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Abstract
In continual learning settings, deep neural net-
works are prone to catastrophic forgetting. Or-
thogonal Gradient Descent (Farajtabar et al.,
2019) achieves state-of-the-art results in practice
for continual learning, although no theoretical
guarantees have been proven yet. We derive the
first generalisation guarantees for the algorithm
OGD for continual learning, for overparameter-
ized neural networks. We find that OGD is only
provably robust to catastrophic forgetting across
a single task. We propose OGD+, prove that it
is robust to catastrophic forgetting across an arbi-
trary number of tasks, and that it verifies tighter
generalisation bounds. The experiments show
that OGD+ outperforms OGD on settings with
long range memory dependencies, even though
the models are not overparameterized. Also, we
derive a closed form expression of the learned
models through tasks, as a recursive kernel regres-
sion relation, which captures the transferability
of knowledge through tasks. Finally, we quantify
theoretically the impact of task ordering on the
generalisation error, which highlights the impor-
tance of the curriculum for lifelong learning.

1. Introduction
Continual learning is a setting in which an agent is exposed
to multiples tasks sequentially (Kirkpatrick et al., 2016).
The core challenge lies in the ability of the agent to learn
the new tasks while retaining the knowledge acquired from
previous tasks. Too much plasticity will lead to catastrophic
forgetting, which means the degradation of the ability of the
agent to perform the past tasks (McCloskey & Cohen 1989,
Ratcliff 1990, Goodfellow et al. 2014). On the other hand,
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too much stability will hinder the agent from adapting to
new tasks.

Recent works on the Neural Tangent Kernel (Jacot et al.,
2018) and on the convergence of Stochastic Gradient De-
scent for overparameterized neural networks (Arora et al.,
2019) have unlocked powerful tools to analyze the training
dynamics of over-parameterized neural networks. We lever-
age these theoretical findings in order to to prove guarantees
on the convergence and the generalisation of the algorithm,
Orthogonal Gradient Descent for Continual Learning (Fara-
jtabar et al., 2019).

Our contributions are summarized as follows:

1. We provide closed form expressions of the functions
learned across tasks. We find that they can be expressed
as a linear combination of kernel regressors, over the
previously seen tasks. The relationship also captures
task similarity and the transferability of knowledge
across tasks through the NTK (Sec. 3, Theorem 1).

2. We prove the first generalisation bound for continual
learning with OGD, to our knowledge. We derive
bounds for within-task and outside-task generalisation.
We find that generalisation through time depends on
a task similarity with respect to the NTK, which we
quantify rigorously (Sec. 4, Theorem 2).

3. We prove that OGD is robust to forgetting with respect
to the previous task only (Sec. 4, Lemma 1).

4. We build-up on this insight to propose OGD+ (Sec. 5,
Alg. 1), an extension of OGD, which we prove robust
to catastrophic forgetting across an arbitrary number
of tasks (Sec. 5, Lemma 3). We also prove tighter
generalisation bounds than OGD (Sec. 5, Theorem 3).

5. As a side result, we find that Lemma 2 also quantifies
the impact of the learning curriculum on the general-
isation error. We define the NTK task dissimilarity,
find that it impacts negatively generalisation and that
an ordering of tasks that minimises this dissimilarity
between neighbouring tasks leads to a tighter generali-
sation bound. (Sec. 2, Lemma 2).
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Even though the analysis relies on the assumption that
the model is overparametrised, the analysis leads to prac-
tical insights to develop OGD+. Experiments in non-
overparametrised settings on the MNIST and CIFAR-100
benchmarks show that OGD+ outperforms OGD on settings
with long range memory dependencies (Sec. 6).

2. Preliminaries
Notation We use bold-faced characters for vectors and
matrices. We use ‖·‖ to denote the Euclidian norm of a
vector or the spectral norm of a matrix, and ‖ · ‖F to denote
the Frobenius norm of a matrix. We use 〈·, ·〉 for the Euclid-
ian dot product, and 〈·, ·〉H the dot product in the Hilbert
spaceH. We index the the task ID by τ . The ≤ operator if
used with matrices, corresponds to the partial ordering over
symetric matrices. We denote N the set of natural numbers,
R the space of real numbers and N? for the set Nr {0}. We
use ⊕ to refer to the direct sum over Euclidian spaces.

2.1. Continual Learning

Continual learning considers a series of tasks {T 1, T 2, . . .},
where each task can be viewed as a separate supervised
learning problem. Similarly to online learning, data from
each task is revealed only once. The goal of continual
learning is to model each task accurately with a single model.
The challenge is to achieve a good performance on the new
tasks, while retaining knowledge from the previous tasks
(Nguyen et al., 2018).

We assume the data from each task T τ , τ ∈ N?, is drawn
from a distribution Dτ . Individual samples are denoted
(xτ,i, yτ,i), where i ∈ [nτ ]. Also, we only consider the
binary classification setting for the sake of simplicity: xτ,i ∈
Rd and yτ,i ∈ {−1,+1}. We note that it does not restrict
the scope of the analysis, which can be easily extended to
multiclass settings.

2.2. OGD for Continual Learning

Let T T the current task, where T ∈ N?. For all i ∈ [nT ],
let vT,i = ∇θf?T−1(xT−1,i), which is the Jacobian of task
T T . We define Eτ = vec({vτ,i, i ∈ [nτ ]}), which is the
subspace induced by the Jacobian. The idea behind OGD is
to update the weights along the projection of the gradient
on the orthogonal space induced by the Jacobians over the
previous tasks E1 ⊕ . . . ⊕ Eτ−1. The update rule for the
task T T is as follows (Farajtabar et al., 2019):

wT (t+ 1) = wT (t)− ηΠE⊥T−1

∇wLTλ (wT (t)).

The intuition behind OGD is to “preserve the previously
acquired knowledge by maintaining a space consisting of
the gradient directions of the neural networks predictions

on previous tasks” (Farajtabar et al., 2019). Throughout the
paper, we only consider the OGD-GTL variant which stores
the gradient with respect to the ground truth logit.

To prevent over-fitting and guarantee the uniqueness of
the global minimum in the Neural Tangent Kernel (NTK)
regime, we apply a ridge regularization with a parameter
λ ∈ R+. For a task T τ , we write the corresponding loss as
:

Lτλ(w) =

nτ∑
i=1

(fτ (xτ,i)− yτ,i)2 + λ‖w −wτ−1‖2.

2.3. Generalisation for Continual Learning

We define within-task generalisation as the ability of the
agent to acquire new knowlege and outside-task generalisa-
tion as its ability to preserve the acquired knowledge.

Definition 1 (Within-task and outside-task generalisa-
tion) Consider a loss function l : R × R → R. The popu-
lation loss over the distribution D, and the empirical loss
over n samples D = {(xi, yi), i ∈ [n]} from the same
distribution D are defined as:

LD(f) = E(x,y)∼D[l(f(x), y)],

LS(f) =
1

n

n∑
i=1

l(f(xi), yi).

Let T 1, . . . T T a sequence of tasks, and D1, . . .DT their
corresponding distributions. Let f?1 , . . . f

?
T the trained mod-

els at each task. Let τ ∈ [T ] fixed. We define:

• within-task generalisation of the task T τ as LDτ (f?τ ),

• outside-task generalisation of the task T τ with respect
to a task T τ ′ , where τ ′ < τ as LDτ (f?τ ′).

In practice, several works also track these metrics in their
experiments (Kirkpatrick et al. 2016, Farajtabar et al. 2019).

2.4. Neural Tangent Kernel

In their seminal paper, Jacot et al. (2018) established the
connection between deep networks and kernel methods by
introducing the Neural Tangent Kernel (NTK). They showed
that at the infinite width limit, the kernel remains constant
throughout training. Lee et al. (2019) also showed that a
network evolves as a linear model in the infinite width limit
when trained on certain losses under gradient descent.

Throughout our analysis, we make the assumption that the
neural network is overparameterized, and consider the linear
approximation of the neural network around its initialisa-
tion:

f (t)(x) ≈ f (0)(x) +∇wf (0)(x)T (w(t)−w(0)).
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3. Convergence of OGD for Continual
Learning

In this section, we derive a closed form expression for the
learned models across tasks. We find a recursive kernel
ridge regression relationship between the models across
tasks. The result is presented in Theorem 1, a stepping
stone towards proving the generalisation bound for OGD in
Sec. 4.

3.1. Convergence Theorem

Now, we state the main result of this section:

Theorem 1 (Convergence of SGD and OGD for Contin-
ual Learning) Let T 1, . . . , T T be a sequence of tasks. Fix
a learning rate sequence (ητ )τ∈[T ]. If, for all τ , the learning
rate satisfies

ητ <
1

‖kτ (Xτ ,Xτ )‖+ λ2τ
,

then for all τ , wτ (t) converges linearly to a limit solution
w?
τ such that

f?τ (x) = f?τ−1(x) + kτ (x,Xτ )TH−1τ,λτ ỹτ ,

where

kτ (x,x′) = φ̃τ (x)T φ̃τ (x′),

ỹτ = yτ − yτ−1→τ ,

yτ−1→τ = f?τ−1(Xτ ),

φτ (x) = ∇wf?τ−1(x),

Hτ,λτ = kτ (Xτ ,Xτ ) + λ2τ I,

φ̃τ (x) =

{
φτ (x) for SGD,
Tτφτ (x) for OGD.

and {Tτ , τ ∈ [T ]} are proxy matrices for the analysis.

The theorem describes how the model f?τ evolves across
tasks. The theorem is recursive because the learning is
incremental. For a given task T τ , f?τ−1(x) is the knowl-
edge acquired by the agent up to the task T τ−1. At this
stage, the model only fits the residual ỹτ = yτ − yτ−1→τ ,
which complements the knowledge acquired through pre-
vious tasks. This residual is also a proxy for task simi-
larity. If the tasks are identical, the residual is equal to
zero. The knowledge increment is captured by the term:
kτ (x,Xτ )T (kτ (Xτ ,Xτ ) + λ2τ I)

−1ỹτ . Finally, task simi-
larity is computed with respect to the most recent feature
map φ̃τ , and kτ is the NTK with respect to the feature map
φ̃τ .

Corollary 1 The recursive relation from Theorem 1 can
also be written as a linear combination of kernel regressors
as follows:

f?τ (x) =

τ∑
k=1

f̃
?

k(x),

where

f̃
?

k(x) = kk(x,Xk)T (kk(Xk,Xk) + λ2kI)
−1ỹk.

Proof Sketch: We prove Theorem 1 by induction. We
rewrite the loss function as a regression on the residual ỹτ
instead of yτ . Then, we rewrite the optimisation objective
as an unconstrained strongly convex optimisation problem.
Finally, we compute the unique solution in a closed form.
The full proof is presented in App. A.1.

3.2. Distance from Initialisation

As described in Sec. 3.1, ỹτ is a residual. It is equal to
zero if the model f?τ−1 makes perfect predictions on the
next task T τ . The more the next task T τ is different, the
further the neural network needs to move from its previous
state in order to fit it. Corollary 2 tracks the distance from
initialisation as a function of task similarity.

Corollary 2 For SGD, and for OGD under the additional
assumption that {Tτ , τ ∈ [T ]} are orthonormal,∥∥w?

τ+1 −w?
τ

∥∥
F

=
√
ỹTτ H

−1
τ,λτ

Hτ,0H
−1
τ,λτ

ỹτ ,

where

Hτ,λτ = kτ (Xτ ,Xτ ) + λ2τ Iτ .

The proof is presented in App. A.2. The orthonormality
assumption is not restrictive, since the set {Tτ , τ ∈ [T ]}
is only a proxy for the analysis; indeed we can choose any
convenient basis to work with.

Remark 1 Corollary 2 can be applied to get a similar re-
sult to Theorem 3 by Liu et al. (2019). In this remark, we
consider mostly their notations. Their theorem states that
under some conditions, for 2-layer neural networks with
a RELU activation function, with probability no less than
1− δ over random initialisation,

‖W(P )−W(Q)‖F ≤
√
ỹTP→QH

∞−1
P ỹP→Q + ε,

where, in their work:

yP→Q = H∞,TPQ H∞−1P yP ,

ỹP→Q = yQ − yP→Q.
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Note that H∞P is a Gram matrix, which also corresponds
to the NTK of the neural network they consider. We see
an analogy with our result, where we work directly with
the NTK, with no assumptions on the neural network. One
important observation is that, to our knowledge, since there
are no guarantees for the invertibility of our Gram matrix,
we add a ridge regularisation to work with a regularised ma-
trix, which is then invertible. In our setting, by considering
λ→ 0, and with the additional assumption of invertibility
of Hτ,0,which is valid in the two-layer overparametrised
RELU neural network considered in the setting of Liu et al.
(2019), we can recover a similar approximation.

4. Generalisation of OGD for Continual
Learning

In this section, we study the generalisation properties of
OGD. First, we prove that OGD is robust to catastrophic for-
getting with respect to the previous task (Lemma 1). Then,
we present the the main generalisation theorem for OGD
(Thm. 2). The theorem provides several insights on the
relation between task similarity and generalisation. Finally,
we present how the Rademacher complexity relates to task
similarity across a large number of tasks (Lemma 2). The
lemma states that the more dissimilar tasks are, the larger
the class of functions explored by the neural network, with
high probability. This result highlights the importance of
the curriculum for Continual Learning.

4.1. Memorisation property of OGD

The key to obtaining tight generalisation bounds for OGD
is Lemma 1.

Lemma 1 (Memorisation Property of OGD) Given a
task T τ , for all xτ,i ∈ Dτ , a sample from the training
data of the task T τ , it holds that

f?τ+1(xτ,i) = f?τ (xτ,i). (1)

As motivated by Farajtabar et al. 2019, the orthogonality of
the gradient updates aims to preserve the acquired knowl-
edge, by not altering the weights along relevant dimensions
when learning new tasks. Lemma 1 states that the training
error on the previous task is unchanged, when training with
OGD. However, there are no guarantees that the knowledge
from the tasks before the previous task is preserved.

The proof of Lemma 1 is presented in App. B.1.4

4.2. Generalisation of OGD for Continual Learning

Now, we state the main generalisation theorem for OGD,
which provides within-task and outside-task generalisation
bounds.

Theorem 2 (Generalisation of OGD for Continual
Learning) Let {T 1, . . . T T } be a sequence of tasks. Let
be {D1, . . . ,DT } the respective distributions over Rd ×
{−1, 1}. Let {(xτ,i, yτ,i), i ∈ [nt], τ ∈ [T ]} be i.i.d. sam-
ples from Dτ , τ ∈ [T ]. Denote Xτ = (xτ,1, . . . ,xτ,nτ ),
yτ = (yτ,1, . . . , yτ,nτ ). Consider the kernel ridge regres-
sion solution f?T . Suppose that the kernel matrices satisfy

Tr(kτ (Xτ ,Xτ )) = O(nτ ),

then, for any loss function ` : R × R → [0, c] that is c-
Lipchitz in the first argument, with probability at least 1− δ,
for within-task generalisation (T T ),

LDT (f?T ) ≤ λ

2

√
ỹTT kT (XT ,XT )−1ỹT

nT
+

T∑
k=1

(O

√ ỹTkH
−1
k,λk

ỹk

nk

+ ∆k),

for outside-task generalisation (T T−1),

LDT−1
(f?T ) ≤ λ

2

√
ỹTT−1kT (XT ,XT )−1ỹT−1

nT
+

T∑
k=1

(O

√ ỹTkH
−1
k,λk

ỹk

nk

+ ∆k),

and for outside-task generalisation (T τ , τ < T − 1),

LDτ (f?T ) ≤

√√√√Aτ +

T∑
k=τ+1

1

4λ2
ỹTk K̃k,τ ỹk

nτ
+

T∑
k=1

(O

√ ỹTkH
−1
k,λk

ỹk

nk

+ ∆k),

where

∆k = O(
1
√
nk

) + 3c

√
log(2/δ)

2nk
,

Hτ,λ = kτ (Xτ ,Xτ ) + λ2I,

Aτ =
λ2τ
4

ỹTτ (kτ (Xτ ,Xτ ))−1ỹτ
nτ

φτ (x) = Tτ∇wf?τ−1(x),

ỹτ = yτ − yτ−1→τ ,

yτ−1→τ = f?τ−1(Xτ ),

Ki,j,k = ki(Xj ,Xk),

K̃k,τ = K−1k,k,kKk,τ,kK
T
k,τ,kK

−1
k,k,k.
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The intution behind Theorem 2 is as follows:

• Within-task generalisation: The generalisation error on
the most recent task leverages the information learned
during training on the previous tasks. The bound is
tighter compared to learning from scratch, since it de-
pends on the residual ỹτ , which is a proxy for Forward
Transfer. Therefore it captures the transferability of
knowledge across tasks.

• Outside-task generalisation (T T−1): The general-
isation bound increases only with respect to the
Rademacher complexity when training with OGD. The
tightness of this bound for OGD is due to Lemma 1.
This lemma is valid for OGD and not for SGD, which
implies that tighter generalisation is guaranteed com-
pared to SGD.

• Outside-task generalisation (T τ , τ ≤ T − 2): The
upper bound depends on the similarity between the
outside task and the latest task; the more dissimilar
the subsequent tasks are, the more the upper bound
diverges from the initial upper bound. This bound
captures catastrophic forgetting as a function of the
tasks dissimilarity. This bound is the same for OGD
and SGD.

These bounds share some similarities with the bounds de-
rived by Arora et al. (2019), Liu et al. (2019) and Hu et al.
(2019), where in these works, the bounds were derived for
supervised learning settings, and in some cases for two-layer
RELU neural networks. Similarly, the bounds depend on the
Gram matrix of the data, with the feature map corresponding
to the NTK.

Proof Sketch: The proof is presented in App. B.1. One
challenge is that the function class is the set of linear combi-
nations of kernel regressors (Theorem 1). We state Lemma 4
to bound the Rademacher complexity of this function class.
Then we derive bounds for the training error for each case
in Theorem 2. The first case is straightforward. For the
second case, we use Lemma 1, then derive a similar proof
to the first case. The third case presents some additional
technical challenges. In order to derive the upper bounds,
we draw a strong inspiration from Hu et al. (2019), and
leverage several of their proof techniques and mathematical
tools.

4.3. Distance from Initialisation through Tasks

Now, we state Lemma 2, which tracks the Rademacher
complexity through tasks.

Lemma 2 Keeping the same notations and setting as The-
orem 2, the Rademacher Complexity can be bounded as

follows:

R̂(FBT
) ≤

T∑
τ=1

O

√ ỹTτ (kτ (Xτ ,Xτ ) + λ2τ I)
−1ỹτ

nτ


+

T∑
τ=1

O(
1
√
nτ

).

The intuition behind Lemma 2 is that the upper bound
on the Rademacher complexity increases when the tasks
are dissimilar. We define the NTK task dissimilarity be-
tween two subsequent tasks T τ−1 and T τ as S̄τ−1→τ =
ỹTτ (kt(Xτ ,Xτ ) + λ2I)−1ỹτ . This dissimilarity is a gener-
alisation of the term that appears in the upper bound of Thm.
2 by Liu et al. 2019. The knowledge from the previous
tasks is encoded in the kernel kτ , through the feature map
φτ . As an edge case, if two successive tasks are identical,
S̄τ−1→τ = 0 and the upper bound does not increase.

Implications for Curriculum Learning We also observe
that the upper bound depends on the task ordering, which
may provide a theoretical explanation on the importance
of learning with a curriculum (Bengio et al., 2009). In
the following, we present an edge case which provided an
intuition on how the bound captures the importance of the
order. Consider two dissimilar tasks T 1 and T 2. A sequence
of tasks alternating between T 1 and T 2 will lead to a large
upper bound, as explained in the first paragraph. While, a
sequence of tasks concatenating two sequences of T 1 then
T 2 will lead to a lower upper bound.

Proof Sketch: The proof techniques for Lemma 2 are
exactly the same as the ones for Theorem 2. The full proof
is presented in Sec. B.1.6.

5. OGD+: Learning without Forgetting,
provably

In the previous section, we demonstrated the limits of OGD,
in terms of robustness to catastrophic forgetting on the long
run. Now, we present OGD+, an extension of OGD, which
we prove robust to catastrophic forgetting, across an arbi-
trary number of tasks (Lemma 3). Then, we prove tighter
generalisation bounds compared to OGD (Theorem 3).

5.1. The OGD+ Algorithm

Algorithm 1 presents the OGD+ algorithm, we highlight the
differences with OGD in red. The main difference is that
OGD+ stores the feature maps with respect to the samples
from previous tasks, in addition to the feature maps with
respect to the samples from the current task, as opposed
to OGD. This small change unlocks the proof of Lemma 3
given below, which implies tighter bounds for Theorem 3.
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The idea behind OGD+ comes from the convergence The-
orem (Sec. 3, Thm. 1). After training on a task T τ , the
learned model is a linear combination of the previous mod-
els. For a given sample x from a task T k where k < τ , in
order to keep the training error identical, the weights need
to be updated along the directions that are orthogonal to all
the subsequent feature maps of x. OGD only considers the
feature map of the source task of the sample. Storing all
the feature maps implies that the learned model back from
task T k, can be recovered even after training on an arbitrary
number of tasks.

In order to compute the feature maps with respect to the
previous samples, OGD+ saves these samples in a dedicated
memory, we call this storage the samples memory. This
memory comes in addition to the orthonormal feature maps
memory. The only role of the samples memory is to compute
the feature maps. While the proofs below are under the as-
sumption that the memory size is infinite, in the experiments,
we keep a limited size for both memories.

Algorithm 1: OGD+ for Continual Learning
Input :A task sequence T 1, T 2, . . ., learning rate η

1. Initialize SJ ← {} ; SD ← {}; w← w0

2. for Task ID τ = 1, 2, 3, . . . do
repeat

g← Stochastic Batch Gradient for T τ at w;

g̃ = g −
∑

v∈SJ projv(g);

w← w − ηg̃
until convergence;

Sample S ⊂ SD;

for (x, y) ∈ Dτ
⋃
S and k ∈ [1, c] s.t. yk = 1 do

u← ∇fτ (x;w)−
∑

v∈SJ projv(∇fτ (x;w))
SJ ← SJ

⋃
{u}

end
Sample D ⊂ Dτ ;

Update SD ← SD
⋃
D

end

5.2. Memorisation Property of OGD+

The key to obtaining tight generalisation bounds for OGD+
is the Lemma 3 below. It states that the training error across
all previous tasks is unchanged, when training with OGD+.

Lemma 3 (Memorisation Property of OGD+) Given a
task T τ , for all xk,i ∈ Dk, a sample from the training data
of a previous task, it holds that:

f?τ (xk,i) = f?k (xk,i).

The full proof of Lemma 3 is presented in App . C.1.

5.3. Generalisation Guarantees for OGD+

Now, we state the generalisation theorem for OGD+, which
provides tighter generalisation bounds in comparison with
Theorem 2, for OGD.

Theorem 3 (Generalisation of OGD+ for Continual
Learning) Under the same conditions as Theorem 2, for
OGD+, it holds that, for all tasks T τ , within-task and
outside-task generalisation error can be bounded as fol-
lows

LDτ (f?T ) ≤ λ

2

√
ỹTτ kT (Xτ ,Xτ )−1ỹτ

nτ
+

T∑
k=1

O

√ ỹTk (kk(Xk,Xk) + λ2kI)
−1ỹk

nk

+ ∆k,

where

∆k = O(
1
√
nk

) + 3c

√
log(2/δ)

2nk
,

φτ (x) = Tτ∇wf?τ−1(x),

ỹτ = yτ − yτ−1→τ ,

yτ−1→τ = f?τ−1(Xτ ).

The generalisation bounds of Theorem 3 are tighter than the
generalisation bounds for OGD. The tightness of the bounds
is a consequence of Lemma 3. The term that corresponds to
the Rademacher complexity is unchanged, while the term
that bounds the training error is tighter. It is also tighter than
a standard supervised learning bound, because it captures
the transferability of knowledge across tasks through the
residual ỹτ , as opposed to the Supervised Learning only
bounds, which would depend on yτ instead.

Proof Sketch The full proof is presented in App. C.2.
The proof is based on Lemma 3 and Lemma 4. The proof
techniques are the same as the ones for Theorem 2.

6. Experiments
We perform experiments on the continual learning bench-
marks Permuted MNIST, Rotated MNIST, Split MNIST
(Farajtabar et al., 2019), and Split CIFAR-100 benchmark
(Chaudhry et al., 2019). In order to assess the robustness
to catastrophic forgetting over long tasks sequences, we
increase the length of the tasks streams from 5 to 15 for the
MNIST benchmarks, and consider all the 20 tasks for the
Split CIFAR-100 benchmark.
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Baselines We consider SGD and OGD as baselines for
comparison. SGD draws a lower bound over the perfor-
mance as it doesn’t explicitly retain information in Contin-
ual Learning settings. OGD is an important baseline, as the
analysis shows that OGD+ is more robust to Catastrophic
Forgetting than OGD in theory and that OGD achieves state-
of-art results on Continual Learning benchmarks.

Setup We keep the same neural network architecture and
mostly similar hyperparameters as Farajtabar et al. 2019. We
use a single-head MLP for Permuted MNIST and Rotated
MNIST, a multi-head MLP for Split MNIST and a multi-
head LeNet (Lecun et al., 1998) for Split CIFAR-100. We
keep a small learning rate of 10−2 in order to preserve the
locality assumption. Since the tasks streams we consider
are large, we set the memory size to 1.000. Reproducibility
details are presented in App. E.1.

6.1. Permuted MNIST

Permuted MNIST (Goodfellow et al., 2014) consists of
a series of MNIST supervised learning tasks, where the
pixels of each task are permuted with respect to a fixed
permutation. The permutations are sampled independently
in order for the tasks to be equally hard. Therefore, the
benchmark is a proxy for the effetiveness of the algorithms
to remember samples from the previous tasks without any
without knowledge transfer between the tasks.

The results are reported in Table 1 and Table 8 (App. E.4.1).
We find that OGD+ significantly outperforms OGD and
SGD on the oldest tasks. While OGD either outperforms or
is equivalent to OGD+ on the most recent tasks.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5

OGD+ 75.5±0.5 81.8±2.3 81.4±0.6 85.4±2.1 86.5±1.2
OGD 37.7±5.6 72.6±4.3 74.2±3.7 81.7±1.9 82.8±1.3
SGD 56.5±4.6 49.5±5.9 57.6±3.9 60.9±2.4 75.1±3.3

Table 1. Permuted MNIST : The test accuracy of models from the
indicated task after being trained on all 15 tasks in sequence. The
best continual learning results are highlighted in bold.

6.2. Rotated MNIST

Rotated MNIST (Farajtabar et al., 2019) consists of a series
of MNIST classification tasks, where the images are rotated
with respect to a fixed angle, monotonically. We increment
the rotation angle by 5 degrees at each new task.

The results are reported in Table 2 and Table 9 (App. E.4.2).
We find that OGD+ significantly outperforms OGD and
SGD on the oldest tasks, and that OGD and OGD+ become
equivalent the more recent the tasks are.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5

OGD+ 50.4±2.5 52.5±1.9 60.4±1.6 67.6±1.9 73.1±1.8
OGD 41.4±2.0 44.3±1.5 51.5±2.2 59.8±1.6 66.9±0.7
SGD 31.4±0.7 34.2±0.7 40.2±0.6 47.2±0.5 55.3±0.5

Table 2. Rotated MNIST : The test accuracy of models from the
indicated task after being trained on all 15 tasks in sequence. The
best continual learning results are highlighted in bold.

6.3. Split MNIST

Split MNIST (Zenke et al., 2017) consists of five binary
classification tasks built from MNIST. The labels are split
into the sets 0/1, 2/3, 4/5, 6/7 and 8/9. The results are
reported in Table 3. We see that OGD+ outperforms OGD
and SGD on the oldest task, OGD and OGD+ are equivalent
on the two subsequent tasks, then SGD, OGD and OGD+
are almost equivalent on the remaining most recent tasks.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5

OGD+ 97.1±0.3 99.0±0.2 98.7±0.2 99.5±0.1 96.9±0.1
OGD 96.5±0.3 99.1±0.2 98.8±0.2 99.5±0.1 96.8±0.1
SGD 85.7±3.2 98.3±0.5 98.4±0.2 99.4±0.1 97.0±0.1

Table 3. Split MNIST : The test accuracy of models from the
indicated task after being trained on all 5 tasks in sequence. The
best continual learning results are highlighted in bold.

6.4. Split CIFAR-100

Split CIFAR-100 (Chaudhry et al., 2019) is constructed by
splitting the original CIFAR-100 dataset (Krizhevsky, 2009)
into 20 disjoint subsets, where each subset is formed by
sampling without replacement 5 classes out of 100.

The results are reported in Table 4 and Table 10 (App. E.4.3).
We find that OGD+ outperforms OGD on average on the
oldest tasks. However, the performance difference is not
statistically significant overall. One probable reason is that
for the Split CIFAR-100 benchmark, it is likely that inde-
pendent tasks would share multiple features, therefore the
forgetting component is less isolated by the benchmark com-
pared to the benchmarks presented in the previous sections.
Therefore, even over long tasks sequences, relevant features
may occur multiple times in intermediate tasks, in which
case, OGD+ may not have a significant edge over OGD.

In order to verify this hypothesis, we track the dynamics of
SGD, OGD and OGD+ on the 8 first tasks (Fig 1, App. E.2).
We observe that backward transfer occurs frequently during
training, as there are performance improvement spikes on
old tasks even though the model is not trained on them
specifically. Also, as opposed to the previous benchmarks,
the performance margin with SGD is much smaller.



Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5

OGD+ 62.1±3.2 69.3±4.3 75.8±1.4 67.9±2.4 70.0±3.8
OGD 61.6±2.0 70.0±5.2 75.4±2.2 66.5±1.9 70.0±5.1
SGD 50.7±4.9 66.1±6.0 67.2±5.7 61.6±3.7 59.9±6.0

Table 4. Split CIFAR-100 : The test accuracy of models from the
indicated task after being trained on all 20 tasks in sequence. The
best continual learning results are highlighted in bold.

6.5. In summary

Overall, we find that OGD and OGD+ outperform SGD on
all benchmarks. OGD+ outperforms OGD when the task’s
relevant features’ occurrence is the furthest away in the past.
Otherwise, OGD and OGD+ are mostly equivalent. These
results concur with Lemma 6 which states that OGD is ro-
bust to catastrophic forgetting up to a single task ahead, and
Lemma 3, which states that OGD+ is robust to catastrophic
forgetting across any number of tasks. Also, two proba-
ble reasons OGD+ is not perfectly prone to catastrophic
forgetting in the experiments are the memory limit and the
non-overparameterization of the neural network. We discuss
more in detail the limits of OGD+ in Sec. D.

7. Related works
Continual Learning Approaches to Continual Learning
can be categorised into: regularization methods, memory
based methods, and dynamic architectural methods. We
refer the reader to the survey (Parisi et al., 2019) for an ex-
tensive overview on the existing methods. The idea behind
memory-based methods is to store data from previous tasks
in a buffer of fixed size, which can then be reused during
training on the current task (Chaudhry et al. 2019, Van de
Ven & Tolias 2018). Dynamic architectural methods rely
on growing architectures which keep the past knowledge
fixed and store new knowledge in new components, such as
new nodes, layers ... (Lee et al. 2018, Schwarz et al. 2018)
The idea behind regularization methods is to regularize the
objective in order to preserve the knowledge acquired from
the previous tasks (Kirkpatrick et al. 2016, Aljundi et al.
2018, Farajtabar et al. 2019, Zenke et al. 2017).

Catastrophic Forgetting refers to the tendency of agents
to ”forget” the previous tasks over the course of training.
Several heuristics were developed in order to characterise
it (Ans & Rousset 1997, Ans & Rousset 2000, Goodfellow
et al. 2014, French 1999, McCloskey & Cohen 1989, Robins
1995, Nguyen et al. 2019).

Transfer Learning The closest work to ours to our knowl-
edge is (Liu et al., 2019), which presents a theoretical anal-
ysis of Transfer Learning for over-parameterised 2 layer
RELU neural networks.

Deep Learning Theory Recent works have started to pro-
vide explanations about the mechanics of overparametrised
Neural Networks. In their seminal work, Du et al. (2018)
prove that Gradient Descent on multilayer overparametrised
RELU neural networks achieve zero training error at the
limit. These works have unlocked the analysis of several
properties of Deep Neural Networks, in the context of var-
ious applications, such as Transfer Learning (Liu et al.,
2019), Noisy Supervision (Hu et al., 2019), Reinforcement
Learning (Wang et al., 2020) ... Another line of works pro-
vide closed form expressions of the training dynamics of
overparameterized neural networks, leveraging tools from
statistical physics (Goldt et al. 2019, Goldt et al. 2020).

Statistical Learning Theory Alquier et al. (2017) define
a compound regret for lifelong learning, as the regret with
respect to the oracle who would have known the best com-
mon representation g for all tasks in advance. Another
line of works addresses lifelong learning and meta-learning
from a statistical learning theory perspective, they define
and provide regret bounds for lifelong learning (Alquier
et al., 2017), or study the sample complexity and conver-
gence of meta-learning algorithms (Denevi et al. 2018a, Du
et al. 2020, Ji et al. 2020, Saunshi et al. 2020, Denevi et al.
2018b).

8. Conclusion
We presented several theoretical results on the convergence
and generalisation properties of OGD and OGD+ for Contin-
ual Learning, then showed that these results are applicable
to practical settings. We also found theoretical connections
to Transfer Learning and Curriculum Learning.

Firstly, as opposed to OGD, the memory requirement of
OGD+ scales quadratically with the number of samples.
Finding a way to prioritize the feature maps to store is criti-
cal to scale to larger tasks and model architectures. Another
important direction for future investigation is a theoretical
analysis of the other Continual Learning training methods
and catastrophic forgetting heuristics, such as the ones pre-
sented by Nguyen et al. (2019). Even for asymptotic cases,
the analysis may provide insights on their properties, limits
and directions of improvement. Also, it would be interesting
to investigate the applicability of the theory to neighbour-
ing fields such as meta-learning, multi-task learning ... We
hope this analysis provides new keys to investigate these
directions.
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A. Missing proofs of section 3 - Convergence
A.1. Proof of Theorem 1

Orthogonal Gradient Descent Proof

We prove the Theorem 1 by induction. Our induction hypothesis Hτ is the following :

Hτ : For all k ≤ τ , Theorem 1 holds.

First, we prove that H1 holds.

The proof is straightforward. For the first task, since there were no previous tasks E1 = ∅. Therefore, OGD on this task is
equivalent to SGD.

Therefore, it is equivalent to minimising the following objective, where τ = 1 :

arg min
w∈Rd

∥∥φτ (Xτ )T (w −w?
τ )− ỹτ+1

∥∥2
2

+ λτ‖w −w0‖2

The objective is quadratic and the Hessian is positive definite, therefore the minimum exists and is unique :

w?
τ −w0 = φτ (Xτ )(φτ (Xτ )Tφτ (Xτ ) + λ2τI)−1ỹτ

For τ = 1, since there are no previous tasks ỹτ = yτ . Therefore :

w?
τ −w0 = kτ (x,Xτ )(kτ (Xτ ,Xτ ) + λ2τ I)

−1ỹτ

Which completes the proof of H1.

Let τ ∈ N?, assume Hτ is true, we show Hτ+1

On the task τ + 1, we can write the loss Lτ+1 as :

Lτ+1(wτ+1(t)) =
∥∥φτ (Xτ )T (wτ+1(t)−w?

τ )− ỹτ+1

∥∥2
2

+ λτ+1‖wτ+1(t)−w?
τ‖

2

We recall that the optimisation problem at time (τ + 1) :

arg min
w∈Rd

∥∥φτ (Xτ )T (w −w?
τ )− ỹτ+1

∥∥2
2

+ λτ+1‖w −w?
τ‖

2

u.c. Vτ+1(w −w?
τ ) = 0

Let Tτ+1 ∈ Rd×(d−Kτ+1) and w̃τ+1 ∈ Rd−Kτ+1 such as :

w −w?
τ = Tτ+1w̃τ+1

Kτ+1 = dim(Eτ+1)

We rewrite the objective by plugging in the variables we just defined. The two objectives are equivalent :

arg min
w̃∈Rd−Kτ+1

∥∥φτ (Xτ )TTτ+1w̃ − ỹτ+1

∥∥2
2

+ λτ+1‖Tτ+1w̃‖22

For clarity, we define Zτ+1Rnτ+1×(d−Kτ+1) as :

Zτ+1 = φτ (Xτ )TTτ+1
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By plugging in Zτ+1, we rewrite the objective as :

arg min
w̃∈Rd−Kτ+1

∥∥Zτ+1w̃ − ỹτ+1

∥∥2
2

+ λτ+1‖Tτ+1w̃‖22

The optimisation objective is quadratic, unconstrainted, with a positive definite hessian. Therefore, an optimum exists and is
unique :

w̃?
τ+1 = ZTτ+1(Zτ+1Z

T
τ+1 + λ2τ+1I)−1ỹτ+1

We recover the expression of the optimum in the original space :

w?
τ+1 −w?

τ = Tτ+1Z
T
τ+1(Zτ+1Z

T
τ+1 + λ2τ+1I)−1ỹτ+1

We define the kernel kτ+1 : Rd × Rd → R as :

kτ+1(x,x′) = φτ (x)TTτ+1T
T
τ+1φτ (x′) for all x,x′ ∈ Rd

Now we rewrite w?
τ+1 −w?

τ :

w?
τ+1 −w?

τ = Tτ+1Z
T
τ+1(kτ+1(Xτ ,Xτ ) + λ2τ+1I)−1ỹτ+1

Finally, we recover a closed form expression for f?τ+1 :

First, we use the induction hypothesis Hτ :

f?τ+1(x) = f?τ (x) + 〈∇wf?τ (x),w?
τ+1 −w?

τ 〉
= f?τ (x) + φτ (x)Tτ+1Z

T
τ+1(kτ+1(Xτ ,Xτ ) + λ2τ+1I)−1ỹτ+1

= f?τ (x) + kτ+1(x,Xτ )(kτ+1(Xτ ,Xτ ) + λ2τ+1I)−1ỹτ+1

At this stage, we have proven Ht+1.

We conclude.

Stochastic Gradient Descent The proof is exactly the same as the proof for Orthogonal Gradient Descent, except that
there are no equalities constraints.

A.2. Proof of the Corollary 2

Orthogonal Gradient Descent Proof

In the proof of Theorem 1 (App. A.1), we proved that :

w?
τ+1 −w?

τ = Tτ+1Z
T
τ+1(kτ+1(Xτ ,Xτ ) + λ2τ+1I)−1ỹτ+1

Therefore :∥∥w?
τ+1 −w?

τ

∥∥2 = ỹTτ+1(kτ+1(Xτ ,Xτ ) + λ2τ+1I)
−1Zτ+1T

T
τ+1Tτ+1Z

T
τ+1(kτ+1(Xτ ,Xτ ) + λ2τ+1I)−1ỹτ+1

= ỹTτ+1(kτ+1(Xτ ,Xτ ) + λ2τ+1I)
−1kτ+1(Xτ ,Xτ )(kτ+1(Xτ ,Xτ ) + λ2τ+1I)−1ỹτ+1

Stochastic Gradient Descent The proof is exactly the same as for Orthogonal Gradient Descent.
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B. Missing proofs of section 4 - Generalisation
B.1. Proof of Theorem 2

B.1.1. NOTATIONS

We recall that :

f?τ (x) =

τ−1∑
k=1

f?k (x) + kτ (x,Xτ )T (kτ (Xτ ,Xτ ) + λ2τ I)
−1ỹτ

We define :

f̃
?

τ (x) = kτ (x,Xτ )Tατ

where :

ατ = (kτ (Xτ ,Xτ ) + λ2τ I)
−1ỹτ

Then :

f?τ (x) =

τ∑
k=1

f̃
?

τ (x)

Reminder on RKHS norm

Let k a kernel, andH the reproducing kernel Hilbert space (RKHS) corresponding to the kernel k.

Recall that the RKHS norm of a function f(x) = αT k(x,X) is :

‖f‖H =
√
αT k(X,X)α

Reminder on Generalization and Rademacher Complexity Consider a loss function l : R× R→ R. The population
loss over the distribution D, and the empirical loss over n samples D = {(xi, yi), i ∈ [n]} from the same distribution D are
defined as :

LD(f) = E(x,y)∼D[l(f(x), y)]

LS(f) =
1

n

n∑
i=1

l(f(xi), yi)

Theorem 4 Suppose the loss function is bounded in [0, c] and is ρ−Lipchitz in the first argument. Then, with probability at
least 1− δ over sample S of size n :

sup
f∈F
{LD(f)− LS(f)} ≤ 2ρR̂(F) + 3c

√
log(2/δ)

2n
(2)

B.1.2. BOUNDING THE RADEMACHER COMPLEXITY

Lemma 4 (Rademacher Complexity of a linear combination of kernels) Let kt : X × X → R, t ∈ [T ] kernels such
that :

sup
x∈X

‖kt(x,x)‖ <∞
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To every kernel kt, we associate a feature map φt : X → Ht, whereHt is a Hilbert space with inner product 〈·, ·〉Ht
, and

for all x,x′ ∈ X , kt(x,x′) = 〈φt(x), φt(x
′)〉Ht

We define F as follows :

F = {x→
T∑
t=1

ft(x), ft(x) = αTt kt(x,Xt) ∀t ∈ [T ], ‖ft‖Ht
≤ Bt} (3)

Let X1, ..., Xn be random elements of X . Then for the class F , we have :

R̂(F) ≤
T∑
t=1

2Bt
nt

(Tr(kt(Xt,Xt)))
1/2

Proof

Let f ∈ F , and let x ∈ X :

f(x) =

T∑
t=1

nt∑
i=1

αtikt(x,x
t
i)

For all t ∈ [T ], we associate a feature map φt : X→ Ht

∀x,x′ ∈ X kt(x,x
′) = 〈φt(x), φt(x

′)〉Ht

Therefore :

f(x) =

T∑
t=1

nt∑
i=1

αti〈φt(xti), φt(x)〉Ht

=

T∑
t=1

〈
nt∑
i=1

αtiφt(x
t
i), φt(x)〉Ht

On the other hand, the following holds ∀t ∈ [T ] :∥∥∥∥∥
nt∑
i=1

αtiφt(x
t
i)

∥∥∥∥∥
2

Ht

=
∑
i,j

αtiα
t
jkt(x

t
i,x

t
j) ≤ B2

t

Therefore :

F ⊂ {x→
T∑
t=1

〈wt, φt(x)〉Ht
, ‖wt‖2 ≤ Bt ∀t ∈ [T ]} := F̃

Now, we derive an upper bound of the Rademacher complexity of F :

R̂(F) ≤ R̂(F̃)

= E[ sup
‖wt‖2≤Bt,t∈[T ]

T∑
t=1

〈wt,
2

nt

nt∑
i=1

εiφt(x
t
i)〉Ht

|(Xt)]

=

T∑
t=1

E[ sup
‖wt‖2≤Bt

〈wt,
2

nt

nt∑
i=1

εiφt(x
t
i)〉Ht

|(Xt)]

≤
T∑
t=1

2Bt
nt

(Tr(kt(Xt,Xt)))
1/2

The last inequality is obtained by applying the upper bound from Lemma 22 in (Bartlett & Mendelson, 2003), on each
function ft
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B.1.3. BOUNDING
∥∥∥f̃?τ∥∥∥Hτ

:

Lemma 5 LetHτ the Hilbert space associated to the kernel kτ .

We recall that :

f̃
?

τ (x) = kτ (x,Xτ )Tατ

ατ = (kτ (Xτ ,Xτ ) + λ2τ I)
−1ỹτ

Then :∥∥∥f̃?τ∥∥∥2Hτ

≤ ỹTτ (kτ (Xτ ,Xτ ) + λ2I)−1ỹτ

Proof ∥∥∥f̃?τ∥∥∥2Hτ

= αTτ kτ (Xτ ,Xτ )ατ

= yTτ (kτ (Xτ ,Xτ ) + λ2I)−1kτ (Xτ ,Xτ )(kτ (Xτ ,Xτ ) + λ2I)−1ỹτ

Since (kτ (X,X) + λ2I)−1 ≤ kτ (X,X)−1, we get :∥∥∥f̃?τ∥∥∥2Hτ

≤ ỹTτ kτ (Xτ ,Xτ )(kτ (Xτ ,Xτ ) + λ2I)−1ỹτ

B.1.4. PROOF OF LEMMA 1

The intuition behind the proof is : since the gradient updates were performed orthogonally to the feature maps of the training
data of the source task, the parameters in this space are unchanged, while the remaining space, which was changed, is
orthogonal to these features maps, therefore, the inference is the same and the training error remanis the same as at the end
of training on the source task.

Proof

f?T (xT−1,i) = f?T−1(xT−1,i) + 〈φT (xT−1,i),w
?
T −w?

T−1〉
= f?T−1(xT−1,i) + 〈∇wf(w?

T−1,x),w?
T −w?

T−1〉

Since we the training on task T T is perfomed with OGD, we have :

ΠET−1
(w?

T −w?
T−1) = 0

Since ∇wf(w?
T−1,x) ∈ ET−1 by definition, it follows that :

f?T (xT−1,i) = f?T−1(xT−1,i)
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B.1.5. BOUNDING THE TRAINING ERROR

Lemma 6 The training errors on the source and target tasks can be bounded as follows :

Let T ∈ N fixed. Then, for all τ ∈ [T ]

1

nT

nT∑
i=1

(f?T (xT,i)− yT,i)2 ≤
1

nT

λ2

4
ỹTT (kT (XT ,XT ))−1ỹT

1

nT−1

nT−1∑
i=1

(f?T (xT−1,i)− yT−1,i)2 ≤
1

nT−1

λ2

4
ỹTT−1(kT−1(XT−1,XT−1))−1ỹT−1

For all τ ∈ [T − 2]

1

nτ
‖f?T (Xτ )− yτ‖

2
2 ≤

1

nτ
(
λ2

4
ỹTτ (kτ (Xτ ,Xτ ))−1ỹτ+

T∑
k=τ+1

1

4λ2
ỹTk kk(Xk,Xk)−1k(Xτ ,Xk)k(Xτ ,Xk)T kk(Xk,Xk)−1ỹk)

Task T T Proof

We start from the definition of the training error :

nT∑
i=1

(f?T (xT,i)− yT,i)2 =
∥∥(kT (XT ,XT )T (kT (XT ,XT ) + λ2I)−1 − I)ỹT

∥∥2
2

The expression is very similar to the previous norm, we can derive the same analysis as above to derive the following bound :

nT∑
i=1

(f?T (xT,i)− yT,i)2 ≤
λ2

4
ỹTT (kT (XT ,XT ))−1ỹT

Therefore :

1

nT

nT∑
i=1

(f?T (xT,i)− yT,i)2 ≤
1

nT

λ2

4
ỹTT (kT (XT ,XT ))−1ỹT

Task T T−1 Proof

We start with the definition of the training error, then applying Lemma 1 :

nT−1∑
i=1

(f?T (xT−1,i)− yT−1,i)2 =

nT−1∑
i=1

(f?T−1(xT−1,i)− yT−1,i)2

=
∥∥f?T−1(XT−1)− yT−1

∥∥2
2

=
∥∥kT−1(XT−1,XT−1)T (kT−1(XT−1,XT−1) + λ2I)−1 − I)ỹT−1

∥∥2
2

=
∥∥−λ2(kT−1(XT−1,XT−1) + λ2I)−1ỹT−1

∥∥2
2

= λ4
∥∥(kT−1(XT−1,XT−1) + λ2I)−1ỹT−1

∥∥2
2

= λ4yTT−1(kT−1(XT−1,XT−1) + λ2I)−2ỹT−1
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Since :

(kT−1(XT−1,XT−1) + λ2I)−2 ≤ 1

4λ2
kT−1(XT−1,XT−1)−1

We get :
nT−1∑
i=1

(f?T (xT−1,i)− yT−1,i)2 ≤
λ2

4
ỹTT−1(kT−1(XT−1,XT−1))−1ỹT−1

Therefore :

1

nT−1

nT−1∑
i=1

(f?T (xT−1,i)− yT−1,i)2 ≤
1

nT−1

λ2

4
ỹTT−1(kT−1(XT−1,XT−1))−1ỹT−1

Task T 1, ..., T T−2 Proof

Let τ ∈ [T − 2] fixed.

We recall that :

f?T (x) = f?τ (x) +

T∑
k=τ+1

f̃
?

k(x)

Then :

‖f?T (Xτ )− yτ‖
2
2 =

∥∥∥∥∥f?τ (Xτ ) +

T∑
k=τ+1

f̃
?

k(Xτ )− yτ

∥∥∥∥∥
2

2

≤ ‖f?τ (Xτ )− yτ‖
2
2 +

∥∥∥∥∥
T∑

k=τ+1

f̃
?

k(Xτ )

∥∥∥∥∥
2

2

≤ ‖f?τ (Xτ )− yτ‖
2
2︸ ︷︷ ︸

A

+

T∑
k=τ+1

∥∥∥f̃?k(Xτ )
∥∥∥2
2︸ ︷︷ ︸

B

We can upper bound A similarly to the previous paragraphs, therefore we get :

‖f?τ (Xτ )− yτ‖
2
2 ≤

λ2

4
ỹTτ (kτ (Xτ ,Xτ ))−1ỹτ

Now, we upper bound B . Let k ∈ [τ + 1, T ] :∥∥∥f̃?k(Xτ )
∥∥∥2
2

= ỹTk (kk(Xk,Xk) + λ2kI)
−1k(Xτ ,Xk)k(Xτ ,Xk)T (kk(Xk,Xk) + λ2kI)

−1ỹk

=
1

4λ2
ỹTk kk(Xk,Xk)−1 k(Xτ ,Xk)k(Xτ ,Xk)T︸ ︷︷ ︸

Captures the similarity between the tasks T τ and T k

kk(Xk,Xk)−1ỹk

We conclude by plugging back the upper bounds of A and B

‖f?T (Xτ )− yτ‖
2
2 ≤

λ2

4
ỹTτ (kτ (Xτ ,Xτ ))−1ỹτ +

T∑
k=τ+1

1

4λ2
ỹTk kk(Xk,Xk)−1k(Xτ ,Xk)k(Xτ ,Xk)T kk(Xk,Xk)−1ỹk

Therefore :

1

nτ
‖f?T (Xτ )− yτ‖

2
2 ≤

1

nτ
(
λ2

4
ỹTτ (kτ (Xτ ,Xτ ))−1ỹτ +

T∑
k=τ+1

1

4λ2
ỹTk kk(Xk,Xk)−1k(Xτ ,Xk)k(Xτ ,Xk)T kk(Xk,Xk)−1ỹk)
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B.1.6. BOUNDING THE RADEMACHER COMPLEXITY

Proof

The proof strategy is exactly the same as sec. B.1. We generalize the previous proof, by applying the same lemmas.

FBT
= {x→

T∑
τ=1

fτ (x), fτ (x) = αTτ kτ (x,Xτ ) ∀τ ∈ [T ], ‖fτ‖Hτ
≤ Bτ}

It holds that :

f?T ∈ FBT

where, for all τ ∈ [T ] :

Bτ =
√

(yτ − yτ−1→τ )T (kτ (Xτ ,Xτ ) + λ2τ I)
−1(yτ − yτ−1→τ )

R̂(FBT
) ≤

T∑
τ=1

2(Bτ + ε)

nτ
(Tr(kτ (Xτ ,Xτ )))1/2

We made the assumption that for all τ ∈ [T ] tr(kτ (Xτ ,Xτ )) = O(nτ ), also, by setting ε = 1 :

R̂(FBT
) ≤

T∑
τ=1

2(Bτ + 1)

nτ
O(
√
nτ )

≤
T∑
τ=1

O(
Bτ√
nτ

) +

T∑
τ=1

O(
1
√
nτ

)

≤
T∑
τ=1

O

√ (yτ − yτ−1→τ )T (kτ (Xτ ,Xτ ) + λ2I)−1(yτ − yτ−1→τ )

nτ

+

T∑
τ=1

O(
1
√
nτ

)

B.1.7. PROOF OF THE THEOREM 2

Proof

With probability 1− δ we have :

sup
f∈FBT

{LD(f)− LS(f)} ≤ 2ρR̂(FBT
) + 3c

√
log(2/δ)

2n

LDτ (f?T ) ≤ LSτ (f?T ) + 2ρR̂(FBT
) + 3c

√
log(2/δ)

2nT

LDτ (f?T ) ≤ LSτ (f?T ) +

T∑
τ=1

O

√ ỹTτ (kτ (Xτ ,Xτ ) + λ2I)−1ỹτ
nτ

+

T∑
k=1

O(
1
√
nk

) + 3c

√
log(2/δ)

2nτ

We get Theorem 2 by replacing into LSτ (f?T ) using the inequalities from Lemma 6



Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent

C. Missing proofs of section 5 - OGD+ : Learning without forgetting
C.1. Memorisation property of OGD+ - Proof

Proof

In the proof of Theorem 1, App. A.1, we showed that, for T τ a fixed task:

f?τ+1(x) = f?τ (x) + 〈∇wf?τ (x),w?
τ+1 −w?

τ 〉.

We rewrite the recursive relation into a sum:

f?τ+1(x) =

τ∑
k=1

〈∇wf?k (x),w?
k+1 −w?

k〉.

We observe that, for all k ∈ [T ]:

w?
k+1 −w?

k ∈ Ek′ .

On the other hand, for OGD+, given a sample x from Dτ , for all k′ ∈ [τ + 1, T ] :

∇wf?k (x) ∈ Ek′

Therefore, for all k′ ∈ [k + 1, τ ] :

〈∇wf?k′(x),w?
k′+1 −w?

k′〉 = 0

Therefore :

f?τ (x) = f?k (x)

We conclude.

C.2. OGD+ Generalisation Theorem - Proof

Proof

The proof is very similar to the proof of Theorem 2.

Let T τ a given task and T ∈ N? fixed

We start from the following result in Appendix B.1.

LDτ (f?T ) ≤ LSτ (f?T ) +

T∑
k=1

O

√ ỹTk (kk(Xk,Xk) + λ2I)−1ỹk
nk

+

T∑
k=1

O(
1
√
nk

) + 3c

√
log(2/δ)

2nτ

We apply Lemma 3 for tasks T τ and T T :

f?T (xτ,i) = f?τ (xτ,i).

Therefore :

LSτ (f?T ) = LSτ (f?τ )



Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent

We replace into the first inequality :

LDτ (f?T ) ≤ LSτ (f?τ ) +

T∑
k=1

O

√ ỹTk (kk(Xk,Xk) + λ2I)−1ỹk
nk

+

T∑
k=1

O(
1
√
nk

) + 3c

√
log(2/δ)

2nτ

We recall the folowwing result from the proof of Theorem 2 in App. B.1 :

1

nτ

nτ∑
i=1

(f?τ (xτ,i)− yτ,i)2 ≤
1

nτ

λ2

4
ỹττ (kτ (Xτ ,Xτ ))−1ỹτ

By replacing into the previous inequality, we conclude the proof of Theorem 3.

D. Complementary discussion
Imperfect robustness to Catastrophic Forgetting Two probable reasons OGD+ is not perfectly prone to catastrophic
forgetting in the experiments are the memory limit and the non-overparameterization of the neural network. As in Lemma 3,
we assumed that the memory is unlimited and that the neural network is overparameterized. We run additional experiments
to verify these hypotheses. Table 6 (App. E.3.1) shows that the test accuracy increases uniformly with overparameterization,
in which case the linear approximation is more accurate. Table 7 (App. E.3.2) shows that the test accuracy also increases
uniformly with the memory size.

OGD and OGD+ on the short run One probable reason OGD+ doens’t outperform OGD on the short run is that OGD+
performs a uniform sampling across samples from all past tasks, with the same memory budget as OGD. Also the memory
requirements of OGD+ increase quadratically with tasks, We expect an information loss with respect to the most recent
tasks, since the corresponding storage is used by OGD+ to “remember” older tasks, while OGD uses the equivalent storage
for the most recent task.
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E. Experiments :
E.1. Reproducibility

E.1.1. CODE DETAILS

We provide the full code of our experiments at https://github.com/MehdiAbbanaBennani/
continual-learning-ogdplus. We forked the initial repository from https://github.com/GMvandeVen/
continual-learning, then implemented the OGD and OGD+ algorithms. This initial repository is related to Van de
Ven & Tolias (2018) and Van de Ven & Tolias (2019).

E.1.2. HYPERPARAMETERS

We use the same architecture and mostly the same hyperparameters as Farajtabar et al. (2019). We also keep a small learning
rate, in order to preserve the locality assumption of OGD, and in order to verify the conditions of the theorems.

For the MNIST benchmarks, the neural network is a three-layer MLP with 256 hidden units in two layers, each layer uses
RELU activation function. The model has either 2 logits or 10 logit outputs, which do not use any activation function.
For the Split CIFAR-100 benchmark, the neural network is a multi-head LeNet (Lecun et al., 1998) network with Batch
Normalisation (Ioffe & Szegedy, 2015) and 200 hidden units for the penultimate layer. The optimiser is either SGD, OGD
or OGD+ and the loss is Softmax cross-entropy. We report the hyperparameters in detail in Table 5.

Hyperparameter MNIST CIFAR-100
Epochs 5 50

Architecture MLP LeNet
Hidden dimension 256 200

Learning rate 1e-02
Batch size 256

Torch seeds 0 to 4
Memory size 1000

Activation RELU

Table 5. Hyperparameters used across experiments

E.1.3. EXPERIMENT SETUP

We run each experiment 5 times, the seeds set is the same across all experiments sets. We report the mean and standard
deviation of the measurements. The test error is measured every 50 mini-batch interval.

E.1.4. OGD+ IMPLEMENTATION DETAILS

Memory : In practice, we split the memories uniformly across tasks. Also, we construct S from SD by sampling uniformly
without replacement. Finally, for the memory reduction step, we truncate the last elements of the storage to free-up the
space for the next task’s data.

Multi-head models : For the dataset streams Split MNIST and Split CIFAR-100, we consider multi-headed neural
networks. We only store the feature maps with respect to the shared weights, the projection step is not performed for the
heads’ weights.

https://github.com/MehdiAbbanaBennani/continual-learning-ogdplus
https://github.com/MehdiAbbanaBennani/continual-learning-ogdplus
https://github.com/GMvandeVen/continual-learning
https://github.com/GMvandeVen/continual-learning
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E.2. Complementary results - Split CIFAR-100

(a) Task 1 (b) Task 5

(c) Task 2 (d) Task 6

(e) Task 3 (f) Task 7

(g) Task 4 (h) Task 8

Figure 1. Test accuracy on the 8 first tasks of Split CIFAR-100, for SGD, OGD and OGD+. 20 class subsets of size 5 are sampled without
replacement from the 100 classes. The model is trained to classify the CIFAR-100 images for 50 epochs for each task. The y-axis
is truncated for clarity. We report the mean and standard deviation over 5 independent runs. The test error is measured for every 50
mini-batch interval.
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E.3. Complementary experiments - OGD+

E.3.1. OGD+ OVERPARAMETERIZATION

In order to assess the hypothesis we made in Sec. D, which states that one reason OGD+ is not perfectly prone to catastrophic
forgetting as stated in Thm. 3 is the non-overparameterisation, we track the test accuracy with respect to the MLP hidden
layer size, which is a proxy for overparameterisation.

We run the experiments on the Permuted MNIST using OGD+ and vary the hidden size from 100 to 400. The results are
presented in Table 6. We measure the accuracy of the models through time after being trained on all 15 tasks. We see that
the test accuracy of OGD+ increases uniformly with the hidden size.

We also observe that overparameterisation has a significant impact on the test accuracy the older the task is. The average
accuracy margin between the hidden sizes 100 and 400 is 7.7% for the first task, while it is only 0.6% for the latest task.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

100 69.9±5.7 75.9±1.7 76.6±3.1 77.3±3.6 80.7±3.5 83.8±2.5 81.0±3.3
250 73.0±2.6 80.0±1.9 83.8±2.0 82.4±2.0 82.5±2.9 83.2±1.7 87.5±1.7
400 76.6±0.9 83.7±1.4 83.6±5.8 85.3±1.2 86.3±1.9 86.4±3.5 88.2±2.4

Accuracy ± Std. (%)
Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15

100 82.0±2.1 83.2±3.4 88.8±1.6 90.2±1.1 90.7±1.5 93.1±0.8 94.2±0.3 95.4±0.1
250 88.6±1.0 89.5±1.9 90.9±1.3 92.1±0.8 92.8±0.8 94.2±0.6 95.0±0.1 95.7±0.1
400 87.6±2.4 91.0±0.7 91.3±1.2 92.5±0.9 93.4±0.5 94.4±0.5 95.3±0.4 96.0±0.1

Table 6. Permuted MNIST : The test accuracy of models from the indicated task after being trained on all tasks in sequence for the MLP
hidden sizes 100, 250 and 400. The best continual learning results are highlighted in bold.

E.3.2. OGD+ MEMORY SIZE :

In order to assess the hypothesis we made in Sec. D, which states that one reason OGD+ is not perfectly prone to catastrophic
forgetting as stated in Thm. 3 is the limited memory, we track the test accuracy with respect to the memory size.

We run the experiments on the Permuted MNIST using OGD+ and vary the memory size from 1.000 to 2 .000. The results
are presented in Table 7. We measure the accuracy of the models through time after being trained on all 15 tasks. We see
that the mean test accuracy of OGD+ increases uniformly with the memory size. The confidence intervals are not tight
enough in most cases to conclude that the test accuracy increases uniformly with the memory size.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

1000 72.2±2.3 73.7±4.4 77.2±5.2 79.2±1.3 79.3±3.3 83.2±1.9 81.9±3.8
1500 71.9±2.3 76.5±2.0 79.4±2.5 79.4±3.1 79.5±3.4 82.7±1.9 83.8±0.9
2000 75.5±2.1 81.0±2.0 80.8±3.0 81.9±1.6 83.1±1.5 83 .7±1.4 85.0±1.3

Accuracy ± Std. (%)
Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15

1000 84.9±1.5 87.7±2.2 87.9±2.9 89.9±0.7 89.5±2.7 93.1±0.6 94.2±0.6 95.3±0.1
1500 85.6±1.9 86.7±1.3 89.1±2.5 90.5±1.7 91.8±1.4 93.1±0.9 94.0±0.4 95.2±0.1
2000 86.3±1.6 87.3±1.8 89.9±0.4 90.8±0.7 92.1±0.9 93.4±0.4 94.3±0.3 95.1±0.1

Table 7. Permuted MNIST : The test accuracy of models from the indicated task after being trained on all tasks in sequence for the
memory sizes 1.000, 1.500 and 2.000. The best continual learning results on average are highlighted in bold.
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E.4. Complementary tables - Generalisation

E.4.1. PERMUTED MNIST

We present the results of the Split MNIST experiments in Table 8. We measure the accuracy of the models through time
after being trained on all 15 tasks. We can see that OGD+ outperforms OGD and SGD on the 6 initial tasks, and that OGD
outperforms OGD+ on the subsequent tasks.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

OGD+ 75.5±0.5 81.8±2.3 81.4±0.6 85.4±2.1 86.5±1.2 83.0±4.9 86.4±1.4
OGD 37.7±5.6 72.6±4.3 74.2±3.7 81.7±1.9 82.8±1.3 87.2±1.1 89.8±0.5
SGD 56.5±4.6 49.5±5.9 57.6±3.9 60.9±2.4 75.1±3.3 73.6±4.3 74.9±3.6

Accuracy ± Std. (%)
Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15

OGD+ 89.3±0.8 90.5±0.2 92.1±0.2 90.2±0.6 93.4±0.2 94.6±0.2 94.8±0.2 95.7±0.1
OGD 89.4±0.7 92.1±0.6 92.7±0.5 93.7±0.3 94.3±0.2 94.7±0.4 95.6±0.1 96.0±0.1
SGD 73.4±5.6 78.0±3.3 83.3±3.7 90.0±1.2 90.4±0.8 94.1±0.2 94.3±0.4 96.0±0.2

Table 8. Permuted MNIST : The test accuracy of models from the indicated task after being trained on all tasks in sequence. The best
continual learning results are highlighted in bold.

E.4.2. ROTATED MNIST

We present the results of the Rotated MNIST experiments in Table 8. We measure the accuracy of the models through time
after being trained on all 15 tasks. We observe that OGD+ outperforms OGD and SGD on the 8 initial tasks, and OGD+ and
OGD are equivalent in terms of robustness to catastrophic forgetting on the tasks 9 to 11.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

OGD+ 50.4±2.5 52.5±1.9 60.4±1.6 67.6±1.9 73.1±1.8 78.0±1.5 82.9±1.1
OGD 41.4±2.0 44.3±1.5 51.5±2.2 59.8±1.6 66.9±0.7 73.5±0.7 79.7±0.6
SGD 31.4±0.7 34.2±0.7 40.2±0.6 47.2±0.5 55.3±0.5 62.0±0.7 70.3±0.9

Accuracy ± Std. (%)
Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15

OGD+ 86.8±0.8 90.3±0.7 93.0±0.3 95.1±0.2 96.5±0.1 97.2±0.1 97.2±0.0 97.1±0.1
OGD 85.1±0.2 89.8±0.2 92.7±0.2 95.1±0.2 96.5±0.1 97.2±0.1 97.3±0.1 97.1±0.1
SGD 78.2±0.8 85.0±0.6 89.8±0.5 93.8±0.3 96.0±0.1 97.0±0.1 97.3±0.0 97.2±0.1

Table 9. Rotated MNIST : The test accuracy of models from the indicated task after being trained on all tasks in sequence. The best
continual learning results are highlighted in bold.
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E.4.3. SPLIT CIFAR-100

We present the results of the Split CIFAR-100 experiments in Table 8. We measure the accuracy of the models through time
after being trained on all 20 tasks, each task consists of a classes subset of size 5 sampled without repetition from the 100
classes of CIFAR-100.

We see that on average, OGD+ outperforms OGD on the long task sequences. The confidence intervals are not tight enough
to conclude on the relative performance of OGD and OGD+ on the Split CIFAR-100 benchmark. Also, OGD and OGD+
outperform SGD on all tasks and are equivalent to SGD on the latest task. This result is intuitive as the last task is only a
supervised leanring problem which does not involve Continual Learning.

Accuracy ± Std. (%)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

OGD+ 62.1±3.2 69.3±4.3 75.8±1.4 67.9±2.4 70.0±3.8 64.2±3.3 73.6±2.2 72.4±2.0 73.6±4.3 63.0±2.5
OGD 61.6±2.0 70.0±5.2 75.4±2.2 66.5±1.9 70.0±5.1 64.6±2.7 72.1±1.4 71.0±2.6 74.3±3.6 63.9±3.5
SGD 50.7±4.9 66.1±6.0 67.2±5.7 61.6±3.7 59.9±6.0 58.7±6.3 62.6±4.0 60.5±3.5 64.8±5.7 52.4±5.2

Accuracy ± Std. (%)
Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

OGD+ 69.4±3.5 76.4±3.0 59.8±3.3 73.9±0.8 65.1±0.8 67.3±2.4 57.2±1.4 70.9±2.0 75.8±1.2 73.1±0.8
OGD 70.0±3.3 78.5±1.8 60.2±0.9 74.8±1.1 65.2±1.3 67.7±2.1 56.0±1.9 72.4±2.5 76.6±1.3 73.1±1.1
SGD 62.5±4.8 68.7±4.7 53.3±4.0 67.0±4.0 58.2±3.1 54.5±4.2 49.8±5.3 67.2±2.0 73.2±3.3 73.4±0.9

Table 10. Split CIFAR-100 : The test accuracy of models from the indicated task after being trained on all tasks in sequence. The best
continual learning results on average are highlighted in bold.


