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Abstract
In this position paper, we promote the study of
function spaces parameterized by machine learn-
ing models through the lens of algebraic geome-
try. To this end, we focus on algebraic models,
such as neural networks with polynomial activa-
tions, whose associated function spaces are semi-
algebraic varieties. We outline a dictionary be-
tween algebro-geometric invariants of these va-
rieties, such as dimension, degree, and singular-
ities, and fundamental aspects of machine learn-
ing, such as sample complexity, expressivity,
training dynamics, and implicit bias. Along the
way, we review the literature and discuss ideas
beyond the algebraic domain. This work lays the
foundations of a research direction bridging alge-
braic geometry and deep learning, that we refer
to as neuroalgebraic geometry.

1. Introduction
Parametric machine learning models, such as neural net-
works, define a space of functions as their parameters
vary. These spaces are often referred to as neuromanifolds
(Kohn, 2024; Calin, 2020).

The geometry of neuromanifolds is intimately related to a
number of questions at the heart of machine learning. Some
geometric properties of neuromanifolds, such as their di-
mension, control statistical and computational aspects of
the corresponding model, including sample complexity and
expressivity. Moreover, neural networks learn through a
process of gradient flow of their objective function. This
optimization can be interpreted as minimizing a functional
distance over the neuromanifold, effectively attracting the
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Figure 1. A neural variation of a celebrated doodle from the alge-
braic geometry literature (Grothendieck, 1968).

model towards an estimate of the ground-truth function.
Consequently, geometric problems over neuromanifolds,
such as nearest point problems, govern the training dynam-
ics and provide insights into how neural networks learn.

Therefore, understanding the geometry of neuromanifolds
offers a twofold potential. First, it serves as a powerful
theoretical framework for analyzing and explaining empir-
ical phenomena in machine learning. Second, it can lead
to the design of novel machine learning architectures. By
establishing precise relationships between architectural pa-
rameters and the resulting neuromanifold geometry, we can
systematically design models that exhibit desired theoreti-
cal and practical properties.

1.1. The Power of Algebraic Geometry

A rich class of machine learning models are (semi)-
algebraic, meaning that the corresponding function is
(piece-wise) polynomial in both the input and the parame-
ters. Examples include deep neural networks with polyno-
mial or Rectified Linear Unit (ReLU) activation function.

For (semi-) algebraic models, the neuromanifold can be de-
fined by a finite set of polynomial equalities and inequali-
ties, i.e., it is a semi-algebraic variety. The study of these
spaces is central to algebraic geometry, a field with a rich
mathematical history that offers a wealth of ideas, tools,
and invariants. Many of these, as we will argue, can be
interpreted from the perspective of machine learning, shed-
ding light on important questions in the field. For example,
a fundamental invariant of algebraic varieties is their de-
gree, which is characteristic of algebraic geometry since it
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Machine Learning Algebraic Geometry

sample complexity and expressivity dimension, degree, and covering number

subnetworks and implicit bias singularities

identifiability and invariance fibers of the parameterization

optimization and gradient descent critical point theory, discriminants, and dynamical
invariants

Table 1. A dictionary between machine learning and algebraic geometry.

is undefined for, say, general differentiable manifolds. The
degree plays a central role in learning aspects of the corre-
sponding model (see Section 4.1). Another crucial advan-
tage of algebraic geometry is that, unlike differential geom-
etry, it naturally encompasses singular spaces. This is con-
venient in the context of deep learning; despite the ‘mani-
fold’ terminology, neuromanifolds of neural networks are
far from being smooth spaces, since they often exhibit
singularities that affect the behavior of the corresponding
model. Moreover, as previously mentioned, distances in
the ambient space of neuromanifolds play a central role in
the learning process of machine learning models. This sug-
gests that the metric structure should be taken into account
when analyzing neuromanifolds. Distance-based problems
over algebraic varieties are the focus of the field of metric
algebraic geometry (Breiding et al., 2024), from which we
will borrow several tools throughout this work.

While focusing on algebraic models might seem restric-
tive, we note that arbitrary (continuous) functions can be
approximated by algebraic ones with arbitrary precision.
Thus, algebraic models are not only general, but can ap-
proximate arbitrary neuromanifolds. This allows for the
extension of results and techniques discussed in this work
to non-algebraic models, at least approximately. We will
expand on this in Section 5.1.

1.2. Neuroalgebraic Geometry

Based on these reflections, we argue that algebraic ma-
chine learning models can be studied using the pow-
erful toolbox of algebraic geometry, leading to new in-
sights in deep learning theory. We propose the term neu-
roalgebraic geometry to refer to this emerging field of re-
search. Neuroalgebraic geometry is closely related to al-
gebraic statistics (Pistone et al., 2000) – the study of sta-
tistical models defined by polynomial equations – and can
be interpreted as its counterpart in the context of machine
learning.

In the following sections, we outline aspects of machine
learning that can be reformulated in terms of (metric) alge-

braic geometry, highlighting natural intersections between
the two fields. Along the way, we review and unify the
previous literature in this direction. This work is intended
as an invitation to the field of algebraic geometry for re-
searchers from machine learning, and vice versa. From a
broader perspective, we hope that it will inspire interdis-
ciplinary research, positioning algebraic geometry among
the mathematical disciplines that collaboratively contribute
to unraveling the fundamental principles of deep learning.

2. Alternative Views
A potential counterargument to our position is that the rel-
vance of algebraic models might be limited, both theoreti-
cally and in practice. Indeed, polynomials are rarely used
as activation functions in real-life neural networks, and
they are excluded by standard formulations of the universal
approximation theorem for deep learning (Pinkus, 1999).
However, we believe that algebraic models provide a set-
ting where many intuitions that hold for networks in gen-
eral can be formulated rigorously and, potentially, proved.
Moreover, algebraic models are widely used as building
blocks in actual architectures, as argued in Section 3. Re-
garding approximation results, we note that algebraic mod-
els can approximate arbitrary network architectures, and in-
deed universal approximation theorems can be extended to
include polynomials by considering networks with varying
depth (Yu et al., 2021).

From a broader perspective, several alternative approaches
have been explored to analyze deep learning models, and
in particular the function spaces they parameterize. Each
of these approaches advocates for a specific mathematical
formalism, which naturally brings original ideas to the field
of machine learning, but also comes with restrictions on
the models it considers. We believe that algebraic geome-
try provides unique tools to analyze aspects that are over-
looked by other formalisms, as we will discuss in the next
section.
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2.1. Related Approaches

Information geometry (Amari, 2016) is a well-established
field which studies statistical models and neuromanifolds
from the perspective of Riemannian geometry. While simi-
lar in spirit to neuroalgebraic geometry — both study the
geometry of neuromanifolds — the two approaches rely
on different mathematical machinery. The Riemannian ap-
proach of information geometry is not constrained to al-
gebraic models, but it fails to capture some fundamental
aspects of neural models. As mentioned in Section 1, alge-
braic geometry provides richer invariants than differential
and Riemannian geometry – such as the degree – and it
is more suited for analyzing singular neuromanifolds. The
importance of singularities for these models has led to the
development of singular learning theory (Watanabe, 2009).
The latter stems from information geometry, and naturally
employs ideas from algebraic geometry. Neuroalgebraic
geometry extends this direction, aiming to explore the full
potential of a bridge between algebraic geometry and ma-
chine learning.

Another popular approach to the theoretical analysis of ma-
chine learning models leverages kernel methods – in par-
ticular, the neural tangent kernel (Jacot et al., 2018). The
latter advocates for the study of neural networks at the
infinite-width limit, where the model converges to kernel
regressors. Questions of expressivity and statistical behav-
ior can then be phrased in the language of functional anal-
ysis and Hilbert spaces, deriving insights from the infinite-
dimensional linearized limit. In contrast, neuroalgebraic
geometry considers finite-dimensional and nonlinear alge-
braic varieties that constitute neuromanifolds of algebraic
models, which can approximate arbitrary neuromanifolds
(see Section 5.1). Both approaches are therefore in a sense
complementary to each other.

Further examples of approaches bridging pure mathemat-
ics – in particular, algebra and geometry – with machine
learning include:

• geometric deep learning (Bronstein et al., 2021), con-
cerned with symmetry properties of neural networks
such as invariance and equivariance,

• topological data analysis (Edelsbrunner & Harer,
2010), aiming at extracting topological features from
data,

• topological deep learning (Hajij et al., 2022), con-
cerned with learning from data over non-Euclidean
spaces, such as graphs and simplicial complexes,

• categorical deep learning (Gavranović et al., 2024),
leveraging on category theory for a compositional un-
derstanding of neural architectures.

3. Preliminaries
In this section, we review some basic concepts from ma-
chine learning and introduce the main objects of study of
neuroalgebraic geometry, i.e., neuromanifolds.

A parametric machine learning model is a mapping W ×
X → Y that associates parameters and inputs (w, x) to an
output y, denoted as y = fw(x). Given a dataset consist-
ing of a finite collection of input-output pairs D ⊂ X × Y ,
the empirical risk minimization (ERM) is an optimization
problem consisting in minimizing over W the following
objective:

LD(w) :=
1

|D|
∑

(x,y)∈D

ℓ(y, fw(x)), (1)

where ℓ : Y × Y → R is a loss function. When Y is a Eu-
clidean space or a probability simplex, respectively, com-
mon choices for ℓ are the quadratic loss ℓ(y, ŷ) = ∥y− ŷ∥2
or the cross-entropy loss ℓ(y, ŷ) = −

∑
j yj log ŷj . The

goal of ERM is to find parameters that generalize to unseen
examples. This is typically formulated by assuming that
datapoints are drawn from some distribution, and that the
empirical objective LD approximates Ex,y[ℓ(y, fw(x))],
referred to as generalization error. Often the data dis-
tribution is further assumed to take the form x ∼ π(x),
y = f∗(x), where π is a distribution of inputs and f∗

is a deterministic function mapping inputs to outputs, in-
terpreted as the ground-truth function underlying the given
task.

In deep learning, sophisticated parametric models are con-
structed by composing simpler ones, referred to as modules
or layers. The connectivity of such layers determines an ar-
chitecture class – a family of models with similar design,
e.g., a Multi-Layer Perceptron (MLP) is a sequential com-
position

fw = WL ◦ σ ◦WL−1 ◦ σ · · · ◦W1, (2)

where w = (W1, . . . ,WL), Wi is a linear or affine
layer and σ : R → R is an activation function applied
coordinate-wise. Other classes of modules include struc-
tured linear layers (e.g., those with sparse or convolutional
weight matrices), normalization layers, and sequence-
modeling modules such as (self-) attention mechanisms.

3.1. Neuromanifolds

Definition 3.1. The neuromanifold of a parametric ma-
chine learning model f is:

M := {fw : X → Y | w ∈ W}. (3)

In other words, the neuromanifold is the image of the
parametrization map, denoted by φ : W → M, w 7→ fw.
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Describing neuromanifolds is challenging, as even simple
architecture classes parametrize complex families of func-
tions. Indeed, the parametrization map is typically non-
linear and not one-to-one, resulting in different parameters
that identify the same function. Therefore, the neuromani-
fold carries intrinsic geometric structure that differs drasti-
cally from the one of the parameter space W . As we shall
see, the geometry of M is related to several fundamental
aspects in machine learning.

In this work, we argue that the study of neuromanifolds is
particularly appealing for algebraic models. Assuming that
W , X and Y are Euclidean spaces, we say that a paramet-
ric model f is algebraic if it is a polynomial in both the
parameters and the input. In this case, the neuromanifold
contains vector-valued polynomials fw of bounded degree.
In particular, M is contained in a finite-dimensional lin-
ear sub-space V of the function space. We refer to V as
the ambient space of the neuromanifold. By the Tarski-
Seidenberg theorem (Bierstone & Milman, 1988), the neu-
romanifold is a semi-algebraic variety, i.e., it can be char-
acterized by polynomial equalities and inequalities in V .
The algebraic nature of these spaces allows for theoretical
analysis using tools from algebraic geometry. Neuroman-
ifolds of algebraic models are, therefore, the core focus of
neuroalgebraic geometry.

The main class of examples of algebraic models is pro-
vided by neural networks with polynomial activation func-
tions. Indeed, if σ is a polynomial, then the expression
in Equation 2 is polynomial in both x and w. The study
of MLPs with monomial activation function σ(z) = zk

has been initiated by Kileel et al. (2019). For shallow net-
works – i.e., with L = 2 layers – the corresponding neu-
romanifold coincides with the space of symmetric tensors
of bounded (Waring) rank (Arjevani et al., 2025). For lin-
ear networks – i.e., with no activation function or, equiv-
alently, with k = 1 – the neuromanifold is, similarly, a
space of matrices with bounded rank (Trager et al., 2020).
This space is referred to as determinantal variety and it
is well-understood – see Section A for a detailed discus-
sion. For Convolutional Neural Networks (CNNs), the ge-
ometry of the neuromanifold differs drastically. In this
case, up to rescaling the parameters, M is linearly bira-
tional – i.e., related by a linear map that is an isomorphism
almost everywhere – to a more complex space known
as the Segre-Veronese variety (Kohn et al., 2022; 2024;
Shahverdi, 2024; Shahverdi et al., 2025a). A further exam-
ple of an algebraic model is provided by linear (or ‘light-
ning’) attention mechanisms. These are non-normalized
versions of the layers of a Transformer (Vaswani, 2017),
which are popular nowadays across several applications.
Linear attention mechanisms are cubical layers, and their
neuromanifolds behave similarly to CNNs (Henry et al.,
2025).

We remark that neuroalgebraic geometry can encompass,
more generally, models that are piece-wise polynomial,
fractions of such (Boullé et al., 2020), or even include
roots. Such models also have semi-algebraic neuromani-
folds. This includes neural networks with piece-wise lin-
ear activation functions, such as ReLU σ(x) = max{0, x}.
These models are shortly discussed in Section 5.2.

3.2. Learning on the Neuromanifold

From a geometric perspective, fitting a parametric model
to data can be seen as a constrained optimization problem
over the neuromanifold. However, as noted above, opti-
mization in practice takes place in parameter space, lead-
ing to two related problems in W and M respectively. By
denoting LD = LD◦φ, where LD is the extension of Equa-
tion 1 to the ambient space V , we can write the following
two equivalent optimization problems:

parameter space function space

min
w∈W

LD(w) min
f∈M

LD(f)

The loss landscape is the graph of the loss LD in parame-
ter space. For algebraic loss functions LD (e.g., quadratic
loss or Wasserstein distance for discrete distributions), the
loss landscape is also a semi-algebraic variety, similar to
the neuromanifold. For the cross-entropy loss or other loss
functions with algebraic derivatives, at least the most im-
portant points of the loss landscape – namely, the critical
points – depend algebraically on the data D. Thus, in these
settings, training is an algebraic optimization problem.

While the optimization in parameter space benefits from
a Euclidean domain, enabling the use of algorithms such
as gradient descent, the optimization problem in function
space V is often more tractable from a mathematical per-
spective. In the algebraic setting, this problem is a polyno-
mial program constrained to the neuromanifold. These pro-
grams have a well-developed theory, including, e.g., hierar-
chies of simplified relaxations (Lasserre, 2001). Moreover,
optimization in function space can be often interpreted ge-
ometrically. For the quadratic loss, ERM consists in min-
imizing a potentially-degenerate quadratic form over M,
while the corresponding generalization error coincides with
the squared L2 distance between f ∈ M and the ground-
truth function f∗. In both cases, learning amounts to a
nearest-point problem over the neuromanifold w.r.t. the
(squared) distance associated to the quadratic form. As an-
ticipated in Section 1, this type of problems lies at the heart
of metric algebraic geometry, whose tools, as we shall see,
are central to neuroalgebraic geometry.
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4. Deep Learning from an Algebro-Geometric
Perspective

In this section, we discuss tools, ideas, and invariants from
algebraic geometry relevant to deep learning. The topics
covered are summarized in the dictionary in Table 1. Along
the way, we review the existing literature. In Appendix
Section A, we discuss a toy example of a network where ev-
erything covered in this section can be explicitly described
and interpreted from a machine learning perspective.

4.1. Dimension, Degree, and Covering Number

The notion of dimension is, perhaps, the most natural nu-
merical invariant of a space. The dimension of an alge-
braic variety can be defined as the linear dimension of its
generic local linearization, i.e., the maximum number of
independent vectors in the tangent space at a generic point.
For neuromanifolds, the dimension reflects the intrinsic de-
grees of freedom of the model and is a simple measure of
expressivity that is more precise than the parameter count.
In an algebraic setting, the dimension of a neuromanifold
can be computed exactly using symbolic methods.

On the other hand, the degree of a variety is an algebraic
measure of how ‘curved’ it is in its ambient space. More
precisely, the degree d is the number of complex intersec-
tion points between the variety and a generic affine sub-
space of complementary dimension (appealing to complex
intersection points is necessary for such number to be well-
defined). When the variety is defined by a single polyno-
mial equation, its degree coincides with the degree of that
polynomial, while for general varieties the situation is more
involved, yet the degree is in principle computable using
symbolic methods.

Together, dimension and degree provide bounds on metric
invariants of a variety. Specifically, for a compact variety
M equipped with a metric, they bound the covering num-
ber Nε(M), defined as the minimum number of metric
balls of radius ε required to cover M (Figure 2). Indeed,
the covering number satisfies (Kileel et al., 2019):

logNε(M) = O
(
m log

d

ε
+ C

)
, (4)

where m and d are the dimension and the degree of M, re-
spectively, and C is a constant depending on the dimension
of the ambient space V but independent of m, d, and ε. This
type of bounds for covering numbers originated from the
theory of Vitushkin variations (Yomdin & Comte, 2004) –
higher-order analogues of the degree, capturing more meti-
colously the ‘twistedness’ of the variety.

Now, covering numbers can be interpreted as a measure of
capacity, and are related to fundamental aspects in machine
learning. First, they provide an elementary bound on the

Figure 2. A manifold covered by balls.

volume of the tubular neighborhood Mε consisting of
points in the ambient space of M at a distance less than ε
from a point in M:

Vol(Mε) ≤ Nε(M) ω2ε, (5)

where ω2ε is the volume of a ball of radius 2ε. When M
is a neuromanifold, the volume of Mε measures the set
of functions that can be approximated by a model within
a (quadratic) error of ε, which can be seen as a form of
approximate expressivity. The combination of Equation
5 with Equation 4 is a modern formulation of bounds for
tubular volumes (Basu & Lerario, 2023), but the history of
the result goes back to Weyl’s Tube Formula in Rieman-
nian geometry (Weyl, 1939). Second, covering numbers of
neuromanifolds play a central role from a statistical per-
spective due to their relation to the sample complexity of
learnability. Roughly speaking, according to a fundamental
result in statistical learning theory (Cucker & Smale, 2002;
Pontil, 2003), the number of samples |D| required to in-
fer the function that best approximates the distribution of
data (with high probability, and within a given generaliza-
tion loss margin ε) scales logarithmically in Nε(M). By
the discussion above, this bridges sample complexity to di-
mension and degree of the neuromanifold – we provide a
geometric intuition on this relation in Section B. In conclu-
sion, covering numbers control both the expressivity and
sample complexity of the corresponding model, establish-
ing a fundamental trade-off between them.

Takeaway

The dimension and degree are the most fundamen-
tal invariants of an algebraic neuromanifold. They
control metric quantities such as covering num-
bers, which in turn measure approximate expres-
sivity and sample complexity of the model.
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Figure 3. A singularity of a surface (pink) with a 3-dimensional
Voronoi cell (gray).

4.2. Singularities

As mentioned in Section 1.1, algebraic varieties differ from
differentiable manifolds in that they may exhibit singular-
ities. A point on a variety is called singular if its tan-
gent space has a higher dimension than that of a generic
point. Singularities manifest in various forms such as self-
intersections or sharp cuspidal edges.

Singularities of the neuromanifold play an important role in
the training process of machine learning models, as high-
lighted in singular learning theory (Watanabe, 2009). In-
deed, the learning dynamics can be attracted (locally) by
singularities. This introduces an implicit bias into the
training process, favoring certain functions regardless of
the data. In order to illustrate this, consider the minimiza-
tion of the Euclidean distance from a point in the ambient
space to a variety M, a problem closely related to ERM
with quadratic loss (see Section 3). The Voronoi cell of a
point f ∈ M is the set of points in the ambient space V
whose unique closest point on M is f . At a non-singular
point, the Voronoi cell is contained in the normal space,
i.e., the orthogonal complement of the tangent space. On
the other hand, at a singular point, the Voronoi cell can be
larger, and its dimension can exceed the co-dimension of
M (see Figures 3 and 4). In this case, the singular point is
more likely to solve the optimization problem. The concept
of Voronoi cells and their relation to singularities extends
beyond quadratic losses, e.g. to Wasserstein distances (Be-
cedas et al., 2024) or cross-entropy (Alexandr & Heaton,
2021).

In addition to exhibiting large Voronoi cells, singular points
also affect the training dynamics. They can act as attractors
or slow down the optimization flow, a phenomenon that has
been studied in information geometry (Amari et al., 2006).

Interestingly, singularities of neuromanifolds frequently
correspond to subnetworks of the original architecture,
i.e., functions that can be represented by a smaller net-
work from the same model class. This type of property

has been observed for different architectures such as MLPs
– with (Shahverdi et al., 2025b; Arjevani et al., 2025)
and without (Trager et al., 2020) activation function – and
for CNNs with polynomial activation functions (Shahverdi
et al., 2025b). In these settings, singularities may be re-
sponsible for a form of ‘automatic model selection’, en-
couraging simpler models over more complex ones. This
is also consistent with empirical observations in the liter-
ature, according to which the performance of a model can
often be matched by sparse subnetworks obtained through
pruning or distillation (Zhu et al., 2024) or with careful ini-
tialization (Frankle & Carbin, 2019).

Takeaway

Singularities of the neuromanifold can introduce
implicit biases in the learning process. In deep
learning, they often correspond to subnetworks, fa-
voring the selection of simpler models.

4.3. Parameterization and Fibers

So far, we have discussed the intrinsic geometry of the neu-
romanifold. Since the parameter space has trivial geome-
try, the complexity of the neuromanifold emerges from the
parameterization map φ : W → M. For instance, in pa-
rameter space, the singularities of the neuromanifold are
smoothed out. Instead, they are captured as the critical
points of the parameterization map (discussed in Section
4.4) or its (non-generic) fibers, which we focus on now.

The fibers of a map φ : W → M describe domain points
that are collapsed to the same output. Formally, the fiber of
f ∈ M is φ−1(f) = {w ∈ W | φ(w) = fw = f}. For an
algebraic map φ, almost all its fibers resemble each other
(over C), and are collectively referred to as the generic
fiber. Computing the fibers of a network’s parameterization
formalizes the problem of identifiability in the context of
machine learning, which is concerned with recovering the
parameters of a model from the function they define.

Understanding the generic fiber of a network’s parame-
terization φ provides a practical way of computing the
dimension of the neuromanifold, whose importance has
been discussed in Section 4.1. According to the fiber-
dimension theorem (Shafarevich & Hirsch, 1994, Theo-
rem 1.25), the dimension of the image M coincides with
the co-dimension, in the parameter space W , of the generic
fibers of the map φ.

Fibers can be related to the invariance properties of the
model, which lie at the heart of geometric deep learning
(Section 2.1). Many models carry a (linear) action by the
general linear group GL(R,dim(X )) on their parameter
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space W that satisfies the following adjunction property:

fw(Tx) = fT ·w(x) (6)

for all T ∈ GL(R,dimX ) and w ∈ W . For instance, for
MLPs (Equation 2), this action modifies the first-layer pa-
rameters as T · W1 = W1T . Equation 6 implies that fw
is invariant to a transformation T of its input space if, and
only if, w and T · w belong to the same fiber. This prin-
ciple has been exploited to describe invariant neural net-
works via group-theoretical harmonic analysis (Marchetti
et al., 2024).

As an example, we now describe the fibers of MLPs. Other
architectures have been considered, e.g. CNNs (Shahverdi
et al., 2025b) and attention mechanisms (Henry et al.,
2025). First, arbitrary MLPs exhibit combinatorial sym-
metries in their parameterization, by permuting the output
of a layer and permuting back the input of the following
one. Formally, given a permutation matrix T for some layer
1 ≤ i < L, the simultaneous transformations Wi 7→ TWi

and Wi+1 7→ Wi+1T
−1 do not alter the function defined by

the MLP. Moreover, for (positively) homogeneous activa-
tion functions σ – e.g., σ(x) = xr or ReLU – a similar sym-
metry arises by rescaling the input and output of each neu-
ron. Lastly, when σ(x) = x is the identity, the same holds
for arbitrary invertible matrices T . Intuitively, non-trivial
activation functions ‘break’ symmetries, reducing the lat-
ter to neuron-wise transformations, i.e., permutations and
possibly rescalings. It has been conjectured that such sym-
metries characterize the generic fibers of algebraic MLPs
(Kileel et al., 2019; Kubjas et al., 2024), which has been
recently proven for polynomial activations of high degree
r ≫ 0 (Finkel et al., 2024; Shahverdi et al., 2025b). In the
non-algebraic case, the same result is well-known when σ
is the hyperbolic tangent (Fefferman et al., 1994), while
for ReLU additional non-trivial symmetries arise (Grigsby
et al., 2023).

Takeaway

Fibers of the parameterization control the dimen-
sion and symmetries of the neuromanifold. To-
gether with critical points, they explain the singu-
larities of the neuromanifold.

4.4. Critical Points and Gradient Descent

In this section, we focus on the dynamics of learning and,
in particular, on the equilibria of gradient descent, which
are the critical points of the loss in parameter space:

LD : W φ−→ M LD−→ R. (7)

These aspects are intimately linked with the geometry of
the neuromanifold (e.g., its singularities; see Section 4.2)

and its parameterization map. For instance, a simple ob-
servation is that an algebraic neuromanifold M may have
three qualitative geometric behaviors: it can coincide with
its ambient space V , be a full-dimensional proper subset
of V , or lie within a lower-dimensional algebraic subset.
In the first two scenarios, assuming a convex functional
LD, all critical points of the loss that are not global op-
tima are contained in the set Crit(φ) of critical points of
the parametrization φ.

In general, a parameter w ∈ Crit(φ) can be a critical
point of the loss LD even though the corresponding func-
tion fw ∈ M is not a critical point for the loss func-
tional LD in function space (see Section A for an example).
These parameters are sometimes called spurious critical
points (Trager et al., 2020). For some network architec-
tures, spurious critical points will be typically avoided by
gradient descent, while for others they are found with pos-
itive probability (Kohn et al., 2022). For instance, in the
case of monomial activation, MLPs can have spurious crit-
ical points as local minima with positive probability (Kileel
et al., 2019), while for CNNs they only correspond to the
zero function 0 ∈ M (Shahverdi et al., 2025a). For at-
tention networks, the characterization of spurious critical
points is an open problem.

The non-spurious critical points of the loss can be studied
directly on the neuromanifold M. As we have already dis-
cussed the singularities of M in Section 4.2, we focus here
on the critical points of LD on the smooth locus of M.
These are intimately related to the topology and geometry
of M via Morse theory (Milnor, 1963). The latter estab-
lishes a connection between global topological invariants –
such as Betti numbers – to critical points and their types.
For instance, Morse theory can be applied to the squared
Euclidean distance over algebraic neuromanifolds, i.e. crit-
ical points of ∥ · −f∗∥2 : M → R≥0, where V is the am-
bient vector space and f∗ ∈ V . This optimization problem
is closely related to the training dynamics of the quadratic
loss (Section 3). When this problem is complexified, the
number of critical points for generic f∗ is finite and con-
stant, defining an invariant of M deemed Euclidean dis-
tance degree (Draisma et al., 2016). This invariant is simi-
lar in spirit to the degree (Section 4.1), and intuitively quan-
tifies the complexity of the distance minimization problem
over M. Over the real numbers, the Euclidean distance
degree provides an upper bound for the number of critical
points. More specifically, the number of real critical points
and their type stay locally constant as f∗ varies in V , and
it changes only when crossing particular algebraic varieties
in V , deemed data discriminants (Breiding et al., 2024;
Arjevani et al., 2025); see Figure 4. The concepts of Eu-
clidean distance degree and data discriminants extend to
general algebraic optimization problems beyond quadratic
losses, such as Wasserstein distances (Çelik et al., 2020;
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Figure 4. Illustration of a curve with the corresponding data dis-
criminant (dashed) and Voronoi cell of the singularity (gray). For
points inside (resp. outside) the discriminant, the Euclidean dis-
tance from the curve has 2 (resp. 4) real critical points.

Meroni et al., 2024) and cross-entropy loss (Catanese et al.,
2006). From the perspective of machine learning, all these
notions from (metric) algebraic geometry provide tools to
study the behavior of critical points of the loss function and
the corresponding optimization landscape.

While critical points describe the equilibria of the gradi-
ent flow, its dynamical behavior can be described by its
preserved quantities, referred to as dynamical invariants.
These are relations in the parameters w ∈ W that stay con-
stant along the curve that gradient flow traces in W . Dy-
namical invariants have been discussed for a variety of net-
work architectures (Kohn et al., 2022; Williams et al., 2019;
Du et al., 2018), and the algebraic ones have been recently
described in detail (Marcotte et al., 2024). Knowing the
invariants not only enables to analyze the training dynam-
ics, but can be exploited to design well-behaved parameter
initializations, since gradient flow will avoid all parameters
that do not satisfy the same invariants as the initial values
(Arora et al., 2018b). For instance, a balanced initialization
can lead to stable learning dynamics.

Takeaway

The critical points of the loss are influenced by the
geometry of the neuromanifold. Their number and
type can change suddenly as data crosses discrim-
inants. Moreover, algebraic invariants of gradient
flow govern the training dynamics.

5. Beyond the Algebraic
Throughout this work, we have focused on algebraic mod-
els. In this section, we discuss the possibility of applying
similar ideas beyond the purely algebraic domain.

In our view, borrowing ideas from different fields of math-

ematics contributes to a holistic and multidisciplinary the-
ory, which is essential for a fundamental understanding
of deep learning. In fact, some mathematical ideas dis-
cussed in this work extend beyond the boundaries of al-
gebraic geometry. For example, invariants such as dimen-
sion and covering number are defined for arbitrary metric
spaces, singularities can be studied beyond algebraic vari-
eties, the fiber-dimension theorem holds in great general-
ity, and Morse theory is often formulated within the con-
text of (smooth) manifolds. As a consequence, these gen-
eral tools are applicable to non-algebraic models. Yet, they
often result in a stronger incarnation when specialized to
the algebraic context. For instance, the study of singular-
ities is more tractable for algebraic models and, in addi-
tion to general Morse theory, algebraic geometry provides
new concepts such as data discriminants and Euclidean dis-
tance degrees, enabling a more explicit understanding of
loss landscapes.

In addition, we underline that ideas from algebraic geom-
etry can be applied to non-algebraic models. Below, we
discuss scenarios where such extensions of the methods of
neuroalgebraic geometry are possible.

5.1. Polynomial Approximations

As anticipated in Section 1.1, general machine learning
models can be approximated by algebraic ones. Specif-
ically, by the Weierstrass Approximation Theorem (de la
Cerda, 2023), polynomials are dense in the space of con-
tinuous functions over a compact space (with the uniform
topology). This means that any continuous function can be
approximated, at least locally, by polynomials, which can
be exploited to approximate general neuromanifolds with
algebraic ones.

More precisely, consider the example of an MLP with a
continuous activation function σ, whose neuromanifold is
denoted by M. By restricting both the parameter space W
and the input space X to compact subspaces, the output
of every layer will be confined in a compact subspace as
well. This means that σ can be approximated (w.r.t. the
uniform distance) over an appropriate closed interval of R,
obtaining an approximation (w.r.t. the Hausdorff distance)
of M by the neuromanifold of an algebraic model.

Therefore, it is possible, in certain cases, to extend results
for algebraic neuromanifolds – to which the techniques de-
scribed in this paper apply – to general (continuous) ones
via approximation arguments. As an example, this strat-
egy has been applied to provide bounds on covering num-
bers of MLPs with ReLU activation function by exploiting
the bounds for algebraic models discussed in Section 4.1
(Zhang & Kileel, 2023).

8



Neuroalgebraic Geometry

5.2. Tropical Geometry

For MLPs with ReLU activation function – and, more gen-
erally, with piece-wise linear ones – the associated neuro-
manifold can be studied directly via an alternative version
of algebraic geometry, i.e. tropical geometry (Maclagan &
Sturmfels, 2021). The latter is based on an algebra where
the standard operations of addition and multiplication in
R are replaced by maximum (or minimum) and addition,
respectively. This gives rise to a geometric theory which
is ‘degenerate’, in a certain (precise) sense. Polynomial
functions in this theory are continuous convex piece-wise
linear functions. The connection between ReLU networks
and tropical geometry has been established by Arora et al.
(2018a) and, more explicitly, by Zhang et al. (2018), where
it is argued that any piece-wise linear function can be rep-
resented by such a network with enough layers.

Tropical geometry is closely related to combinatorics and,
in particular, polyhedral geometry. This offers a plethora
of tools from discrete mathematics to address geometric
questions. In particular, the properties on the left-hand side
of Table 1 can be studied by investigating the structure of
combinatorial objects associated to neural networks, such
as polytopes and fans (Montúfar et al., 2022; Brandenburg
et al., 2024b). For example, recent works have explored
these techniques to describe the fibers of the parameteriza-
tion (Section 4.3) of ReLU networks (Brandenburg et al.,
2024a), which relates to profound questions on decompo-
sitions of tropical rational functions (Tran & Wang, 2024).

Takeaway

Algebraic methods can be applied beyond the poly-
nomial domain, e.g. via approximation or by lever-
aging on alternative algebras.

6. Conclusions and Future Directions
In this work, we have outlined the principles of neuroal-
gebraic geometry – an emerging field concerned with the
geometric study of neuromanifolds of algebraic machine
learning models. We have discussed several connections
between algebraic geometry and machine learning, show-
casing how problems from the latter can be rephrased in the
language of the former and addressed mathematically. Our
hope is that this invitation to neuroalgebraic geometry will
foster interdisciplinary research between algebraic geom-
etry and deep learning, unveiling mathematical principles
underlying neural networks and their learning processes.

Throughout this work, we have discussed several open
problems and general questions in the research program of
neuroalgebraic geometry. We conclude by briefly outlining
a few concrete directions for the immediate future. A natu-

ral next step is to extend the algebro-geometric analysis to
a broader class of neural architectures. For instance, skip
connections are algebraic components widely deployed in
modern machine learning. Incorporating skip connections
might result in a smoothing of neuromanifold singularities
(Orhan & Pitkow, 2018), making their analysis particularly
appealing from the perspective of neuroalgebraic geome-
try. Similarly, it would be interesting to understand the neu-
roalgebraic geometry of architectures such as Graph Neural
Networks (GNNs) and State Space Models (SSMs), which
are popular in several domains, and are closely related to
attention-based and convolutional networks. These mod-
els incorporate structures in data such as symmetries and
recursion, falling into the scope of geometric and topolog-
ical deep learning (see Section 2.1). Even further, under-
standing how structures in data can be reflected by geomet-
ric features of the neuromanifold represents a more general
and fundamental question.

From a broader perspective, a desirable outcome of neu-
roalgebraic geometry is to suggest the development of
novel models, as mentioned in Section 1. We believe that
the power of algebraic geometry and its tools lies not only
in providing a descriptive framework, but also in offer-
ing prescriptive principles for the design of theoretically-
grounded models. Potentially, this could pave the way to
new generations of neural architectures whose behavior is
controlled by algebro-geometric invariants.
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A. The Simplest Example
In this section, we discuss a toy example of a neural network with a simple, well-understood neuromanifold. In this case,
several of the points discussed in Section 4 can be described explicitly and interpreted from a machine learning perspective.

We consider a linear MLP with two layers. Formally, given positive integers N0, N1, N2, the model is defined as:

fw(x) = W1W0 x, (8)

where w = (W0,W1) ∈ RN1×N0 ⊕RN2×N1 is a pair of matrices. Since fw is linear, the ambient space of the neuromani-
fold is given by matrices V = RN2×N0 , where the neuromanifold M consists of the ones that factorize in two matrices as
in Equation 8. When N1 ≥ min{N0, N2}, the neuromanifold coincides with all linear maps, i.e., M = V . Instead, when
the network exhibits a ‘bottleneck’ in its architecture, the neuromanifold consists of matrices of rank at most N1. The latter
is a well-understood space, deemed determinantal variety (Bruns & Vetter, 2006).

The determinantal variety can be described as the simultaneous vanishing locus of the determinants of all (N1+1)×(N1+1)
matrix minors, which are polynomial equations in V . It is therefore an algebraic variety. As mentioned in Section 4.3, the
parameterization is invariant to the action by T ∈ GL(R, N1) defined as W0 7→ TW0, W1 7→ W1T

−1. For generic w, this
action provides an isomorphism between its fiber and GL(R, N1). As a consequence, the dimension of M is:

dim(M) = dim(W)− dim(GL(R, N1)) = N1(N0 +N2 −N1). (9)

The degree of the determinantal variety is subtle to compute, and coincides with (Fulton, 2013):

deg(M) =
∏

0≤i<min{N0,N2}−N1

(
max{N0,N2}+i

N1

)(
N1+i
N1

) . (10)

The singular points of the determinantal variety correspond to matrices with rank < N1. From a machine learning per-
spective, these can be interpreted as functions defined by a network with a smaller architecture, where the width of the
hidden layer has been reduced. This showcases the relation between singularities and subnetworks discussed in Section
4.2. Lastly, we consider the distance minimization problem over M with respect to the Euclidean distance over V , i.e.,
the Frobenius distance between matrices. This is equivalent to the traditional problem of low-rank matrix approximation
(Markovsky, 2012), which is ubiquitous across applications. The solution is well-known: by the Eckart-Young-Schmidt
Theorem, the critical points of the distance function from W ∈ V over (the smooth locus of) M are obtained by projecting
to N1 singular values of W . The minima (resp. maxima) occur for the largest (resp. smallest) singular values. In particular,
for generic W there exist a unique minimum, and the Euclidean distance degree of M is

(
min{N0,N2}

N1

)
.

Finally, we compute the spurious critical points of a concrete linear two-layer MLP. We consider the example N0 =
N1 = N2 = 2, where the neuromanifold M is all of R2×2, together with the loss functional L(f) = ∥f − I∥2, i.e., the
squared Frobenius distance from the identity matrix I . Since M is a vector space, L has a unique critical point over M,
given by f = I . However, the corresponding loss function L in parameter space has several critical points, forming an
algebraic variety. This variety has 3 irreducible components: the 4-dimensional fiber φ−1(I), the zero point (0, 0), and a
4-dimensional component of spurious critical points (that is strictly contained in the locus where both W0 and W1 have
rank 1). One concrete point in the latter component is given by W0 =

[
1/2 1/2
1 1

]
and W1 = [ 1 0

1 0 ].

B. A Geometric Perspective on Sample Complexity
As discussed in Section 4.1, the dimension and the degree of the neuromanifold control the sample complexity of the
corresponding model. In what follows, we provide a simple geometric intuition around this relation, in some specific
scenarios. We consider the ERM problem where the dataset D ⊂ X × Y is sampled from a ground-truth function f∗, and
for simplicity assume that Y = R, i.e., the model is scalar-valued. In this case, each datapoint (x, y) defines a hyperplane
Hx,y in the ambient space V consisting of functions f passing through it, i.e., f(x) = y. The intersection

I =
⋂

(x,y)∈D

Hx,y (11)

is the set of functions interpolating D, and assuming the loss function ℓ is positive definite – such as the quadratic loss – it
coincides with the vanishing locus in V of LD. For generic D, I is an affine subspace of V of co-dimension equal to the
dataset size n := |D| – see Figure 5 for an illustration.
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First, we consider the realizable scenario, meaning that f∗ ∈ M. The goal of the model is recovering f∗ from the
data. Denote by m the dimension of the neuromanifold M. When n < m, the intersection I ∩M is infinite, resulting in
impossibility of determining f∗. If n = m, the intersection consists, for generic D, of finitely many isolated points bounded
by the degree d of M. Finally, when n > m, the intersection contains only f∗ for generic D, resulting in unambiguous
recovery. This shows that the sample complexity of learnability is (linear in) the dimension m.

Next, we consider the scenario where f∗ ∈ Span(M) ⊆ V , i.e., the ground-truth function is a linear combination of
functions parametrized by the model. This can be interpreted as the realizable scenario for a ‘mixture of experts’ associated
with the given model (Jacobs et al., 1991). Now, a simple result in algebraic geometry states that the dimension of
Span(M) is bounded by d + m (Eisenbud & Harris, 1987). By reasoning as above, when n ≥ m + d, for generic D, I
intersects Span(M) only in f∗, meaning that the function(s) in M minimizing the generalization error can be recovered
unambiguously. This shows that the sample complexity of learnability is O(m + d), implying that both dimension and
degree play a role in this case.

In general, f∗ belongs to an infinite-dimensional function space a priori. As mentioned at the end of Section 4.1, in order
to relate sample complexity to dimension and degree – and, more fundamentally, to the covering number – it is necessary
to reason statistically over D and invoke concentration inequalities, which lies at the heart of statistical learning theory. To
this end, the following classical result follows from Hoeffding’s inequality (Cucker & Smale, 2002; Pontil, 2003):

Figure 5. The intersection of a line (dashed) – identified by two (hyper-) planes – with a surface yields a finite number of solutions,
bounded by the degree of the variety.

Theorem B.1. Let d be a metric on V and suppose that:

• there exists C ∈ R>0 such that for every probability distribution π over X × Y the corresponding (generalization)
error is C-Lipschitz, i.e., for every f, g ∈ V:

|Lπ(f)− Lπ(g)| ≤ C d(f, g), (12)

where Lπ(f) := E(x,y)∼π[ℓ(f(x), y)], and

• the loss is bounded on the neuromanifold M ⊆ V , i.e., there exists D ∈ R>0 such that |ℓ(f(x), y)| ≤ D for all
f ∈ M and (x, y) ∈ X × Y .

Moreover, assume that M is compact. Then for every distribution π over X × Y and every n ∈ Z>0, ε ∈ R>0:

PD∼πn

(
sup
f∈M

|Lπ(f)− LD(f)| ≥ ε

)
≤ 2 N ε

4C
(M) e−

nε2

D2 , (13)

where N denotes the covering number w.r.t. d.

As a consequence, for every ε, δ ∈ R>0, if the dataset size satisfies

n = |D| = Ω

(
D2

ε2
log

N ε
4C

(M)

δ

)
, (14)
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then minimizing the empirical error LD (ERM) over M leads to the minimization of the generalization error Lπ within
a margin of ε with probability at least 1 − δ. Put simply, the sample complexity of learning the function in M that
minimizes the generalization error is logarithmic in the covering number of M. Together with the connection between
the (logarithmic) covering number with dimension and degree (Equation 4), this provides an upper bound on the sample
complexity of algebraic models.
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