
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PERMUTATION-INVARIANT SPECTRAL LEARNING VIA
DYSON DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models are central to generative modeling and have been adapted to
graphs by diffusing adjacency matrix representations. The challenge of having up
to n! such representations for graphs with n nodes is currently partially mitigated
by using permutation-equivariant learning architectures. However, despite their
computational efficiency, existing graph diffusion models struggle to distinguish
certain graph families, unless graph data are augmented with ad hoc features. This
shortcoming stems from enforcing the inductive bias within the learning architec-
ture. In this work, we leverage random matrix theory to analytically extract the
spectral properties of the diffusion process, allowing us to push the inductive bias
from the architecture into the dynamics. Building on this, we introduce the Dyson
Diffusion Model, which employs Dyson’s Brownian Motion to capture the spec-
tral dynamics of an Ornstein–Uhlenbeck process on the adjacency matrix while
retaining all non-spectral information. We demonstrate that the Dyson Diffusion
Model can learn the spectrum accurately, outperforming existing graph diffusion
models.

1 INTRODUCTION

Diffusion models are a key class of generative models based on noising data with Stochastic Dif-
ferential Equations (SDEs) and learning their time reversal (Sohl-Dickstein et al., 2015; Song et al.,
2021; Ho et al., 2020). They provide state-of-the-art results in many domains such as audio (Zhang
et al., 2023) and vision (Croitoru et al., 2023). Generalizing diffusion models from Euclidean space
to graphs offers promising applications in numerous areas, such as biology (Watson et al., 2023) or
combinatorial optimization (Sun & Yang, 2023). However, while diffusing adjacency matrix rep-
resentations is straightforward and popular (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2022),
this approach faces a major obstacle: Each graph with n vertices has up to n! representations as
adjacency matrices. Therefore, if one aims to use a diffusion model on the space of matrices, one
must learn n! representations per graph. This is not feasible. Previous works tackled this problem by
shifting the inductive bias of permutation invariance to the learning algorithm: If the neural network
was permutation equivariant, training on one of the (up to n! many) matrix representations would
suffice. For example, Niu et al. (2020) and Jo et al. (2022) used message-passing graph neural net-
works (GNNs) while ConGress (Vignac et al., 2022) applied graph transformers. However, these
learning architectures have a “blind spot” detailed below.

Theoretical Limitations. The “blind spot” arises from the limited ability of these models to solve
Graph Isomorphism (GI): determining if two graphs are structurally identical regardless of node
labeling. While permutation equivariance ensures that the model produces consistent outputs for
different representations of the same graph, it does not guarantee that the model can differentiate
between two structurally different (non-isomorphic) graphs. The failure is a result of how these
architectures aggregate information: permutation-symmetric operations – message passing in GNNs
and self-attention in graph transformers – can collapse distinct graphs with similar neighborhoods
to the same representation, treating them as identical. More formally, GI is a challenging problem
in algorithm theory, and it remains unknown whether GI ∈ P (Babai, 2016). Since a polynomial
time (learning) algorithm perfectly distinguishing all graphs would prove GI ∈ P, contemporary
(polynomial-time) graph learning algorithms must compromise on expressivity.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Dyson Diffusion model and its application to graph spectra: A graph on n vertices (a) has
up to n! representations as adjacency matrices (b). For an OU-driven diffusion on any adjacency
matrix, the permutation-invariant spectrum (c) evolves according to the same SDE (Dyson-BM).
An exemplary path of the n, non-intersecting, eigenvalues is shown. The marginals of the invariant
density for the λk are depicted on the far right. The DyDM diffusion model learns the score s(λ, t)
(highlighted in yellow) to generate spectra via the time-reversed SDE (5).

Extracting Permutation-Invariant Information from Graph Diffusion. When diffusing an entire
adjacency matrix, state-of-the-art work pushes the entire inductive bias into the learning algorithm
(Niu et al., 2020; Jo et al., 2022) with possible data augmentation (Huang et al., 2022; Vignac
et al., 2022; Xu et al., 2024). However, this is neither desirable (see previous discussion on blind
spots) nor necessary, as we show here. Using techniques from random matrix theory, we show
that an OU diffusion on the graph can be dissected into diffusion of the (permutation invariant)
spectrum and diffusion of the (permutation-dependent) eigenvectors. Our method therefore allows
to learn the spectrum while preserving all remaining information. Moreover, since the spectrum
is inherently permutation invariant, we may parameterize the score with a much wider family of
learning architectures, expanding the scope to architectures able to distinguish between graphs that
are equivalent in the Weisfeiler-Leman (WL) sense (Morris et al., 2019; Xu et al., 2018).1

Information in the Spectrum. The spectrum of a graph encodes key structural features including
connectivity, expansion, and subgraph patterns. Moreover, non-isomorphic WL-equivalent graphs
typically have distinct spectra (Huang & Yau, 2021). An idea, therefore, is to augment the graph
data based on spectral information (Vignac et al., 2022; Xu et al., 2024). Our work is based on
an entirely different method, exploiting analytical insight from random matrix theory to dissect the
spectral from the remaining information, allowing to push the inductive bias from the architecture
to the dynamics.

Dyson’s Brownian Motion. For an OU process on the space of symmetric matrices, the eigenvalues
follow a well-characterized stochastic differential equation (SDE), the so-called Dyson Brownian
Motion (DBM), which is inherently permutation invariant. Thus–in contrast to Niu et al. (2020); Jo
et al. (2022); Vignac et al. (2022)–the score of DBM can be parameterized with any (not necessarily
permutation invariant) neural network. Moreover, contrary to Luo et al. (2024)), the remaining
information is not lost (see Theorem 3.2).

Contributions. The main contributions of this work are as follows.

• We introduce the novel Dyson Diffusion Model (DyDM) in Section 3, which extracts the spec-
tral dynamics from an OU-driven diffusion. DyDM allows to learn the spectra of graphs with-
out the need of GNNs or graph transformers while preserving the remaining information of the
graph and allowing us to compute an eigenvector SDE.

• We demonstrate in Section 4 that DyDM is more effective than existing GNN-based and graph-
transformer-based methods for learning graph spectra.

• We illustrate the struggle of GNN-based graph diffusion models in Figure 2 and Section 4.1.

1We give a theoretical discussion in form of the WL-equivalence class in Section 2 and demonstrate the
challenge of those architectures empirically in Figure 2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Beyond graphs, our framework applies generally to symmetric matrices where spectral information
is often key. For instance, in statistics, it can encode the importance of principal components (James
et al., 2023), while in dynamical systems,2 it reflects the stability and timescales of linear operators.

Notation. We work on the set of symmetric real matrices Sym(Rn×n) := {A ∈ Rn×n : AT = A}.
The positive integers up to n are denoted by [n] := {1, . . . n}. We consider undirected graphs G =
(V,E,w) where V is a finite set with edges E ⊆ {S ⊆ V : 1 ≤ |S| ≤ 2} allowing for self-loops
and weights w : E → R. The family of such graphs of size n is Gn := {G = (V,E,w) : |V | = n}.
For a graph G ∈ Gn with RV = {f : V → R} being the space of functions from V to R, we let
A ≡ A(G) : RV → RV be the adjacency operator, defined for f ∈ RV and v ∈ V as the weighted
sum of f applied to the neighbours of v as

Af(v) :=
∑

{u,v}∈E

w ({u, v}) f(u).

As the graphs are undirected, the adjacency operator is self-adjoint with respect to the standard inner
product on RV . The operator A therefore has n real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. We denote
the ordered spectrum of the adjacency operator by

λ(G) := λ(A(G)) := {(λ1, λ2, . . . , λn) : λ1 ≥ . . . ≥ λn}.

Unless defined explicitly otherwise, we use n ∈ N for the (vertex) size of the graph, and N ∈ N
for the number of samples. We denote by s ∼ N (0, Id) that the d-dimensional random vector s has
multivariate normal distribution with 0 mean and unit covariance Id.

2 LIMITATIONS OF EXISTING DIFFUSION MODELS

We consider the following matrix-valued Ornstein–Uhlenbeck (OU) SDE starting from some data
M(0) ∈ Sym(Rn×n) given for 1 ≤ i ≤ j ≤ n by

dMji(t) = dMij(t) = −βMij(t)dt+DijdBij(t), (1)

with diffusion coefficient Dij :=
√
(1 + δij)α for any constants α, β ∈ R+, where Bij(t) = Bji(t)

are independent Brownian motions and δij = 1 if and only if i = j, and 0 otherwise. We consider
eq. (1) on the space of symmetric matrices to represent undirected graphs G ∈ Gn.

Equation (1) is an entry-wise OU process that preserves the symmetry of the matrix. In standard
diffusion models we run eq. (1) until some time T > 0 from data samples. To fix notation, denote
by pt the distribution of M(t) induced by (1) for t ≥ 0.

The time-reversal of the diffusion (1) over the time interval [0, T] is a diffusion initialized by sam-
pling M(T) ∼ pT and satisfying for 1 ≤ i ≤ j ≤ n

dMij(t) = −
{
βMij(t) +D2

ij [s(M(t), t)]ij

}
dt+DijdB̄ij(t), (2)

for independent Brownian motions B̄ij(t) (Anderson, 1982; Song et al., 2021). In Equation (2),
s(M, t) represents the score matrix at time t ∈ (0, T], i.e., s(M, t) := ∇M log pt(M). This score
is intractable but, as the OU process has tractable Gaussian transition densities, we can obtain an
estimate sθ(M, t) of it by minimizing the denoising score matching loss (Song et al., 2021)

L(θ) = Et∼Unif[0,T],M(0)∼p0,M(t)∼pt|0(·|M(0))

[∥∥sθ(M(t), t)−∇M(t) log pt(M(t)|M(0))
∥∥2
2

]
.

(3)

Approximate samples of p0 can then be obtained by simulating an approximation of Equation (2)
obtained by sampling M(T) from the Gaussian invariant distribution of (1), that is, M inv

ij ∼
N (0, α(1 + δij)/2β), and using sθ(M, t) in place of s(M, t).

Challenges posed by graphs. When working with graphs, to obtain an adjacency matrix for a given
weighted graph G = (V,E,w) ∈ Gn, we need to fix an ordering (v1, . . . , vn) of all vertices. In

2For instance, Markov jump dynamics in detailed balance systems where the generator is symmetric in the
steady state basis, see Pavliotis (2014).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

fact, given the ordering (v1, . . . , vn), the associated matrix M = (mij)1≤i,j≤n ∈ Sym(Rn×n) has
entries mij = w({vi, vj}) if {vi, vj} ∈ E and 0 otherwise. The challenge is that the adjacency
operator A(G) for a given graph G ∈ Gn has up to n! representations as adjacency matrices. For
instance, in Figure 1 we see four different matrix representations of the same graph.

Why should we use the inductive bias? One could think that the reason for using the inductive
bias stems from wanting that graph generative models assign uniform probability to each of the (up
to) n! many representations. But this can be easily achieved by applying a random independent
permutation to the output of the generative model.
Instead, the challenge stems from the following problem: In diffusion models, we learn a function
(i.e. the score) on a set of graphs, say3 Ω, rather than the distribution directly. Learning on the adja-
cency representations would correspond to learning on Ω × Sn. We demonstrate on a toy example
in Corollary K.1 that not leveraging the inductive bias, i.e. learning on a space of size Ω×Sn, leads
to an explosion of the average mean squared error: Learning a function on a fixed number of k
objects (say unweighted graphs on n nodes) from N samples leads to a mean squared error of order
Θ(n!/N). In contrast, making use of the inductive bias leads to an average mean squared error of
Θ(1/N). Noting that already on n = 10 nodes, we have n! > 3 · 106, we see the clear argument for
using the inductive bias.

Figure 2: Struggle of GNN-based and graph-transformer-based models with two WL-equivalent
graphs: Graphs A and Graphs B are WL-equivalent, but non-isomorphic. Also physically, they
have very different properties, such as different temperature factors (c) and a different cut size.
Upon training on a 80% Graph A and 20% Graph B dataset, state-of-the-art GNN-based (EDP-
GNN,GDSS) and graph-transformer-based (ConGress) models learn the WL-equivalence class
quickly but fail to generate the underlying distribution among the two graphs, with some even pre-
dominantly hallucinating WL-equivalent but non-isomorphic graphs (d).

Cost of pushing inductive bias entirely into architecture. One solution would be to impose the
inductive bias in the learning architecture. This is what state-of-the-art graph diffusion models do
(Niu et al., 2020; Jo et al., 2022; Vignac et al., 2022).
However, using these architectures comes at a cost. As argued in the introduction, since GI ∈ P
remains unknown, we expect some limitations. In the case of GNNs this compromise has been
precisely characterized: GNNs cannot distinguish between the large families of so-called Weisfeiler-
Leman (WL) equivalent graphs (Morris et al., 2019; Xu et al., 2018). For example, all k-regular
graphs on n vertices for any fixed k ∈ N are WL-equivalent (see Lemma 2.1 below and its proof in
Appendix L) and therefore indistinguishable for these architectures, which may lead to hallucination.
Lemma 2.1 (WL-equivalence of k-regular graphs). For every fixed n, k ∈ N, all k-regular graphs
G ∈ Gn are WL equivalent. Moreover, every graph G ∈ Gn that is WL equivalent to a k-regular
graph is k-regular.

This is a vast class, since e.g. on n = 20 vertices, there are 510, 489 many non-isomorphic, con-
nected 3-regular and thereby WL-equivalent graphs (Meringer, 1999). In particular, we demonstrate
on a simple example in Figure 2 that both GNN and Graph Transformer based methods fail to

3Importantly, Ω refers to the set of graphs and not the set of (permutation-sensitive) adjacency matrices.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

learn a distribution on two particular WL-equivalent graphs: during sampling, they either fail to
learn the distribution on both WL-equivalent graphs or hallucinate other, WL-equivalent but non-
isomorphic, graphs (Fig. 2d). This can be also seen during learning: The EDP-GNN model learns
the WL-equivalence class quickly (after 500 epochs) but then keeps hallucinating non-isomorphic
but WL-equivalent graphs, and in particular struggles to learn the right distribution between graphs
A and B for the remaining 4500 epochs (see Appendix O for details). Importantly, those graphs
are very different. For instance, if the graphs represented Gaussian Network Models for macro-
molecules (Tirion, 1996), physical observables such as the temperature factors in X-ray scattering
(Haliloglu et al., 1997) would be clearly distinct, see Fig. 2c. Therefore, a diffusion model based on
GNNs will suffer from this expressivity blind spot. More generally, any diffusion model relying on
a graph-specific learning algorithm will have limited expressivity.

3 DYSON DIFFUSION MODEL

3.1 DYSON BROWNIAN MOTION

Dyson (1962) showed that the spectrum of eq. (1) behaves as n positively charged particles in a one-
dimensional Coulomb gas. These particles exhibit Brownian motion, but with a pairwise repulsion
force proportional to their inverse distance so that their paths do not cross (see Fig. 1c). More
precisely, Dyson proved that the spectrum of the entry-wise Ornstein-Uhlenbeck process from eq. (1)
follows the SDE given in Theorem 3.1. Without loss of generality, we restrict the domain to the Weyl
Chamber Cn := {λ ∈ Rn : λ1 > . . . > λn} .
Theorem 3.1 (Eigenvalue SDE, Dyson (1962)). Denote by λ(t) = (λ1(t), . . . , λn(t)) the ordered
spectrum of the matrix-valued Ornstein-Uhlenbeck process M(t) of eq. (1). Then assuming that the
initial matrix M(0) has simple spectrum, λ(t) satisfies for all 1 ≤ k ≤ n the stochastic differential
equation

dλk(t) =

α
∑
ℓ ̸=k

1

λk(t)− λℓ(t)
− βλk(t)

dt+
√
2αdWk(t), (Dyson-BM)

for W1, . . . ,Wn independent standard Brownian motions. Moreover the unique stationary distribu-
tion of (Dyson-BM) has density

pinv(λ) =
1

Z
exp(−U(λ)) for U(λ) =

β

2α

∑
k

λ2
k −

∑
k<ℓ

ln |λk − λℓ|, (4)

for λ ∈ Cn and Z a normalizing constant so that pinv corresponds to a probability measure.

For completeness, a full proof of Theorem 3.1 is given in Appendix B, where we generalize a well-
known proof to arbitrary coefficients α, β. We note that the assumption of Theorem 3.1 that M0 has
simple spectrum is minor. Indeed, generic random graphs or matrices have simple spectra, and in
the case of eigenvalues with higher multiplicity, we can perturb the spectrum to be simple.
From Dyson-BM we see that the eigenvalues perform a Brownian motion in a confining potential
with a repulsion force: once a pair of eigenvalues λk, λl comes too close, they become repelled
with a force α/(λk − λl) inversely proportional to their separation. The remarkable property of
Theorem 3.1 is that the evolution of the spectrum is decoupled from any further information of the
matrix: the spectral SDE (Theorem 3.1) is independent of the eigenvectors. This is the key analytical
insight that motivates our approach.
Furthermore, conditioned on the eigenvalues, the remaining information captured in form of the
eigenvectors can be deduced as we show in Theorem 3.2. This generalizes a statement of Allez et al.
(2014), and we give a proof in Appendix C.
Theorem 3.2 (Eigenvector SDE). Denote by (v1(t), . . . , vn(t)) the orthonormal eigenvectors as-
sociated to the eigenvalues of Theorem 3.1. Assuming that the initial matrix M(0) has simple
spectrum, vk(t) satisfies for k ∈ [n] the stochastic differential equation

dvk(t) = −
α

2

∑
ℓ ̸=k

1

(λk(t)− λℓ(t))2
vk(t)dt+

√
α
∑
ℓ ̸=k

1

λk(t)− λℓ(t)
vℓ(t)dwℓk(t)

(Eigenvector-SDE)
for {wij:i ̸=j} standard Brownian motions independent of the eigenvalue trajectories, with wji =
wij .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 FROM THE DYSON SDE TO A DIFFUSION MODEL

All benefits aside, constructing a diffusion model based on Dyson-BM poses several challenges, e.g.
dealing with a singular drift, non-Gaussian conditional density, etc. (see Appendix J for details). As
described below, with DyDM we overcome these obstacles and design an efficient diffusion model
for the spectrum, which can distinguish between spectra of graphs that GNNs are blind to (Fig. 2)
and which does not require ad-hoc data augmentation.

The time-reversal of the Dyson-BM in the sense of Anderson (1982) reads

dλ̄k(t) =

α∑
ℓ ̸=k

1

λ̄k(t)− λ̄ℓ(t)
− βλ̄k(t)− 2α[s(λ̄(t), t)]k

 dt+
√
2αdW k(t), (5)

where we aim to learn the score s(λ, t) := ∇λ log pt(λ). Because the coefficients in Dyson-BM are
non-Lipschitz, the applicability of Anderson (1982) is not immediate. Accordingly, in Appendix D
we sketch a proof of existence and uniqueness of a strong solution and verify that Anderson’s time
reversal applies.

Making the loss tractable. Learning the loss function s(λ, t) as in eq. (3) is not feasible for the
Dyson-BM, since a closed form of the conditional distribution pt|0 is not known in contrast to the
OU process. To overcome this, we follow a derivation in the style of De Bortoli et al. (2022) to
obtain the loss function – up to constants in θ – for any h ∈ R+

L̃(θ) = Et∼Unif[0,T],λt∼pt,λt+h∼pt+h|t(·|λt)

[∥∥sθ(λt+h, t+ h)−∇λt+h
log pt+h|t(λt+h|λt)

∥∥2
2

]
,

(6)

where we will approximate the intractable pt+h|t with the Gaussian transition of the Euler-
Maruyama approximation (see Appendix A) for details.

Handling singularities. Numerical solutions of Dyson-BM with a fixed step size are not practical,
since Dyson-BM is singular at the boundary of the Weyl Chamber. A fixed step size leads to inaccu-
racies at the boundaries and may overshoot the singularity, leaving the Weyl Chamber. To overcome
this, we implement an adaptive step-size algorithm which conditions on an event of probability 1
(non-crossing) and hence does not change marginal densities.4 The step-size controller is described
in Algorithm 2 and in Appendix F.1 in detail.

Schedule. Dyson’s conjecture states that for α = 1
n and β = 1

2 Dyson-BM converges to the invariant
distribution in time Θ(1), while the majority of eigenvalues mixes locally already in time Θ(1/n)
(Yang, 2022). Hence, the fine-grained structure will be mixed in the time interval (0,Θ(1/n)).
We show in Appendix E through time change that this conjecture can be applied to any choice of
coefficients α, β as. It is thus sensible to choose an exponential schedule. We specify the particular
choices in Appendix I.1.

Equilibrium shooting mechanism. During inference, we require access to the learned score. In
the forward diffusion, solely numerical errors due to the time discretisation may lead to crossings
of singularities. On the one hand, when going backwards in time, due to inconsistencies in the
learned score, the repulsion in eq. (5) might be too weak and the sample path may leave the Weyl
Chamber for any sensible step size. Since the score is not defined outside the Weyl Chamber, this
is problematic. On the other hand, the step size obtained by conditioning on not leaving the Weyl
Chamber in this ill-trained point would be so small that the numerical solver would get stuck. To
overcome this, we incorporate a shooting mechanism: If the repulsion force is too weak to prevent
crossing of the singularity, resulting in a microscopic step size upon conditioning to remain in the
Weyl Chamber, we repel with the invariant-state drift, i.e., we replace the learned score with the
score in the invariant state (see Appendix G). This mechanism ensures that we stay in the Weyl
Chamber, while minimizing its impact on the distribution. With well-tuned parameters, the shooting
gets rarely triggered (less than 0.5% of steps) but is essential, as already a single event would cause
getting stuck (upon conditioning) or leaving the Weyl Chamber.

4Note that the adaptive step-size is only used in the forward simulation, whereas the objective is evaluated
always on a fixed grid to ensure correctness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 DyDM training

1: Input: spectral samples λ(1), . . . , λ(N) ∈ Rn, schedule T = {tj}
2: for each sample i ∈ [N] do
3: t← 0
4: λ(t)← λ(i)

5: while t < T do ▷ Diffuse sample
6: Let u ∼ N (0, In)
7: δt← ForwardStepsizeController(λ(t), u) ▷ Conditions on non-intersection, see

Appendix F.1.
8: if δt < δtmin then
9: Skip step ▷ Rare event: Skip tiny steps

10: end if
11: δt← min{δt, tfix − t} where tfix = min{tj ∈ T : tj > t}
12: λ(t+ δt)← Euler-Maruyama step of Dyson-BM with step size δt and noise u
13: t← t+ δt
14: end while
15: end for
16: Update sθ using loss L̃(θ) along paths λ(1)(t), . . . , λ(N)(t) on schedule T using eq. (18)
17: Output: sθ.

Figure 3: Dyson Diffusion Model (training): The Dyson-BM is evolved forward in time with an
adaptive step size ensuring that the paths remain in the Weyl Chamber. The step-size controller
conditions on the probability 1 event of non-crossing as detailed in Appendix F.1 and Algorithm 2.

Sampling from Invariant Distribution To sample from the invariant distribution of λ(t) given
by eq. (4) we exploit the connection between λ(t) and M(t): We first sample from the Gaussian
invariant distribution of M(t) and then perform an eigendecomposition.

Comparison to direct simulation. One may wonder why we do not sample from the matrix-valued
OU process at any time t directly, then perform an eigendecomposition to get λ(t), determine λ(t+
dt), and learn the score network from the increment using eq. 6. This way, learning would be
simulation-free and the Dyson SDE would only be needed for the derivation of the loss function
as well as the backwards dynamics. The reason for not pursuing this is efficiency and precision;
We found that the above way takes 150 times longer for graphs of size n = 10, since (accurate)
eigendecomposition is computationally costly. Doing so at every step explodes the costs. Moreover,
note that we train on the sample of increments, so that from a simulation until time t, we learn on the
entire generated path. Through our efficient implementation of the SDE, the learning process has
running time (up to smaller time steps performed by the adaptive step size controller) on the order
of a simulation-free diffusion model.

4 EXPERIMENTS

We empirically test our method and compare it to a selection of state-of-the-art graph diffusion mod-
els. First, we compare them on a simple bimodal distribution between two WL-equivalent graphs,
illustrating the struggle of purely GNN-based and graph-transformer-based methods (Section 4.1).
Next, we carry out a comparison on a standard graph benchmark datasets (Section 4.1) and demon-
strate scalability on a larger dataset (15′000 graphs).

4.1 METHODOLOGY

We compare to the GNN-based models EDP-GNN (Niu et al., 2020) and GDSS (Jo et al., 2022), as
well as graph-transformer-based ConGress and DiGress (Vignac et al., 2022), where among all the
models only DiGress uses a data-augmentation trick: it adds certain graph features, including cycle
counts and the first 6 eigenvalues (for details, see Section 5), but this trick is supposedly inessential
for building a good model (Vignac et al., 2022). The trick, however, improves the learning of certain

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Statistical distances of DyDM compared to standard models: DyDM learns the spectrum
better in both the n-dimensional mean and the marginal Wasserstein sense, without requiring ad-
hoc data augmentation. Results are rounded to two decimal places, and results (∗) are equal until
the fourth decimal place, and (∗∗) until the third decimal place. Exact numbers are provided in
Appendix N.6.

Dataset WL-Bimodal Community Small Brain
Distance µ Wmarg µ Wmarg µ Wmarg

DyDM (ours) 0.02 0.01∗ 0.07 0.02 0.05 0.03∗∗

EDP-GNN 0.13 0.08 0.42 0.14 - -
GDSS 0.23 0.13 0.42 0.14 - -

ConGress 0.38 0.16 0.27 0.11 - -
DiGress (no trick) 1.06 0.29 2.51 0.45 - -

DiGress (trick) 0.03 0.01∗ 0.09 0.03 0.12 0.03∗∗

features, but not necessarily other subgraph structures (Wang et al., 2025). We thus compare to both
the Digress model “without the trick”, i.e., just a graph (Markov Chain) diffusion model, and with
the data-augmentation trick.
As we evaluated the full spectrum and the published experimental results only showed partial or
no information about the spectrum, we need explicit access to the samples. Since not all models
(Vignac et al., 2022; Niu et al., 2020) report snapshots, we had to retrain those also on the standard
datasets. We report our code and all the samples of all models in Github5.

WL-Bimodal. Here we train the simple bimodal distribution in Fig. 2, consisting of 80% graph A
and 20% graph B, which are WL equivalent. The dataset has N = 5000 random permutations of
A and B, and we follow the standard test/train split procedure (Jo et al., 2022; You et al., 2018; Niu
et al., 2020) using 80% of the data as train data and the remaining 20% as test data. We performed
hyperparameter tuning of the comparison models as described in Appendix N.

Community. Being a standard benchmark (Niu et al., 2020; Jo et al., 2022; You et al., 2018), we
include it for comparison. However, due to heavy undersampling, we only test for memorization.
From our perspective, memorization is the best that can be tested with said benchmark, and we
elaborate on this in Appendix N.1

Brain. From the human connectome graph we drew 15, 000 ego-graphs (i.e. the induced subgraph
of neighborhoods) of size 5 to 10 vertices Amunts et al. (2013); Rossi & Ahmed (2015). We give
details in Appendix M.

4.2 RESULTS

In Table 1 we report mean distances and marginal Wasserstein distances of the spectra. Explicitly, if
νtest is the distribution of the spectrum of the test dataset and νsamp the distribution of our samples,
then the distance between the means in Rn is µ(νsamp, νtest) =

∥∥Eλ∼νsamp [λ]− Eλ∼νtest [λ]
∥∥
2
.

For statistical feasibility, instead of calculating the full Wasserstein distance we use the averaged
marginal Wasserstein distance given byWmarg(νsamp, νtest) =

1
n

∑n
k=1W((νsamp)k, (νtest)k), for

(νsamp)k the marginal distribution in dimension k andW the Wasserstein distance between two one-
dimensional distributions. Using these metrics we can evaluate both marginal and high-dimensional
effects.

While we observe also in these metrics the struggle of GNN- and Graph-Transformer-based models
on the simple WL-Biomdal dataset as described in Figure 2, we also see that this extends to the real-
world benchmark dataset Community Small. DyDM, on the other hand, consistently overcomes
these issues. Even if we compare to the model with ad-hoc feature augmentation (Digress with
“trick”, on which we elaborate in Section 5), DyDM – which does not employ feature augmentation
– either improves on or is on par with the feature augmented DiGress. We demonstrate that this
performance still holds when working on large datasets, such as the 15, 000 ego-graphs from the
Brain dataset.

5See https://anonymous.4open.science/r/DyDM-C854/

8

https://anonymous.4open.science/r/DyDM-C854/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

The spectrum carries key features of graphs, and as such has been considered before, however, only
as either auxiliary features for data augmentation (Vignac et al., 2022), or in a way which makes any
remaining Θ(n2) degrees of freedom inaccessible, as we outline below.

Data augmentation. Vignac et al. (2022) acknowledge the importance of spectra of graphs and add
plenty of auxiliary features, among them the first 6 eigenvalues of the Graph Laplacian as graph-
level features and the first 2 non-zero eigenvectors as vertex-level features. This engineering trick
is indeed helpful, yet it is a trick; as we show in Table 1 these auxiliary features are necessary for
DiGress to provide a good model. This is in stark contrast to DyDM, where we build on an analytical
expression of the evolution of all eigenvalues during diffusion of a symmetric matrix.

Spectral OU method. The use of spectral information for a graph diffusion model has been ex-
plored in recent work by Luo et al. (2024), which, however, performs an OU diffusion solely on
the spectrum as if the eigenvectors were not impacted by diffusion, hence making any recovery of
remaining information in the form of the eigenvectors impossible. The authors argue that the spec-
trum contains much information, so that upon sampling the spectrum from the OU-based model, the
eigenvectors are simply sampled by taking the eigenvectors of a training sample chosen uniformly at
random. However, this strategy is very limited, in that it allows only for a diffusion in n parameters,
losing Θ(n2) degrees of freedom irrecoverably. Since we learn in DyDM the spectrum of an OU
diffusion on the entire graph, the remaining information remains accessible, see Theorem 3.2. This
allows learning the eigenvectors beyond sampling uniformly from training data (Luo et al., 2024).

6 EXTENSIONS

A key property of DyDM is that it learns the spectrum while retaining all remaining Θ(n2) degrees
of freedom accessible through Eigenvector-SDE. Since Dyson-BM decouples from Eigenvector-
SDE, future work could implement a model of Eigenvector-SDE and generate entire graphs. To
parameterize Dyson-BM, a graph-transformer model such as Jo et al. (2022) could be used; since
Eigenvector-SDE is conditioned on the eigenvalue path which we learn without WL-blindness, we
assume that this biases paths sufficiently far from each other to mitigate any WL-problems in clas-
sical graph-transformer based methods. Moreover, instead of learning the spectrum of the adja-
cency matrix λ(A(G)), one could also learn the combinatorial graph Laplacian λ(L(G)). Finally,
we considered graphs with real (or integer) valued weights, while Dyson-BM is well-defined in
other algebras. Hence, generalizations to complex-weighted graphs (Tian & Lambiotte, 2024) are
straightforward: Instead of working on Sym(Rn×n), one works on Hermitian ensembles. Similarly,
matrices over the algebra of real quaternions may be considered (Dyson, 1962).

Beyond graphs. Since the Dyson SDE is defined on the domain of Sym(Rn×n) (and even Hermitian
matrices), it could be applied beyond graphs to other data. For instance, if correlations between n
points is measured in form of covariance matrices, DyDM could learn the spectrum and thereby
quantify how strong the data clusters into (low-dimensional) principal components (Chen et al.,
2015; Estavoyer & François, 2022; Hess, 2000).

7 CONCLUSION

Leveraging the analytical insights offered by Dyson’s Brownian Motion, we introduced DyDM, a
diffusion model for spectral learning. Using techniques from Random Matrix Theory, we derived
an evolution equation for the corresponding eigenvectors, which renders the remaining information
about the underlying matrix available. On the domain of graphs, we demonstrated the struggle of
existing learning architectures, e.g., GNN- and graph-transformer-based models. Building on the an-
alytical insights, we decompose the dynamics, such that the spectral part is not constrained by induc-
tive bias, thereby expanding the scope of suitable learning architectures. This way, DyDM can learn
the spectrum (even of challenging graph families) without constraining to permutation-equivariant
networks. This eliminates the hallucination, so that DyDM learns the distributions without struggle
and without any need for data augmentation, as demonstrated experimentally. We hope that this
approach opens a new direction in enforcing the inductive bias beyond the learning architecture in
graph diffusion models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Romain Allez, Joël Bun, and Jean-Philippe Bouchaud. The eigenvectors of Gaussian matrices with
an external source. arXiv preprint arXiv:1412.7108, 2014.

Katrin Amunts, Claude Lepage, Louis Borgeat, Hartmut Mohlberg, Timo Dickscheid, Marc-Étienne
Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lindsay B. Lewis, Ana-Maria Oros-Peusquens,
Nadim J. Shah, Thomas Lippert, Karl Zilles, and Alan C. Evans. Bigbrain: An ultrahigh-
resolution 3d human brain model. Science, 340(6139):1472–1475, 2013.

Brian D. O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, May 1982.

Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An Introduction to Random Matrices. Cam-
bridge University Press, 2009.

László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings of
the Forty-Eighth Annual ACM Symposium on Theory of Computing, 2016.

Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Sir-
audin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin,
and Christopher Morris. Position: Graph Learning Will Lose Relevance Due To Poor Bench-
marks. In International Conference on Machine Learning Position Paper Track, 2025.

H. Y. Chen, Raphaël Liégeois, John R. de Bruyn, and Andrea Soddu. Principal-component analysis
of particle motion. Physical Review E, 91(4):042308, 2015.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion Models
in Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
10850–10869, September 2023.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and Ar-
naud Doucet. Riemannian Score-Based Generative Modelling. In Advances in Neural Information
Processing Systems, 2022.

Freeman J. Dyson. A Brownian-Motion Model for the Eigenvalues of a Random Matrix. Journal of
Mathematical Physics, 3(6):1191–1198, 1962.

Maxime Estavoyer and Olivier François. Theoretical analysis of principal components in an um-
brella model of intraspecific evolution. Theoretical Population Biology, 148:11–21, December
2022.

Github. Dydm github repo. https://anonymous.4open.science/r/DyDM-C854/.

Turkan Haliloglu, Ivet Bahar, and Burak Erman. Gaussian Dynamics of Folded Proteins. Physical
Review Letters, 79(16):3090–3093, October 1997.

Berk Hess. Similarities between principal components of protein dynamics and random diffusion.
Physical Review E, 62(6):8438–8448, December 2000.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, 2020.

Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. GraphGDP: Generative Diffusion
Processes for Permutation Invariant Graph Generation. In 2022 IEEE International Conference
on Data Mining (ICDM), 2022.

Jiaoyang Huang and Horng-Tzer Yau. Spectrum of Random d-regular Graphs Up to the Edge. arXiv
preprint arXiv:2102.00963, 2021.

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan Taylor. An Introduc-
tion to Statistical Learning: With Applications in Python. Springer Texts in Statistics. 2023.

10

https://anonymous.4open.science/r/DyDM-C854/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the
System of Stochastic Differential Equations. In International Conference on Machine Learning,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and Improving the Training Dynamics of Diffusion Models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024.

Makoto Katori and Hideki Tanemura. Noncolliding Brownian motions and Harish-Chandra formula.
Electronic Communications in Probability, 8:112–121, 2003.

John P. Keating. Random Matrix Theory. Lecture Notes, Oxford University, 2023.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems, 2021.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast Graph Generation via Spectral Diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 46:3496–3508, May 2024.

Markus Meringer. Fast generation of regular graphs and construction of cages. Journal of Graph
Theory, 30(2):137–146, 1999.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural
Networks. In AAAI Conference on Artificial Intelligence, 2019.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation Invariant Graph Generation via Score-Based Generative Modeling. In International
Conference on Artificial Intelligence and Statistics, 2020.

Bernt Øksendal. Stochastic Differential Equations. Universitext. Springer Berlin Heidelberg, 2003.

Grigorios A. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-
Planck and Langevin Equations. Texts in Applied Mathematics. Springer New York, 2014.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph an-
alytics and visualization. In AAAI Conference on Artificial Intelligence, 2015. URL http:
//networkrepository.com.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsuper-
vised Learning using Nonequilibrium Thermodynamics. In International Conference on Machine
Learning, 2015.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. In
Advances in Neural Information Processing Systems, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2021.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Op-
timization. In Thirty-Seventh Conference on Neural Information Processing Systems, November
2023.

Yu Tian and Renaud Lambiotte. Structural Balance and Random Walks on Complex Networks with
Complex Weights. SIAM Journal on Mathematics of Data Science, 6(2):372–399, June 2024.

Monique M. Tirion. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic
Analysis. Physical Review Letters, 77(9):1905–1908, 1996.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. DiGress: Discrete Denoising diffusion for graph generation. In International Con-
ference on Learning Representations, 2022.

11

http://networkrepository.com
http://networkrepository.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiyuan Wang, Yewei Liu, Lexi Pang, Siwei Chen, and Muhan Zhang. Do Graph Diffusion Models
Accurately Capture and Generate Substructure Distributions? arXiv preprint arXiv:2502.02488,
2025.

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
Baek, and David Baker. De novo design of protein structure and function with RFdiffusion.
Nature, 620(7976):1089–1100, August 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, 2018.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state Continuous-time Diffusion for Graph Gen-
eration. In Advances in Neural Information Processing Systems, 2024.

Fang Yang. Topics in random matrix theory. https://yangf75.github.io/RMT(2022Fall,49-61).pdf,
2022.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Models. In International Conference on Machine
Learning, 2018.

Chenshuang Zhang, Chaoning Zhang, Sheng Zheng, Mengchun Zhang, Maryam Qamar, Sung-Ho
Bae, and In So Kweon. A Survey on Audio Diffusion Models: Text To Speech Synthesis and
Enhancement in Generative AI. arXiv preprint arXiv:2303.13336, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

The Appendix is structured as follows. We first derive the tractable loss L̃(θ) in Appendix A. We
then provide proofs of the Equation (Dyson-BM) in Appendix B as well as for the Eigenvector-SDE
in Appendix C. We then explain the applicability of Anderson’s time reversal (Appendix D), and
provide a time-rescaling of Dyson-BM in Appendix E. In Appendix F, we provide the adaptive step
size controller, followed by an explanation of the shooting mechanism (Appendix G), sampling pro-
cedure (Appendix H), and engineering details (Appendix I). We explain the challenges of Dyson’s
Brownian Motion which we overcame with DyDM in Appendix J. We present our theoretical argu-
ment for using inductive bias in Appendix K and prove the Lemma on WL equivalence of k-regular
graphs in Appendix L. For the experiments, we first elaborate on the datasets (Appendix M) fol-
lowed by an explanation of our extensive benchmarking in Appendix N, including a comment about
undersampling in some benchmark datasets in Appendix N.1. We show the learning dynamics of 4
different runs of EDP-GNN in Appendix O.

A MAKING THE LOSS TRACTABLE

In this section, we deduce a general loss formula for an SDE on Rd that will be applied to
(Dyson-BM). We consider the process X = (X(t))t≥0 determined by the SDE

dX(t) = a(t,X(t))dt+ b(t,X(t))dWt

with initial condition X(0). We assume throughout this section that X(t) is absolutely continuous
for all t ≥ 0 and denote by pt the density of X(t). We furthermore assume that the joint densities
of X(t) and X(s) also have density for all t, s ≥ 0 that we write as pt,s. Observe that by Bayes
formula for t ≥ s ≥ 0 we have for x, y ∈ Rd that

pt,s(y, x) = pt|s(y|x)ps(x), (7)

where pt|s(y|x) is the conditional density of y given x.

The canonical loss arising from s(y, t) = ∇M(t) log pt(M) is

L′(θ) = Et∼Unif[0,T],M(0)∼p0,M(t)∼pt|0(·|M(0))

[∥∥sθ(M(t), t)−∇M(t) log pt(M(t))
∥∥2
2

]
, . (8)

It is a well-known fact that L′(θ) = L(θ) + const(θ). We will first explain how the loss L′(θ)

from (8) and L̃(θ) from (6) are the same up to a constant, that is L′(θ) = L̃(θ) + const(θ), which
therefore results in the same gradient descent as with L(θ).

We generalize the loss from (8) to weighing the time by a function η. So we consider the following
generalized loss

L(θ) :=
1

T

∫ T

0

η(t)

∫
Rn

∫
Rn

∥sθ(y, t)−∇y log(pt(y))∥22 pt,0(y, x) dydxdt

=
1

T

∫ T

0

η(t)

∫
Rn

∫
Rn

∥sθ(y, t)−∇y log(pt(y))∥22 pt|0(y | x)dy p0(x)dx dt, (9)

where η(t) is some weighting function with
∫ T

0
η(t) = 1. We wrote it in the above

form with pt|0 denoting the conditional density, since the three integrals can be replaced by

Et∼U [0,T]

[
· · ·Ex∼p0

[
Ey∼pt|0(·|x)

[
∥· · ·∥22

]]]
, which we can sample from if we assume (1) sam-

ple access to p0, (2) known density at any t given a dirac-delta p0, (3) the term in the norm is
tractable. (1) is assumed by the problem definition, (2) is known for an Ornstein-Uhlenbeck forward
SDE, (3) can be solved by realizing that there is an equivalent loss function L̂(θ) = L(θ)+const(θ)
where pt inside the norm is converted to a pt|0, which is known (gaussian density) in an OU setting.

Here, steps (2) and (3) fail. Note that by the polarization identity

∥sθ(y, t)−∇y log(pt(y))∥22 = ∥sθ(y, t)∥22 + ∥∇y log(pt(y))∥22 − 2sθ(y, t)
T∇y log(pt(y))

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We will rewrite the mixed term sθ(y, t)
T∇y log(pt(y)) of the L2 norm in such a way that the first

quadratic term ∥sθ(y, t)∥22 remains unchanged and the second quadratic term ∥∇y log(pt(y))∥22 is
constant in θ. First, we rewrite

1

T

∫ T

0

η(t)

∫
Rn×Rn

sθ(y, t)
T∇y log(pt(y))pt,0(y, x) dxdy dt (10)

=
1

T

∫ T

0

η(t)

∫
Rn

sθ(y, t)
T∇y log(pt(y))pt(y) dy dt

=
1

T

∫ T

0

η(t)

∫
Rn

sθ(y, t)
T∇y [pt(y)] dy dt. (11)

We next observe that for 0 ≤ s′ ≤ s we have the following:

∇y [ps(y)] = ∇y

[∫
Rn

ps|s′(y|z)ps′(z) dz
]

=

∫
Rn

∇yps|s′(y|z)ps′(z) dz

=

∫
Rn

∇yps|s′(y|z)
ps,s′(y, z)

ps|s′(y|z)
dz

=

∫
Rn

∇y log ps|s′(y|z)ps,s′(y, z) dz.

So we now perform in (11) for a small h > 0 a change of variables to t + h and apply the latter
equality with s = t + h and s′ = t. Then up to ignoring the boundary at 0 and T , and using by (7)
that pt+h,t(y, z) = pt+h|t(y|z)pt(z) it follows that the loss from (6)

(11) =
1

T

∫ T

0

η(t+ h)

∫
Rn

∫
Rn

sθ(y, t+ h)T∇y log pt+h|t(y|z)pt+h|t(y|z) dy pt(z) dz dt. (12)

So it follows that

L̃(θ) =
1

T

∫ T

0

η(t+ h)

∫
Rn

∫
Rn

∥∥sθ(y, t+ h)−∇y log
(
pt+h|t(y|z)

)∥∥2
2
pt+h|t(y|z) dy pt(z) dz dt

(13)

is equal to L(θ) up to a constant term in θ (ignoring the boundary terms at 0 and T).

We will now make a series of approximations to calculate the loss L̃(θ). The first one is to approx-
imate the integral

∫ T

0
over t by a sum

∑k
i=1 over the time points t0 < t1 < . . . < tk with t0 = 0

and tk = T . The second approximation we make is that we approximate the latter integral
∫
Rn

∫
Rn

by sampling a path from pt at the time steps ti. Indeed, we denote for each integer 1 ≤ r ≤ N by
x
(r)
ti the sample path of pt. Moreover, we actually make the time grid also dependent on our sample

path. So for each 1 ≤ r ≤ N , let t(r)0 < t
(r)
1 < . . . < t

(r)

k(r) with t
(r)
0 = 0 and t

(r)

k(r) = T be the
discretization of [0, T]. Thus, the overall loss can be approximated as

L̃(θ) ≈ 1

N

N∑
r=1

k(r)∑
i=1

t
(r)
i − t

(r)
i−1

T
η(t

(r)
i)
∥∥∥sθ(x(r)

i , t
(r)
i)−∇y

[
log
(
p
t
(r)
i |t(r)i−1

(x
(r)
i | x(r)

i−1)
)]∥∥∥2

2

+ const(θ). (14)

We finally approximate the incremental score function ∇
x
(r)
i

[
log
(
p
t
(r)
i |t(r)i−1

(x
(r)
i | x(r)

i−1)
)]

as fol-

lows. If h > 0 is a small time step, we can approximate the conditional random variable Xt+h | Ft

by

Xt+h | Ft = Xt + a(t,Xt)h+ b(t,Xt)N(0, h)
(where N(0, dt) is a centered Gaussian RV with variance dt)

∼ N
(
Xt + a(t,Xt)h, b

2(t,Xt)h
)
, (15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

so that we have for the density

pt+h|t(y|x) ≈
1√

2πb2(t, x)h
exp

(
− (y − x− a(t,Xt)h)

2

2b2(t, x)h

)
, (16)

which means for the scores

∇y log
(
pt+h|t(y|x)

)
≈ −y − x− a(t,Xt)h

b2(t, x)h
. (17)

Thus, combining (14) and (17), the loss L̃(θ) can be approximated by the following as we use in our
model:

1

N

N∑
r=1

k(r)∑
i=1

t
(r)
i − t

(r)
i−1

T
η(t

(r)
i)

∥∥∥∥∥sθ(x(r)
i , t

(r)
i)−

a(t
(r)
i−1, x

(r)
i−1) · (t

(r)
i − t

(r)
i−1)− (x

(r)
i − x

(r)
i−1)

b2(t
(r)
i−1, x

(r)
i−1) · (t

(r)
i − t

(r)
i−1)

∥∥∥∥∥
2

2
(18)

B SPECTRAL DYSON SDE

Theorem 3.1 (restated). Denote by λ(t) = (λ1(t), . . . , λn(t)) the ordered spectrum of the matrix-
valued Ornstein-Uhlenbeck process M(t) of eq. (1). Then assuming that the initial matrix M(0)
has simple spectrum, λ(t) satisfies for all 1 ≤ k ≤ n the stochastic differential equation

dλk(t) =

α
∑
ℓ̸=k

1

λk(t)− λℓ(t)
− βλk(t)

dt+
√
2αdWk(t), (Dyson-BM)

for W1, . . . ,Wn independent standard Brownian motions. Moreover the unique stationary distribu-
tion of (Dyson-BM) has density

pinv(λ) =
1

Z
exp(−U(λ)) for U(λ) =

β

2α

∑
k

λ2
k −

∑
k<ℓ

ln |λk − λℓ|,

for λ ∈ Cn and Z a normalizing constant so that pinv corresponds to a probability measure.

Proof. We prove the theorem in two parts.

Dyson SDE. We first prove Dyson-BM. This part of the proof is based on Keating (2023) but
generalises it to arbitary coefficients. For mathematical details on the α = 1

n , β = 0 case, see also
Anderson et al. (2009). Suppose M(t) satisfies the SDE eq. (1). That is, with M(0) ∈ Sym(Rn×n)
we have

dMij(t) = −βMijdt+DijdBij

with Dij :=
√

(1 + δij)α for any constants α, β ∈ R+ with Bij(t) = Bji(t) ∀t > 0. Let
λ1 ≥ . . . ≥ λn be the eigenvalues. We choose as v1, . . . , vn an orthonormal basis of eigenvectors
(Mvk = λkvk), which exists by spectral theorem for symmetric matrices.

Due to symmetry, we may constrain the set of indices (i, j) to I := {(i, j) | 1 ≤ i ≤ j ≤ n}. For
any k ∈ [n], the eigenvalue λk can thus be seen as a function of the set of Itô processes {Mη | η ∈
I}. Hence, we have by Itô’s Lemma,

dλk =
∂λk

∂t
dt︸ ︷︷ ︸

≡0

+
∑
η∈I

∂λk

∂Mη
dMη +

1

2

∑
η,ξ∈I

(∂λk)
2

∂Mη∂Mξ
dMηdMξ, (19)

where the first part is 0 since λk(t) is only a function of the Mη(t), not of time. By eq. (1), we get

=
∑
η∈I

(
−βMη

∂λk

∂Mη
+

1

2
D2

η

∂2λk

(∂Mη)2

)
dt+Dη

∂λk

∂Mη
dBη. (20)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

It remains to calculate the partial derivatives. In what follows, we successively apply properties of
the spectrum in order to obtain equations for the partial derivatives. We have

Mvk = λkvk (21)

taking the partial derivative with respect to Mij for (i, j) ∈ I on both sides and applying the product
rule yields

∂M

∂Mij
vk +M

∂vk
∂Mij

=
∂λk

∂Mij
vk + λk

∂vk
∂Mij

. (22)

Further, by orthogonality of the eigenvectors we have for any k, l ∈ [n]

vTk vl = δkl (23)

∂vTk
∂Mij

vl + vTk
∂vl
∂Mij

= 0. (24)

which, taking the transpose, implies for l = k

∂vTk
∂Mij

vk = vTk
∂vk
∂Mij

= 0. (25)

Multiplying eq. (22) by vTl from the left yields

vTl
∂M

∂Mij
vk + vTl M

∂vk
∂Mij︸ ︷︷ ︸

(I)

=
∂λk

∂Mij
vTl vk︸ ︷︷ ︸

(II)

+λkv
T
l

∂vk
∂Mij︸ ︷︷ ︸

(III)

(26)

where the terms simplify as follows.

(I) = (1− δkl)λlv
T
l

∂vk
∂Mij

(by eq. (25))

(II) = δlk
∂λk

∂Mij
(27)

(III) = (1− δkl)λkv
T
l

∂vk
∂Mij

, (by eq. (25))

resulting in the following equation for l = k

vTk
∂M

∂Mij
vk =

∂λk

∂Mij
(28)

and for l ̸= k:

vTl
∂M

∂Mij
vk + λlv

T
l

∂vk
∂Mij

= λkv
T
l

∂vk
∂Mij

(29)

vTl
∂M

∂Mij
vk = (λk − λl) v

T
l

∂vk
∂Mij

. (30)

The matrix derivative is, trivially,(
∂M

∂Mij

)
kl

=

{
1 for (k, l) = (i, j) or (l, k) = (i, j)

0 else
, (31)

so that we can simplify eq. (28) to

∂λk

∂Mij
= (vk)i(vk)j(2− δij) (32)

and eq. (30) to

(λk − λl) v
T
l

∂vk
∂Mij

= (vk)i(vl)j + (1− δij)(vk)j(vl)i (33)

= (vl)i(vk)j + (1− δij)(vl)j(vk)i. (34)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Using that the vk are an ONB of eigenvectors, we can conclude with eq. (32) that the first summand
of eq. (20) is ∑

η∈I
−βMη

∂λk

∂Mη
= −βλk. (35)

Since {v1, . . . , vn} is an orthonormal basis, we may project on the basis vectors as follows

∂vk
∂Mij

=
∑
l∈[n]

vTl
∂vk
∂Mij

vl (projection into ONB basis)

applying eq. (25) gives

=
∑

l∈[n]\{k}

vTl
∂vk
∂Mij

vl (36)

which yields with eq. (33)

=
∑

l∈[n]\{k}

1

λk − λl
((vk)i(vl)j + (1− δij)(vk)j(vl)i) vl. (37)

To obtain the second order partial derivative of λk, we observe

∂2λk

∂Mij∂Mij
=

∂

∂Mij
((vk)i(vk)j(2− δij)) (by eq. (32))

=(2− δij)

(
∂(vk)i
∂Mij

(vk)j + (vk)i
∂(vk)j
∂Mij

)
=(2− δij)

∑
l∈[n]\{k}

1

λk − λl

(
(vl)i(vk)j(vl)i(vk)j + (vl)j(vk)i(1− δij)(vl)i(vk)j

+ (vl)i(vk)j(vl)j(vk)i + (vl)j(vk)i(1− δij)(vl)j(vk)i

)
(by eq. (37))

=(2− δij)
∑

l∈[n]\{k}

1

λk − λl

(
(vl)

2
i (vk)

2
j + (vl)

2
j (vk)

2
i (1− δij)

+ (vl)i(vl)j(vk)i(vk)j(2− δij)

)
. (38)

These second order partial derivative are summed over I in eq. (20), so that combining eq. (38) with
the definition of Dij yields

∑
(i,j)∈I

D2
ij

∂2λk

(∂Mij)2
=

n∑
j=1

j∑
i=1

α(1 + δij)(2− δij)
∑

l∈[n]\{k}

1

λk − λl

(
(vl)

2
i (vk)

2
j

+ (vl)
2
j (vk)

2
i (1− δij) + (vl)i(vl)j(vk)i(vk)j(2− δij)

)
(39)

we reorder and note that since the summand is symmetric in i, j, we may change the range of
summation and absorb the coefficient 2− δij ,

= α
∑

l∈[n]\{k}

1

λk − λl

n∑
j=1

n∑
i=1

(1 + δij)

(
(vl)

2
i (vk)

2
j

+ (vl)
2
j (vk)

2
i (1− δij) + (vl)i(vl)j(vk)i(vk)j(2− δij)

)
(40)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where we realize that upon accounting for all δij , the first two summands are simply ∥vl∥22∥vk∥
2
2,

while the third summand may we written an inner product

= α
∑

l∈[n]\{k}

1

λk − λl

2∥vl∥22∥vk∥
2
2 + 2(vTl vk︸ ︷︷ ︸

0

)2

 (41)

since we chose an ONB, this simplifies to

= 2α
∑

l∈[n]\{k}

1

λk − λl
. (42)

It remains to determine an explicit expression of the Brownian motion in eq. (20). We have

∑
η∈I

Dη
∂λk

∂Mη
dBη =

∑
(i,j)∈I

√
(1 + δij)α(2− δij)(vk)i(vk)jdBij

using that Bij(t) = Bji(t), we obtain

=
√
2α

n∑
i=1

n∑
j=1

√
1 + δij

2
(vk)i(vk)jdBij

we may now define dB̃k as follows

=
√
2αdB̃k. (43)

Indeed, the set {B̃k | k ∈ [n]} is in distribution equal n independent standard Brownian motions,
since E

[
dB̃k

]
= 0 and for k, l ∈ [n]

E
[
dB̃kdB̃l

]
= E

1
2

∑
ij

∑
st

√
1 + δij

√
1 + δst(vk)i(vk)j(vl)s(vl)tdBijdBst


where we realize that the product of the differentials is 0 except for (i, j) = (s, t) and (i, j) = (t, s)

= E
[
vTk vlv

T
k vl
]
dt

= δkldt. (44)

We can thus conclude that by eq. (20) we have,

dλk =

−βλk + α
∑

l∈[n]\{k}

1

λk − λl

dt+
√
2αdWk (45)

where {Wk | k ∈ [n]} are n independent Brownian motions.

Invariant Distribution. We now show that

pinv(λ) =
1

Z
exp(−U(λ)) for U(λ) =

β

2α

∑
k

λ2
k −

∑
k<ℓ

ln |λk − λℓ|, (46)

for λ ∈ Cn and Z a normalizing constant so that pinv is a probability measure, is the invariant
distribution. We use the Fokker-Plank equation. Indeed, recall that if we have an SDE

dλt = f(λt)dt+ L(λt)dBt

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

in dimension n, where f(λ) = (f1(λ), . . . , fn(λ)) is a C2-function, L(λ) is matrix-valued C2-
function and Bt is a n-dimensional Brownian motion, then an invariant distribution p(x) satisfies

n∑
i=1

∂

∂λi
[fi(λ)p(λ)] =

1

2

n∑
i,j=1

∂2

∂λi∂λj
[L(λ)L(λ)T]ijp(λ). (47)

In our case, for the λ(α, β)-SDE we have that L(λ, t) =
√
2α1n and therefore [L(λ, t)L(λ, t)T]ij =

2αδij . So the right hand side of (47) equals

α

n∑
i=1

∂2

(∂λi)2
p(λ).

Assume for now that λ = (λ1, . . . , λn) satisfies λ1 > λ2 > . . . > λn and

U(λ) = c
∑
i

λ2
i −

∑
i<j

ln(λi − λj)

for some constant c > 0 to be determined. We first calculate for a fixed i,

∂

∂λi
p(λ) = − 1

Z
exp(−U(λ))

∂

∂λi
U(λ)

= − 1

Z
exp(−U(λ))

2cλi −
∑
i<j

1

λi − λj
+
∑
j<i

1

λj − λi


= − 1

Z
exp(−U(λ))

2cλi −
∑
j ̸=i

1

λi − λj

 .

Therefore,

∂2

(∂λi)2
p(λ) =

1

Z
exp(−U(λ))

2cλi −
∑
j ̸=i

1

λi − λj

2

− 1

Z
exp(−U(λ))

2c+
∑
j ̸=i

1

(λi − λj)2


=

∑
j ̸=i

1

λi − λj
− 2cλi

 ∂

∂λi
p(λ)− p(λ)

2c+
∑
j ̸=i

1

(λi − λj)2


and so the right hand side of (47) is equal to

α

n∑
i=1

∂2

(∂λi)2
p(λ) =

n∑
i=1

α
∑
j ̸=i

1

λi − λj
− 2αcλi

 ∂

∂λi
p(λ)−

n∑
i=1

p(λ)

2αc+ α
∑
j ̸=i

1

(λi − λj)2


Now the left hand side of (47) is equal to

n∑
i=1

∂

∂λi

α
∑
i ̸=j

1

λi − λj
− βλi

 p(λ)


=

n∑
i=1

α
∑
i̸=j

1

λi − λj
− βλi

 ∂

∂λi
p(λ) +

n∑
i=1

−α∑
i ̸=j

1

(λi − λj)2
− β

 p(λ)

So it follows that in (47) the left-hand side is equal to the right-hand side if and only if β = 2αc or
equivalently c = β/2α, concluding the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 4: Plot of the invariant density of Dyson-BM for d = 2 and α = β = 1

C INFERRING THE EIGENVECTOR DYNAMICS

Theorem 3.2 (restated). Denote by (v1(t), . . . , vn(t)) the orthonormal eigenvectors associated to
the eigenvalues of Theorem 3.1. Assuming that the initial matrix M(0) has simple spectrum, vk(t)
satisfies for k ∈ [n] the stochastic differential equation

dvk(t) = −
α

2

∑
ℓ ̸=k

1

(λk(t)− λℓ(t))2
vk(t)dt+

√
α
∑
ℓ ̸=k

1

λk(t)− λℓ(t)
vℓ(t)dwℓk(t)

(Eigenvector-SDE)

for {wij:i ̸=j} standard Brownian motions also independent of the eigenvalue trajectories, with
wji = wij .

Proof. Analogously to the proof of Theorem 3.1, we may view the vk for k ∈ [n] as a function of
the matrix components Mij for (i, j) ∈ I := {(i, j) : 1 ≤ i ≤ j ≤ n}. We thus have by Itô’s
lemma

dvk =
∑
η∈I

∂vk
∂Mη

dMη +
1

2

∑
η,ξ∈I

∂2vk
∂Mη∂Mξ

dMηdMξ

=
∑
η∈I

(
−βMη

∂vk
∂Mη

+
1

2
D2

η

∂2vk
(∂Mη)2

)
dt+Dη

∂vk
∂Mη

dBη. (48)

For the first summand of eq. (48), we observe, using eq. (36), that∑
(i,j)∈I

Mij
∂vk
∂Mij

dt =
∑
l ̸=k

∑
(i,j)∈I

vTl
∂vk
∂Mij

vlMijdt (49)

and further use eq. (30)

=
∑
l ̸=k

1

λk − λl

(
vTl

∑
(i,j)∈I

∂M

∂Mij
Mij︸ ︷︷ ︸

=M by eq. (31)

vk

)
vldt

=
∑
l ̸=k

λk

λk − λl
(vTl vk)vldt. (50)

Since l ̸= k and the {vl | l ∈ [n]} are orthogonal, we get

=0. (51)

For the second summand of eq. (48), we observe

∂2vk
(∂Mη)2

=
∂

∂Mη

∂vk
∂Mη

(52)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and using Equation (30) and Equation (36) we get

=
∑
m ̸=k

∂

∂Mη

[
1

λk − λm
vTm

∂M

∂Mη
vkvm

]
(53)

by noting ∂
∂Mη

∂M
∂Mη

= 0, we apply the chain rule to obtain

=
∑
m ̸=k

{
−
(

1

λk − λm

)2(
∂λk

∂Mη
− ∂λm

∂Mη

)
vTm

∂M

∂Mη
vkvm︸ ︷︷ ︸

(i)

+
1

λk − λm

∂vTm
∂Mη

∂M

∂Mη
vkvm︸ ︷︷ ︸

(ii)

(54)

+
1

λk − λm
vTm

∂M

∂Mη

∂vk
∂Mη

vm︸ ︷︷ ︸
(iii)

+
1

λk − λm
vTm

∂M

∂Mη
vk

∂vm
∂Mη︸ ︷︷ ︸

(iv)

}
. (55)

We now analyze each term.

Term (i) We recall Equation (32)
∂λk

∂Mij
= (vk)i(vk)j(2− δij),

as well as that the partial derivative ∂M
∂Mij

is 0 except at i, j and j, i, where it is 1 (using symmetry).

Pulling the summation over η and all η-dependent terms in, we have∑
η∈I

(1 + δη)

(
∂λk

∂Mη
− ∂λm

∂Mη

)
vTm

∂M

∂Mη
vk

=
∑
ij∈I

(1 + δij)

{
[(vk)i(vk)j(2− δij)− (vm)i(vm)j(2− δij)]

[(vm)i(vk)j + (vm)j(vk)i(1− δij)]

}
=2
[
vkv

T
k v

T
k vm − vTmvmvTmvk

]
=2(δkm − δkm)

=0.

Thus, the overall contribution of term (i) is 0.

Term (ii) For term (ii) we have by Equation (30) and Equation (36)

(ii) =
1

λk − λm

∑
s ̸=m

1

λm − λs
vTm

∂M

∂Mη
vsv

T
s

∂M

∂Mη
vkvm. (56)

Using

vTm
∂M

∂Mij
vs = (vm)i(vs)j + (vm)j(vs)i(1− δij), (57)

we note that∑
η∈I

D2
ηv

T
m

∂M

∂Mη
vsv

T
s

∂M

∂Mη
vk

=α
∑
i,j∈I

(1 + δij) [(vm)i(vs)j + (vm)j(vs)i(1− δij)] [(vk)i(vs)j + (vk)j(vs)i(1− δij)]

=α

{[∑
i

(vm)i(vk)i

][∑
i

(vs)
2
i

]
+ vTmvsv

T
s vk

}
=αδkm + αδmsδsk (58)
=0.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Thus, the contribution of term (ii) vanishes.

Term (iii) Analogous to term (ii).

Term (iv) By using Equation (30) and Equation (36), we get

(iv) =
1

λk − λm
vTm

∂M

∂Mη
vk

∂vm
∂Mη

=
1

λk − λm
vTm

∂M

∂Mη
vk
∑
p ̸=m

1

λm − λp
vTp

∂M

∂Mη
vmvp

=
1

λk − λm

∑
p ̸=m

1

λm − λp

(
vTm

∂M

∂Mη
vk

)(
vTp

∂M

∂Mη
vm

)
vp.

By pulling in the η-dependent terms from Equation (48) which affect term (iv), and then by subse-
quently pulling the sum over η in, we get∑

η∈I

1

2
D2

ηv
T
m

∂M

∂Mη
vkv

T
p

∂M

∂Mη
vm (59)

which, using eq. (58), becomes

=
α

2
(δkp + δkmδmp)

=
α

2
δkp.

Moreover, using that p ̸= m, we can conclude that the total contribution of term (iv) is∑
η∈I

1

2
D2

η

∑
m ̸=k

(iv)

=− α

2

∑
m ̸=k

1

(λk − λm)2
vk.

Before proceeding, we prove the following lemma.

Lemma C.1. Let v(k) be a set of orthonormal vectors and Bij a set of independent standard Brow-
nian motions with Bij = Bji, for i, j, k ∈ [n]. We have that

B̃lk := (v(l))T


√
2B11 B12 B13 . . . B1n

B21

√
2B22 B23 . . . B2n

...
...

...
Bn1 Bn2 Bn3 . . .

√
2Bnn

 v(k)

is a Brownian motion with variance 1+ δlk, that is B̃lk
distr
=
√
1 + δlkB for B a standard Brownian

motion. B̃lk is independent of B̃ab for (l, k) ̸= (a, b) and (l, k) ̸= (b, a).

Proof. We have for any a, b ∈ [n] that

dB̃ab =
∑
i,j

(v(a))i(v
(b))j

√
1 + δijdBij .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus, E
[
dB̃ab

]
= 0. We further have for c, d ∈ [n]:

E
[
dB̃abdB̃cd

]
=
∑
ijkl

(v(a))i(v
(b))j(v

(c))k(v
(d))l

√
1 + δij

√
1 + δkl E [dBijdBkl]

=
∑
ijkl

(v(a))i(v
(b))j(v

(c))k(v
(d))l

√
1 + δij

√
1 + δkl1(i,j)=(k,l)∨(i,j)=(l,k)dt

=
∑
ij

(v(a))i(v
(b))j

{
1i̸=j

[
(v(c))i(v

(d))j + (v(c))j(v
(d))i

]
+ 1i=j(v

(c))i(v
(d))i

}
(1 + δij)dt

=
∑
ij

(v(a))i(v
(b))j

[
(v(c))i(v

(d))j + (v(c))j(v
(d))i

]
dt

=
∑
ij

(v(a))i(v
(b))j(v

(c))i(v
(d))jdt+

∑
ij

(v(a))i(v
(b))j(v

(c))j(v
(d))idt

= (v(a))T v(c)(v(b))T v(d)dt+ (v(a))T v(d)(v(b))T v(c)dt

= 1(a,b)=(c,d)dt+ 1(a,b)=(d,c)dt (60)

Thus, in particular the process B̃ab has variance t for a ̸= b and variance 2t for a = b.

Since the linear combination of independent Brownian Motions is jointly normal, we see from the
Covariance property in eq. (60) that B̃lk is independent of B̃ab for (l, k) ̸= (a, b) and (l, k) ̸=
(b, a).

We can now turn to the third summand of eq. (48).

We have

∑
η∈I

Dη
∂vk
∂Mη

dBη

=
√
α
∑
l ̸=k

1

λk − λl
vTl
∑
η∈I

∂M

∂Mη
vk
√
1 + δηdBηvl

=
√
α
∑
l ̸=k

1

λk − λl
vTl


√
2dB11 dB12 dB13 . . . dB1n

dB21

√
2dB22 dB23 . . . dB2n

...
...

...
dBn1 dBn2 dBn3 . . .

√
2dBnn

 vkvl

=
√
α
∑
l ̸=k

1

λk − λl
vldB̃lk (61)

where we used Lemma C.1 in the last step so that dB̃lk are symmetric Brownian motions with
variance 1 + δlk.

Having established all the terms in the SDE in Theorem 3.2, we check that this dynamics of the
eigenvectors gives rise to normalised vectors, assuming that the initial vectors (v1(0), . . . , vn(0))
are normalised. To this end, it suffices to note that vk(t+ dt) = vk(t) + dvk(t) is normalised given
that vk(t) is normalised, that is (vk(t))

2 = 1 for any t. By continuity of t 7→ vk(t), it suffices to
show that vk(dt) = vk(0) + dvk(0) remains normalized. We use the SDE from Theorem 3.2 to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

compute that up terms of the order of dt3/2 or higher we have (omitting “(0)” in the notation)

(vk(0) + dvk(0))
2 = 1 + 2vTk dvk + (dvk)

2

=1 + 2

(
−α
2

)∑
l ̸=k

dt

(λk − λl)2
+ 2
√
α
∑
l ̸=k

1

λl − λk
vTk vl︸︷︷︸
=0

dwlk

+ α
∑
l ̸=k

∑
j ̸=k

dwlkdwjk

(λl − λk)(λj − λk)
+O(dt3/2)

=1− α
∑
l ̸=k

dt

(λk − λl)2
+ α

∑
l ̸=k

∑
j ̸=k

δjldt

(λk − λl)(λk − λj)
+O(dt3/2)

=1 +O(dt3/2). (62)

Since contributions of O(dt3/2) do not contribute to the dynamics for dt → 0, this implies that the
vk(dt) remain normalised. The argument may be iterated, i.e., (vk(2dt))2 = (vk(dt)+dvk(dt))

2 =
1 +O(dt3/2) and so on, and thus the vk(t) remain normalised for all t > 0.

Finally, as an instructive consistency check, we also show that the eigenvectors remain orthogonal
to each other (as they must, since M is symmetric for all t ≥ 0). This can be checked from the
SDE in an analogous manner using again the continuity of t 7→ vk(t). Note that for k ̸= l and given
vTk (0)vl(0) = 0, it suffices to show that vTk (dt)vl(dt) = 0. Indeed, we have (omitting “(0)” in the
notation)

(vk(0) + dvk(0))
T (vl(0) + dvl(0)) = 0 + vTk dvl + vTl dvk + dvTk dvl

=
√
α
∑
i ̸=l

1

λl − λi
vTk vidwil +

√
α
∑
j ̸=k

1

λk − λj
vTl vjdwjk

+ α
∑
j ̸=k

∑
i̸=l

vTj vidwildwjk

(λk − λj)(λl − λi)
+O(dt3/2)

=

√
α

λl − λk
(dwkl − dwlk)︸ ︷︷ ︸

=0

+α
∑
j ̸=k

∑
i ̸=l

δijδikδjldt

(λk − λj)(λl − λi)
+O(dt3/2)

=0 +O(dt3/2). (63)

The argument may be iterated and thus the claim hold for all t > 0.

D TIME REVERSAL: EXISTENCE AND UNIQUENESS

The time-reversal of the Dyson-BM in the sense of Ref. Anderson (1982) is given in Eq. (5). Since
the drift coefficient in the Dyson-BM is not locally Lipschitz continuous, the existence and unique-
ness of strong solutions to Dyson-BM and Eq. (5), and the applicability of Ref. Anderson (1982)
are not obvious. While the existence and uniqueness of a strong solution to the Dyson-BM is well
established (see, e.g., Lemma 4.3.3 in Ref. Anderson et al. (2009)), we here sketch how to ensure
the other two points.

To ensure existence and uniqueness of a strong solution to Eq. (5), repeat the arguments in Lemma
4.3.3 in Ref. Anderson et al. (2009), where the divergent x−1-term in the drift is replaced by the
locally Lipschitz continuous approximation ϕ(x) = x−1 for |x| ≥ R−1 and ϕ(x) = xR2 otherwise.
For any R > 0, the desired statements follow from the local Lipschitz continuity of the drift, and
details on the limit R → 0 can be found in Ref. Anderson et al. (2009). The only difference
to the forward motion is the additional drift term containing the score function. However, since
the dynamics is almost surely contained in the interior of the Weyl chamber (Katori & Tanemura,
2003), the propagator in the score-contribution is, as usual, dominated by white noise as dt → 0.
Therefore, this term will not cause complications as R→ 0 and the arguments from Ref. Anderson
et al. (2009) imply uniqueness and existence of a strong solution to Eq. (5).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Using the same regularization of the divergent term, for any R > 0 the statements of Ref. Anderson
(1982) are directly applicable. Since this regularization is piecewise continuous, we can take the
limit R → 0 under time reversal. Since we just established the existence of the solution to Eq. (5),
the limit R → 0 converges. Furthermore, the arguments are expected to generalize (regularize
ϕ(x) = x−2) to the eigenvector equations and their time reversal.

E TIME RESCALING

We rescale time for Dyson-BM. Let T (s) be a continuous, differentiable rescaling of time, mono-
tonically increasing, with T (0) = 0 (for convenience).

Let γk(t) := λ(T (t)). With this definition, the Ito SDE eq. (Dyson-BM) corresponds to the Ito
integral

γk(t) :=λk(T (t)) = λk(0) +

∫ T (t)

0

α
∑
i̸=k

1

λk(s)− λi(s)
− βλk(s)

ds+

∫ T (t)

0

√
2αdBk(s)

=

∫ t

0

α
∑
i ̸=k

1

λk(T (s))− λi(T (s))
− βλk(T (s))

T ′(s)ds+

∫ t

0

√
2αT ′(s)dBk(s)

(using Thm. 8.5.7 in Øksendal (2003))

=

∫ t

0

α
∑
i ̸=k

1

γk(s)− γi(s)
− βγk(s)

T ′(s)ds+

∫ t

0

√
2αT ′(s)dBk(s) (64)

which we can write in SDE notation

dγk(t) =

α
∑
i ̸=k

1

γk(t)− γi(t)
− βγk(t)

T ′(t)dt+
√

2αT ′(t)dBk(t). (65)

By using T (t) := 1
α t, we obtain

dγk(t) =

∑
i̸=k

1

γk(t)− γi(t)
− β

α
γk(t)

 dt+
√
2dBk(t), (66)

so that we can summarize the two parameters to η := β
α :

dγk(t) =

∑
i̸=k

1

γk(t)− γi(t)
− ηγk(t)

 dt+
√
2dBk(t) (67)

which we call “γ(η)-SDE”.

Dyson’s conjecture says that the λ(1
N , 1

2)-SDE converges to global equilibrium in time Θ(1) (see
Yang (2022)). Running λ(1

N , 1
2) until time 1 is the same as running the γ(N2)-SDE until time

T (1) = 1
N .

F STEPSIZE CONTROLLER

Dyson Brownian Motion almost surely never crosses the singularities. Hence, conditioning on non-
crossing corresponds to conditioning on a probability 1 event, which does not change the dynamics.
Given the noise, we can thus calculate the maximal step size, beyond which we would cross the
singularity. This is a very useful upper bound, which we employ in practice to get the numerical
scheme working. It has two effects: (1) close to the boundary of the Weyl Chamber, it avoids
numerically stepping over the singularities and (2) far from the boundary, it allows for larger step
size, increasing efficiency.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 2 Forward stepsize controller for Dyson SDE

1: Input: position λ ∈ Rn, time t ∈ R+, independent normal samples u ∼ Nn.
2: for k ∈ [n− 1] do
3: δtk ← maximal step size based on λk+1 − λk and samples uk, uk+1 as described in Ap-

pendix F.1
4: end for
5: Output: stepsize mini δti.

Figure 5: Forward step size controller which exploits that non-crossing of paths happens with prob-
ability 1. The exact calculations are carried out in Appendix F.1.

F.1 FORWARD IN TIME

The difference between components k and k+1 of λ after a first-order discretization step of size dt
reads for any time t ∈ R+

∆k(t) := λk(t+ dt)− λk+1(t+ dt) (68)

= λk(t)− λk+1(t) + dtfk(t) +
√
dtgk (69)

with functions fk(t) := α
(∑

i ̸=k
1

λk(t)−λi(t)
−
∑

i ̸=k+1
1

λk+1(t)−λi(t)

)
− β (λk(t)− λk+1(t)),

gk :=
√
2α (Xk −Xk+1) where the Xj

iid∼ N (0, 1) are the independent standard gaussian ran-
dom variables taken in the update step of the numerical SDE scheme. Note that ∆k is a random
variable, but if the step size is sufficiently small we must have almost surely

∆k(t) > 0.

To find the maximal step size, we observe that the equation above is a quadratic function in the
substituted τ :=

√
dt yielding the inequality that

τ2 +
gk

fk(t)
τ +

λk(t)− λk+1(t)

fk(t)
is

{
> 0 if fk(t) > 0,

< 0 if fk(t) < 0.
(70)

We treat first the case fk(t) > 0. The inequality is equivalent to(
τ +

gk
2fk(t)

)2

>

(
gk

2fk(t)

)2

− λk(t)− λk+1(t)

fk(t)
, (71)

where we know that λk(t)−λk+1(t)
fk(t)

> 0 must hold. Hence, if fk(t) > 0, any stepsize dt > 0 works.
Otherwise, both roots will be in the τ > 0 regime, and hence for inequality (71) to be fulfilled, we
take τ in the range from 0 to the smallest root. For dt, that means

dt ∈

0,
1

4

(
−gk
fk(t)

−

√
g2k

fk(t)2
− 4

λk(t)− λk+1(t)

fk(t)

)2 . (72)

If fk(t) < 0, we have (
τ +

gk
2fk(t)

)2

<

(
gk

2fk(t)

)2

− λk(t)− λk+1(t)

fk(t)
. (73)

Since−λk(t)−λk+1(t)
fk(t)

> 0, the largest root will be in the τ > 0 regime, while at τ = 0, the inequality
must be satisfied. Hence, dt can be in the range of eq. (72).

Note that fk(t) ̸= 0 almost surely.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 3 DyDM sampling

1: Input: dimension n, schedule T = {tj}, trained score network sθ
2: λ(T)← Spectrum of a random GOE matrix. ▷ Sampling from invariant distribution.
3: t← T
4: while t > 0 do
5: Let u ∼ N (0, In)
6: δt← BackwardStepsizeController(λ(t), u) ▷ Step size as described F.2.
7: ŝθ ← Interpolation of sθ(λ, tj) and sθ(λ, tj+1) for tj , tj+1 ∈ T closest points in schedule
8: BackwardsDrift← drift of eq. (5) at time t and point λ(t) with score sθ(λ, tj+1)

9: if λt − BackwardsDrift · δt−
√
2αδtu ∈Weyl Chamber then

10: λt−δt ← λt − BackwardsDrift · δt−
√
2αδt

11: else ▷ Otherwise – in a rare event – shooting mechanism triggers (see Appendix G)
12: λt−δt ← λt − (−ForwardDrift) · δt−

√
2αδt ▷ ForwardDrift as in 3.1

13: end if
14: t← t− δt
15: end while
16: Output: spectral sample λ(0) ∈ Rn

Figure 6: Sampling from the Dyson Diffusion Model. The eq. (5) is evolved backward in time
with the shooting mechanism and an adaptive step size, ensuring that the paths remain in the Weyl
Chamber.

F.2 BACKWARD IN TIME

Backwards in time, we carry out the analogous computation for the more involved backwards SDE
in eq. (5). In essence, this boils again down to solving a quadratic equation and considering all edge
cases.

G SHOOTING MECHANISM

In the forward dynamics, if a certain step size would lead to the probability-0 event of leaving the
Weyl-Chamber, we know that the source of the error is the finite-time-step discrete approximation,
so that decreasing the step size will always provide a fix. In the backward dynamics, however, this
is not guaranteed: As described in Section 3.2, a possible reason for this probability-0 event in the
backwards dynamics is that the score sθ might be not perfectly learned: sθ(λ, t) ̸= s(λ, t) for some
λ, t. To avoid this probability-0 event, we use the following “shooting mechanism”: If we were
to leave the Weyl-Chamber, we replace the learned score with the analytically known score in the
invariant state, eliminating the use of the neural network at that point and leading effectively to a
repulsion with the negative forward drift. This mechanism is not expected to change the dynamics in
any unfavorable way since it is only applied very rarely, and only in cases where the actual learned
dynamics is a much worse approximation (since it would give rise to measure zero events).

H INFERENCE

We describe in Algorithm 3 the sampling procedure with the shooting mechanism (see Appendix G
for details) incorporated, ensuring that we remain in the Weyl Chamber.

I ENGINEERING

We follow Karras et al. (2024) by using SiLU activations. We further use EMA to average over
multiple runs (Song & Ermon, 2020).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A key strength of DyDM is that the score sθ(λ, t) may be parameterized with any learning architec-
ture, not being constraint to GNNs or graph transformers. We demonstrate this by parameterizing
the score with a simple MLP. The size of layers varies by application, and we document it for each
dataset in Github. For instance, for the large dataset of 15′000 brain ego graphs, our model consists
of a hidden MLP of depth 4, where the input and output layer have width 64 and the hidden layers
have width 256. The space + time data is first scaled up with a linear layer from size n+1 = 11 fol-
lowed by a batch norm to feed into the hidden MLP, and upon processing through the hidden MLP,
it gets scaled down through a simple linear layer to size n = 10. In the hidden MLP, we employ as
nonlinearities scaled SiLU functions, as argued by Karras et al. (2024).

To make full use of the GPU memory, in one epoch, we sample Npaths paths in parallel. If the dataset
is too small to fill the GPU memory, we sample multiple, independent, paths of the same data points
in parallel. From these samples, we update the score network sθ in smaller batches. Proceeding in
this way ensures that JAX uses the full potential of the GPU. These parameters (Npaths and batch
size) can be specified in the configuration file.

We implement the model in Jax and Equinox (Kidger & Garcia, 2021).

I.1 CHOICE OF TIME GRID

As outlined in Section 3.2, we choose an exponential time grid on which the objective is learned.
This is due to the mixing behavior of Dyson’s Brownian Motion. For instance, for the Brain dataset,
we use exponential time grid detailed in Table 2.

Table 2: Example of exponential time grid, here for the brain data set which contains in total 15′000
graphs. dt is 0.05, and the final time is T = 12.0.

from to stepsize
0 1/8 1/64 · dt

1/8 1/4 1/32 · dt
1/4 1/2 1/16 · dt
1/2 1 1/8 · dt
1 2 1/4 · dt
2 3 1/2 · dt
3 7 1 · dt
7 T 2 · dt

I.2 PREPROCESSING AND DEALING WITH DIFFERENT DIMENSIONS

As is the case for an Ornstein-Uhlenbeck diffusion, the speed of convergence depends for Dyson-
BM on (1) the coefficients and (2) the initial condition. We can thus choose to significantly vary the
final time T or rescale the initial condition. We choose the latter (although both options are feasible).
To that end, we rescale the spectra with an affine transformation in a preprocessing step. In more
detail: For a given set of graphs, we perform an eigendecomposition, and rescale so that among
the the entire dataset the largest eigenvalue is at most λmax and at least λmin. For instance, on the
benchmark models we chose λmax = 5, λmin = 5. If a spectrum has eigenvalues of multiplicities
greater than 1, we perform an ϵ-perturbation, where the ϵ depends on the distance of the closest
eigenvalues in the dataset. In postprocessing, the spectra are scaled back and the perturbation is
undone for eigenvalues that are at most ϵ apart after generation. Note that with this preprocessing,
only one eigendecomposition per training graph is necessary.

J CHALLENGES OF DYSON’S BROWNIAN MOTION

Using Dyson’s Brownian Motion for a diffusion presents several challenges, all of which we over-
came in this paper. First, the Dyson SDE is not an OU process, but instead an SDE with sin-
gularities of order O(1/(λk − λl)) in the drift, posing both theoretical and numerical challenges.
Second, the conditional density p(x | x0) is non-Gaussian and challenging to obtain, as with any

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

non OU-diffusion process. Therefore, we do not have access to a canonical loss function. Finally,
the non-availability of conditional distributions means that training is not simulation-free.

We overcome the obstacles mentioned above and provide a diffusion model for the spectra of graphs
based on the Dyson SDE (Fig. 1). The model is not only efficient but is also able to distinguish
between spectra of graphs that GNNs are blind to (Fig. 2). In addition, with DyDM, no ad-hoc
data augmentation is necessary. Further, through Eigenvector-SDE, we give the dynamics of the
remaining information in form of conditioned eigenvector dynamics, hence making them accessible
for future work devoted to eigenvector diffusion.

J.1 WHY NOT LOG-TRANSFORM THE SDE?

One idea could be to transform the spectral SDE into terms λ1, λ2 − λ3, . . . , λn−1 − λn and take
logarithms, to avoid singularities. However, this is no desriable for multiple reasons: First, upon
applying Ito to this SDE, we (i) lose the log and obtain singularities again and (ii) get higher order
singularities d log(xt) = 1

xt
dxt − 1

2x2
t
(dxt)

2. Second, the space that would need to be sampled
would certainly not decrease, since now the transformed domain reaches from −∞ to +∞. Hence,
we choose the method described in the main part.

K WHY NOT LEARN ON ALL n! MANY GRAPH REPRESENTATIONS?

In short, learning n! more data is much harder. This point has been mentioned by previous literature,
e.g. Niu et al. (2020). However, if we go deeper, the interested reader might wonder why exactly.

K.1 RIGOROUS ARGUMENT

We give here a toy example, where the challenge can be phrased rigorously. Suppose we have a
binary matrix X ∈ {0, 1}m,k with independent entries, which are for i ∈ [m], j ∈ [k] distributed as
Xij ∼ Bernoulli (pj) for some unknown pj ∈ [0, 1]. The task is to estimate the pj . The motivation
for this example stems from the following setting: We want to learn the probability of k objects (for
instance, graphs), each having m representations (for instance, representations of graphs such as
adjacency matrices). Each column of the matrix X thus consists of all representations of the same
object. We define two estimators, with estA using the inductive bias and estB not using it.

To that end, suppose we have N uniformly at random obtained samples Z1, . . . , ZN . In more detail,
that means that we sample for each ℓ ∈ [N] a pair of indices (iℓ, jℓ) ∈ [m]×[k] uniformly at random,
and describe the obtained sample by Zℓ ∼ Xiℓ,jℓ . Estimator estA makes use of the inductive bias.
That is, for u ∈ [m], v ∈ [k] we define

est
(u,v)
A :=

k

N

∑
ℓ∈[N]

Zℓ1jℓ=v.

Estimator estB does not make use of the inductive bias. This means, for u ∈ [m], v ∈ [k] we define

est
(u,v)
B :=

k ·m
N

∑
ℓ∈[N]

Zℓ1iℓ=u,jℓ=v.

Clearly, both estimators are unbiased: E
[
est

(u,v)
A

]
= E

[
est

(u,v)
B

]
= pv . However, their mean

squared error, defined for X ∈ {A,B} as

MSE(estX) :=
1

m · k
∑

u∈[m],v∈[k]

E
[(

est
(u,v)
X − pv

)2]
,

varies significantly between estA and estB.
Corollary K.1 (Mean square error). In dependence of the problem size m and number of samples
N , the mean square error of estA is of order Θ(1/N), while the mean square error of estB is of
order Θ(m/N).

To prove Corollary K.1, we derive the mean squared error for both estimators.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Lemma K.2 (MSE of estA). The mean squared error of estimator estA is

MSE (estA) =
1

N

∑
v∈[k]

(
pv −

1

k
p2v

)
.

Proof. We have for u ∈ [m], v ∈ [k]

E
[(

est
(u,v)
A − pv

)2]

=E


 k

N

∑
ℓ∈[N]

Zℓ1jℓ=v − pv

2


=
k2

N2

∑
ℓ∈[N]

E

 ∑
o∈[N]

Zℓ1jℓ=vXo1jo=v

− 2
k

N
E

∑
ℓ∈[N]

Zℓ1jℓ=v

 pv + p2v

=

(
1− 1

N

)
p2v +

k

N
pv − 2p2v + p2v

=
k

N
pv −

1

N
p2v.

Averaging over all u ∈ [m], v ∈ [k], we obtain the desired result.

Lemma K.3 (MSE of estB). The mean squared error of estimators est(u,v)B for u ∈ [m], v ∈ [k] is

MSE (estB) =
1

N

∑
v∈[k]

(
m · pv −

1

k
p2v

)
.

Proof. We have for u ∈ [m], v ∈ [k]

E
[(

est
(u,v)
B − pv

)2]

=E


k ·m

N

∑
ℓ∈[N]

Zℓ1iℓ=u,jℓ=v − pv

2


=
k2m2

N2

∑
ℓ∈[N]

E

 ∑
o∈[N]

Zℓ1iℓ=u,jℓ=vZo1io=u,jo=v

− 2
k m

N
E

∑
ℓ∈[N]

Zℓ1iℓ=u,jℓ=v

 pv + p2v

=

(
1− 1

N

)
p2v +

k m

N
pv − 2p2v + p2v

=
k m

N
pv −

1

N
p2v

Summing over all estimators for u ∈ [m], v ∈ [k] gives the desired result.

By considering the estimation problem as a problem of parameters m, N , Corollary K.1 follows
directly from Lemma K.2, Lemma K.3.

The same argument may be carried out with Normal instead of Bernoulli random variables.

L WL-EQUIVALENCE OF REGULAR GRAPHS

We now prove Lemma 2.1.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Lemma 2.1 (restated). For every fixed n, k ∈ N, all k-regular graphs G ∈ Gn are WL equivalent.
Moreover, every graph G ∈ Gn that is WL equivalent to a k-regular graph is k-regular.

Proof. Recall that the 1-Weisfeiler-Leman (WL) algorithm tests graph equivalence by iteratively
updating vertex colors. Initially, all vertices share one color. In each step, a vertex’s new color is
determined by the multiset (a set allowing for duplicates) of its own color and its neighbors’ current
colors. This continues until the coloring stabilizes. Two graphs are WL-equivalent if this process
generates identical color counts (histograms) at every step.

For a k-regular graph, since every vertex has exactly k-neighbors, in each iteration of the WL-
algorithm all vertices have the same color. Thus in particular the histograms are always the same
and therefore any two k-regular graphs are WL-equivalent.

A k-regular graph is not WL-equivalent to a ℓ-regular graph for k ̸= ℓ since the colors after the first
iteration are distinct as the number of neighbors is different. Moreover, if a graph is not regular,
then the first iteration must assign a different new color to at least two vertices in the first iteration.
Therefore, the color histogram is not the same as the color histogram of a regular graph and thus they
are not WL-equivalent. This shows that the WL-equivalence class of a k-regular graph is exactly the
set k-regular graphs.

In particular, it follows from Morris (Morris et al., 2019) that GNNs cannot distinguish k-regular
graphs.

M DATASETS

WL-bimodal The WL-Bimodal graph consists of 80% graph A and 20% graph B (see Fig. 2)
adjacency matrices. We drew among all permutations 5′000 permutations uniformly at random and
shuffled the graphs. The first 80% of this dataset are used for training, the remaining 20% are used
for testing.

Community-small This standard benchmark dataset (Niu et al., 2020; Jo et al., 2022; You et al.,
2018) consists of 100 graphs of size upto 20 vertices. We comment in Appendix N.1 on the small
dataset set (100 graphs) compared to the big dimension (upto 20 vertices) and the thereby induced
effect of undersampling.

Brain We report this dataset in our repository. In detail, we construct from the brain graph Amunts
et al. (2013); Rossi & Ahmed (2015) so-called ego-graphs. That is, we take the (distance 1) neigh-
borhoods of vertices, and consider the induced subgraph. From those, we generate 15′000 graphs
of size n = 5 to n = 10 vertices with eigenvector multiplicity up to 3, with the closest eigenval-
ues – which are not multiplicities – having distance 0.036. We take 70% as train graphs, 15% as
validation, and the remaining 15% as test graphs.

N COMPARING TO BENCHMARK MODELS

N.1 ON UNDERSAMPLING

For the “bimodal” case, we have sufficient statistics for the 10-dimensional space C10 (N = 5000
graph samples, each isomorphic to one of two graphs) and know in addition the underlying distribu-
tion; hence, an extensive interpretation of this result is appropriate. For a fair comparison, we thus
follow the standard test/train split procedure as reported in (Jo et al., 2022; You et al., 2018; Niu
et al., 2020) using 80% of the data as train data and the remaining 20% as test data.

Conversely, the standard benchmark set “community small” (Niu et al., 2020; Jo et al., 2022; You
et al., 2018) contains only 100 graphs, and each has a size of up to n = 20 vertices. Thus, a compar-
ison from the learned distribution based on (few) training samples to (very few) test samples suffers
from undersampling. This becomes very stark if one considers the following issue: If one would
extract 80% of the dataset for training, where there are taken already matters a lot: Whether they
are taken from the front or back changes the maximal graph size in the training set. Depending on

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

whether the training data is taken from the front or back of the dataset, a model trained on the training
set might thus have no possibility to learn the correct maximal graph size. More generally, poorness
of benchmarks in graph generative learning has been recently addressed by Bechler-Speicher et al.
(2025). To offer some consistent comparison, we do include the standard benchmark “community
small”, but focus on memorization rather than the (on those benchmarks untestable) generalization.

To overcome the issue of undersampling, we construct a set of 15′000 ego-graphs from the brain
dataset Amunts et al. (2013) as described in Appendix M, which is sufficiently large to not suffer
from undersampling. We train both our model and DiGress on 70% (= 10′500 graphs), perform
hyperparameter tuning (see below for details on the DiGress hyperparameter tuning) on a validation
set of 15%, and test on the remaining 15%.

N.2 GDSS

To compare to the GDSS model Jo et al. (2022), we take the following approach to ensure a
fair comparison: The GDSS model has been trained and optimised on the ego small and com-
munity small dataset, so that we take for these datasets the snapshots and hyperparameters given
by the original paper Jo et al. (2022). For the remaining datasets, we start with the settings
from the community-small dataset since that has similar size, adapt the maximal number of ver-
tices to the dataset, and then perform hyperparameter tuning as described in Appendix C of the
GDSS paper: We form a grid search on the model’s following parameters: The scale coefficient in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, the signal-to-noise ratio in {0.05, 0.1, 0.15, 0.2}, and
in addition to the GDSS paper, we also try different βmax in {1, 10, 20}, and try different batch
sizes {128, 4096}. We test with and without EMA. The motivation for the additional parameters we
hyper tune is that we observed that they further improve the GDSS model. This gives full fairness to
the model. The training time on one H100 GPU per job was about 24 hours for each of the configu-
rations with batch size 128 and approximately 1 hour and 45 minutes for each of the configurations
with batch size 4096.

On the Two-WL graph case, our hyperparameter tuning resulted in 280 models that we trained and
sampled from. From each of those 280 models, we generated 1000 graphs. Most of those models
worked fine, that is 269 models did not contain NaNs in their output. From those, we select the best
model based on the following relative error: From the generated samples, we calculate the share of
spectra ϵ-close to the spectrum of graph A, say p̂A and the share of spectra ϵ-close to graph p̂B (we
choose the l2 distance with ϵ = 0.2). Recall that in the ground truth, we have pA = 0.8, pB = 0.2.
We then selected the best model based on the relative error

|p̂A − pA|
pA

+
|p̂B − pB |

pB
.

In summary, we invested a lot of resources in following both the hyperparameter tuning given in the
GDSS paper and, in addition, tried new hyperparameters, leading to the 280 models that we trained
and sampled from. This ensures maximal fairness.

N.3 EDP-GNN

We proceeded analogously to GDSS: We used the given configurations for community small. We
observe that the model already performs hyperparameter tuning of the noise scales during sampling.
For the other data sets, we have used the given configurations for community small and in addition
tried the learning rates {0.001, 0.0002}, number of diffusion steps {1000, 2000} and number of
layers {4, 6}. In the two graph case, for example, the optimal configuration was with learning rate
0.0002, number of diffusion steps being equal to 2000 and 6 layers. The training time for 5000
epochs on a H100 GPU was approximately 10 hours.

N.4 DIGRESS

As with the previous models, we used the given configurations for community small. For the other
data sets, we have used the given configurations for community small and in addition tried the
learning rates {0.001, 0.0002}, weight decay parameters {10−2, 10−12}, number of diffusion steps
{500, 1000} and number of layers {5, 8}. The model was quite robust to hyperparameter tuning

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

and in the two graph example, for all parameters the model sampled the 80%-graph with likelihood
between 75% and 82%. The training time for 1000 epochs on a H100 GPU was approximately 3
hours.

N.5 CONGRESS

Since Congress and DiGress come from the same paper, we have proceeded almost exactly as in Di-
gress. We tried the learning rates {0.001, 0.0002}, weight decay parameters {10−2, 10−12}, number
of diffusion steps {500, 1000} and number of layers {6, 8}. The model was again rather robust to
hyperparameter tuning, yet not as much as Digress. In the two graph example, for all parameters
the model sampled the 80%-graph with likelihood between 10% and 25%. The default learning rate
from the community-small configuration was 0.0002, yet we have observed that the results were
significantly better with learning rate 0.001. The training time for 1000 epochs on a H100 GPU was
approximately 3 hours.

N.6 COMPARISON TABLE WITH MORE DIGITS

We provide here the table shown in the main part Table 1 but with more digits (not implying that
all are statistically significant): This rationalizes which entries in Table 1 are dark green and which
ones are light green. Note that this result is included only for transparency, since the reported digits
here go beyond the significant digits.

Table 3: Statistical distances of DyDM compared to standard models, as in Table 1 but with more
digits.

Dataset WL-Bimodal Community Small Brain
Distance µ Wmarg µ Wmarg µ Wmarg

DyDM (ours) 0.0166 0.0076 0.0671 0.0172 0.0455 0.0275
EDP-GNN 0.1342 0.0750 0.4164 0.1356 - -

GDSS 0.2289 0.1252 0.4180 0.1444 - -
ConGress 0.3802 0.1590 0.2741 0.1138 - -

DiGress (no trick) 1.0568 0.2852 2.5088 0.4481 - -
DiGress (trick) 0.0302 0.0073 0.0934 0.0254 0.1208 0.0285

O LEARNING DYNAMICS OF EDP-GNN

We report in Figure 7 the learning progress of EDP-GNN on the WL-bimodal dataset. We average
over 4 different training and sampling runs of EDP-GNN. After 5′000 epochs, we observe the result
of EDP-GNN reported in Figure 2.

We observe that the model quickly learns the WL equivalence class (the pink line is from epoch 500
onward close to 1). The share of graph A and graph B samples initially increase until epoch 1′500,
but then remain low and significantly different from the ground truth (blue and green dashed lines).
Importantly, a significant share of the samples are WL-equivalent but neither isomorphic to graph
A nor to graph B.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 7: Learning dynamics of EDP-GNN on the WL-bimodal dataset (ground truth = 80% graph
A, 20% graph B): The model learns very quickly (after less than 500 epochs) the WL-equivalence
class, but struggles to learn graphs A and B.

34

	Introduction
	Limitations of Existing Diffusion Models
	Dyson Diffusion Model
	Dyson Brownian Motion
	From the Dyson SDE to a Diffusion Model

	Experiments
	Methodology
	Results

	Related Work
	Extensions
	Conclusion
	Making the loss tractable
	Spectral Dyson SDE
	Inferring the Eigenvector Dynamics
	Time reversal: Existence and Uniqueness
	Time rescaling
	Stepsize Controller
	Forward in Time
	Backward in Time

	Shooting mechanism
	Inference
	Engineering
	Choice of Time Grid
	Preprocessing and dealing with different dimensions

	Challenges of Dyson's Brownian Motion
	Why not log-transform the SDE?

	Why not learn on all n! many graph representations?
	Rigorous argument

	WL-equivalence of regular graphs
	Datasets
	Comparing to Benchmark Models
	On undersampling
	GDSS
	EDP-GNN
	DiGress
	Congress
	Comparison table with more digits

	Learning dynamics of EDP-GNN

