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ABSTRACT

Enhancing the robustness of deep learning models, particularly in the realm of
vision transformers (ViTs), is crucial for their real-world deployment. In this
work, we explore the robustness of vision transformer models through the lens
of nullspace, a fundamental concept in linear algebra, to propose a fine-tuning
method that improves model robustness under various input perturbations. Our
investigation centers on whether a vision transformer can exhibit resilience to
input variations akin to the nullspace property in linear mappings, implying that
perturbations sampled from this nullspace do not influence the model’s output when
added to the input. We confirm this by demonstrating the existence of a non-trivial
nullspace in vision transformers, primarily attributed to the patch embedding layer.
Moreover, we extend this idea beyond the linear layers, showcasing the feasibility
of learning a non-linear counterpart (approximate nullspace) to the traditional
nullspace for vision transformers through optimization techniques. Based on these
insights, we propose a fine-tuning approach employing approximate nullspace noise
to bolster the robustness of ViT models. Remarkably, within just a single epoch
of fine-tuning, our method effectively mitigates the adverse effects of distribution
shifts and adversarial perturbations across a wide spectrum of scenarios.

1 INTRODUCTION

The field of computer vision has witnessed significant advances, with the emergence of Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021) marking a notable milestone. Following this advancement,
a series of architectural refinements have been explored (Ali et al., 2021; Li et al., 2022; Liu et al.,
2021), paving the way for the development of vision foundation models (Kirillov et al., 2023; Zou
et al., 2023) by scaling up both the model and dataset. Despite these strides, robustness continues to
pose a pivotal concern for their practical deployment. The weak inductive bias in transformers, while
aiding expressive power, can easily learn biases present in the data (Bai et al., 2021b; Fu et al., 2022;
Qin et al., 2022), hence compromising their ability to maintain consistent and reliable predictions
across diverse real-world scenarios (Shi et al., 2023; Mazurowski et al., 2023).

Various methods have emerged aiming to enhance the robustness of transformer-based models.
Predominantly, these methods are model-agnostic, deploying techniques like data augmentation
(Xiao et al., 2023; Esser et al., 2021; Steiner et al., 2022; Liu et al., 2022) and regularization (Chen
et al., 2022b; Steiner et al., 2022; Chefer et al., 2022), aligning with the overarching methodology in
robustness studies (Wang et al., 2022; Liu et al., 2023). For instance, (Xiao et al., 2023) augments
training data by masking image patches based on the class activation map and refilling them with
randomly sampled images. Chen et al. (2022b) utilized a sharpness-aware optimizer to encourage a
smooth loss landscape of the converged model. Despite the variety, a common theme among these
approaches is their emphasis on external modifications or general optimization methods, overlooking
the intrinsic properties of the models under consideration. This observation raises the following
question: Can we leverage the inherent properties of ViTs to enhance their robustness?

This paper explores the robustness of transformer models from an algebraic perspective, identifying
a similarity between model invariance to input perturbations and the concept of nullspace in linear
algebra. We analogously define the (approximate) nullspace of transformer models to dissect their
robustness behavior. The nullspace, a fundamental concept in linear algebra, refers to the subspace of
a domain mapped to zero by a linear mapping. By definition, it is closed under addition and scalar
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Figure 1: An illustration of the nullspace in three cases (projection function case, left top; linear
function case, left bottom; vision transformer case, right). For the functions in these three cases,
there exists some nullspace, and the output of the function with respect to the input will remain the
same no matter how much perturbation is introduced to the input along the nullspace. Also, the
nullspace is function-specific (model-specific) and will not vary for different samples.

multiplication, implying that any vector from the nullspace, when added to the input of the linear
mapping, does not alter its output. Mirroring this, for nonlinear functions like transformers, we aspire
for their outputs to remain invariant to certain perturbations. Our analysis starts with the observation
that the patch embedding layer of transformers possesses a non-trivial nullspace in most common
configurations, as guaranteed by the Rank-Nullity Theorem. Further, at the nonlinear encoder level,
we identify an approximate nullspace through optimization techniques, which adequately adhere to
the linear space properties of closure under addition and scalar multiplication. We find that employing
noise sampled from this approximate nullspace for data augmentation significantly enhances model
robustness in various scenarios.

Comparison with the Concept of Invariance The robustness literature extensively explores the
notion of invariance. Depending on the problem at hand, researchers have delved into the invariance
of models to norm-bounded perturbations (Madry et al., 2018b), cross-domain distribution shifts
(Ganin et al., 2016), image texture, color, and background information Hermann et al. (2020); Wang
et al. (2019); Ge et al. (2021), among others. The model nullspace concept we explore also epitomizes
a form of invariance but deviates from specific robustness concepts. It hinges on the presumption that
a robust model should remain invariant to a set of (potentially large) perturbations, without dictating
how humans should interpret these perturbations. Through an optimization algorithm, we learn these
perturbations from the model, unveiling the existence of an approximate nullspace within the model
by demonstrating their similar properties to vector space elements. Our empirical findings underline
the connection between this nullspace and robustness across diverse scenarios.

The main contributions of our paper include:

• We find rich connections between the robustness of vision transformers to the algebraic notion of
nullspace, providing fresh insights into the intrinsic properties impacting model robustness. Our
claims are substantiated by experimental results showing that expanding the approximate nullspace
effectively improves the model robustness.

• We conduct comprehensive analysis on the existence of nullspace within transformer models. We
establish the existence of nullspace at the patch embedding layer, and empirically identify an
approximate nullspace at the nonlinear encoder level of transformers by validating their algebraic
properties.

• We propose an effective fine-tuning method exploiting the identified approximate nullspace for
data augmentation, enhancing model robustness without architectural modifications, thus requiring
only fine-tuning with minimal additional data. Our method is empirically validated across multiple
benchmark datasets, showing significant robustness improvements against adversarial and out-of-
distribution scenarios.

2



Under review as a conference paper at ICLR 2024

This perspective on robustness, based on the algebraic properties of transformers, offers insights into
aspects of transformer models that haven’t been fully explored, suggesting directions for enhancing
the robustness and reliability of vision models. By examining the concept of nullspace, we provide a
new approach to understanding and improving the robustness of transformer-based vision models.

2 NULLSPACE ANALYSIS

Given an input vector x ∈ R1×p and a weight matrix β ∈ Rp×k, we can construct a simple linear
regression model as follows:

y = xβ (1)

where y ∈ R1×k is the response vector. Intriguingly, for a given matrix β, there exists a set of vectors
N such that

uβ = 0, ∀u ∈ N (2)

In this case, for any given vector x, the output for x and x+u will be identical for any u ∈ N . Here,
N is referred to as the nullspace of β. In the appendix (Section A.1), we elaborate further on the
properties and interpretations of the nullspace.

2.1 VISION TRANSFORMER: RECAP

We first review the working mechanism of a vision transformer. Following it, we demonstrate the
existence of nullspace for ViTs.

Vision transformer as introduced by Dosovitskiy et al. (2021) is a function fω with ω as the trainable
weights. The function takes as input an image x ∈ X c×h×w and outputs a classification response
y ∈ Yk over k categories. c is the number of channels (typically 3 for red, green, and blue), h, w
correspond to height and width of the input image. This neural network function can be broken down
into 3 stages, namely:
• patch embedding stage, fθ : X c×r×r → Ud. This steps projects the input image patch of

predetermined dimensions c, r and r to a one-dimensional embedding of length d. It is ensured
that patches have no overlaps between them. Hence, the number of such non-overlapping patches
generated from the input image are m = h×w

r2 .
• self-attention stage, fϕ : U (m+1)×d → V(m+1)×d. In the next step, the generated patch embeddings

are passed through layers of self-attention modules to process long range interactions amongst
them. Apart from the m patch embeddings an additional embedding in form of cls token is
utilised in this step.

• classification stage, fψ : Vd → Yk. The final step is to perform the k-way classification. For this,
we simply keep the processed encoding corresponding to cls token and project it through a linear
classification layer.

This breakdown can also be illustrated as:

xc×r×ri −→︸︷︷︸
fθ

ui [uclsu0 . . .um] −→︸︷︷︸
fϕ

[vclsv0 . . .vm] vcls −→︸︷︷︸
fψ

[y0y1 · · · yk] (3)

2.2 NULLSPACE OF PATCH EMBEDDING

The nullspace of a vision transformer comes from the fact that its first layer is a linear transformation
layer. As per the rank-nullity theorem1, a non-trivial nullspace of the patch embedding layer always
exists if cr2 > d. In practice for many ViT based architectures, we find that this is the case (results
reported in Section A.4).

Now considering the ViT models where a nullspace exists in the patch embedding layer, and let
θ denote the weight matrix. Then for an input patch x ∈ Rc×r×r, we have the representation
(embeddings) learned from that patch as

y = xθ.

1Rank-nullity theorem states that the sum of the rank of a matrix and dimension of its nullspace should be
equal to the number of columns of the said matrix.
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Given a matrix, finding its nullspace is a standard practice2. Let Bθ = {b1,b2, . . .bk} be the k basis
vectors for this nullspace. As per the axioms of nullspace (A.1), we can sample an element from N θ

as:
v = λ1b1 + λ2b2 + · · ·+ λdbk. (4)

The property of such a sample will be that the output of the patch embedding will effectively remain
preserved, fθ(x + v) = fθ(x). Since the output after the first layer remains unaffected the final
output of the classification remains unchanged. In this manner, nullspace of patch embedding also
serves as a subset of the nullspace of the vision transformer.

We refer to v as nullspace noise or nullspace perturbation. It is important to note that nullspace
noise only depends on the patch embeddings weights and is independent of the input. As a result, the
same noise can be added to any input without impacting the final output.

2.3 THE ENCODER-LEVEL NULLSPACE

So far we have demonstrated that a non-trivial nullspace exists for the patch embedding layer, and
hence the entire vision transformer is invariant to all perturbations in that space. In this section we
move further down the structure of ViT and investigate whether the encoder is also invariant to certain
perturbations. To recall, self-attention stage applies a series of QKV attention operations followed
by normalization and non-linear transformations. The overall operation is thus non-linear, which
means the notion of nullspace cannot be directly applied to fϕ. Regardless, we can still attempt to
preserve the axiom of most interest to us, closeness under vector addition. We attempt this through
considering the property of certain noise vectors that, when added to any input, does not disturb the
output of a function. Therefore, instead of looking for a vector space, we can instead search for a set
with the following property:

Ñ ϕ = {v|f(u+ v) = f(u) ∀u ∈ U}. (5)

i.e. adding elements from Ñ ϕ
3 to the input of fϕ has no impact on the output. For the patch

embedding layer fθ discussed in Section 2.2 , it is easy to verify that any vector sampled from its
nullspace Nθ satisfies this property and thus belongs to Ñθ. To study this property in nonlinear
functions, we extend the definition of nullspace in linear algebra, and refer to Ñ ϕ as the encoder-level
nullspace of transformer. If such a space exists, it directly implies that the transformer model is
robust to certain perturbations in the input space. Our theoretical analysis established the following
sufficient conditions for the existence of a nontrivial encoder-level nullspace. (The complete proof is
given in Appendix A.)
Proposition 1. Consider a self-attention layer with h heads and {(Qi,Ki,Vi)}hi=1 as its query, key
and value projection matrices. If the following conditions are met

1. QiK
⊤
i is symmetric for i = 1, . . . , h

2. The row space R(V⊤
i ) ⊆ R(QiK

⊤
i ) for i = 1, . . . , h

3. for some m ̸= n, QmK⊤
m has colinearity with QnK

⊤
n , i.e. for some k the kth row of

QmK⊤
m, denoted as rm,k, satisfies rm,k ̸= 0 and rm,k ∈ R(QnK

⊤
n )

then there exists at least one W such that W ̸= 0 and headi(X+W) = headi(X) for all attention
head i in this layer and arbitrary X.
Remark. Condition 1 can be met if Qi and Ki satisfy some special relation. For example, let
PDP−1 be a diagonalization of a real symmetric matrix A. If Qi = BP and Ki = B(P−1)⊤D,
then we have QiK

⊤
i = BAB⊤ to be symmetric.

In addition, evidence has shown that, QiK
⊤
i can be empirically symmetric, especially for ViTs, when

the attention heads are visualized and correlation of parameters is calculated (Yeh et al., 2023)

Although our theory suggests a sufficient condition for the existence of encoder-level nullspace,
analytically finding Ñ ϕ or probing its existence for generic transformers is challenging. Thus, as an

2Given a matrix, there are well established algorithms to find its nullspace. We refer the readers to detailed
discussions such as (Kwak & Hong, 2004; Strang, 2009b;a). In our work, we rely on the Python package of
Numpy for finding the nullspace of any given matrix (Harris et al., 2020).

3We use the tilde accent ·̃ to distinguish our extended definition Ñ from the nullspace N in linear algebra.
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(a) Noise influence on the model output under dif-
ferent regularization strengths

(b) ℓ2 norm of learned noise under different
regularization strengths

Figure 2: Exploratory experiments on the encoder-level nullspace. (a) Solid lines (–) represents the
model performance under the learned noise, and dashed lines (· · ·) represent the performance after
permutation of the learned noise. (b) by changing the regularization strengths, we explore noise in
the encoder-level nullspace at different magnitudes.

exploratory experiment, we employ a numeric method: we search for individual element of this set,
ṽϕ, an additive perturbation that brings minimal influence to the output of fϕ on the data distribution.
We introduce a regularization term on the norm of ṽϕ to prevent the trivial solution of 0.

Lϕ(ṽ) = Eu∈D ∥fψ(f0ϕ(u+ ṽ))− fψ(f0ϕ(u))∥ − λ log(∥ṽ∥) (6)

where ∥·∥ is the ℓ2 norm, f0ϕ is the representation of the cls token output by fϕ, and λ is the
regularization coefficient. We find that simple gradient descent with Equation 6 works well in
practice. Note that Lϕ(ṽ) could potentially be unbounded below as ∥v∥ → ∞ due to the second
term. Future work may prevent the trivial solution by using a lower bound on the noise norm for
constrained optimization.

Equation 6 minimizes the ℓ2 norm between the predicted logits with and without the noise. Alongside
the self-attention stage, we have also incorporated the classification stage into the loss, since the
target of our study is to minimize the impact on the final output of the network. To learn the noise
vector, we initialize ṽ by sampling from a uniform distribution, and minimized the loss with gradient
descent. We used ViT-S and ViT-B models with patch size 32 for evaluation. We used ImageNette
(Howard, 2018) as the dataset for this experiment, which is a subset of ImageNet consisting of 10
categories. We learnt ṽ on the training dataset (≈ 9500 images) and performed evaluation on the
validation set (≈ 4000 images).

To quantitatively evaluate learned ṽϕ, in Fig. 2 (a) we report the percentage of matching classifications
with and without learned nullspace noise, and the mean squared error computed at the output
probabilities (hereafter “MSE probability”). We consider a prediction to be matched if the assigned
category for input is the same with and without adding the perturbation. By varying the regularization
strength, we get noise vectors of different magnitude (Fig. 2 (b)), all being fairly benign to the
model’s predictions. However, if we randomly reset the vector’ direction by permuting their elements,
the noise significant degrades the model’s predictions. The experiment shows the feasibility of
learning elements that approximately conform to our above definition of encoder-level nullspace with
pretty good precision, and also indicates that at different magitudes there are certain directions in
the input space toward which the perturbation is fairly benign to the model. To further show that
those individually learned noise vectors are not optimization artifacts, but they reflect some intrinsic
properties of the transformer model, we further did experiments to evaluate their behaviors under
combination, and find remarkable similarity between their properties and some axioms of vector
space, i.e. closure under addition and scalar multiplication. For detailed results and discussion see
A.5

3 NULLSPACE NOISE AUGMENTED FINETUNING

In the previous section we demonstrated that there may exist a non-isotropic space in the input space
of the vision transformer, which consists of perturbations in certain directions that the model is
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insensitive to. As an intuitive explanation, there exits additive noise which is large enough to be
human-perceptible but does not change the semantic features of images, and therefore should not
change the prediction of a robust model (one such example is the Gaussian noise). In our previous
formulation, we tried to find such noises specific to each model, and experiments results indicate that
although it is difficult to find them perfectly (without any perturbation to the model output), we can
effectively learn them if a certain degree of error is allowed. To more accurately quantify this space.
we can choose a small ϵ and define ϵ-approximate nullspace as follows

Ñϕ(ϵ) = {ṽ|Eu∈D ∥f(u+ ṽ)− f(u)∥ ≤ ϵ}. (7)

where f(·) = Softmax(fψ(f
0
ϕ(·))). It is easy to verify that ∀ϵ > 0,0 ∈ Ñϕ(ϵ), and that ∀ϵ2 >

ϵ1 > 0, Ñϕ(ϵ1) ⊆ Ñϕ(ϵ2). Among the elements in Ñϕ(ϵ), we are more interested in those near the
boundary, because they are characteristic of the value of ϵ, and may reflect the size of Ñϕ(ϵ).
We hypothesize that the model’s tolerance to approximate nullspace noise is indicative of its robustness
under a variety of distribution shifts. Therefore, data augmentation with the learned noise is likely to
boost the model’s robustness. To test this hypothesis, we employ a bi-level optimization approach,
where the inner problem finds the best noise vector according to Equation 9, and the outer problem
finds the model that is the most tolerant to such noise, as showed in Equation 8.

min
ϕ

Eu∈D ℓ(fψ(f
0
ϕ(u+ ṽ∗

ϕ)),y) (8)

where ṽ∗
ϕ = argmax

ṽ
∥ṽ∥ (9)

s.t. ṽ ∈ Nϕ(ϵ)

where ℓ(·) is the cross-entropy loss. While this optimization problem can also be solved in different
ways, we used an efficient heuristic: we initialize the noise with a large enough sampling limit,
minimize Lϕ(ṽ) by gradient descent according to the loss function in Equation 10, and early stop it
as soon as it enters Ñ ϕ(ϵ), as shown in Equation 11.

Lϕ(ṽ) = Eu∈D ∥fψ(f0ϕ(u+ ṽ))− f0ψ(fϕ(u))∥ (10)

v̂∗ = SGD(Lϕ(ṽ), ṽ0, ϵ) (11)

Here, v̂∗
ϕ is the approximate solution for ṽ∗

ϕ, SGD(Lϕ(ṽ), ṽ0, ϵ) denotes the gradient descent
algorithm that minimizes the loss Lϕ(ṽ) starting from its initial value ṽ0 until it satisfies the
condition Lϕ(ṽ) < ϵ. The noise norm starts from a large value and gets gradually reduced
during the process. When early stopping is triggered, we obtain noise vectors that are close to the
boundary of the ϵ-approximate nullspace. For more details of our method, please refer to Algrothm 1
in Appendix A.3.

4 EXPERIMENTS
4.1 IMPLEMENTATION DETAILS

In this section, we conducted comprehensive evaluation of our nullspace augmentation method
(Section 3) on several benchmarks. By making the model more tolerant to noise in the ϵ-approximate
nullspace, we hope to expand the nullspace itself and observe its effect on the model’s robustness
under different settings.
Starting from a pretrained model, we use the ϵ-approximate nullspace noise as data augmentation to
fine-tune the model. The noise is generated every 40 training steps according to Equation 11 with an
ϵ of 0.03. The experiment was done within one epoch of training on the ImageNet-1k dataset. We
used the vanilla ViT-small and ViT-base models, and ViT-base(DAT) which is the current
SOTA on ImageNet-C dataset on the EasyRobust benchmark4, trained using Discrete Adversarial
Training proposed by Mao et al. (2022b). We evaluated the model performance in a wide range
of settings to test its performance on the i.i.d dataset, under adversarial attacks and distribution
shifts. For adversarial attacks we utilize FGSM (Goodfellow et al., 2015) and DamageNet (Chen
et al., 2022a) as white-box and black-box attacks respectively. For distribution shift we employ

4https://github.com/alibaba/easyrobust
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Table 1: Effect of nullspace training on different models evaluated on multiple benchmark datasets.
Excluding DAT, vanilla ViT-S and ViT-B, the values for the baselines are directly reported from the corresponding
papers. For DAT, we report the reproduced results following their evaluation setting.

Methods Clean Adversarial Robustness Out of Distribution Robustness AveragePatchFool CW MIM↓ FGSM DamageNet A C↓ V2 R Sketch Stylized

ViT-S 74.19 0.68 0.18 – 13.79 29.82 16.35 71.13 62.51 34.67 14.26 12.15 31.85
ViT-S + NS (ours) 77.47 19.10 2.38 – 25.95 32.43 20.77 55.98 66.5 41.61 25.67 16.02 38.94
ViT-B 77.68 15.92 0.56 81.72 25.65 38.69 23.88 62.16 66.05 41.63 16.31 17.97 38.41
ViT-B + PR (Qin et al., 2022) 78.20 – – – – – – 47.60 – – – – –
ViT-B + RandAugment + PR 79.30 – – – – – – 43.60 – – – – –
ViT-B + AugMix + PR 79.30 – – – – – – 41.60 – – – – –
RobustVit(Mao et al., 2022d) 81.90 – – – 51.80 – 28.50 46.80 – 48.70 36.00 – –
ViT-B + PAT(Herrmann et al., 2022) 81.71 – – – – – – 44.99 70.82 47.66 36.77 19.14 –
Discrete-ViT(Mao et al., 2022a) 79.48 – – – 45.76 44.91 17.20 46.22 68.05 44.77 34.59 19.38 45.32
AGAT (Wu et al., 2022) 70.41 – 50.84 – – – – – – – – – –
Fan-ViT-B (Zhou et al., 2022) 83.60 – – – – – 35.40 44.40 – 51.80 – – –
TORA(λ = 0.9) (Li & Xu, 2023) 80.30 – – – 74.2 – 22.20 41.60 – 53.70 – – –
Relevance Maps (Chefer et al., 2022) 80.40 – – – – – 3.00 – 69.8 35.40 35.80 – –
ViT-B + NS(ours) 81.42 23.52 2.36 74.72 36.50 40.44 24.55 47.82 70.25 44.85 26.35 19.02 43.95

ViT-B + DAT(Mao et al., 2022b) 81.47 22.64 0.76 70.28 48.80 43.31 23.83 45.95 70.24 48.68 36.94 23.99 47.92
ViT-B + DAT + NS(ours) 81.33 24.14 0.88 71.18 48.98 43.67 24.22 45.91 70.14 48.48 37.25 23.87 48.01

ImageNet-C (Hendrycks & Dietterich, 2018), ImageNet-A (Hendrycks et al., 2021b), ImageNet-V2
(Recht et al., 2019), Imagenet-R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang et al., 2019) and
Stylized-Imagenet (Geirhos et al., 2018). ImageNet-C consists of validation modified by applying
corruptions in the form of weather effects, noises, etc. ImageNet-A applies the imagenet objects in
hard contexts. ImageNet-R and ImageNet-Sketch consist of imagenet categories in different art forms.
ImageNet-Stylized applies texture transfer onto the ImageNet validation images to create shape-
texture contradictions. We used the EasyRobust library Mao et al. (2022c) for code implementation
and the checkpoints of ViT-base(DAT), and replicated their results. For more implementation
details please see our supplementary document.

4.2 EXPERIMENT: ROBUSTNESS EVALUATION

We evaluate the effect of nullspace training for improving the robustness of vision transformers under
different settings. We used the official mCE score as the evaluation metric for ImageNet-C, where
lower mCE indicates better robustness, and used the accuracy score for all the other settings. We used
100−mCE before taking the average over all settings.

The result in Table 1 shows that our nullspace augmentation method consistently improves the
robustness of models under distribution shifts and adversarial attacks, yielding a large gain in average
performance for the vanilla ViT-small and ViT-base model, and slightly outperforms the
current SOTA model. This not only shows that our nullspace training method is effective but also
validates our previous hypothesis about the connection between the tolerance to nullspace and the
robustness of transformer models.

4.3 EXPERIMENT: ADVERSARIAL FINETUNING

Figure 3: Change trend of multiple met-
rics with training steps. "Adversarial" is the
average performance on "FGSM" and "Dam-
ageNet" settings, "OOD" is the average score
of the six OOD datasets, and "avg" is the total
average. All values are divided by their initial
values to show the trend more clearly.

In this experiment, we compare our method with fine-
tuning using two PGD adversarial training methods,
Madry(Madry et al., 2018a) and TRADES(Zhang et al.,
2019) on the ViT-S model. TRADES, in each train-
ing iteration, generates adversarial examples using PGD
and updates the model’s parameters to minimize the
worst-case loss on these adversarial examples while also
minimizing the standard classification loss on clean data.
Madry, on the other hand, focuses exclusively on min-
imizing the worst-case loss on adversarial examples.

In Table 2, we observe that Madry and TRADES, they
provide better performance for adversarial evaluation.
This is expected as the methods are catered for improv-
ing adversarial robustness. However, this exclusivity
leads to relatively poorer performance in a wider bench-
mark evaluation. Compared to our method, Madry and
TRADES perform considerably lower in the natural
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OOD setting. Lastly, Madry also leads to drop in per-
formance when compared to the vanilla trained baseline
for natural images.

Table 2: Comparison of nullspace augmented fine-tuning with PGD based adversarial robustness methods
of Madry and TRADES. We report the performance for a ViT-S model.

Method clean FGSM DamageNet A C (↓) V2 R Sketch Stylized
ViT-S 74.19 13.79 29.82 16.35 71.13 62.51 34.67 14.26 12.15
Madry 70.53 39.37 49.91 9.37 81.74 58.88 39.04 21.36 10.76

TRADES 74.02 38.85 36.28 16.53 73.11 63.37 40.86 26.43 13.22
Ours 77.47 25.95 32.43 20.77 55.98 66.5 41.61 25.67 16.02

4.4 TRAINING PROGRESSION

We track the l2 norm of the learned noise and various performance metrics during the nullspace
training. As shown in Fig. 3. Before the nullspace training, it was hard to optimize the noise into
the ϵ region even with increased training , so the norm started with a high value. As the nullspace
training started, we found from the experiment log that the noise was always able to enter the ϵ region.
In Appendix A.6, we show the MSE probability of the learned noise vectors, which are smaller than ϵ
at each round of noise learning. Also, the norm of the learned noise gradually increased along the
process of model fine-tuning. The fluctuation may have mainly resulted from the randomness in
mini-batches and the optimization dynamics. The model allows for noises with larger and larger
norms to be within ϵ-approximate, which informally suggests an increasing ϵ-approximate nullspace.
Accompanied by the trend is the increase in robustness scores in both OOD and adversarial settings,
which further corroborates our findings.

4.5 ABLATION STUDY

We conduct an extensive study to analyse the performance of our method under choice of ϵ. Fur-
thermore, we also compare our approach with a simple baseline of using an ϵ noise sampled from a
Gaussian distribution.

From table 3, it can be inferred that the nullspace noise based finetuning is relatively robust to the
choice of ϵ. Moreover, compared to using randomly generated ϵ-noise, our nullspace based training
provides significant performance boost. This observation stands across different values of ϵ.

Table 3: Impact of ϵ on the final performance. Moreover, we also compare our approach against random ϵ
noise based finetuning.

ϵ Finetuning FGSM DamageNet A C (↓) V2 R Sketch Stylized

0.01 nullspace 26.04 33.65 20.45 56.26 66.47 41.4 23.34 15.85
random 21.54 28.81 17.07 55.13 61.98 34.97 14.43 12.14

0.03 nullspace 25.95 32.43 20.77 55.98 66.5 41.61 25.67 16.02
random 23.18 29.61 16.91 54.68 62.2 35.05 14.77 12.34

0.1 nullspace 25.38 33.09 20.16 56.41 66.47 40.42 22.66 15.78
random 23.93 30.56 16.47 54.52 62.48 34.66 14.99 12.35

5 RELATED WORK

Nullspace and Neural Networks To the best of our knowledge, the earliest work investigating
neural networks alongside nullspaces corresponds to the study by Goggin et al. (1992). They studied
the universal approximation capabilities of a multi-layered perceptrons by comparing the outputs
and nullspace of inputs. Through a classical example of learning XOR they showed that with the use
of hidden layers, an MLP is able to construct a transformation which maps input to targets even if
the target happens to be in the nullspace of the input. In a much recent work, Sonoda et al. (2021)
mathematically specified the behavior of nullspace, but only for fully connected networks. On the
application side, for a continual learning setting, Wang et al. (2021) proposed to map new tasks to
the nullspace of the existing tasks. Lastly as a novel architecture, Abdelpakey & Shehata (2020)
proposed NullSpaceNet which maps inputs from the same category to a joint-nullspace instead of a
feature space.

Invariance Model invariance to (subjectively small) variations in the input is a well studied topic
in deep learning research. Moreover so, relationship of being robust to input perturbations and
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model generalisation is also widely accepted (Zhang et al., 2017; Rebuffi et al., 2021). For studying
and understanding the invariance of models to input perturbations, the nature of perturbations is
heuristically (or subjectively) selected based on the task at hand (Arjovsky et al., 2019; Chen et al.,
2019; Cohen & Welling, 2016; Zhang, 2019; Satorras et al., 2021). Unlike prior studies, we do not
impose any restrictions on the input noise apart from it resembling non-trivial nullspace noise. To the
best of our knowledge, the nullspace perspective of invariance has not yet been explored.

Robustness in ViT Emerging research has unveiled the robustness of Vision Transformers (ViTs) over
Convolutional Neural Networks (CNNs) (Shao et al., 2021; Paul & Chen, 2022), emphasizing the low
transferability of adversarial instances between these architectures (Mahmood et al., 2021), despite
some counter-points (Bai et al., 2021a). ViTs exhibit insensitivity to patch-based transformations
that significantly distort original semantics, suggesting their reliance on robust yet non-indicative
features Qin et al. (2022).

6 DISCUSSION

Societal Impact Although the name nullspace might imply a negative property, we notice the most
practical implication of nullspace is to offer explanations to ViT’s additional resilience toward minor
noises in comparison to CNNs. Thus, we do not expect our work to introduce any negative societal
impacts.
Applications in Model Patenting In addition to the applications we discussed, we consider another
potential usage of our findings is to patent a ViT after a model is trained, as the nullspace will be
unique property of any set of weights of certain ViT architectures. Different from the existing line
of research in model watermarking (Adi et al., 2018; Darvish Rouhani et al., 2019; Le Merrer et al.,
2020), the patenting through nullspace will not require any additional steps during training, although
will face limited usage scenarios in comparison.
Applications in Image Watermarking Using the nullspace noise, it is possible to apply signatures
onto input images without harming the output or operability of the networks. In the supplementary
document, we present the cases where certain marks in form of nullspace noise can be superimposed
on any desired input image. For the network, the output as well as the explanation generated with
existing approaches remains unaltered. This gives user the choice to hide their data from misuse
and/or re-distribution.
Potential Limitation about the Nullspace Approximation Different from the nullspace defined in
linear algebra, the nullspace of the entire ViT can only be approximated because of the non-linearity
in the network architecture. However, it is worthy mentioning that we can still calculate the exact
nullspace of ViT if we only consider the patch embedding layer, through which, our results will
qualitatively deliver the same message, but with quantitative differences.

7 CONCLUSION

In this work, we have explored the concept of nullspace in Vision Transformers (ViTs) to understand
their robustness. Our findings demonstrate that a non-trivial nullspace indeed exists for Vision
Transformers, a direct consequence of the patch embedding layer. This discovery implies that there
are elements that, when added to an input, do not affect the output of the network, potentially offering
an explanation for the robustness exhibited by ViTs. Moreover, we have extended the definition of
nullspace, preserving a property that implies invariance of a mapping’s output to input perturbations,
and empirically identified a space that exhibits such property within the input space of the non-linear
transformer encoder.

By linking the presence of nullspace with our extended definition to the general robustness of a
network, we were able to devise a new approach to improve the robustness of ViTs. Our empirical
results suggest that fine-tuning ViTs with the learnt nullspace noise can significantly enhance their
robustness to a variety of robustness benchmarks. This method offers a new direction for data
augmentation and model training, which could be beneficial for further research in the field.

Looking forward, there is more to explore in the vast landscape of Vision Transformers. Future
research could focus on the development of efficient algorithms for learning nullspace and investigate
its presence in other architectures and layers of deep neural networks. Our study offers a new
perspective to the robustness of vision transformers. We believe these findings can assist in furthering
the robustness of ViTs, potentially facilitating advancements in the development of more resilient
machine learning models.
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A APPENDIX

A.1 NULLSPACE: PRIMER

For a linear mapping such as β, where the domain is a vector space, nullspace is a subspace and
satisfies all the required axioms:

• The zero element of R1×p, 0 ∈ N . This is true as 0β = 0.
• N is closed under vector addition. u+v ∈ N ∀u,v ∈ N . This is true as (u+v)β = uβ+vβ = 0.
• Closed under multiplication with scalar. cu ∈ N ∀ c ∈ R and u ∈ N . This is true as (cu)β =
c(uβ) = 0.

A trivial nullspace, N = {0}, always exists for a linear mapping as described in equation 1. An
alternate way to interpret nullspace is to view it as a set of solutions to the homogeneous system
of linear equations as described by equation 1. This imples that 0 is always a solution to the said
equation. As the number of solutions to a system of linear equations can vary, the nullspace for a
mapping can be trivial or nontrivial.

A.2 PROOF OF PROPOSITION 1

Let d be the hidden dimension of the attention layer. Qi,Ki ∈ Rd×dk where dk = d/h.
rank(QiK

⊤
i ) ≤ rank(K⊤

i ) ≤ dk. Consider the sum of row spaces S = R(Q1K
⊤
1 ) + R(Q2K

⊤
2 ) +

· · ·+R(QhK
⊤
h ). S is a subspace of Rd. For i = 1, . . . , h, choose a basis for R(QiK

⊤
i ), denoted as

Bi = {b1, · · · ,bni}, |Bi| = ni ≤ dk. Without loss of generality, let rm,k ∈ Bm.

S = span(
h⋃
i=1

Bi), so

dim (S) = dim

(
span

(
h⋃
i=1

Bi

))
= dim

span


 h⋃
i=1
i̸=m

Bi

 ∪ (Bm \ {rm,k})




≤

∣∣∣∣∣∣∣
 h⋃
i=1
i ̸=m

Bi

 ∪ (Bm \ {rm,k})

∣∣∣∣∣∣∣ ≤ (h− 1)dk + (dk − 1) = d− 1

So, ∃w ∈ Rd,w ̸= 0 and w ∈ S⊥. This means for i = 1, . . . , h,w ∈
(
R
(
QiK

⊤
i

))⊥
,w ∈

N
(
QiK

⊤
i

)
. By condition 2, N(Vi) ⊇ N(QiK

⊤
i ), so w ∈ N

(
QiK

⊤
i

)
∩N(V⊤

i ).

Then, we can choose W wherein each row is a multiple of w. We have WVi = 0, and for any input
to the encoder X ∈ Rn×d,

WQiK
⊤
i X

⊤ +XQiK
⊤
i W

⊤ +WQiK
⊤
i W

⊤ = 0 (12)

Consider the output of attention head

headi(X+W) = Softmax

(
(X+W)QiK

⊤
i (X+W)

⊤
√
dk

)
(X+W)Vi

= Softmax

(
XQiK

⊤
i X

⊤ +WQiK
⊤
i X

⊤ +XQiK
⊤
i W

⊤ +WQiK
⊤
i W

⊤
√
dk

)
XVi

= Softmax

(
XQiK

⊤
i X

⊤
√
dk

)
XVi = headi(X)

Adding the noise W does not change the output of any attention head for arbitrary input X, which
completes our proof.
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A.3 ALGORITHM AND IMPLEMENTATION DETAILS

We present the algorithm of our data augmentation with nullspace noise in Algorithm 1.

Algorithm 1: Data augmentation with nullspace noise
1 Input: transformer model with patch embedding layer fe, encoder fϕ and linear classifier fψ

parameterized by e, ϕ, ψ respectively; training data T ; batch size B; sampling limit A; noise
nullity threshold ϵ; noise learning rate ηv; model learning rate ηf ; number of outer iterations
K, noise training step T , model training step S

2 for k = 0, · · · ,K − 1 do
3 Sample initial noise v ∼ U(−lim, lim)
4 for t = 0, · · · , T − 1 do
5 Sample a minibatch (X,y) ∼ T
6 Compute U← fe(X)
7 Compute logits Z← fψ(f

0
ϕ(U)), Z′ ← fψ(f

0
ϕ(U+ [v])) # "[v]" means

broadcasting the noise v along the sample dimension

8 Compute δ ← 1
B

∑B
i=1∥Softmax(z′i)− Softmax(zi)∥2 # zi is sample

logit
9 if σ < ϵ then

10 break
11 end
12 Calculate ℓ← 1

B

∑B
i=1∥z′i − zi∥2

13 Update v← v −∇vℓ
14 end
15 for s = 0, · · · , S − 1 do
16 Sample a minibatch (X,y) ∼ T
17 Compute U← fe(X)
18 Compute logits Z← fψ(f

0
ϕ(U)), Z′ ← fψ(f

0
ϕ(U+ [v]))

19 Compute loss L ← 1
B

∑B
i=1(ℓ(zi, yi) + ℓ(z′i, yi)), where ℓ is the cross-entropy loss

20 Update model parameters (ψ, ϕ, e)← (ψ, ϕ, e)−∇(ψ,ϕ,e)L
21 end
22 end
23 Output: model weight (ψ, ϕ, e)

Hyperparameters We fine-tuned the ViT model for K = 20 rounds in all settings. In each round,
we initialized the noise with sampling limit A = 3, optimized it with learning rate ηv = 0.1 and set
a threshold of ϵ = 0.03. We empirically found that T = 3000 is enough to trigger early stopping
so that the learned noise satisfies the ϵ threshold. We used ηf = 10−5 to fine-tune the model for
S = 40 iterations in each round. We set batch size B = 128, and slightly different from the vanilla
SGD in Alg 1, we used the AdamW optimizer (Loshchilov & Hutter, 2019) and cosine learning rate
scheduler with defualt hyperparameters for both the noise and the model training.

The original ViT-B + DAT model (Mao et al., 2022b) used the Exponential Moving Average
(EMA) for evaluation5, so we also used EMA to evaluate the performance of ViT-B + DAT fine-
tuned with our method. For all the other settings, we used single model without ensemble for
evaluation. We used ϵ = 1/255 for the FGSM attack consistent with Mao et al. (2022b).

Computation time The experiments were conducted on a combination of A100, V100 GPUs and
a 3090 GPU, depending on the availability. Although we only used about 10% of the ImageNet-
1k (Deng et al., 2009) training data to fine-tune the model, the main computation time is on training
the nullspace noise. One run of our experiment (20 rounds) takes the time roughly equivalent to 8
epochs of standard training on ImageNet-1k.

5https://github.com/alibaba/easyrobust
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A.4 NULLSPACE OF PRETRAINED NETWORKS

In Table 4 we list the nullspace dimension of the patch embedding layer for pretrained ViT models.
For the cases where the embedding dimensions is greater than the patch size, the nullspace cannot
exist (as per rank-nullity theorem), is 0.

Table 4: Empirically computed nullspace dimensions for the pre-trained ViT models.

Model Patch Size Embedding Dimension Nullspace Dimension

ViT-tiny 16×16 192 576
ViT-small 32×32 384 2688
ViT-small 16×16 384 384
ViT-base 32×32 768 2304
ViT-base 16×16 768 2
ViT-base 8×8 768 0
ViT-large 32×32 1024 2048
ViT-large 16×16 1024 0

A.5 PROPERTIES OF THE APPROXIMATE NULLSPACE

(a) Influence of scaling ϵ noise for ViT-base

(b) Influence of linear combination of ϵ noise for ViT-base.
The heatmap is drawn with 10 × 10 grid sampling and cubic
interpolation

Figure 4: Validation of the properties of the ϵ approximate nullspace

To explore the properties of the ϵ-approximate nullspace beyond individually learned vectors, we
studied their behaviors under scaling and linear combination. Using the same pretrained ViT-Base
model, we repeatedly learn 98 ϵ-approximate nullspace vectors with different random initializations.
We set ϵ = 0.03, but due to the early stopping in our algorithm, the MSE probability of the noise
vectors are larger when evaluated on the whole validation set, ranging from 0.035 to 0.042. For
the scaling experiment, we vary the scaling factor and keep track of the noise influence in terms of
MSE probabilities, and take the average over all vectors. To study their linear combination, we take
10 different pairs of nullspace vectors (v1, v2), take their linear combination α1v1 + α2v2, with α1

and α2 ranging between [0, 1] with a grid size of 0.1. We then evaluate the influence of the linearly
combined noise at each point of the grid, averaged over all pairs of noise vectors.

The result in Fig. A.5 shows that the approximate nullspace has very similar property to vector space
in terms of closure under addition and scalar multiplication. When the scaling factor α < 1, we see a
clear trend that the MSE probability of the scaled noise is less than αϵ. In the linear combination
case, the line α1 + α2 = 1 is well within the contour line of MSE probability being 0.035, showing
that the convex combination of a pair of ϵ noise vector is still ϵ-approximate. These result shows
interesting property of our approximate nullspace similar to the linear space.

17



Under review as a conference paper at ICLR 2024

A.6 CHANGE TREND OF THE NOISE INFLUENCE WITH THE FINE-TUNING STEPS

Beside the trend of noise norm and performance metrics in Fig. 3, we also keep track of the influence
of the learned noise in terms of MSE probability (2.3) at every 80 steps of the model fine-tuning. As
shown in Table 5, the noise influence is always lower than ϵ = 0.03, which means early stopping is
triggered and the model enters the ϵ region.

Table 5: MSE probability of the noise at different fine-tuning steps.

Fine-Tuning Step 40 120 160 280 360 440 520 600 680 760
MSE Probability 0.028 0.027 0.026 0.029 0.028 0.029 0.027 0.025 0.028 0.026

A.7 WATERMARKING IMAGES

Watermarking as image, usually used to convey ownership information or verify content of the data,
has been studied extensively (Wolfgang & Delp, 1996; Potdar et al., 2005; Al-Haj, 2007; Bhat et al.,
2010). A watermark can be either imperceptible or perceptible. and perceptible watermarking applies
a noticeable marker to convey the protected nature of the data (Berghel, 1998). In this section, we
explore to utilize nullspace noise to apply a perceptible watermark on the image which does not alter
the test-time forward process.

Figure 5 shows an example watermarking approach using the nullspace noise. Here, we emboss the
ICLR logo onto the natural images. The resulting modified image, attains the final predictions close
to the original image. (100% match in the final output prediction and 10−4 difference in the predicted
confidence value of the assigned class.)

Method details: With basis vectors of the nullspace, we can construct a watermark to be overlaid on
the original image without affecting the output of the network. Given a source (user’s image) and
a target image (watermark), we simply need to estimate the scalar parameters corresponding to the
basis vectors to satisfy

∑i<m
i=0 eiλi = vθ ≈ ∆xj .

ei are the basis vectors for the nullspace, λi are their corresponding scalar co-efficients which are to
be determined and ∆xj is the changed required to convert jth original image patch to jth watermark
image patch. This can be achieved through a constrained optimisation of the following form:

min∥∆xj −
i<m∑
i=0

eiλi∥p (13)

where, ∆xj is the difference between the jth channel of a source and target image and λi is the ith
nullspace basis vector of the patch embedding layer with the corresponding variable scalar ei. We
use a least-square solver to solve for the solution (Available readily with packages such as Numpy).

A.8 TARGETED NULLSPACE NOISE

Due to the dimension reduction effect of the patch embedding layer in most ViTs, we can transfer an
image to be visually similar to another image by human perception, without changing the output of
the original image perceived by the model. This differs from adversarial examples in the following
aspects:

1. The working direction to construct an adversarial example is the other way around. If the
transformed image is to be considered an adversarial example, then our source becomes the
target for adversarial training and our target becomes the source.

2. Generating targeted nullspace noise requires no backpropagation through the network

3. Not only does the final prediction on the transformed image matches the source image, the
saliency maps also match. This is displayed in Fig. 6
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Figure 5: Watermark superposition using the nullspace basis vectors.(images changed to ICLR watermarks)
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(a) Triplet of Source, target and transformed images

(b) Saliency maps for the corresponding images from the row above.

Figure 6: Targeted nullspace noise. Transformed images appear visually as target images but are
interpreted as source images by the model. The equivalence between source and transformed images
is not only in terms of the final predictions but also in the interpretability maps depicted in (b).

Though the transformation is not perfect, we can spot that the transformed images are visually similar
to target images rather than source images. Even with this difference in the input space, transformed
images and source images are classified into the same category with roughly the same confidence.

As recent studies have shown, fooling can also be extended to the interpretability methods (XAI)
Dombrowski et al. (2019) partially due the limitations exposed by recent studies (Dombrowski et al.,
2019; Ghorbani et al., 2019; Heo et al., 2019). However, in contrast to these works aiming to fool
specific XAI method, our nullspace noise only depends on the model, not the XAI method.

In Fig. 6(b), we show the interpretability maps as generated by LRP (Chefer et al., 2021). From the
figure, we can observe that the heatmaps generated by source and transformed images are identical
whereas, the transformed image heatmaps substantially differ from target images’. Though only
reported for LRP, we observed that a similar observation holds across different interpretability
approaches. Here, we only presented the results on LRP, as in the context of ViTs, we found the
heatmaps from other methods to be lacking (also pointed out by authors of LRP).

In Fig. 7 we show the saliency maps generated by different XAI methods. Even though the maps
generated by methods other than LRP are poor (hard to interpret), we see that the source and
transformed respond similarly to these methods.
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(a) Attention (Chefer et al., 2021) (b) Grad-CAM (Selvaraju et al., 2017)

(c) Rollout (Abnar & Zuidema, 2020) (d) LRP (Chefer et al., 2021)

Figure 7: Interpretability maps generated via different methods for (source, target, transformed)
images
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