (·, ·) denotes the cross-entropy loss and y denotes the ground truth one-hot label.
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Figure 5: Efficient multiview understanding with T = 3 glances. Solid lines indicate the network
forward pass and dashed lines indicate the interaction between agent (MVSelect) and environment
(multiview system). The approach starts with a random initial view a1, and the feature extractor
f (·) computes its feature (Eq. 1). The state for this initial time step is recorded as s1 (Eq. 6). Next,
the proposed MVSelect module d (·) is used to choose a second view a2, and the state is updated as
s2. Then, by repeating the last step, a third view a3 is chosen and the state is updated as s3. Finally,
three views are aggregated into an overall descriptor ĥ (Eq. 2), and the task network output ŷ is
calculated using the output head g (·) (Eq. 3). The final reward r3 = MODA (ŷ,y) is set as the
accuracy fir the task network (Eq. 7), and all other rewards are set as zero.

3.2 MULTIVIEW DETECTION WITH MVDET

MVDet (Hou et al., 2020) (Fig. 4) is a multiview detection architecture that is followed by
many recent works. To estimate human occupancy in bird’s-eye-view (BEV), given input images
xn, n ∈ {1, . . . , N}, MVDet first extracts D-channel feature maps for each view and uses per-
spective transformation to project the camera views to the BEV. Together, these operations can be
considered as the BEV feature extraction step under Eq. 1, with the exception that hn ∈ RD×H×W

now denotes the D-channel feature map for the BEV scenario of shape H × W . Secondly, for
multiview aggregation, instead of the concatenation in the original design, we choose element-wise
max pooling in Eq. 2, producing the overall feature description ĥ ∈ RD×H×W that fits arbitrary
numbers of views. Lastly, we apply the output head as Eq. 3 to generate a heatmap ŷ ∈ (0, 1)

H×W

that indicates the likelihood of human occupancy in each BEV location. The loss for MVDet can be
written as,

LMVDet = LBEV (ŷ,y) +
1

N

N∑
n=1

Ln, (5)

where LBEV (·, ·) denotes BEV output loss; y ∈ {0, 1}H×W denotes binary ground truth map; and
Ln denotes the auxiliary per-view loss with 2D bounding boxes.

4 EFFICIENT MULTIVIEW UNDERSTANDING

In a multiview system with N views, our approach uses a total of T < N camera views
at ∈ {1, . . . , N} , t ∈ {1, . . . , T} for efficient understanding. To achieve this, we propose a view
selection module, MVSelect, denoted as d (·), that sequentially selects camera views. Starting from
a random initial view a1, MVSelect chooses the remaining T − 1 cameras by observing the target
object or scene from existing views a1, . . . , at at each time step t and deciding which camera view
at+1 to select next. The resulting T views should give the task network high classification or de-
tection performance. Once T camera views have been gathered, we aggregate them into an overall
description ĥ using Eq. 2, and calculate the final output ŷ using Eq. 3.

Fig. 5 gives an overview of the proposed efficient multiview approach.
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Algorithm 1 Joint training of MVSelect and task network.

1: input: camera views xn, n ∈ {1, . . . , N}, ground truth y, random initial view a1, number of total views
T , hyper-parameter ϵ.

2: update: feature extractor f (·) and output head g (·) of task network, and MVSelect controller d (·).
3: initialize the total loss Ltotal = 0;
4: for t ∈ {1, . . . , T − 1} do
5: select and apply the next action using ϵ-greedy: with probability ϵ adopt a random action, or else choose

the action with highest value at+1 = argmaxa Q (st, a);
6: observe next state st+1 (Eq. 6) and reward rt+1 (Eq. 7);
7: calculate the RL loss LRL (Eq. 9) and update the total loss Ltotal = Ltotal + LRL;
8: end for
9: calculate the task loss Ltask (Eq. 4 or Eq. 5) and update the total loss Ltotal = Ltotal + Ltask;

10: optimize for the total loss Ltotal.

4.1 PROBLEM FORMULATION

While iteratively selecting camera views, it is impossible to know what is in the not-selected camera
views. Those views cannot propagate gradients back to the controller, making the problem non-
differentiable. Therefore, the controller has to learn through trial and error, and we formulate this
non-differentiable process as a reinforcement learning problem, where MVSelect is the agent and
the multiview system is the environment.

State. In order to get a Markovian representation, we record the chosen camera views a1, . . . , at and
the observations ha1

, . . . ,hat
as state st. We use the extracted features to represent the observations

rather than the RGB camera views to reduce dimensionality and maximize efficiency, since these
features will be used in the task network later (Eq. 2). Mathematically, we formulate the state st as,

st =
〈
scam
t , sobs

t

〉
,

scam
t =

t∑
τ=1

onehot (aτ ),

sobs
t =

t
max
τ=1

{haτ },

(6)

where onehot (·) is the one-hot function over N cameras. This representation reflects both chosen
cameras scam

t ∈ RN and their observations sobs
t ∈ RD, and maintains the same dimensionality across

different time steps. The observation part sobs
t also matches the overall representation in Eq. 2.

Action. For state st, t ∈ {1, . . . , T − 1}, MVSelect takes the next camera view at+1 as action.

Reward. Upon taking action at+1, the system receives reward rt+1 and transitions into the next
state st+1. To achieve high task network performance, we consider the following as reward,

rt = 0, t ∈ {1, . . . , T − 1} ,
rMVCNN
T = 1 (ŷ = y) , rMVDet

T = MODA (ŷ,y) ,
(7)

where 1 (·) denotes the binary indicator function, MODA (·, ·) is the evaluation metric for multiview
detection (Kasturi et al., 2008). We also experiment with other reward designs in Section 5.4.

4.2 MVSELECT ARCHITECTURE

We design MVSelect architecture d (·) with two branches. The first branch expands the camera
selection result scam

t ∈ RN into D-dimensional learnable camera embeddings, and then sums over
the selected embeddings to formulate a hidden vector. The second branch processes the observation
sobs
t ∈ RD, and converts that into another hidden vector. By combining the two hidden vectors,

the controller network outputs the action-value Q (s, a), which measures the expected cumulative
rewards for taking an action a in a given state s. Please see Appendix A.1 for figure illustrations.

During testing, MVSelect outputs the next action as,
at+1 = argmax

a
Q (st, a),

which maximizes the expected cumulative rewards.
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4.3 TRAINING SCHEME

We adopt Q-learning (Sutton & Barto, 2018) for training MVSelect. Specifically, action-value func-
tion Q (·, ·) should estimate the cumulative future rewards after taking action at+1 at state st,

Q (st, at+1) = E

(
T∑

τ=t+1

γτ−t−1rτ

)
,

where E (·) denotes the expectation, and γ ∈ [0, 1] denotes the discount factor. We take the temporal
difference (TD) (Sutton & Barto, 2018) target as supervision for the action value,

qt =

{
rt+1 + γmaxa Q (st+1, a), if t < T − 1

rT , otherwise
, (8)

and calculate the loss using the L2 distance,

LRL =

T−1∑
t=1

LMSE (Q (st, at+1) , qt), (9)

where the next action at+1 is chosen using ϵ-greedy for exploration-exploitation trade offs.

In joint training, the task network takes supervision from the task loss Ltask (Eq. 4 and Eq. 5), and
the selection module takes supervision from the RL loss LRL (Eq. 9).

A step-by-step demonstration of this process can be found in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

We summarize the experiment settings as follows. For more details, please see Appendix A.2

Datasets. For multiview classification, we use synthetic dataset ModelNet40 (Wu et al., 2015)
under two different camera layouts (12 views and 20 views) and real-world dataset ScanObjectNN
(12 views) (Uy et al., 2019). For multiview detection, we use real-world dataset Wildtrack (7 views)
(Chavdarova et al., 2018) and synthetic dataset MultiviewX (6 views) (Hou et al., 2020).

Evaluation metrics. For multiview classification, we report instance-averaged accuracy. Regarding
multiview detection, we report multi-object detection accuracy (MODA), which is calculated as
1− FP+FN

GT (Kasturi et al., 2008). All metrics are reported in percentages.

Implementation details. For multiview classification, we input images of size 224 × 224 to the
MVCNN model. For multiview detection, we use a resolution of 720× 1280 for input images with
view-coherent data augmentation (Hou & Zheng, 2021), and downsample the BEV grid by a factor
of 4. In terms of architecture, we use ResNet-18 (He et al., 2016) as feature extractor f (·).
We train all networks for 10 epochs using the Adam optimizer (Kingma & Ba, 2015). We use learn-
ing rates of 5×10−5 and 5×10−4, with batch sizes of 8 and 1 for MVCNN and MVDet, respectively.
The MVSelect module is trained using a learning rate of 1 × 10−4. For joint training, we decrease
the learning rate for the task network to 1/5 of its original value. Regarding hyperparameters, we
set the future reward discount factor γ = 0.99, and the exploration ratio ϵ to gradually decrease
from 0.95 to 0.05 during training. All experiments are conducted on a single RTX-3090 GPU and
averaged across 5 repetitive runs.

Experimental setups. First, we fix the task network and only train the view selection module.
Our goal is to show that the view selection results outperform three existing view selection methods
including 1) random selection, 2) the best policy on validation set, and 3) the policy that maximizes
field-of-view (FoV) coverage, which is modified from a next-best-view work by Scott et al. (2003)
and therefore only applicable to multiview detection. We also report two oracles: for a certain initial
view, 1) choosing the overall best-performing camera for all instances in the dataset (dataset-level
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Table 1: Evaluation on multiview classification.

view selection (T = 2) ModelNet40 ScanObjectNN12 views 20 views
N/A: all N views 94.5 96.5 86.1
dataset-lvl oracle 85.2 ± 1.4 69.9 ± 1.9 78.5 ± 1.2
instance-lvl oracle 96.5 ± 0.4 98.1 ± 1.9 93.4 ± 0.6
random selection 71.5 ± 2.5 48.1 ± 3.1 74.2 ± 3.5
validation best policy 85.1 ± 0.8 69.5 ± 1.0 77.5 ± 1.1
MVSelect 88.2 ± 0.4 79.6 ± 1.8 80.0 ± 0.8
MVSelect + joint training 94.3 ± 0.2 94.4 ± 0.2 84.1 ± 0.2

Table 2: Evaluation on multiview detection.

view selection (T = 3) Wildtrack MultiviewX
N/A: all N views 90.0 93.0
dataset-lvl oracle 82.5 ± 0.4 80.2 ± 0.3
instance-lvl oracle 87.4 ± 0.4 82.3 ± 0.8
random selection 74.9 ± 1.3 76.2 ± 1.4
validation best policy 79.5 ± 1.1 78.0 ± 0.4
max FoV (Scott et al., 2003) 78.0 ± 1.5 73.9 ± 1.5
MVSelect 80.0 ± 0.8 78.7 ± 0.5
MVSelect + joint training 88.6 ± 0.2 88.1 ± 0.2

Figure 6: Example of selected views on ModelNet40 (left) and Wildtrack (right).

oracle) and 2) choosing specifically for each instance (instance-level oracle). The former reflects
the upper bound of performance achievable by human-designed heuristics, and the latter represents
the theoretical performance ceiling when keeping the task network fixed.

Second, we jointly train the proposed view selection module with the task networks. For this exper-
iment, our goal is to achieve the highest possible performance using T views. If not specified, we
use a total of T = 2 views for multiview classification and T = 3 views for detection.

5.2 EVALUATION OF MVSELECT

In this section, we compare our efficient approach against existing baselines for view selection. For
comparisons between our efficient approach and state-of-the-art methods, please see Appendix A.3.

For multiview classification, as shown in Table 1, randomly selecting two views cannot achieve
competitive results. The greedy policy learned on the validation set gives better results that are more
in line with the dataset-level oracle.

The proposed view selection module, on the other hand, can choose the supplementary view very ef-
fectively. On ModelNet40 dataset (Wu et al., 2015), MVSelect with fixed MVCNN outperforms the
random selection baseline by large margins on both settings of ModelNet40 and on ScanObjectNN.
Compared to dataset-level oracles (same policy for all instances with the same initial camera), MVS-
elect also turns out to be advantageous by 3.0%, 9.7%, and 1.5% across the two settings. This verifies
that MVSelect can take the target object into consideration (see Fig. 2) and select different cameras
for different instances under the same initial camera.

When joint training MVCNN with MVSelect, we witness large improvements compared to keeping
MVCNN fixed. In fact, on two settings, the results are only 0.2%, 2.1%, and 2.0% behind compared
to the full N -view system. Overall, we believe that MVSelect and its joint training capabilities
enable us to consider only 2 views without major performance drawbacks. We demonstrate an
example of the selected views in Fig. 6, and the MVSelect policy in Fig. 7.

For multiview detection, we report view selection results in Table 2. Since the target scenarios
are not fully captured by any individual camera, randomly selecting T = 3 cameras does not yield
satisfactory results. The best policy found on validation set gives better performance compared to
random selection. However, the maximum FoV coverage policy (Scott et al., 2003) gives mixed
results, suggesting that FoV coverage as a heuristic cannot guarantee the best detection result, possi-
bly due to heavy occlusions. In addition, we observe that the instance-level oracle remains relatively
low compared to that of multiview classification tasks (see Table 1). This is likely due to the target
scenarios not being fully captured by any single view, and the multiview detection network needs
multiple views to collaborate with each other for optimal results.
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(a) Classification accuracy (b) MVSelect policy

Figure 7: Multiview classification with T = 2 views on the
12-view setup of ModelNet40. The task network is fixed
once trained. Left: test set accuracy of using two views.
Right: MVSelect policy for the test set.

Table 3: Computation efficiency.

views FLOPs throughput
f (·) g (·) d (·) (instance/s)

ModelNet40

20 36.5G 20.5k N/A 119.6
2 3.6G 20.5k 1.1M 361.8
12 21.9G 20.5k N/A 196.2
2 3.6G 20.5k 530.4k 507.9

Wildtrack 7 1.2T 19.1G N/A 8.4
3 511.6G 19.1G 3.2G 16.2

MultiviewX 6 1.0T 17.7G N/A 9.8
3 511.6G 17.7G 2.9G 16.9

Table 4: Ablation study.

ModelNet40 Wildtrack12 views
MVSelect 88.2 80.0
w/o camera branch 88.2 79.1
w/o feature branch 85.0 79.7
w/ transformer 87.0 78.7
reward=∆ task loss 88.0 80.1

In this scenario, we find that MVSelect with a fixed task network can outperform existing baselines,
including random selection, greedy policy on validation, and maximum FoV coverage (Scott et al.,
2003). Although the raw improvements are not as substantial as those in multiview classification,
they are statistically highly significant (p-value < 0.001). Compared to the dataset-level oracles,
we find the MVSelect policy lose its edge. In fact, we find that for multiview detection, MVSelect
tends to select the same camera for a given initial view, since it is not aware of the situation outside
of the FoV coverage. As a result, it cannot choose cameras based on uncovered areas in different
frames. Without this instance-aware advantage, the fixed camera policy learned during training
(MVSelect) cannot outperform the dataset-level oracle, whose policy is computed on the test set.

Joint training with MVDet once again leads to substantial performance improvements over keeping
the task network fixed. In fact, the results even exceed the instance-level oracle for fixed task net-
works. Using T = 3 views, the joint training approach provides competitive results to using all N
views, and exceeds the reported performance in the original MVDet paper (Hou et al., 2020). We
present an example of the selected views in the Wildtrack dataset in Fig. 6.

5.3 EFFICIENCY ANALYSIS

In Table 3, following previous works in efficient inference (Li et al., 2017; Howard et al., 2017),
we detail the computational cost in FLOPs for task networks and MVSelect. Specifically, we find
feature extraction f (·) to take up the majority of the computation, while everything else is lighter by
at least an order of magnitude. Overall, we verify that using T = 2 or 3 out of N views can reduce
the computational cost to roughly T/N .

In terms of inference speed, we find reduction in FLOPs results in monotonically increasing through-
puts, ranging from 1.72× to 3.03×. Due to factors such as implementation, parallelization, and
hardware limitations, actual speedups cannot actually reach the level of computational cost reduc-
tion, as suggested by previous study (Molchanov et al., 2016).

5.4 VARIANT STUDY

Ablation study. Regarding the MVSelect architecture design, Table 4 shows that removing the
camera branch and feature branch primarily affects multiview detection and multiview classification
performance, respectively. This aligns with the policy we learned for the two tasks. For multiview
detection, since the system has no clue about areas outside camera FoVs, the camera branch plays a
more important role for encoding prior knowledge of the scene layout. For multiview classification,
however, target objects are fully observable, and MVSelect can make different decisions for each
instance. Thus, the feature branch is more important, as it enables per-instance decision making.

When changing the MVSelect network architecture into transformer (Vaswani et al., 2017), we find
that more parameters do not translate into better performance.
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Figure 10: System evaluation un-
der different settings. Except for
the random pose* setting (where
MVSelect variants are re-trained),
all models are trained on the de-
fault setting.

Another option for the reward is the change in task loss. In our variant study, this reward design
does not show any significant advantages over the current design.

Influence of total view count. The performance curves in Fig. 9 demonstrate that the joint training
variant achieves competitive performance with as few as T = 2 views for multiview classification
and T = 3 views for multiview detection, beyond which point performance plateaus. By contrast,
learning MVSelect for fixed task networks shows a less steep curve. Notably, both datasets exhibit
an increase in performance up to a total of T = 5 views, at which point the MVSelect policy
performs comparably to the full N -view system.

Camera layout optimization. Determining the optimal camera locations is crucial for setting up an
effective multiview system. In Fig.7, we observe that not all cameras are equally useful according
to the MVSelect policy. To address this, we allocate a validation partition of the data to identify
the more useful camera views and then disable half of the N = 12 cameras that are not frequently
utilized. In testing, we find that this new camera layout (policy shut-off” in Fig. 10) does not
significantly impact the task network or the MVSelect module, and outperforms randomly disabling
6 of the 12 cameras (random shut-off” in Fig.10). Although it is necessary to set up all N cameras
for the analysis, optimizing the multiview camera layout can be a crucial step towards achieving
optimal performance, and merits further investigation.

Random object pose. In real-world applications of multiview systems, such as those found in
iPhones and Teslas, the cameras may remain fixed in their relative positions while the entire system
is in motion. To simulate this scenario in our experiments, we introduce the random object pose
setting (Fig. 10) and re-train MVSelect. While there is no exact object pose as supervision, the
reinforcement learning approach is able to roughly infer the relative poses between the object and
the multiview system, resulting in improved performance compared to random selection and dataset-
level oracle (which is arguably inappropriate for this setup). In the future, we plan to estimate camera
poses with respect to the object or the environment as an auxiliary supervision for moving setups.

6 CONCLUSION

In conclusion, this paper proposes an efficient approach for multiview understanding by limiting the
number of views. To this end, a camera view selection module, MVSelect, is proposed along with
a reinforcement learning based training scheme that can learn from the non-differentiable selection
process. When jointly trained with the task network, the proposed approach demonstrates compet-
itive performance on multiview classification and detection tasks at fractions of the computational
cost. Overall, the proposed efficient approach provides an alternative to reducing image resolution
and using lighter networks, and paves ways for future multiview camera layout optimization.
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A APPENDIX

A.1 MVSELECT ARCHITECTURE

As shown in Fig. 11, we design MVSelect architecture d (·) with two branches. The first branch
expands the camera selection result scam

t ∈ RN into D-dimensional learnable camera embeddings,
and then sums over the selected embeddings to formulate a hidden vector. The second branch
processes the observation sobs

t ∈ RD, and converts that into another hidden vector. By combining
the two hidden vectors, MVSelect outputs the action-value Q (s, a), which measures the expected
cumulative rewards for taking an action a in a given state s.

𝑠𝑠𝑡𝑡ID

𝑠𝑠𝑡𝑡obs

select sum

camera embeddings

𝑄𝑄 𝑠𝑠𝑡𝑡 ,𝑎𝑎

Figure 11: MVSelect architecture.

A.2 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

Datasets. We verify the performance of the proposed approach on multiview classification and
detection tasks.

ModelNet40 is a subset of 3D CAD models in ModelNet Wu et al. (2015). It includes 40 categories
of synthetic 3D objects with 9,843 training models and 2,468 test models. For multiview classi-
fication experiments, we use two different configurations: the 12-view circular configuration from
MVCNN Su et al. (2015) and the 20-view dodecahedral configuration from RotationNet Kanezaki
et al. (2018).

ScanObjectNN is a 3D dataset scanned from real-world objects. Introduced by Uy et al. (2019),
it contains 2902 3D objects across 15 categories. Traditionally used for point cloud classification,
we re-purpose this dataset for multiview classification by rendering textured meshes from the point
clouds and use the same 12 views setup as ModelNet40 (Wu et al., 2015; Su et al., 2015).

Wildtrack Chavdarova et al. (2018) is a real-world multiview detection dataset with 7 camera views
covering a 12 × 36 square meter area, which is represented as a 480 × 1440 grid from BEV. It
contains 360 frames for training and 40 frames for testing.

MultiviewX Hou et al. (2020) is a synthetic multiview detection dataset created using the Unity
Technologies engine. It has 6 cameras with higher pedestrian density than Wildtrack. It focuses
on a 16 × 25 square meter area, which is discretized into 640 × 1000 BEV grid. Like Wildtrack,
MultiviewX also contains 360 training frames and 40 testing frames.

Evaluation metrics. For multiview classification, we follow previous methods Qi et al. (2016);
Kanezaki et al. (2018); Wei et al. (2020); Yu et al. (2018); Yang & Wang (2019); Hamdi et al. (2021)
and report instance-averaged accuracy as the primary indicator.

Regarding multiview detection, we report the following metrics: multi-object detection accuracy
(MODA), multi-object detection precision (MODP), precision, and recall Kasturi et al. (2008). Dur-
ing evaluation, we first compute false positives (FP), false negatives (FN), and true positives (TP),
and then use them to calculate the metrics. Specifically, MODA is calculated as 1− FP+FN

GT , where GT
is the number of ground truth pedestrians. MODP is calculated as

∑
1−dist[dist<thres]/thres

TP , where dist
is the distance from the estimated pedestrian location to its ground truth and thres is the threshold of
0.5 meters. MODP indicates the BEV localization accuracy. Precision and recall are calculated as

TP
TP+FP and TP

GT , respectively.
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Table 5: Performance comparison with state-of-the-art multiview classification and multiview detec-
tion methods. Results are averaged from 5 runs. * indicates that the camera poses are dynamically
chosen and do not follow a pre-defined layout. We also report the MVSelect and task network joint
training results in the last line.

ModelNet40 Wu et al. (2015)
12 views 20 views

MVCNN Su et al. (2015) 90.1 92.0
GVCNN Feng et al. (2018) 92.6 -
MHBN Yu et al. (2018) 93.4 -
RotationNet Kanezaki et al. (2018) - 94.7
RelationNet Yang & Wang (2019) 94.3 97.3
ViewGCN Wei et al. (2020) - 97.6
MVTN* Hamdi et al. (2021) 93.8 93.5
MVCNN (our implementation) 94.5 96.5
MVCNN + MVSelect (2 views) 94.3 94.4

Wildtrack Chavdarova et al. (2018) MultiviewX Hou et al. (2020)
MODA MODP prec. recall MODA MODP prec. recall

RCNN & cluster Xu et al. (2016) 11.3 18.4 68 43 18.7 46.4 63.5 43.9
POM-CNN Fleuret et al. (2007) 23.2 30.5 75 55 - - - -
DeepMCD Chavdarova et al. (2017) 67.8 64.2 85 82 70 73 85.7 83.3
Deep-Occlusion Baqué et al. (2017) 74.1 53.8 95 80 75.2 54.7 97.8 80.2
MVDet Hou et al. (2020) 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
SHOT Song et al. (2021) 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5
MVDeTr Hou & Zheng (2021) 91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2
MVDet (our implementation) 90.0 80.9 95.4 94.5 93.0 90.3 98.7 94.4
MVDet + MVSelect (3 views) 88.6 79.9 93.3 94.2 88.1 89.8 98.2 89.7

All metrics are reported in percentages.

A.3 EVALUATION AGAINST STATE-OF-THE-ARTS

In Table 5, we compare our implementations of MVCNN Su et al. (2015) and MVDet Hou et al.
(2020) with their original implementations and state-of-the-art methods. On 3 datasets and 4 set-
tings, our implementations outperform the original implementations and achieve competitive results.
Although our focus is not on improving these classic architectures, the results indicate that they can
still serve as strong baselines.

Compared to state-of-the-arts that use full N cameras, joint training the tasks network along with
MVSelect gives competitive results while only using T = 2 or T = 3 cameras for multiview
classification and multiview detection.
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