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Abstract001

Entity linking (EL) focuses on accurately asso-002
ciating ambiguous mentions in text with corre-003
sponding entities in a knowledge graph. Tra-004
ditional methods mainly rely on fine-tuning005
or training on specific datasets. However,006
they suffer from insufficient semantic compre-007
hension, high training costs, and poor scala-008
bility. Large Language Models (LLMs) of-009
fer promising solutions for EL, but face key010
challenges: weak simple-prompt performance,011
costly fine-tuning, and limited recall and pre-012
cision due to the lack of LLMs use in candi-013
date generation. Building on this, we introduce014
a novel framework: Adaptive Entity Linking015
with LLM-Driven Contextualization. AELC,016
for the first time, introduces the combination017
of high-density key information condensation018
prompt and tool-invocation strategy, using a019
unified format semantic filtering strategy and020
an adaptive iterative retrieval mechanism to dy-021
namically optimize the candidate set, signifi-022
cantly enhancing both precision and coverage.023
Furthermore, we innovatively reformulate the024
EL task as a multiple-choice problem, enabling025
multi-round reasoning to substantially improve026
the model’s discriminative capability and ro-027
bustness. Experiments on four public bench-028
mark datasets demonstrate that AELC achieves029
state-of-the-art performance. Further ablation030
studies validate the effectiveness of each mod-031
ule.032

1 Introduction033

Entity linking plays a vital role in various NLP034

downstream tasks, including reading comprehen-035

sion (Andrus et al., 2022) and intelligent question036

answering (Wang et al., 2022). EL typically in-037

volves two stages: candidate generation (retrieving038

potential entities) and candidate re-ranking (select-039

ing the most suitable entity from the candidate set).040

Effective EL improves information retrieval and041

improves the accuracy and personalization of con-042

versational systems. However, its performance is 043

often constrained by the quality of candidates. 044

Traditional EL methods typically rely on small 045

pre-trained models for candidate generation (Wu 046

et al., 2019; De Cao et al., 2020). While efficient, 047

these models often lack deep semantic understand- 048

ing, leading to candidate sets with low recall and 049

precision. When the correct entity is missing from 050

the candidate set, existing methods struggle to cope. 051

Some approaches (Le and Titov, 2019; Arora et al., 052

2021) overlook this issue during evaluation, while 053

others introduce a ‘None’ class to bypass it. How- 054

ever, such strategies are unrealistic in practical sce- 055

narios, limiting the robustness and applicability of 056

EL in complex settings. 057

In recent years, the rapid advancement of LLMs 058

has introduced new opportunities for EL, owing to 059

their powerful semantic modeling and reasoning ca- 060

pabilities acquired through training on large-scale 061

datasets. Several studies have explored the integra- 062

tion of LLMs into EL. For example, SumMC (Cho 063

et al., 2022) reformulates the EL task as a multiple- 064

choice problem by generating mention summaries 065

to aid entity selection; ChatEL (Ding et al., 2024) 066

proposes a structured three-stage framework that 067

systematically guides LLMs to produce more ac- 068

curate linking outputs; and LLMaEL (Xin et al., 069

2024) enhances EL by enriching input with LLM- 070

generated mention-focused descriptions, while re- 071

taining traditional models for task-specific process- 072

ing. Despite their potential, these approaches still 073

face significant challenges: most rely on simple 074

prompts, which fail to fully exploit the reasoning 075

capabilities of LLMs; fine-tuning or training LLMs 076

remains computationally expensive and impracti- 077

cal in many scenarios; and critically, the candidate 078

generation stage often fails to leverage LLMs, re- 079

sulting in suboptimal recall and precision, thereby 080

limiting overall EL performance. 081

To overcome these limitations, we introduce 082

AELC (Adaptive Entity Linking with LLM-Driven 083
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Contextualization), a novel framework designed to084

fully leverage the capabilities of LLMs for robust085

EL. The AELC framework consists of three com-086

ponents: LLM-Driven Key Information Conden-087

sation (LLM-KIC), Adaptive Semantic Fusion for088

Dynamic Candidate Generation (ASF-DCG), and089

LLM-Powered Task Formalization Transformation090

(LLM-TFT). LLM-KIC refines the document-level091

entity linking task into paragraph-level subtasks,092

aligning better with LLM input constraints. It em-093

ploys a Key Information Condensation Prompt with094

a built-in chain-of-thought structure to distill the095

context of a mention into high-density key infor-096

mation. ASF-DCG dynamically generates candi-097

date entities based on an online knowledge graph098

through a combination of tool invocation, semantic099

filtering, and adaptive iterative strategies. Finally,100

LLM-TFT enhances the model’s adaptability to the101

EL task by reformulating it into a multiple-choice102

format and leveraging in-context learning, thereby103

significantly improving overall performance.104

To comprehensively assess the effectiveness105

of AELC, we conducted experiments on four106

widely-used EL benchmark datasets, comparing107

our approach against both traditional EL models108

and recent LLM-based methods. Results show109

that AELC consistently outperforms baselines in110

linking accuracy. These findings highlight the111

strength of our framework in enhancing EL perfor-112

mance through the effective integration of external113

tools and the construction of diverse task-specific114

prompts.115

To summarize, the main contributions of this116

work are as follows:117

1. We propose AELC, a novel entity linking118

framework that fully leverages LLMs to address119

key limitations in existing LLM-based EL meth-120

ods, particularly candidate generation and semantic121

reasoning.122

2. We design three components, LLM-KIC,123

ASF-DCG, and LLM-TFT, that work in synergy124

to condense high-density key information, dynam-125

ically retrieve high-quality candidates, and refor-126

mulate the EL task into a multiple-choice format127

to enhance LLM adaptability and accuracy.128

3. We conduct extensive experiments on four129

widely-used EL benchmark datasets, demonstrat-130

ing that AELC outperforms both traditional and131

recent LLM-based approaches, achieving state-of-132

the-art performance in linking accuracy.133

2 Related Work 134

2.1 Supervised Entity Linking 135

Based on embedding models, structural informa- 136

tion learning models can extract valuable struc- 137

tured information to perform EL tasks. For ex- 138

ample, MTransE (Chen et al., 2016) was the first 139

to propose an approach for EL across knowledge 140

graphs using the TransE (Bordes et al., 2013) em- 141

bedding model. It predicts linking results based on 142

distances within a unified embedding space. To ad- 143

dress the issue of strong reliance on training data in 144

the above methods, a BERT-based model known as 145

BLINK (Wu et al., 2019) emerged as the earliest so- 146

lution for zero-shot EL tasks. Based on BLINK, a 147

BART-based model namedGENRE (De Cao et al., 148

2020) was introduced, reportedly outperforming 149

BLINK in performance. Based on probabilistic 150

models, potential mention-candidate pairs are iter- 151

atively labeled to form a training dataset, and the 152

linking results are progressively optimized. For in- 153

stance, the probabilistic model (Fellegi and Sunter, 154

1969) leverages entity-to-attribute similarity and 155

transforms the EL task into a classification prob- 156

lem, thereby constructing a probabilistic model 157

based on attribute similarity. Graph neural network 158

(GNN)-based methods leverage the advantages of 159

GNNs in identifying isomorphic subgraphs to mine 160

finer-grained structural information for improved 161

EL. For instance, models based on graph atten- 162

tion (Xu et al., 2019) utilize the direct contextual 163

information surrounding the target mention to con- 164

struct a topic entity graph, thereby transforming 165

the EL task into a graph matching problem. Based 166

on additional information, methods integrate aux- 167

iliary data to provide complementary views of the 168

KG structure, including entity attributes (Sun et al., 169

2017; Tang et al., 2020; D’Auria et al., 2023a), 170

entity descriptions (Sufi, 2022; Yu et al., 2023), 171

and entity names (Zeng et al., 2020; De Cao et al., 172

2022; D’Auria et al., 2023b). Different models 173

are designed to encode these types of auxiliary in- 174

formation, which serve as pseudo-labeled data for 175

learning a unified structural representation. For 176

instance, this model (Yang et al., 2019) employs 177

graph convolutional networks (GCNs) to combine 178

relational and attribute information of entities in 179

the knowledge graph. 180

2.2 Unsupervised Entity Linking 181

τMIL-ND (Le and Titov, 2019) is one of the earli- 182

est EL models designed for unlabeled data, lever- 183
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aging distant supervision to compute compatibility184

scores between candidate entities and the contex-185

tual cues of the target mention. However, the model186

requires extensive hyperparameter tuning, and its187

experimental performance is highly sensitive to188

the wide range of dataset-specific hyperparameters.189

Zeshel (Logeswaran et al., 2019) utilizes annotated190

datasets for training and non-annotated datasets191

for testing, which relies heavily on its inherent se-192

mantic understanding to resolve novel target men-193

tions. DSEL (Fan et al., 2015) leverages entity194

descriptions from Wikipedia articles, generates a195

large corpus of weakly annotated data, and feeds196

it to a classifier for linking newly discovered tar-197

get mentions. Eigentheme (Arora et al., 2021) is a198

lightweight and scalable EL approach. In geomet-199

ric space, it assumes that target mentions within200

a document reside in a low-rank subspace of the201

complete embedding space formed by candidate202

entity lists. This subspace is identified using sin-203

gular value decomposition (SVD), and linking is204

performed based on the distance between candidate205

entities and the identified subspace. SumMC (Cho206

et al., 2022) is a fully unsupervised model that207

first generates a mention-conditioned summary of208

the surrounding context, and then reframes the209

EL task as a multiple-choice question, selecting210

the correct entity from a predefined list of candi-211

dates. ChatEL (Ding et al., 2024) is a structured,212

three-step framework that systematically guides213

large language models to generate accurate out-214

puts for entity linking tasks. GEMEL (Shi et al.,215

2024) is a generative framework for MEL that uses216

LLMs to directly generate target entity names. LL-217

MaEL (Xin et al., 2024)enhances entity linking by218

augmenting input with mention-focused descrip-219

tions generated by LLMs, while keeping traditional220

models for task-specific processing.221

3 Preliminary222

Let D be a single document from the document223

collection D. Building upon the foundation laid by224

previous work in entity linking, we assume that the225

relevant information pertaining to target mentions226

in document D has been obtained through a named227

entity recognizer. Thus, letMD = {m1, m2,...,mn}228

represent the set of n target mentions contained229

within document D. Let E be the set of all entities230

in the dynamic online knowledge graph G. Let C231

be the candidate set for the target mention, where232

C ⊆ E .233

The input Ψ for unsupervised entity linking com- 234

prises a document D containing target mentions 235

MD and an online source knowledge graph G. The 236

goal of this task is to find an equivalent candidate 237

cj for the target mention mi without pre-training, 238

where candidate cj is drawn from G: 239

Ψ = {(mi, cj)|mi ∈MD, cj ∈ E ,mi ↔ cj},
(1) 240

where mi ↔ cj represents target mention mi and 241

the candidate entity cj are equivalent, i.e., mi and 242

cj refer to the same real-world object. 243

4 Approach 244

In this section, we introduce AELC with the aim of 245

improving the performance of conventional unsu- 246

pervised EL methods. The overview of the frame- 247

work is shown in Figure 1. 248

4.1 Overview 249

EL typically involves two core steps: candidate 250

generation and candidate re-ranking. Traditional 251

methods often rely on small-scale pre-trained mod- 252

els to retrieve candidates from static knowledge 253

graphs. However, due to limited semantic under- 254

standing, these models struggle to achieve high 255

accuracy and coverage. Recent LLM-based ap- 256

proaches have shown promise, yet many fail to 257

leverage the powerful reasoning and comprehen- 258

sion capabilities of LLMs during the candidate gen- 259

eration phase, resulting in low recall and precision, 260

and consequently, suboptimal performance in real- 261

world scenarios. To address these challenges, our 262

framework introduces a key information condensa- 263

tion prompt to enhance mention-level understand- 264

ing. In addition, semantic filtering and an adaptive 265

iterative retrieval strategy are employed to dynam- 266

ically refine candidate sets, improving their accu- 267

racy. Finally, we reformulate the re-ranking task 268

as a multiple-choice problem, further enhancing 269

linking precision. In Section 4.2, we detail how 270

high-density key information is extracted for men- 271

tions. Section 4.3 presents our candidate generation 272

process, incorporating tool-based retrieval, seman- 273

tic filtering, and adaptive iteration. Section 4.4 274

explains how we transform the re-ranking task into 275

a multiple-choice format to improve EL efficiency. 276

4.2 LLM-Driven Key Information 277

Condensation 278

Decompose Task Granularity by split(mention). 279

As a foundational model, LLMs demonstrate pow- 280
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[DOCUMENT]: SOCCER - LATE GOALS GIVE [JAPAN] WIN OVER SYRIA ...

[TARGET MENTION]: JAPAN

[OPTIONS]：
   [can 1]: Japan national football team:(Q170566) men's national association football team representing Japan
   [can 2]: Japan Football Association(Q579842): governing body of association football in Japan
   [can 3]: Japan women's national football team(Q388232): women's national association football team representing Japan
   [can 4]: Japan Self-Defense Forces(Q275488): unified military forces of Japan
   [can 5]: administrative territorial entity of Japan(Q1850442): type of region within Japan

[SELECT BEST OPTION]: Please choose the option that best describes the target mention 'JAPAN' in the given document.

(V) Multiple Choice Prompt
:

:

:

:

Soccer-late goals give JAPAN win over SYRIA...

AL-AIN, United Arab Emirates 1996-12-06 Two
goals in the last six minutes gave holders Japan 
an unispiring 2-1 Asian Cup victory over Syria on
Friday...

Jpan then laid siege to the Syrian penalty area and
had a goal disallowed for offside in the 16th
minute...

Japan started the second half brightly but Sitar
denied them an equaliser when he dived to his right
to save Naoki Soma's low drive in the 53rd minute...

Document is divided into paragraphs:

BertScore

(III) Semantic Disambiguation

BLEU

LLM-Driven Key Information Condensation

(IV) Candidates Adaptive Iteration
Contain the correct entity ?

update the understanding
No

Yes

1. Empire of Japan (Q188712)
2. Tokugawa shogunate (Q205662)
3. Japan (Q17)
4. occupation of Japan (Q696251)
5. history of Japan (Q130436)

10. Japan national football team (Q170566)

200. Ise (Q328067)

. . . 

. . . 

(II) Search results by Tool

Output : The target mention 'JAPAN' refers to a  
        soccer team or national team from Japan. 

(I) Semantic Understanding Prompt

Adaptive semantic fusion for dynamic candidate generation

LLM-Powered Task Formalization Transformation

Figure 1: The overview of AELC, which comprises three core modules: LLM-Driven Key Information Con-
densation, Adaptive Semantic Fusion for Dynamic Candidate Generation, and LLM-Powered Task Formalization
Transformation.

erful NLP capabilities. However, its limitation on281

input context length limits the range and efficiency282

of its applications. This restriction in text length283

may lead to a truncated output, thereby affecting284

the integrity and accuracy of EL.285

For this issue, we were inspired by the least-286

to-most prompt method (Zhou et al., 2022), which287

enhances EL by decomposing document-level tasks288

into sentence-level tasks, as shown by the gray box289

in Figure 1. Given a document D, we use target290

mentions as the basis for task segmentation, divid-291

ing the entire document into a paragraph set PD,292

where each paragraph Pi contains a single men-293

tion m. The process follows a repetitive linking294

paradigm outlined in Algorithm 1.295

Algorithm 1 : Sentence-level EL
Input: A document D; a mention setMD and its

mentions m, m ∈MD; a LLM model L;
a template T for EL prompting.

Output: A candidate set Cans for mention m(s).
1: // Divide D based onMD
2: for m ∈MD do
3: s(m)← split(D)
4: end for
5: // Get a sentence set SD
6: SD ← a sentence set for D;

s ∈ SD
the sentence’s mention m(s)

7: // Traversing SD for EL
8: for s ∈ SD do
9: P ← T (s,m(s));

10: Cans(s)← L(P)
11: end for

Key Information Condensation Prompt. Due296

to the powerful understanding capabilities of297

LLMs, we use them to condense the key infor-298

mation from the context. We provide the mention299

and context for LLMs. First, we design a spe- 300

cific task-oriented Chain-of-Thought to guide the 301

LLM’s focus on the key information of the mention, 302

preventing it from summarizing noisy or redundant 303

information. Second, to ensure stable output from 304

the LLM, we leverage its in-context learning abil- 305

ity and construct a well-designed key information 306

example as a demonstration, specifying the output 307

format for the LLMs. Then, based on the prompt 308

and contextual information, the LLM condenses 309

the key information for the mention, thereby en- 310

hancing its semantic features. 311

4.3 Adaptive Semantic Fusion for Dynamic 312

Candidate Generation 313

Candidate Search Tool-Based. We use the on- 314

line version of Wikidata as the target knowledge 315

graph. However, the online Wikidata functions 316

as an entity-level search engine. For example, 317

searching for sentences like ‘Soccer-late goals give 318

JAPAN win over SYRIA.’ or ‘The target mention 319

JAPAN refers to a soccer team ...’ does not directly 320

retrieve the entity ‘Japan national football team 321

(Q170566)’. To address this issue, we used Wiki- 322

data to search for mention (JAPAN) from the sen- 323

tence and obtain all relevant candidates, as shown 324

in Figure 1 (II). Here, we limit the number of 325

candidates to no more than 200. 326

Candidate Filtering Strategy. Through the 327

candidate search process, we obtained 200 candi- 328

dates related to the target mention ‘JAPAN’. The 329

information for each candidate includes its name, 330

Qid, description, and other attributes. However, as 331

shown in the red dashed box in Figure 1 (II), the 332

top-5 search results include entities that are irrel- 333

evant to the target mention, such as the Japanese 334

nation and history. To further reduce irrelevant can- 335

didates, we adopted a filtering mechanism based 336
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on the similarity between the key information337

of the mention and the descriptions of the can-338

didates. We use BLEU (Papineni et al., 2002)339

and BERTScore (Reimers and Gurevych, 2019) as340

metrics to calculate the similarity of information-341

description pairs, as shown in Figure 1 (III), select-342

ing the top-5 candidates with the highest similarity343

scores, forming the candidate set C.344

Candidate Adaptive Iteration. To further opti-345

mize the candidate filtering process, after obtaining346

the candidate set C, we use LLMs to determine347

whether the candidate set contains the correct en-348

tity corresponding to the mention. As shown in349

Figure 1 (IV), specifically, if the set includes the350

correct entity, the process moves to the next mod-351

ule. If not, the current set is fed back into the ‘Key352

Information Condensation’ stage, integrating the353

candidates into a new prompt. The LLM then gen-354

erates the key information related to the mention355

based on this feedback and iteratively updates the356

candidate set based on the newly generated infor-357

mation. This process continues until LLMs confirm358

that the correct entity exists within the candidate359

set, at which point the iteration stops.360

4.4 LLM-Powered Task Formalization361

Transformation362

The LLM refers to a deep neural network model363

trained on extensive datasets, which demonstrates364

enhanced NLP capabilities and superior generative365

performance compared to traditional machine learn-366

ing models. Consequently, we transform the string367

matching task, typically handled by ML models,368

into a multiple-choice task using LLMs.369

Multiple-choice Prompt. As shown in the blue370

box in Figure 1 (V). The prompt consists of371

four components: [SENTENCE] refers to the con-372

text of mention, [TARGET MENTION] represents373

the mention to be linked, [OPTIONS] includes all374

the choices within the candidate set Cans for the375

multiple-choice question, and [SELECT BEST OP-376

TION] indicates the requirement for the multiple-377

choice question. Based on this multiple-choice378

prompt, LLMs are employed for selection.379

5 Experiments380

5.1 Datasets381

We conducted experiments on four commonly used382

English datasets in EL. The statistics of these383

datasets are shown in Table 1. The categories384

easy, medium, hard and none each represent the385

different candidates for a mention. 386

In order to better measure the performance of 387

our framework, we employed the same dataset as 388

the baseline and conducted experiments on four 389

English datasets in the unsupervised entity link- 390

ing task: AIDA-CoNLL-testb (AIDA-B)1, WNED- 391

Wiki2, WNED-CWEB2, WikiHow-Wikidata (Wiki- 392

Wiki)3. Detailed introductions and statistics of the 393

datasets as shown in the Appendix A. 394

5.2 Baselines 395

We selected previous EL models and a series 396

of LLMs as baselines. Specifically, for previ- 397

ous EL models, we opted for the first annotation- 398

free EL model, τMIL-ND (Le and Titov, 2019), 399

the pioneering unsupervised EL model Eigen- 400

theme (Arora et al., 2021), and the LLM-based 401

EL approach SumMC (Cho et al., 2022), Cha- 402

tEL (Ding et al., 2024), GEMEL (Shi et al., 2024) 403

and LLMaEL (Xin et al., 2024). For LLMs, we 404

chose DeepSeek (DeepSeek-AI et al., 2025), GPT- 405

4 (Achiam et al., 2023), Qwen2-7B-Instruct (Yang 406

et al., 2024), and Llama-2-13b-chat-hf (Touvron 407

et al., 2023). For further information of the base- 408

lines, please refer to Appendix B. 409

5.3 Implementation Details 410

Knowledge Graph. In our framework, we primar- 411

ily consider the Wikidata4. Wikidata is a knowl- 412

edge graph complementing Wikipedia5 (providing 413

rich encyclopedic information about world entities), 414

which structures and organizes this encyclopedic 415

knowledge in relational triples. 416

Experimental Setups. We use a series of LLMs, 417

where the temperature parameter is set to 0.75 (for 418

consistency in fixed output formats) and the maxi- 419

mum token length for the input is set to 256. We 420

use 32 shots in the semantic understanding prompt 421

and 2 shots in the multiple choice prompt and the 422

maximum number of iterations was limited to 5 for 423

the candidates adaptive iteration. Wikidata is used 424

as the source KG, and the number of search results 425

is set to 200. We use precision @1 to evaluate EL 426

effectiveness in all experiments. 427

1https://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/
ambiverse-nlu/aida/downloads

2http://dx.doi.org/10.7939/DVN/10968
3https://drive.google.com/file/d/

1Oebe1sbbixX7FWHX813diCdqReh1IyWH/view
4https://wikidata.org/
5https://en.wikipedia.org/

5

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
http://dx.doi.org/10.7939/DVN/10968
https://drive.google.com/file/d/1Oebe1sbbixX7FWHX813diCdqReh1IyWH/view
https://drive.google.com/file/d/1Oebe1sbbixX7FWHX813diCdqReh1IyWH/view
https://wikidata.org/
https://en.wikipedia.org/


Datasets Details of the mention Details of the document

easy medium hard none overall max_mention overall

AIDA-B 2534 (57%) 1110 (25%) 621 (15%) 148 (3%) 4413 96 231
WNED-WIKI 2731 (41%) 1475 (22%) 1722 (26%) 766 (11%) 6694 46 318

WNED-CWEB 4667 (42%) 3056 (28%) 2653 (24%) 664 (6%) 11040 37 320
Wiki-Wiki 2727 (24%) 8560 (76%) 0 (-%) 0 (-%) 11287 3 7097

Table 1: Datasets and their statistics. The categories easy, medium, hard, and none each represent the different
candidates for a mention: easy means the correct answer is the first candidate; medium means the correct answer is
included but not first; hard means the correct answer is absent from the candidates; none means no candidates are
available. Additionally, max_mention refers to the maximum number of mentions in a single document.

MODELS AIDA-B WNED-Wiki WNED-Cweb Wiki-Wiki

easy med diff All easy med diff All easy med diff All easy med diff All

τMIL-ND 0.70 0.19 0.45 0.45 - - - 0.13 - - - 0.27 - - - 0.31
Eigentheme 0.86 0.50 - 0.62 0.82 0.47 - 0.44 0.77 0.41 - 0.29 0.61 0.53 - 0.50

SumMC 0.80 0.71 - 0.64 0.81 0.65 - 0.47 0.75 0.60 - 0.48 0.62 0.80 - 0.76
ChatEL 0.82 - - 0.64 0.77 - - 0.57 0.71 - - 0.61 0.75 - - 0.67
GEMEL 0.80 - - 0.63 0.72 - - 0.51 0.76 - - 0.69 0.73 - - 0.62
LLMaEL 0.86 - - 0.69 0.85 - - 0.66 0.75 - - 0.63 0.73 - - 0.62

DeepSeekdoc 0.31 0.29 0.27 0.35 0.48 0.39 0.35 0.46 0.40 0.32 0.24 0.31 0.36 0.33 0.27 0.32
DeepSeeksen 0.70 0.66 0.68 0.67 0.63 0.52 0.51 0.55 0.64 0.59 0.60 0.61 0.66 0.67 0.59 0.64

GPT-4doc 0.29 0.26 0.25 0.27 0.12 0.10 0.10 0.11 0.22 0.20 0.20 0.21 0.18 0.15 0.14 0.16
GPT-4sen 0.68 0.66 0.65 0.66 0.57 0.54 0.50 0.54 0.64 0.63 0.62 0.63 0.60 0.58 0.59 0.59
Llamadoc 0.22 0.18 0.10 0.17 0.16 0.15 0.13 0.15 0.15 0.23 0.12 0.17 0.34 0.32 0.27 0.31
Llamasen 0.64 0.37 0.22 0.41 0.61 0.51 0.54 0.55 0.59 0.54 0.28 0.47 0.62 0.64 0.57 0.61
Qwendoc 0.26 0.22 0.14 0.21 0.46 0.34 0.17 0.32 0.36 0.28 0.11 0.25 0.24 0.21 0.23 0.23
Qwensen 0.66 0.52 0.26 0.48 0.62 0.43 0.31 0.45 0.64 0.59 0.18 0.47 0.59 0.56 0.58 0.58

w/o LLM-KIC 0.40 0.35 0.33 0.36 0.26 0.22 0.21 0.23 0.33 0.27 0.28 0.29 0.26 0.25 0.23 0.25
w/o ASF-DSG 0.81 0.70 0.65 0.72 0.81 0.68 0.66 0.72 0.76 0.63 0.67 0.69 0.64 0.76 0.70 0.70
w/o LLM-TFT 0.86 0.74 0.78 0.79 0.84 0.69 0.69 0.74 0.79 0.63 0.67 0.70 0.66 0.80 0.76 0.74

AELCDeepSeek 0.90 0.78 0.80 0.82 0.93 0.67 0.61 0.72 0.86 0.71 0.65 0.74 0.79 0.73 0.66 0.75
AELCGPT−4 0.89 0.76 0.80 0.82 0.77 0.66 0.51 0.65 0.83 0.69 0.64 0.72 0.73 0.64 0.61 0.66
AELCLlama 0.82 0.63 0.57 0.67 0.74 0.60 0.50 0.61 0.79 0.66 0.63 0.69 0.69 0.60 0.59 0.63
AELCQwen 0.86 0.72 0.64 0.74 0.92 0.61 0.50 0.68 0.81 0.68 0.57 0.69 0.72 0.61 0.61 0.65

Table 2: Comparison with Baselines. EL effectiveness assessed through precision@1. med and diff are abbreviations
for medium and hard, respectively. Modeldoc defines mention context as the document, whereas Modelsen restricts
it to the located sentence. LLM-KIC, ASF-DSG, and LLM-TFT are the abbreviations of the three modules. Bold
fonts denote the best methods.

5.4 Main Results428

There are three question modes (easy, medium and429

hard) for EL (see Table 1 for details). We continue430

to employ the results of τMIL-ND and Eigentheme431

from (Arora et al., 2021), utilizing publicly avail-432

able datasets. The results of SumMC are collected433

from (Cho et al., 2022). The specific results are434

presented in Table 2.435

Comparison with Previous EL Models. AELC436

achieves more competitive performance than other437

unsupervised EL models on four datasets.438

Eigentheme performs well in processing Easy439

tasks, mainly due to its effective utilization of re-440

lationships between mentions and its mastery of441

global context, thereby highlighting the core in-442

formation of mentions and significantly improv- 443

ing efficiency in processing Easy tasks. However, 444

Eigentheme neglects the contextual information 445

within documents, which limits its performance in 446

handling other types of tasks. 447

SumMC shows high performance in processing 448

Medium tasks, with accuracy improvements rang- 449

ing from 2% to 45%. This is due to SumMC’s 450

use of LLMs to compress document content into 451

concise sentences directly related to mentions, 452

which not only enriches the contextual informa- 453

tion around the mentions, but also enhances its 454

ability to solve more complex problems. However, 455

the SumMC model has not fully considered the 456

importance of semantic disambiguation, which is 457

an area that needs further improvement. 458
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Figure 2: Compare the quality of candidates for all datasets. The horizontal axis represents the types of
candidates. The vertical axis indicates the number of candidates. The red line shows the distribution of candidates
in the raw dataset, while the green line shows the changes in the distribution of candidates after AELC processing.

In existing EL models, tasks without correct op-459

tions or missing options are usually ignored and not460

processed. The AELC, however, retrieves the latest461

and most accurate information by searching online462

Wikidata, using these search results as candidate463

options. AELC uses an adaptive iterative strategy464

to optimise the candidate options, which signifi-465

cantly reduces the proportion of missing problems466

and improves the accuracy of the processed tasks.467

This method not only complements the shortcom-468

ings of the traditional EL model, but also enhances469

the performance of the model in handling complex470

tasks.471

Comparison with LLMs. Table 2 evaluates472

the performance of various LLMs on the EL tasks.473

Specifically, mentions within documents are ini-474

tially labeled as [mention]. Subsequently, we cate-475

gorize the context of the mention into two levels:476

document-level and sentence-level. Given a set of477

candidates, the models are tasked with selecting478

the candidate most closely related to the [mention]479

based on their understanding of the context. The480

experimental results indicate that DeepSeek demon-481

strates the best performance on the EL task, with482

an average ACC that is 2%-15% higher than other483

models. Compared to the document-level model484

(Modeldoc), the sentence-level model (Modelsen)485

exhibits superior results. This is likely due to the486

limitations of input text length, where longer con-487

texts may introduce noise to the mentions, thus488

reducing the accuracy of EL.489

Comparison of AELC Versions. Table 2490

presents the results of the AELC model in the ab-491

sence of different modules, providing an in-depth492

evaluation of the contributions of each component493

to the overall performance. w/o LLM-TFT resulted494

in a 2%-13% decrease in accuracy. This indicates495

that the introduction of multi-choice prompts sig-496

nificantly enhances the LLM’s understanding of497

task context and its ability to accurately match can-498

didates. w/o ASF-DCG led to an average accuracy499

reduction of 9.5%, reflecting that traditional static 500

retrieval methods struggle to effectively capture 501

deep semantic associations within the context. w/o 502

LLM-KIC caused a substantial accuracy drop of 503

41% to 50%. This significant performance degra- 504

dation validates the crucial role of the adaptive 505

iterative strategy and multi-round interactive opti- 506

mization in constructing high-quality candidates. 507

The Quality of Candidates. In the analysis pre- 508

sented in Figure 2, by comparing the number of 509

candidates across different categories, we observe 510

that AELC significantly enhances the quality of 511

candidates. Specifically, on the AIDA, WNED- 512

WIKI, and WNED-CWEB datasets, the implemen- 513

tation of AELC markedly improved the number of 514

candidates categorized as easy and medium, while 515

significantly reducing those classified as hard and 516

none. Performance on the Wiki-Wiki dataset ap- 517

pears relatively average, which may be due to the 518

dataset being manually annotated and containing 519

only easy and medium categories. This discrepancy 520

could stem from the inherent error rate of LLMs 521

reading comprehension and the stringent search 522

requirements of Wikidata, resulting in some men- 523

tions originally belonging to the easy and medium 524

categories being incorrectly classified as hard. 525

5.5 Further Analysis 526

Effect of key information Condensation Prompt. 527

In Table 3, we compared different key informa- 528

tion condensation prompts. The Promptsummary 529

utilizes LLMs to generate summaries for men- 530

tions and uses Wikidata to retrieve candidates. 531

Promptexample builds on Promptsummary by 532

adding 32 contextual learning examples from Wiki- 533

data to facilitate in-context learning in LLMs. 534

Promptmention directly searches for mentions in 535

Wikidata. Prompt∗X performs a secondary search 536

using mentions when the summary retrieval yields 537

no results. The results show that Promptmention 538

achieves the best candidate quality, indicating 539

7



Prompts 64 tokens 128 tokens

Lsen Lmen Lsen Lmen

Promptsummary 0.14 0.16 0.15 0.18
Prompt∗summary 0.27 0.30 0.31 0.38
Promptexample 0.31 0.33 0.30 0.32
Prompt∗example 0.56 0.57 0.56 0.58
Promptmention 0.65 0.66 0.67 0.68

Table 3: Effect of Tool Adaptation. X tokens represent
the length used to segment document, Lsen represents
linking all mentions in a sentence at once; Lmen means
linking only one mention in a sentence.

Similarity
Promptsummary

64 tokens 128 tokens

Lsen Lmen Lsen Lmen

BLEU 0.54 0.55 0.53 0.58
BERTScore 0.60 0.61 0.62 0.64

Similarity
Promptexample

64 tokens 128 tokens

Lsen Lmen Lsen Lmen

BLEU 0.60 0.62 0.62 0.65
BERTScore 0.64 0.66 0.67 0.69

Table 4: Effect of Candidate Filtering. BLEU and
BERTScore are similarity metrics.

that overly lengthy search fields may degrade540

retrieval performance. Promptexample outper-541

forms Promptsummary, demonstrating that Wiki-542

data provides more updated and accurate entity543

information. Across all prompts, the precision of544

Lmen is higher than that of Ldoc, further validating545

the effectiveness of advanced tools in improving546

information retrieval quality.547

Effect of Candidate Filtering Strategy. In548

Table 4, we employ BLEU (Papineni et al., 2002)549

and BERTScore (Reimers and Gurevych, 2019)550

to calculate sim(keyinformation, description)551

for filtering candidates, where keyinformation is552

the output of the semantic condensation prompt and553

description is candidate’s attribute in wikidata.554

Primarily, the candidates set filtered by similar-555

ity significantly improves the precision of linking.556

Specifically, in Promptsummary, precision saw a557

twofold increase, and in Promptexample, precision558

was on average boosted by 5.5%. Second, the ef-559

fect of using BERTScore is significantly better than560

BLEU. In Promptsummary, precision was on av-561

erage increased by 6.8%, and in Promptexample,562

there was an average improvement of 4.3%. Fi-563

nally, the results show that Men is more accurate564

than Doc. The experimental results demonstrate565

that candidates filtered based on the similarity be-566

Datasets Str. Mat. Mul. Cho.
AIDA-B 0.67 0.85

WNED-Wiki 0.44 0.73
WNED-Cweb 0.42 0.73

Wiki-Wiki 0.60 0.76

Table 5: Effect of Multiple Choice. Mul. Cho. and Str.
Mat. are short for Multiple Choice and String Match.

tween key informations and descriptions, extracted 567

using semantic condensation prompts, show signif- 568

icantly improved quality. 569

Effect of Multiple-choice Prompt. As illus- 570

trated in Table 5, the use of multiple choice prompt 571

for linking outperforms the traditional string match- 572

ing approach. In the WNED-Cweb dataset, there 573

is a maximal precision increase of 31%. Due to 574

the dataset containing a large volume of single- 575

character mentions (e.g., m), which challenge tra- 576

ditional models’ filtering capabilities. However, 577

LLMs improve precision by using their semantic 578

understanding abilities with the multiple-choice 579

prompt. In the wikiwiki dataset, the minimum pre- 580

cision increase is 16%, as the mentions are mainly 581

tangible daily objects (e.g., water) with few seman- 582

tically ambiguous ones. This indicates that LLMs 583

possess a vast knowledge base and excel in seman- 584

tic understanding, surpassing traditional matching 585

models. Leveraging multi-choice prompts allows 586

LLMs to more accurately and efficiently harness 587

their capabilities in entity linking tasks, fully tap- 588

ping into their deep semantic understanding and 589

significantly enhancing overall performance. 590

6 conclusion 591

In this work, we introduce a novel frame- 592

work,Adaptive Entity Linking with LLM-Driven 593

Contextualization (AELC). By leveraging high- 594

density key information condensation prompt and 595

tool invocation strategy, AELC extracts crucial in- 596

formation for target mentions. Moreover, the can- 597

didate filtering strategy combined with the candi- 598

date adaptive iterative strategy improves the quality 599

of the candidate set. Furthermore, we reformu- 600

late the EL task as a multiple-choice problem, en- 601

hancing the adaptability and accuracy of LLMs in 602

performing language tasks. Experimental results 603

demonstrate that AELC achieves state-of-the-art 604

performance on four benchmark datasets. In future 605

work, we will investigate more effective and effi- 606

cient ways to combine LLMs and Tools for entity 607

linking, e.g.,auto prompt learning, and extend this 608

framework to Multimodal Entity Linking task. 609
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Limitations610

Our work has two main limitations. First, we focus611

solely on entity linking within the text modality and612

do not consider other forms of modality-specific613

information. Second, the framework relies on large614

language model APIs, which incurs costs. Fu-615

ture research should explore incorporating a wider616

range of modality information and investigate cost-617

effective ways to leverage LLMs to achieve optimal618

performance.619
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A Details of Datasets789

• The AIDA-CoNLL dataset (Hoffart et al., 2011)790

stands as one of the earliest high-quality manually791

annotated datasets within the entity linking litera-792

ture. It is founded on the CoNLL 2003 shared task793

(Sang and De Meulder, 2003). This dataset is seg-794

mented into training, validation, and testing parti-795

tions. Given the entirely unsupervised nature of our796

framework, we solely utilize the testing (CoNLL-797

Test) subset.798

• The WNED-Wiki and WNED-Cweb799

(WNED-Clueweb) datasets are introduced bench-800

mark datasets by (Guo and Barbosa, 2018), which801

were created by uniformly sampling mentions802

with different levels of prior scores from English803

Wikipedia (‘2013-06-06’ dump) and FACC1 6804

respectively.805

• The Wiki-Wiki dataset (Cho et al., 2022) con-806

sists of mentions of common sense knowledge ex-807

traced from the WikiHow7 and their corresponding808

entity to Wikidata.809

B Details of Baselines810

• τMIL-ND: The τMIL-ND, designed by (Le811

and Titov, 2019), represents one of the earliest EL812

models that does not require annotated datasets. It813

transforms the EL task into a binary multi-instance814

learning (MIL) task by employing a noise-based815

detection classifier with remote supervision816

• Eigentheme: The Eigentheme, designed by817

(Arora et al., 2021), stands out as the most ma-818

ture solution in the realm of fully unsupervised EL819

tasks. By constructing the full embedding space for820

entities through graph embeddings, the model iden-821

tifies the low-rank subspace using Singular Value822

Decomposition (SVD) and calculates candidate en-823

tities based on their proximity to the subspace.824

• SumMC: The SumMC model, as designed by825

(Cho et al., 2022), is a pioneering model that was826

the first to employ a LLM (GPT-3) to achieve a827

fully unsupervised EL task. Currently, it represents828

the state-of-the-art among fully unsupervised EL829

models.830

C The Quality of Candidates for831

Candidate Filtering.832

In our research, Promptsummary denotes the ini-833

tial version of the Key Information Condensa-834

6http://lemurproject.org/clueweb12/
7https://www.wikihow.com/Main-Page

tion Prompt. LLMs execute this prompt to gen- 835

erate summary outputs, which are then used to 836

perform a retrieval in Wikidata. When the re- 837

sults of the search show a significant deviation, 838

Prompt∗summary performs a secondary retrieval by 839

substituting the summary with mentions to improve 840

accuracy. Promptexample is an improved version 841

of Promptsummary that incorporates 32 additional 842

examples to strengthen the LLM’s in-context learn- 843

ing ability. Similarly, after generating output using 844

this prompt, retrieval is performed on Wikidata, 845

and if notable deviations occur, Prompt∗example 846

employs entity mentions as substitutes for a second 847

retrieval. 848

The experimental results in Table 3 show 849

that both Prompt∗summary and Prompt∗example 850

outperform their respective base versions, 851

Prompt∗summary and Promptexample. Conse- 852

quently, we further analyze how these two prompt 853

types affect candidate quality under different 854

context lengths (64 tokens or 128 tokens) and 855

various Candidate Filtering Strategies. 856

• w.o. Can. Fil. : Without using Candidate 857

Filtering. Using the term ‘summary’ returned 858

by Promptsummary as the query, call the dy- 859

namic online Wikidata to directly search for 860

the query, and obtain the results as candidates. 861

• BLEU: Based on the outputs of 862

Prompt∗summary and Prompt∗example, 863

the BLEU metric is used to separately 864

calculate the similarity between the summary- 865

description pairs, which serves as a criterion 866

for candidate filtering. Here, description 867

refers to the attribute information of search 868

entries directly retrieved from mentions in 869

Wikidata. 870

• BERTScore: Similar to the step of BLEU. 871

As shown in Figure 3, the quality of the candi- 872

dates filtered by BLEU and BERT-Score is signifi- 873

cantly higher than that of the unfiltered candidates 874

(denoted as w.o. Can. Fil.). Specifically, the num- 875

ber of candidates that contain the correct answer 876

(categories easy and medium) increases notably, 877

while the number of candidates without the correct 878

answer (hard) and those with no matching search 879

results (none) decreases substantially. 880

This improvement can be primarily attributed to 881

the retrieval capabilities of Wikidata. As a struc- 882

tured knowledge graph, Wikidata excels at retriev- 883

ing entities and their attribute information, with 884
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Prompts Examples of semantic understanding prompt
(sentence, description)

Prompt∗summary
’Soccer-late goals give JAPAN win over SYRIA...’,
’Japan national football team: national association football team.’

Prompt∗example
’Soccer-late goals give JAPAN win over SYRIA...’,
"Japan national football team: men’s national association football team representing Japan."

Table 6: The different instances in Key Information Condensation Prompts.

The candiates of Prompt∗summary

The candiates of Prompt∗example

Figure 3: Quality Demonstration Graph of Candi-
dates for Candidate Filtering.

higher accuracy when the target mention closely885

matches the entity name. However, the complex-886

ity of Wikidata searches increases in practice. For887

example, when querying the keyword “JAPAN”,888

Wikidata returns the entity representing the coun-889

try “Japan (Q17)”. In contrast, a query such as890

“The target mention ‘JAPAN’ refers to a Japanese891

football team or national team that won a match892

against Syria”, Wikidata returns ‘There were no893

results matching the query’. Therefore, directly894

using queries generated by Key Information Con-895

densation Prompt makes it difficult to effectively896

perform both semantic disambiguation and entity897

linking in retrieval.898

Comparing candidate quality under BLEU and899

BERT-Score metrics between Prompt∗summary900

and Prompt∗example reveals that the BERT-Score901

demonstrates a clear advantage. This is because902

BLEU is based solely on word overlap counts with-903

out considering semantic similarity, whereas LLM-904

generated summaries are expressed in natural lan-905

guage, and pre-trained BERT models can effec-906

tively capture deep semantic information, resulting907

in more accurate similarity evaluations.908

Moreover, under the same evaluation condi- 909

tions, the candidates generated by Prompt∗example 910

exhibit higher quality than those generated by 911

Prompt∗summary. This difference comes primarily 912

from variations in the in-context learning examples 913

provided in each prompt, which lead to different 914

interpretations of the mention content, thereby af- 915

fecting the similarity scores computed by BLEU 916

and BERT-Score and ultimately influencing candi- 917

date quality assessment. 918

Table 6 presents an example constituted by 919

a tuple (sentence, description), where the sen- 920

tence, indicating the context of the mention, re- 921

mains consistent between Prompt∗summary and 922

Prompt∗example. The distinction lies in that de- 923

scription in Prompt∗summary is derived from the 924

explanation of the mention in the original dataset, 925

while description in Prompt∗example is derived 926

from Wikidata’s description of the mention. 927

Given that descriptions from Wikidata are more 928

current and accurate, the original dataset’s ex- 929

planations may contain errors due to their tem- 930

poral limitations. Consequently, the candidate 931

quality in Promptexample is superior to that in 932

Promptsummary, further underscoring the neces- 933

sity of using the online dynamic Wikidata as a re- 934

placement for the original static dataset (knowledge 935

graph). 936

D Different combinations of candidates C. 937

Table 7, we present different combinations of 938

Sea_can and Sim_can used to construct the can- 939

didate sets C. 940

Combines 64 tokens 128 tokens

Lsen Lmen Lsen Lmen

Sea_can 0.65 0.66 0.67 0.68
Sim_can 0.47 0.49 0.51 0.54

Sim_can + Sea_can 0.56 0.59 0.61 0.64
Sea_can + Sim_can 0.69 0.71 0.70 0.78

Table 7: Different combinations of Sea_can and
Sim_can to construct the C in AIDA-B dataset.
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• Sea_can refers to candidates constructed941

from the top-5 results obtained by directly942

searching the mention on Wikidata.943

• Sim_can refers to candidates that are con-944

structed from the top-5 results obtained945

through BERTScore (summary, description).946

• Sea_can + Sim_can refers to the candi-947

dates from Sim_can are appended to those in948

Sea_can.949

• Sim_can + Sea_can refers to the candi-950

dates from Sea_can are appended to those951

in Sim_can.952

The precision of Sea_can surpasses that of953

Sim_can. This superiority is attributable to Wiki-954

data’s robust search and matching capabilities,955

which yield the higher quality of results for men-956

tion searches. Additionally, when employing the957

BERTScore model, the model exhibits varying pref-958

erences for different vocabularies. Relying solely959

on the obtained candidates can inadvertently lower960

the correct candidate’s rank among the candidates.961

Based on these observations, we conducted experi-962

ments involving the combination of two subsets of963

candidates.964

The results indicate that Sea_can + Sim_can965

outperforms Sim_can+ Sea_can, mainly due to966

the candidates generated by Wikidata tend to ap-967

pear in the upper half of the candidate list. LLMs968

demonstrate a deeper memory of previously en-969

countered information, which in turn enhances the970

quality of multiple-choice selection, thereby im-971

proving the overall accuracy of entity linking.972

E Different question of multiple choice973

prompts.974

In Table 8, Sentence denotes the sentence con-975

taining the mention, while SummarySumMC and976

SummaryAELC correspond to the summaries gen-977

erated by the SumMC and AELC models, respec-978

tively.979

The results indicate that when employing the980

three terms as the question of multiple-choice981

prompts for entity linking, the precision achieved982

by each prompt does not differ much. Notably,983

the precision of the SummaryAELC is marginally984

higher, that attributable to the detailed steps incor-985

porated within the key information condensation986

prompt. These steps effectively exploit the LLMs987

comprehension capability.988

Questions Can5 Can10 Can20

sentence 0.711 0.774 0.752
summarySumMC 0.713 0.774 0.760
summaryAELC 0.718 0.783 0.764

Table 8: Effect of the different question of multiple
choice prompt. The canN indicates the number of
candidates is N .

Mentions AIDA WNED-Wiki WNED-Cweb Wiki-Wiki

-70% 0.18 0.14 0.18 0.27
-50% 0.35 0.23 0.26 0.41
-30% 0.45 0.30 0.34 0.52
-10% 0.56 0.35 0.36 0.64

all 0.64 0.47 0.48 0.76

Table 9: The analysis of static offline KG. The −X%
indicates random removal of X% of the raw dataset.

The number of candidates affects multiple- 989

choice results, with 10 candidates giving the best 990

results. Having too few candidates (can5) means 991

the correct option might not be covered. In con- 992

trast, having too many (can20) makes the text 993

too long and complicates the selection process for 994

LLMs due to their varied memory for differently 995

sequenced information. 996

F Incompleteness of static knowledge 997

graph. 998

In Table 9, we initiate an analysis of the impact of 999

static offline knowledge graphs on the performance 1000

of the baseline SumMC. Specifically, we conducted 1001

experiments in which we randomly removed 10%, 1002

30%, 50%, and 70% of mentions from the original 1003

dataset, simulating a scenario in which static offline 1004

knowledge graphs lack updates for mentions in the 1005

real world. 1006

The experimental results reveal that when a sub- 1007

stantial number of unknown target mentions are 1008

present, the effectiveness of SumMC experiences 1009

a significant decline. For example, in the case of 1010

the Wiki-Wiki dataset, the removal of 70% of tar- 1011

get mentions results in a reduction of precision 1012

from 76% to 27%. Consequently, the invocation 1013

of tools, specifically the substitution of a static of- 1014

fline knowledge graph with a dynamic online KG, 1015

becomes highly necessary and meaningful. 1016

G Details of Prompts 1017

The details of the Key Information Condensation 1018

Prompt and the Multiple-choice Prompt are shown 1019

in Figures 4 and 5, respectively. 1020

13



===NOTICE==

Key Information Condensation Prompt :
You are an awesome reading comprehension agent. There are many entities with similar names that exist in document which cause ambiguity, such as the fruit 
'apple' and the company 'Apple'. You are provided with context and the interested entity mention in it. Now, your task is to entail carefully a meticulous 

comprehension of the contextual semantics associated with entity as mentioned within the document.
=

1. **Reading Comprehension**: To begin with, carefully read the document and the target mention, ensuring a full understanding of its content. This
encompasses vocabulary, sentence structure, and paragraph organization.

2. **Contextual Analysis**: When the target mention in the document is an abbreviation, acronym, or a person's name, do not assume that there is no
relevance between the document and the target mention. Utilize your comprehension and imagination, consider contextual information within the
document. The document may provide additional insights regarding the target mention, aiding in a better understanding of its meaning.

3. **Identification of Key Information**: Determine crucial information within the document, especially that which is related to the target mention. This
information may include names, dates, locations, events, and more.

4. **Grammar and Contextual Analysis**: Ensure that the understood interpretation makes grammatical sense and aligns with the target mention. For example,
in the context "This is a red [apple], very delicious.", you should understand 'fruit of the apple tree' instead of 'American multinational technology company'
because the former is a fruit while the latter is a company.

5. **Inference and Speculation**: If the document does not furnish enough information to explicitly grasp the meaning of the target mention, you may need to
engage in some inference and speculation. In such cases, you can employ your background knowledge and common sense to make reasonable guesses.

6. [IMPORTANT] **Summarize the Most Likely Meaning**: Must always remember that your task is to summarize the most likely meaning of the target mention
based on your analysis and inferences. Ensure that your summary is concise and relevant to the content of the document. You should progressively
comprehend and summarize the meaning of the target mention step by step, avoiding the direct retrieval of its meaning solely from the words in the target
mention.

===INPUT FORMAT===
You are provided with the [DOCUMENT], the [TARGET MENTION] of the target entity mention.

===OUTPUT FORMAT===
In order to understand the correct meaning of the target mention, you should think step by step, and output in json format. First, you should generate your
'thought' understanding and considering the document, the target mention, and contextual information. Never directly answer the questions in your thoughts in
any other form. Then output the 'meaning' which is the sentence that best matches the target mention mentioned in context.

===EXAMPLES (Prompt 3) ===
1. ('SOCCER - [JAPAN] GET LUCKY WIN, CHINA IN SURPRISE DEFEAT.', "Japan national football team: national association football team"),
2. ('SOCCER - JAPAN GET LUCKY WIN, [CHINA] IN SURPRISE DEFEAT .', 'CHINA'),
3. ('Nadim Ladki [AL-AIN], United Arab Emirates 1996-12-06 Japan began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C

championship match on Friday .', 'AL-AIN'),
4. ('Nadim Ladki AL-AIN, [United Arab Emirates] 1996-12-06 Japan began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C

championship match on Friday .', 'sovereign state in Southwest Asia'),
5. ('Nadim Ladki AL-AIN, United Arab Emirates 1996-12-06 [Japan] began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C

championship match on Friday .', "Japan national football team: national association football team")
......
32. ('Cuttitta announced his retirement after the [1995 World Cup], where he took issue with being dropped from the Italy side that faced England in the pool

stages .', '3rd Rugby World Cup')
===EXAMPLES (Prompt 4) ===
1. ('SOCCER - [JAPAN] GET LUCKY WIN, CHINA IN SURPRISE DEFEAT.', "men's national association football team representing the People's Republic of

Japan"),
2. ('SOCCER - JAPAN GET LUCKY WIN, [CHINA] IN SURPRISE DEFEAT.', "men's national association football team representing the People's Republic of

China"),
3. ('Nadim Ladki [AL-AIN], United Arab Emirates 1996-12-06 Japan began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C

championship match on Friday .', 'city in United Arab Emirates'),
4. ('Nadim Ladki AL-AIN, [United Arab Emirates] 1996-12-06 Japan began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C

championship match on Friday .', 'sovereign state in Southwest Asia'),
5. ('Nadim Ladki AL-AIN, United Arab Emirates 1996-12-06 [Japan] began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C

championship match on Friday .', "men's national association football team representing Japan")
......
32. ('Cuttitta announced his retirement after the [1995 World Cup], where he took issue with being dropped from the Italy side that faced England in the pool

stages .', '3rd Rugby World Cup')
===EXAMPLES (Prompt 5) ===
1. Input:
[DOCUMENT]: The song 'Little [Apple]' is very popular in China.
[TARGET MENTION]: Apple
Output:
{{

"thought" : "In the given document, 'Apple' refers to a song or a piece of music. This is because the document associates 'Apple' with the descriptor 'Little'
and states that it's a popular song in China.",

"understanding" : "The target mention 'Apple' refers to a song or a piece of music called 'Little Apple' that is popular in China."
}}
2. Input:
[DOCUMENT]: SOCCER - LATE GOALS GIVE [JAPAN] WIN OVER SYRIA.
[TARGET MENTION]: JAPAN
Output:
{{

"thought" : "In the given document, 'Japan' refers to a sports team or national team associated with soccer. This is because the document mentions 'Japan'
in the context of a soccer match, stating that they won against Syria due to late goals.",
"understanding" : "The target mention 'Japan' refers to a soccer team or national team from Japan, which won a soccer match against Syria with late goals."

}}

Input: Soccer-late goals give JAPAN win over SYRIA. AL-AIN, United Arab Emirates 1996-12-06 Two goals in the last six minutes gave holders Japan an
uninspiring 2-1 Asian Cup victory over Syria on Friday. Takuya Takagi headed the winner in the 88th minute of the group C game after goalkeeper Salem
Bitar spoiled a mistake-free display by allowing the ball to slip under his body. It was the second Syrian defensive blunder in four minutes. Defender
Hassan Abbas rose to intercept a long ball into the area in the 84th minute but only managed to divert it into the top corner of Bitar's goal. Syria had taken
the lead from their first serious attack in the seventh minute. Nader Jokhadar headed a cross from the right by Ammar Awad into the top right corner of
Kenichi Shimokawa's goal. Japan then laid siege to the Syrian penalty area and had a goal disallowed for offside in the 16th minute. A minute later, Bitar
produced a good double save, first from Kazuyoshi Miura's header and then blocked a Takagi follow-up shot. Bitar saved well again from Miura in the 37th
minute, parrying away his header from a corner.

Figure 4: The Key Information Condensation Prompt. The different examples are show in various prompts.
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1. Faced with multiple candidates, simply choose the one you think is most likely.
2. If all candidate entities are not related to the entity mentioned, please reply [None]. Please note that you should not reply [None] simply because the provide

Multipl-Choice Prompt:
You are an awesome knowledge graph accessing agent. There are many entities with similar names that exist in knowledge graphs which cause ambiguity, such 

as the fruit 'apple' and the company 'Apple'. Given the sentence, and the interested mention in it, you are provided with some candidates and their information of 
description followed by the mentioned entities. Now, your task is to consider carefully which of the candidates matches the mention in sentence.
===NOTICE===

d
sentence information cannot directly select the answer. If the candidate entity explicitly matches the entity mentioned, you should definitely select and return it.

3. If there are no candidate entities for the target mention, please return [None] directly.
4. When the entity mentions in the sentence is an abbreviation or a person's name, do not assume that the candidate entities and entity mentions are unrelated
simply because the information of the candidate entities cannot cover the entity mentions in the sentence. Use your understanding and imagination how the
entities mentioned in the sentence can be related with the candidate entities.

5. Please do your best to ensure the candidate entity you have choosed is equivalent to the entity mentioned in the sentence. They should belong to the same
type. For example, in the sentence "This is a red [apple], very delicious.", you should choose 'apple' instead of 'Apple' because the former is a fruit while the
latter is a company.

6. [IMPORTANT] Must always remember that your task is to select the correct candidate entity rather than answering questions. Never attempt to answer
questions in any other form. Must reply "[CAN 1]", "[CAN 2]" ... "[CAN 5]" or "[NONE]".

===INPUT FORMAT===
You are provided with the [SENTENCE], the [TARGET MENTION] of the target entity mention, [OPTIONS] include no more than 5 candidate entities, and the
question [SELECT BEST OPTION].

===OUTPUT FORMAT===
In order to find the correct candidate entity, you should think step by step, and output in json format. First, you should generate your 'thought' understanding and
considering the sentence, the target mention, and all the candidate entities. Never answer the question directly in your thought with any other form. Then output
your 'choice', which is the entity that best matches the target mention mentioned in sentence like "[CAN 1]", "[CAN 2]" ... "[CAN 5]" or "[NONE]" if there is none.

===EXAMPLES ===
1. Input:
[SENTENCE]: The song 'Little [Apple]' is very popular in China.
[TARGET MENTION]: Apple
[OPTIONS]:

[CAN 1]: apple(Q89): fruit of the apple tree
[CAN 2]: Apple(Q312): American multinational technology company
[CAN 3]: Apple Music(Q20056642): Internet online music service by Apple
......
[CAN 10]: Mac(Q75687): family of personal computers designed, manufactured, and sold by Apple Inc.

[SELECT BEST OPTION]: Please choose the option that best describes the target mention 'Apple' in the given sentence.
Output:
{{

"thought" : "The target mention 'Apple' in the context of a song from China. It's likely referring to the song 'Little Apple' song by Chopstick Brothers. None of
the candidate entities seem to match the song 'Little Apple'.",

"choice":"[None]"
}}

2. Input:
[SENTENCE]: Soccer - late goals give [JAPAN] win over SYRIA.
[TARGET MENTION]: JAPAN
[OPTIONS]:

[CAN 1]: Japan(Q17): island country in East Asia
[CAN 2]: occupation of Japan(Q696251): Allied occupation of Japan following WWII
[CAN 3]: Japan national football team(Q170566): men's national association football team representing Japan
......
[CAN 10]: Sony Music Entertainment Japan(Q732503): Japanese entertainment conglomerate

[SELECT BEST OPTION]: Please choose the option that best describes the target mention 'JAPAN' in the given sentence.
Output:
{{

"thought" : 'The sentence mentions 'JAPAN' in the context of soccer and winning over Syria. It is most likely referring to the 'Japan national football
team(Q170566)' in the context of a soccer match victory.',

"choice": "[CAN 3]" }}

Input: {chatGPT_input}

Figure 5: The Multiple-Choice Prompt.
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