

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PERMUTATION-INVARIANT SPECTRAL LEARNING VIA DYSON DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models are central to generative modeling and have been adapted to graphs by diffusing adjacency matrix representations. The challenge of having up to $n!$ such representations for graphs with n nodes is only partially mitigated by using permutation-equivariant learning architectures. Despite their computational efficiency, existing graph diffusion models struggle to distinguish certain graph families, unless graph data are augmented with ad hoc features. This shortcoming stems from enforcing the inductive bias within the learning architecture. In this work, we leverage random matrix theory to analytically extract the spectral properties of the diffusion process, allowing us to push the inductive bias from the architecture into the dynamics. Building on this, we introduce the Dyson Diffusion Model, which employs Dyson’s Brownian Motion to capture the spectral dynamics of an Ornstein–Uhlenbeck process on the adjacency matrix while retaining all non-spectral information. We demonstrate that the Dyson Diffusion Model learns graph spectra accurately and outperforms existing graph diffusion models.

1 INTRODUCTION

Diffusion models are a key class of generative models based on noising data with Stochastic Differential Equations (SDEs) and learning their time reversal (Sohl-Dickstein et al., 2015; Song et al., 2021; Ho et al., 2020). They provide state-of-the-art results in many domains such as audio (Zhang et al., 2023) and vision (Croitoru et al., 2023). Generalizing diffusion models from Euclidean space to graphs offers promising applications in numerous areas, such as biology (Watson et al., 2023) or combinatorial optimization (Sun & Yang, 2023). However, while diffusing adjacency matrix representations is straightforward and popular (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2022), this approach faces a major obstacle: Each graph with n vertices has up to $n!$ representations as adjacency matrices. Therefore, if one aims to use a diffusion model on the space of matrices, one must learn $n!$ representations *per graph*. This is not feasible. Previous works tackled this problem by shifting the inductive bias of permutation invariance to the learning algorithm: If the neural network was permutation equivariant, training on one of the (up to $n!$ many) matrix representations would suffice. For example, Niu et al. (2020) and Jo et al. (2022) used message-passing graph neural networks (GNNs) while ConGress (Vignac et al., 2022) applied graph transformers. However, these learning architectures have a “blind spot” detailed below.

Theoretical Limitations. The “blind spot” arises from the limited ability of these models to solve Graph Isomorphism (GI): determining if two graphs are structurally identical regardless of node labeling. While permutation equivariance ensures that the model produces consistent outputs for different representations of the same graph, it does not guarantee that the model can differentiate between two structurally different (non-isomorphic) graphs. The failure is a result of how these architectures aggregate information: permutation-symmetric operations – message passing in GNNs and self-attention in graph transformers – can collapse distinct graphs with similar neighborhoods to the same representation, treating them as identical. More formally, GI is a challenging problem in algorithm theory, and it remains unknown whether $GI \in P$ (Babai, 2016). Since a polynomial time (learning) algorithm perfectly distinguishing all graphs would prove $GI \in P$, contemporary (polynomial-time) graph learning algorithms must compromise on expressivity.

Extracting Permutation-Invariant Information from Graph Diffusion. When diffusing an entire adjacency matrix, state-of-the-art work pushes the entire inductive bias into the learning algorithm

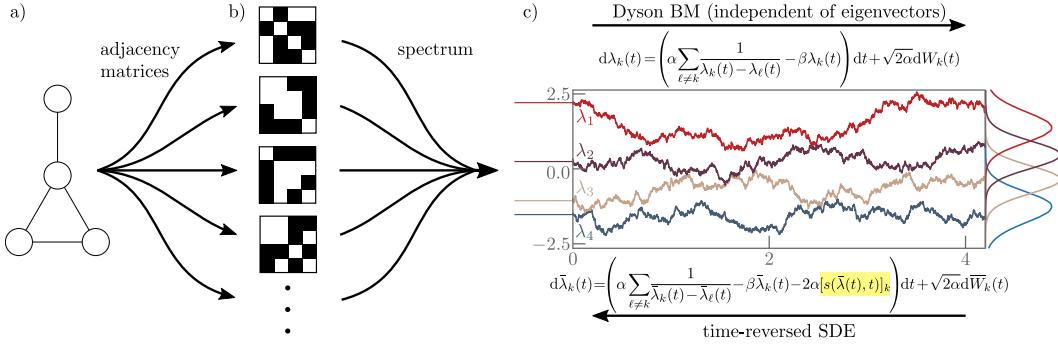


Figure 1: Dyson Diffusion model and its application to graph spectra: A graph on n vertices (a) has up to $n!$ representations as adjacency matrices (b). For an OU-driven diffusion on *any* adjacency matrix, the permutation-invariant spectrum (c) evolves according to the same SDE (Dyson-BM). An exemplary path of the n , non-intersecting, eigenvalues is shown. The marginals of the invariant density for the λ_k are depicted on the far right. The DyDM diffusion model learns the score $s(\lambda, t)$ (highlighted in yellow) to generate spectra via the time-reversed SDE (5).

(Niu et al., 2020; Jo et al., 2022) with possible data augmentation (Huang et al., 2022; Vignac et al., 2022; Xu et al., 2024). However, as we show below, this is neither necessary nor desirable (see the previous discussion on blind spots). Using techniques from random matrix theory, we show that an Ornstein-Uhlenbeck (OU) diffusion on the graph can be *dissected* into diffusion of the (permutation invariant) spectrum and diffusion of the (permutation-dependent) eigenvectors. Our method therefore allows us to learn the spectrum while preserving all remaining information. Moreover, since the spectrum is inherently permutation-invariant, we can parameterize the score using a much broader range of learning architectures, expanding the scope to architectures able to distinguish between graphs that are equivalent in the Weisfeiler-Leman (WL) sense (Morris et al., 2019; Xu et al., 2018).¹

Information in the Spectrum. The spectrum of a graph encodes key structural features including connectivity, expansion, and subgraph patterns. Moreover, non-isomorphic WL-equivalent graphs typically have distinct spectra (Huang & Yau, 2024). An idea, therefore, is to augment the graph data based on spectral information (Vignac et al., 2022; Xu et al., 2024). Our work is based on an entirely different method, exploiting analytical insight from random matrix theory to dissect the spectral from the remaining information, allowing to push the inductive bias from the architecture to the dynamics.

Dyson’s Brownian Motion. For an OU process on the space of symmetric matrices, the eigenvalues follow a well-characterized stochastic differential equation (SDE), the so-called Dyson Brownian Motion (DBM), which is inherently permutation invariant. Thus – in contrast to Niu et al. (2020); Jo et al. (2022); Vignac et al. (2022) – the score of DBM can be parameterized with any (not necessarily permutation invariant) neural network. Moreover, contrary to Luo et al. (2024), the remaining information is not lost (see Theorem 3.2).

Contributions. The main contributions of this work are as follows.

- We introduce the novel Dyson Diffusion Model (DyDM) in Section 3, which extracts the spectral dynamics from an OU-driven diffusion. DyDM allows to learn the spectra of graphs without the need of GNNs or graph transformers while preserving the remaining information of the graph and allowing us to compute an eigenvector SDE.
- We demonstrate in Section 4 that DyDM is more effective than existing GNN-based and graph-transformer-based methods for learning graph spectra.
- We illustrate the struggle of GNN-based graph diffusion models in Figure 2 and Section 4.1.

¹We give a theoretical discussion in form of the WL-equivalence class in Section 2 and demonstrate the challenge of those architectures empirically in Figure 2.

108 Beyond graphs, our framework applies generally to symmetric matrices where spectral information
 109 is often key. For instance, in statistics, it can encode the importance of principal components (James
 110 et al., 2023), while in dynamical systems,² it reflects the stability and timescales of linear operators.
 111

112 **Notation.** We work on the set of symmetric real matrices $\text{Sym}(\mathbb{R}^{n \times n}) := \{A \in \mathbb{R}^{n \times n} : A^T = A\}$.
 113 The positive integers up to n are denoted by $[n] := \{1, \dots, n\}$. We consider undirected graphs $G =$
 114 (V, E, w) where V is a finite set with edges $E \subseteq \{S \subseteq V : 1 \leq |S| \leq 2\}$ allowing for self-loops
 115 and weights $w : E \rightarrow \mathbb{R}$. The family of such graphs of size n is $\mathcal{G}^n := \{G = (V, E, w) : |V| = n\}$.
 116 For a graph $G \in \mathcal{G}^n$ with $\mathbb{R}^V = \{f : V \rightarrow \mathbb{R}\}$ being the space of functions from V to \mathbb{R} , we let
 117 $A \equiv A(G) : \mathbb{R}^V \rightarrow \mathbb{R}^V$ be the adjacency *operator*, defined for $f \in \mathbb{R}^V$ and $v \in V$ as the weighted
 118 sum of f applied to the neighbors of v as

$$119 \quad Af(v) := \sum_{\{u,v\} \in E} w(\{u,v\}) f(u).$$

121 As the graphs are undirected, the adjacency operator is self-adjoint with respect to the standard inner
 122 product on \mathbb{R}^V . The operator A therefore has n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$. We denote
 123 the ordered spectrum of the adjacency operator by

$$124 \quad \lambda(G) := \lambda(A(G)) := \{(\lambda_1, \lambda_2, \dots, \lambda_n) : \lambda_1 \geq \dots \geq \lambda_n\}.$$

126 Unless defined explicitly otherwise, we use $n \in \mathbb{N}$ for the (vertex) size of the graph, and $N \in \mathbb{N}$
 127 for the number of samples. We denote by $s \sim \mathcal{N}(0, I_d)$ that the d -dimensional random vector s has
 128 multivariate normal distribution with 0 mean and unit covariance I_d .

130 2 LIMITATIONS OF EXISTING DIFFUSION MODELS

132 We consider the following matrix-valued OU SDE starting from some data $M(0) \in \text{Sym}(\mathbb{R}^{n \times n})$
 133 given for $1 \leq i \leq j \leq n$ by

$$134 \quad dM_{ji}(t) = dM_{ij}(t) = -\beta M_{ij}(t)dt + D_{ij}dB_{ij}(t), \quad (1)$$

136 with diffusion coefficient $D_{ij} := \sqrt{(1 + \delta_{ij})\alpha}$ for any constants $\alpha, \beta \in \mathbb{R}^+$, where $B_{ij}(t) = B_{ji}(t)$
 137 are independent Brownian motions and $\delta_{ij} = 1$ if and only if $i = j$, and 0 otherwise. We consider
 138 eq. (1) on the space of symmetric matrices to represent undirected graphs $G \in \mathcal{G}^n$.

139 Equation (1) is an entry-wise OU process³ that preserves the symmetry of the matrix. In standard
 140 diffusion models we run eq. (1) until some time $T > 0$ from data samples. To fix notation, denote
 141 by p_t the distribution of $M(t)$ induced by (1) for $t \geq 0$.

142 The time-reversal of the diffusion (1) over the time interval $[0, T]$ is a diffusion initialized by sam-
 143 pling $M(T) \sim p_T$ and satisfying for $1 \leq i \leq j \leq n$

$$145 \quad dM_{ij}(t) = -\left\{ \beta M_{ij}(t) + D_{ij}^2 [s(M(t), t)]_{ij} \right\} dt + D_{ij}d\bar{B}_{ij}(t), \quad (2)$$

147 for independent Brownian motions $\bar{B}_{ij}(t)$ (Anderson, 1982; Song et al., 2021). In Equation (2),
 148 $s(M, t)$ represents the score matrix at time $t \in (0, T]$, i.e., $s(M, t) := \nabla_M \log p_t(M)$. This score
 149 is intractable but, as the OU process has tractable Gaussian transition densities, we can obtain an
 150 estimate $s_\theta(M, t)$ of it by minimizing the denoising score matching loss (Song et al., 2021)

$$151 \quad L(\theta) = \mathbb{E}_{t \sim \text{Unif}[0, T], M(0) \sim p_0, M(t) \sim p_{t|0}(\cdot | M(0))} \left[\|s_\theta(M(t), t) - \nabla_{M(t)} \log p_{t|0}(M(t) | M(0))\|_2^2 \right]. \quad (3)$$

154 Approximate samples of p_0 can then be obtained by simulating an approximation of Equation (2)
 155 obtained by sampling $M(T)$ from the Gaussian invariant distribution of (1), that is, $M_{ij}^{\text{inv}} \sim$
 156 $\mathcal{N}(0, \alpha(1 + \delta_{ij})/2\beta)$, and using $s_\theta(M, t)$ in place of $s(M, t)$.

157 **Challenges posed by graphs.** When working with graphs, to obtain an adjacency matrix for a given
 158 weighted graph $G = (V, E, w) \in \mathcal{G}^n$, we need to fix an ordering (v_1, \dots, v_n) of all vertices. In

160 ²For instance, Markov jump dynamics in detailed balance systems where the generator is symmetric in the
 161 steady state basis, see Pavliotis (2014).

162 ³i.e. a diffusion with linear restoring drift, $-\beta M_{ij}(t)$ in eq. (1), pushing the dynamics back to its mean.

fact, given the ordering (v_1, \dots, v_n) , the associated matrix $M = (m_{ij})_{1 \leq i, j \leq n} \in \text{Sym}(\mathbb{R}^{n \times n})$ has entries $m_{ij} = w(\{v_i, v_j\})$ if $\{v_i, v_j\} \in E$ and 0 otherwise. The challenge is that the adjacency operator $\hat{A}(G)$ for a given graph $G \in \mathcal{G}^n$ admits up to $n!$ distinct adjacency matrices. For instance, in Figure 1 we see four different matrix representations of the same graph.

Why should we enforce this inductive bias? One could think that the reason for using the inductive bias stems from wanting that graph generative models assign uniform probability to each of the (up to) $n!$ many representations. But this can be easily achieved by applying a random independent permutation to the output of the generative model.

Instead, the challenge stems from the following problem: In diffusion models, we learn a function (i.e. the score) on a set of graphs, say⁴ Ω , rather than the distribution directly. Learning on the adjacency representations would correspond to learning on $\Omega \times S_n$. We demonstrate on a toy example in Corollary M.1 that *not* leveraging the inductive bias, i.e. learning on a space of size $\Omega \times S_n$, leads to an explosion of the average mean squared error: Learning a function on a fixed number of k objects (say unweighted graphs on n nodes) from N samples leads to a mean squared error of order $\Theta(n!/N)$. In contrast, making use of the inductive bias leads to an average mean squared error of $\Theta(1/N)$. Noting that already on $n = 10$ nodes, we have $n! > 3 \cdot 10^6$, we see the clear argument *for* using the inductive bias.

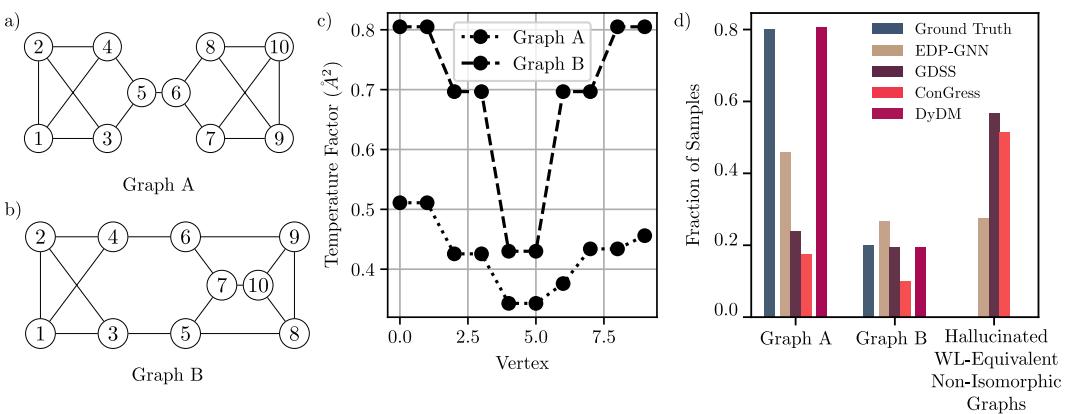


Figure 2: Struggle of GNN-based and graph-transformer-based models with two WL-equivalent graphs: Graphs A and Graphs B are WL-equivalent, but non-isomorphic. Also physically, they have very different properties, such as different temperature factors (c) and a different cut size. Upon training on a 80% Graph A and 20% Graph B dataset, state-of-the-art GNN-based (EDP-GNN, GDSS) and graph-transformer-based (ConGress) models learn the WL-equivalence class quickly but fail to generate the underlying distribution among the two graphs, with some even predominantly hallucinating WL-equivalent but non-isomorphic graphs (d).

Cost of pushing inductive bias entirely into architecture. One solution would be to impose the inductive bias in the learning architecture. This is what state-of-the-art graph diffusion models do (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2022).

However, using these architectures comes at a cost. As argued in the introduction, since $\text{GI} \in \mathbb{P}$ remains unknown, we expect some limitations. In the case of GNNs this compromise has been precisely characterized: GNNs cannot distinguish between the large families of so-called Weisfeiler-Leman (WL) equivalent graphs (Morris et al., 2019; Xu et al., 2018). For example, all k -regular graphs on n vertices for any fixed $k \in \mathbb{N}$ are WL-equivalent (see Lemma 2.1 below and its proof in Appendix N) and therefore indistinguishable for these architectures, which may lead to hallucination.

Lemma 2.1 (WL-equivalence of k -regular graphs). *For every fixed $n, k \in \mathbb{N}$, all k -regular graphs $G \in \mathcal{G}^n$ are WL equivalent. Moreover, every graph $G \in \mathcal{G}^n$ that is WL equivalent to a k -regular graph is k -regular.*

This is a vast class, since e.g. on $n = 20$ vertices, there are 510'489 many non-isomorphic, connected 3-regular and thereby WL-equivalent graphs (Meringer, 1999). In particular, we demonstrate on a

⁴Importantly, Ω refers to *the set of graphs* and *not* the set of (permutation-sensitive) adjacency matrices.

simple example in Figure 2 that both GNN- and graph-transformer-based methods fail to learn a distribution on two particular WL-equivalent graphs: during sampling, they either fail to learn the distribution on both WL-equivalent graphs or hallucinate other, WL-equivalent but non-isomorphic, graphs (Fig. 2d). This can also be seen during learning: The EDP-GNN model learns the WL-equivalence class quickly (after 500 epochs) but then keeps hallucinating non-isomorphic but WL-equivalent graphs, and in particular struggles to learn the right distribution between graphs A and B for the remaining 4500 epochs (see Appendix R for details). Importantly, those graphs are very different. For instance, if the graphs represented Gaussian Network Models for macromolecules (Tirion, 1996), physical observables such as the temperature factors in X-ray scattering (Haliloglu et al., 1997) would be clearly distinct, see Fig. 2c. Therefore, a diffusion model based on GNNs will suffer from this expressivity blind spot. More generally, any diffusion model relying on a graph-specific learning algorithm will have limited expressivity.

3 DYSON DIFFUSION MODEL

3.1 DYSON BROWNIAN MOTION

Dyson (1962) showed that the spectrum of eq. (1) behaves as n positively charged particles in a one-dimensional Coulomb gas. These particles exhibit Brownian motion, but with a pairwise repulsion force proportional to their inverse distance so that their paths do not cross (see Fig. 1c). More precisely, Dyson proved that the spectrum of the entry-wise Ornstein-Uhlenbeck process from eq. (1) follows the SDE given in Theorem 3.1. Without loss of generality, we restrict the domain to the *Weyl Chamber* $C_n := \{\lambda \in \mathbb{R}^n : \lambda_1 > \dots > \lambda_n\}$.

Theorem 3.1 (Eigenvalue SDE, Dyson (1962)). *Denote by $\lambda(t) = (\lambda_1(t), \dots, \lambda_n(t))$ the ordered spectrum of the matrix-valued Ornstein-Uhlenbeck process $M(t)$ of eq. (1). Then assuming that the initial matrix $M(0)$ has simple spectrum, $\lambda(t)$ satisfies for all $1 \leq k \leq n$ the stochastic differential equation*

$$d\lambda_k(t) = \left(\alpha \sum_{\ell \neq k} \frac{1}{\lambda_k(t) - \lambda_\ell(t)} - \beta \lambda_k(t) \right) dt + \sqrt{2\alpha} dW_k(t), \quad (\text{Dyson-BM})$$

for W_1, \dots, W_n independent standard Brownian motions. Moreover the unique stationary distribution of (Dyson-BM) has density

$$p_{\text{inv}}(\lambda) = \frac{1}{Z} \exp(-U(\lambda)) \quad \text{for} \quad U(\lambda) = \frac{\beta}{2\alpha} \sum_k \lambda_k^2 - \sum_{k < \ell} \ln |\lambda_k - \lambda_\ell|, \quad (4)$$

for $\lambda \in C_n$ and Z a normalizing constant so that p_{inv} corresponds to a probability measure.

For completeness, a full proof of Theorem 3.1 is given in Appendix B, where we generalize a well-known proof to arbitrary coefficients α, β . We note that the assumption of Theorem 3.1 that M_0 has simple spectrum is minor. Indeed, generic random graphs or matrices have simple spectra, and in the case of eigenvalues with higher multiplicity, we can perturb the spectrum to be simple.

From Dyson-BM we see that the eigenvalues perform a Brownian motion in a confining potential with a repulsion force: once a pair of eigenvalues λ_k, λ_ℓ comes too close, they become repelled with a force $\alpha/(\lambda_k - \lambda_\ell)$ inversely proportional to their separation. A remarkable property of Theorem 3.1 is that the evolution of the spectrum is decoupled from all other information about the matrix: the spectral SDE (Theorem 3.1) is independent of the eigenvectors. This is the key analytical insight that motivates our approach.

Furthermore, conditioned on the eigenvalues, the remaining information captured in form of the eigenvectors can be deduced as we show in Theorem 3.2. This generalizes a statement of Allez et al. (2014), and we give a proof in Appendix C.

Theorem 3.2 (Eigenvector SDE). *Denote by $(v_1(t), \dots, v_n(t))$ the orthonormal eigenvectors associated to the eigenvalues of Theorem 3.1. Assuming that the initial matrix $M(0)$ has simple spectrum, $v_k(t)$ satisfies for $k \in [n]$ the stochastic differential equation*

$$dv_k(t) = -\frac{\alpha}{2} \sum_{\ell \neq k} \frac{1}{(\lambda_k(t) - \lambda_\ell(t))^2} v_k(t) dt + \sqrt{\alpha} \sum_{\ell \neq k} \frac{1}{\lambda_k(t) - \lambda_\ell(t)} v_\ell(t) dw_{\ell k}(t) \quad (\text{Eigenvector-SDE})$$

270 for $\{w_{ij: i \neq j}\}$ standard Brownian motions independent of the eigenvalue trajectories, with $w_{ji} =$
 271 w_{ij} .
 272

273 3.2 FROM THE DYSON SDE TO A DIFFUSION MODEL
 274

275 Despite its advantages, constructing a diffusion model based on **Dyson-BM** poses several challenges,
 276 e.g. dealing with a singular drift, non-Gaussian conditional density, etc. (see Appendix L for details).
 277 As described below, with DyDM we overcome these obstacles and design an efficient diffusion
 278 model for the spectrum, which can distinguish between spectra of graphs that GNNs are blind to
 279 (Fig. 2) and which does *not* require ad hoc data augmentation.

280 The time-reversal of the **Dyson-BM** in the sense of [Anderson \(1982\)](#) reads
 281

$$282 d\bar{\lambda}_k(t) = \left[\alpha \sum_{\ell \neq k} \frac{1}{\bar{\lambda}_k(t) - \bar{\lambda}_\ell(t)} - \beta \bar{\lambda}_k(t) - 2\alpha[s(\bar{\lambda}(t), t)]_k \right] dt + \sqrt{2\alpha} d\bar{W}_k(t), \quad (5)$$

285 where we aim to learn the score $s(\lambda, t) := \nabla_\lambda \log p_t(\lambda)$. Because the coefficients in **Dyson-BM** are
 286 non-Lipschitz, the applicability of [Anderson \(1982\)](#) is not immediate. Accordingly, in Appendix D
 287 we sketch a proof of existence and uniqueness of a strong solution and verify that Anderson's time
 288 reversal applies.

289 **Making the loss tractable.** Learning the loss function $s(\lambda, t)$ as in eq. (3) is not feasible for the
 290 **Dyson-BM**, since a closed form of the conditional distribution $p_{t|0}$ is not known in contrast to the
 291 OU process. To overcome this, we follow a derivation in the style of ([De Bortoli et al., 2022](#)) to
 292 obtain the loss function – up to constants in θ – for any $h \in \mathbb{R}^+$
 293

$$294 \tilde{L}(\theta) = \mathbb{E}_{t \sim \text{Unif}[0, T], \lambda_t \sim p_t, \lambda_{t+h} \sim p_{t+h|t}(\cdot | \lambda_t)} \left[\|s_\theta(\lambda_{t+h}, t+h) - \nabla_{\lambda_{t+h}} \log p_{t+h|t}(\lambda_{t+h} | \lambda_t)\|_2^2 \right], \quad (6)$$

297 where we will approximate the intractable $p_{t+h|t}$ with the Gaussian transition of the Euler-
 298 Maruyama approximation (see Appendix A) for details.

299 **Handling singularities.** Numerical solutions of **Dyson-BM** with a fixed step size are not practical,
 300 since **Dyson-BM** is singular at the boundary of the Weyl Chamber. A fixed step size leads to inaccu-
 301 racies at the boundaries and may overshoot the singularity, leaving the Weyl Chamber. To overcome
 302 this, we implement an adaptive step-size algorithm which conditions on an event of probability 1
 303 (non-crossing) and hence does not change marginal densities.⁵ The step-size controller is described
 304 in Algorithm 2 and in Appendix F.1 in detail.

305 **Schedule.** Dyson's conjecture states that for $\alpha = \frac{1}{n}$ and $\beta = \frac{1}{2}$ **Dyson-BM** converges to the invariant
 306 distribution in time $\Theta(1)$, while the majority of eigenvalues mixes *locally* already in time $\Theta(1/n)$
 307 ([Yang, 2022](#)). Hence, the fine-grained structure will be mixed in the time interval $(0, \Theta(1/n))$.
 308 We show in Appendix E through time change that this conjecture can be applied to any choice of
 309 coefficients α, β as. It is thus sensible to choose an exponential schedule. We specify the particular
 310 choices in Appendix K.1.

311 **Equilibrium shooting mechanism.** During inference, we require access to the learned score. In
 312 the forward diffusion, solely numerical errors due to the time discretisation may lead to crossings
 313 of singularities. On the one hand, when going backwards in time, due to inconsistencies in the
 314 learned score, the repulsion in eq. (5) might be too weak and the sample path may leave the Weyl
 315 Chamber for any sensible step size. Since the score is not defined outside the Weyl Chamber, this
 316 is problematic. On the other hand, the step size obtained by conditioning on not leaving the Weyl
 317 Chamber in this ill-trained point would be so small that the numerical solver would get stuck. To
 318 overcome this, we incorporate a shooting mechanism: If the repulsion force is too weak to prevent
 319 crossing of the singularity, resulting in a microscopic step size upon conditioning to remain in the
 320 Weyl Chamber, we repel with the invariant-state drift, i.e., we replace the learned score with the
 321 score in the invariant state (see Appendix G). This mechanism ensures that we stay in the Weyl
 322 Chamber, while minimizing its impact on the distribution. With well-tuned parameters, the shooting

323 ⁵Note that the adaptive step-size is only used in the forward simulation, whereas the objective is evaluated
 always on a **fixed** grid to ensure correctness.

324

325

326

Algorithm 1 DyDM training

327

```

1: Input: spectral samples  $\lambda^{(1)}, \dots, \lambda^{(N)} \in \mathbb{R}^n$ , schedule  $\mathcal{T} = \{t_j\}$ 
2: for each sample  $i \in [N]$  do
3:    $t \leftarrow 0$ 
4:    $\lambda(t) \leftarrow \lambda^{(i)}$ 
5:   while  $t < T$  do                                 $\triangleright$  Diffuse sample
6:     Let  $u \sim \mathcal{N}(0, I_n)$ 
7:      $\delta t \leftarrow \text{ForwardStepsizeController}(\lambda(t), u)$      $\triangleright$  Conditions on non-intersection, see F.1.
8:     if  $\delta t < \delta t_{\min}$  then
9:       Skip step                                 $\triangleright$  Rare event: Skip tiny steps
10:      end if
11:       $\delta t \leftarrow \min\{\delta t, t_{\text{fix}} - t\}$  where  $t_{\text{fix}} = \min\{t_j \in \mathcal{T} : t_j > t\}$ 
12:       $\lambda(t + \delta t) \leftarrow \text{Euler-Maruyama step of Dyson-BM}$  with step size  $\delta t$  and noise  $u$ 
13:       $t \leftarrow t + \delta t$ 
14:    end while
15:  end for
16: Update  $s_\theta$  using loss  $\tilde{L}(\theta)$  along paths  $\lambda^{(1)}(t), \dots, \lambda^{(N)}(t)$  on schedule  $\mathcal{T}$  using eq. (20)
17: Output:  $s_\theta$ .

```

343

344

Figure 3: Dyson Diffusion Model (training): The **Dyson-BM** is evolved forward in time with an adaptive step size ensuring that the paths remain in the Weyl Chamber. The step-size controller conditions on the probability 1 event of non-crossing as detailed in Appendix F.1 and Algorithm 2.

345

346

347

348

gets rarely triggered (less than 0.5% of steps) but is essential, as already a single event would cause getting stuck (upon conditioning) or leaving the Weyl Chamber.

349

350

Sampling from Invariant Distribution To sample from the invariant distribution of $\lambda(t)$ given by eq. (4) we exploit the connection between $\lambda(t)$ and $M(t)$: We first sample from the Gaussian invariant distribution of $M(t)$ and then perform an eigendecomposition.

351

352

353

354

Comparison to direct simulation. One may wonder why we do not sample from the matrix-valued OU process at any time t directly, then perform an eigendecomposition to get $\lambda(t)$, determine $\lambda(t + dt)$, and learn the score network from the increment using eq. 6. This way, learning would be simulation-free and the Dyson SDE would only be needed for the derivation of the loss function as well as the backwards dynamics. The reason for *not* pursuing this is efficiency and precision. We found that the above way takes 150 times longer for graphs of size $n = 10$, since (accurate) eigendecomposition is computationally costly. Doing so at every step explodes the costs. Moreover, note that we train on the sample of increments, so that from a simulation until time t , we learn *on the entire generated path*. Through our efficient implementation of the SDE, the learning process has running time (up to smaller time steps performed by the adaptive step size controller) on the order of a simulation-free diffusion model.

355

356

357

358

359

360

361

362

363

364

4 EXPERIMENTS

365

366

367

We empirically evaluate DyDM against several state-of-the-art graph diffusion models. First, we compare them on a simple bimodal distribution between two WL-equivalent graphs, illustrating the struggle of purely GNN-based and graph-transformer-based methods (Section 4.1). Next, we carry out a comparison on a standard graph benchmark datasets (Section 4.1) and demonstrate scalability on a larger dataset (15'000 graphs).

368

369

370

371

372

4.1 METHODOLOGY

373

374

375

376

377

We compare to the GNN-based models EDP-GNN (Niu et al., 2020) and GDSS (Jo et al., 2022), as well as graph-transformer-based ConGress and DiGress (Vignac et al., 2022), where among all the models only DiGress uses a data-augmentation trick: it adds certain graph features, including cycle

378
 379 Table 1: Statistical distances of DyDM compared to standard models: DyDM learns the spectrum
 380 better in both the n -dimensional mean and the marginal Wasserstein sense, without requiring ad hoc
 381 data augmentation. Results are rounded to two decimal places, and results (*) are equal until the
 382 fourth decimal place, and (**) until the third decimal place. Exact numbers are provided in Ap-
 383 pendix Q.6.

Dataset Distance	WL-Bimodal		Community Small		Brain	
	μ	$\mathcal{W}_{\text{marg}}$	μ	$\mathcal{W}_{\text{marg}}$	μ	$\mathcal{W}_{\text{marg}}$
DyDM (ours)	0.02	0.01*	0.07	0.02	0.05	0.03**
EDP-GNN	0.13	0.08	0.42	0.14	0.07	0.03**
GDSS	0.23	0.13	0.42	0.14	0.33	0.12
ConGress	0.38	0.16	0.27	0.11	0.13	0.03**
DiGress (no trick)	1.06	0.29	2.51	0.45	0.57	0.17
DiGress (trick)	0.03	0.01*	0.09	0.03	0.12	0.03**

393 counts and the first 6 eigenvalues (for details, see Section 5), but this *trick* is supposedly inessential
 394 for building a good model (Vignac et al., 2022). The trick, however, improves the learning of certain
 395 features, but not necessarily other subgraph structures (Wang et al., 2025). We thus compare to both
 396 the DiGress model “without the trick”, i.e., just a graph (Markov chain) diffusion model, and with
 397 the data-augmentation trick.

398 As we evaluated the full spectrum and the published experimental results only showed partial or
 399 no information about the spectrum, we need explicit access to the samples. Since not all models
 400 (Vignac et al., 2022; Niu et al., 2020) report snapshots, we had to retrain those also on the standard
 401 datasets. We report our code and all the samples of all models in [Github](#)⁶.

402 **WL-Bimodal.** Here we train the simple bimodal distribution in Fig. 2, consisting of 80% graph A
 403 and 20% graph B, which are WL equivalent. The dataset has $N = 5'000$ random permutations of
 404 A and B, and we follow the standard test/train split procedure (Jo et al., 2022; You et al., 2018; Niu
 405 et al., 2020) using 80% of the data as train data and the remaining 20% as test data. We performed
 406 hyperparameter tuning of the comparison models as described in Appendix Q.

407 **Community.** Being a standard benchmark (Niu et al., 2020; Jo et al., 2022; You et al., 2018), we
 408 include it for comparison. However, due to heavy undersampling, we only test for memorization.
 409 From our perspective, memorization is the best that can be tested with said benchmark, and we
 410 elaborate on this in Appendix Q.1

411 **Brain.** From the human connectome graph we drew 15'000 ego-graphs (i.e. the induced subgraph of
 412 neighborhoods) of size 5 to 10 vertices Amunts et al. (2013); Rossi & Ahmed (2015). Crucially, this
 413 dataset demonstrates scalability to a graph number large enough for high statistical fidelity (faithful
 414 representation of the underlying distribution) in test and train set. For details, see Appendix P.

4.2 RESULTS

418 In Table 1 we report mean distances and marginal Wasserstein distances of the spectra. Explicitly, if
 419 ν_{test} is the distribution of the spectrum of the test dataset and ν_{samp} the distribution of our samples,
 420 then the distance between the means in \mathbb{R}^n is $\mu(\nu_{\text{samp}}, \nu_{\text{test}}) = \|\mathbb{E}_{\lambda \sim \nu_{\text{samp}}}[\lambda] - \mathbb{E}_{\lambda \sim \nu_{\text{test}}}[\lambda]\|_2$.
 421 For statistical feasibility, instead of calculating the full Wasserstein distance we use the averaged
 422 marginal Wasserstein distance given by $\mathcal{W}_{\text{marg}}(\nu_{\text{samp}}, \nu_{\text{test}}) = \frac{1}{n} \sum_{k=1}^n \mathcal{W}((\nu_{\text{samp}})_k, (\nu_{\text{test}})_k)$, for
 423 $(\nu_{\text{samp}})_k$ the marginal distribution in dimension k and \mathcal{W} the Wasserstein distance between two one-
 424 dimensional distributions. Using these metrics we can evaluate both marginal and high-dimensional
 425 effects.

426 These metrics also reveal the limitations of GNN- and Graph-Transformer-based models on the
 427 simple WL-Bimodal dataset as described in Figure 2, we also see that this extends to the real-world
 428 benchmark dataset Community Small. DyDM, on the other hand, consistently overcomes these
 429 issues. Even if we compare to the model with ad hoc feature augmentation (DiGress with “trick”,
 430 on which we elaborate in Section 5), DyDM – which does not employ feature augmentation – either

⁶See <https://anonymous.4open.science/r/DyDM-C854/>

432 improves on or is on par with the feature augmented DiGress. We demonstrate that this performance
 433 still holds when working on large datasets, such as the 15'000 ego-graphs from the Brain dataset.
 434

435 5 RELATED WORK

438 The spectrum carries key features of graphs (Brouwer & Haemers, 2012), so that spectral methods
 439 have generally proven fruitful in graph research, exploiting information encoded in the spectrum,
 440 e.g. for graph comparison (Wilson & Zhu, 2008), or in dominant eigenvectors, such as in clustering,
 441 community detection (Shi & Malik, 2000; Newman, 2013), and network embedding (Belkin &
 442 Niyogi, 2003). For graph diffusion models, however, the spectrum has been used only as either aux-
 443 illiary features for data augmentation (Vignac et al., 2022), or in a way which makes any remaining
 $\Theta(n^2)$ degrees of freedom inaccessible, as we outline below.
 444

445 **Data augmentation.** Vignac et al. (2022) acknowledge the importance of spectra of graphs and add
 446 plenty of auxiliary features, among them the first 6 eigenvalues of the Graph Laplacian as graph-
 447 level features and the first 2 non-zero eigenvectors as vertex-level features. This engineering trick
 448 is indeed helpful, yet it is a trick; as we show in Table 1 these auxiliary features are *necessary* for
 449 DiGress to provide a good model. This is in stark contrast to DyDM, where we build on an *analytical*
 450 expression of the evolution of *all* eigenvalues during diffusion of a symmetric matrix.
 451

452 **Spectral methods.** Spectral methods for graph learning have been employed in a variety of con-
 453 texts, for instance with GANs (Martinkus et al., 2022), which have been, however, outperformed by
 454 diffusion-based models (Vignac et al., 2022). Spectral information for graph *diffusion* models has
 455 been explored in recent work, however, *none* consider how a diffusion of the spectrum impacts the
 456 remaining information (eigenvectors), leading to either a model that cannot guarantee orthogonality
 457 of the eigenvectors (Minello et al., 2025), or a model *solely on the spectrum as if the eigenvectors*
 458 *were not impacted by diffusion* (Luo et al., 2024), hence making any recovery of remaining informa-
 459 tion in the form of the eigenvectors impossible. Luo et al. (2024) argue that the spectrum contains
 460 much information, so that upon sampling the spectrum from the OU-based model, the eigenvectors
 461 are simply sampled by taking the eigenvectors of a training sample chosen uniformly at random.
 462 However, this strategy is very limited, in that it allows only for a diffusion in n parameters, losing
 $\Theta(n^2)$ degrees of freedom *irrecoverably*. Since we learn in DyDM the spectrum of an OU diffusion
 463 *on the entire graph*, the remaining information remains accessible, see Theorem 3.2. This allows
 464 learning the eigenvectors beyond sampling uniformly from training data (Luo et al., 2024).
 465

466 6 EXTENSIONS

467 A key property of DyDM is that it learns the *spectrum* while retaining all remaining $\Theta(n^2)$ degrees
 468 of freedom accessible through *Eigenvector-SDE*. Since Dyson-BM decouples from *Eigenvector-*
 469 *SDE*, future work could implement a model of *Eigenvector-SDE* and generate entire graphs. To
 470 parameterize *Dyson-BM*, a graph-transformer model such as Jo et al. (2022) could be used; since
 471 *Eigenvector-SDE* is conditioned on the eigenvalue path which we learn without WL-blindness, we
 472 assume that this biases paths sufficiently far from each other to mitigate any WL-problems in clas-
 473 sical graph-transformer based methods. Moreover, beyond learning the spectrum of the adjacency
 474 matrix $\lambda(A(G))$, our method supports learning the spectrum of the combinatorial graph Laplacian
 $\lambda(L(G))$ (see Appendix O). Finally, we considered graphs with real (or integer) valued weights,
 475 while Dyson-BM is well-defined in other algebras. Hence, generalizations to complex-weighted
 476 graphs (Tian & Lambiotte, 2024; Amado et al., 2025) are straightforward: Instead of working
 477 on $\text{Sym}(\mathbb{R}^{n \times n})$, one works on Hermitian ensembles.
 478

479 **Towards a Diffusion Model for Eigenvectors.** We now describe how to implement a diffusion
 480 model for the (Eigenvector-SDE), which requires novel methods that go beyond previous work
 481 (De Bortoli et al., 2022; Bertolini et al., 2025).

482 The key insight to implement an efficient diffusion model for Eigenvector-SDE is to rewrite the
 483 latter SDE as a Stratonovich SDE on the Lie group $O(n)$ (see Appendix S for definitions). To
 484 introduce notation, denote by $\mathfrak{o}(n) = \text{Lie}(O(n)) = T_{\text{Id}}O(n) = \{A \in \mathbb{R}^{n \times n} : A^T = -A\}$ the Lie
 485 algebra of $O(n)$, which is the tangent space of $O(n)$ at the identity matrix Id . Let $E_{(\ell,k)} \in \mathfrak{o}(n)$ for
 $1 \leq \ell < k \leq d$ be the matrix that is 1 at the (ℓ, k) -entry and -1 at the (k, ℓ) -entry and 0 otherwise.
 486

486 Denoting the Eigenvector-SDE by $X(t) = (v_1(t), \dots, v_n(t)) \in O(n)$, we prove in Proposition S.1
 487

$$488 dX(t) = \sqrt{\alpha} \sum_{1 \leq \ell < k \leq n} \left(\frac{X(t)E_{(\ell,k)}}{\lambda_k(t) - \lambda_\ell(t)} \right) \circ W^{(\ell,k)}(t), \quad (7)$$

490 viewed as a Stratonovich SDE on $O(n)$. It is important to note that the latter equation means that
 491 for small time steps $h > 0$, $X(t+h)$ can be approximated as
 492

$$493 X(t+h) \approx X(t) \exp_{O(n)}(Z) \quad \text{with} \quad Z = \sqrt{\alpha h} \sum_{\ell < k} \frac{E_{(\ell,k)} \mathcal{N}^{(\ell,k)}(0, 1)}{\lambda_k(t) - \lambda_\ell(t)} \in \mathfrak{o}(n), \quad 494$$

495 where $\mathcal{N}^{(\ell,k)}(0, 1)$ are independent samples of standard 1-dimensional Gaussians and
 496 $\exp_{O(n)}(Z) = \sum_{i=0}^{\infty} \frac{A^i}{i!}$ is the matrix exponential. We use the latter numerical approximation
 497 scheme to generate sample paths for the given SDE.
 498

499 While SDEs of the form (7) on $O(n)$ have not been studied for diffusion models so far, we observe
 500 that the latter SDE is, as explained in (S.3), similar to Brownian motion on the Lie group $O(n)$ as
 501 studied by De Bortoli et al. (2022). Indeed the Brownian motion $B^{O(n)}(t)$ on $O(n)$ written as a
 502 Stratonovich SDE is of the form $dB^{O(n)}(t) = \sum_{\ell < k} (B^{O(n)}(t)E_{(\ell,k)}) \circ W^{(\ell,k)}(t)$. This similarity
 503 with Brownian motion on $O(n)$ allows us to deduce a time reversal formula analogously to De Bortoli
 504 et al. (2022). Indeed, denote by $\mathcal{X}(O(n))$ the vector fields on $O(n)$ and by $\nabla \log p_t \in \mathcal{X}(O(n))$
 505 the gradient vector field of $\log p_t$. We then need to transform the gradient vector field by the map
 506 $Q(s) : \mathcal{X}(O(n)) \rightarrow \mathcal{X}(O(n))$ given for $V \in \mathcal{X}(O(n))$ and $X \in O(n)$ as
 507

$$508 (Q(s)V)(X) = \sum_{\ell < k} \frac{\langle V(X), X E_{(\ell,k)} \rangle}{(\lambda_k(t) - \lambda_\ell(t))^2} X E_{(\ell,k)}. \quad 509$$

510 The resulting time reversal formula is then for $Y(s) = X(T-s)$ given by
 511

$$512 dY(s) = \alpha(Q(T-s)\nabla \log p_{T-s})(Y(s))dt + \sqrt{\alpha} \sum_{\ell < k} \left(\frac{Y(s)E_{(\ell,k)}}{\lambda_k(T-s) - \lambda_\ell(T-s)} \right) \circ W^{(\ell,k)}(s). \quad (8) \quad 513$$

514
 515 Figure 4: Numerical demonstration on $SO(3)$: Starting from the invariant distribution (left), a
 516 learned distribution is being generated (right) using Equation (8).
 517
 518

519 **Beyond graphs.** Since the Dyson SDE is defined on the domain of $\text{Sym}(\mathbb{R}^{n \times n})$ (and even Hermitian
 520 matrices), it could be applied beyond graphs to other data. For instance, if correlations between n
 521 points is measured in form of covariance matrices, DyDM could learn the spectrum and thereby
 522 quantify how strong the data clusters into (low-dimensional) principal components (Chen et al.,
 523 2015; Estavoyer & François, 2022; Hess, 2000).
 524

525 7 CONCLUSION

526 Leveraging the analytical insights offered by Dyson’s Brownian Motion, we introduced DyDM, a
 527 diffusion model for spectral learning. Using techniques from Random Matrix Theory, we derived
 528 an evolution equation for the corresponding eigenvectors, which renders the remaining information
 529 about the underlying matrix available. On the domain of graphs, we demonstrated the struggle of
 530 existing learning architectures, e.g., GNN- and graph-transformer-based models. Building on the
 531 analytical insights, we decompose the dynamics, such that the spectral part is not constrained by
 532 inductive bias, thereby expanding the scope of suitable learning architectures. This way, DyDM can learn
 533 the spectrum (even of challenging graph families) without constraining to permutation-equivariant
 534 networks. This eliminates the hallucination, so that DyDM learns the distributions without struggle
 535 and without any need for data augmentation, as demonstrated experimentally. We hope that this
 536 approach opens a new direction in enforcing the inductive bias beyond the learning architecture in
 537 graph diffusion models.
 538

540 REFERENCES
541

542 Romain Allez, Joël Bun, and Jean-Philippe Bouchaud. The eigenvectors of Gaussian matrices with
543 an external source. *arXiv preprint arXiv:1412.7108*, 2014.

544 Cristina López Amado, Tassilo Schwarz, Yu Tian, and Renaud Lambiotte. Complex-Weighted Con-
545 volutional Networks: Provable Expressiveness via Complex Diffusion. In *The Fourth Learning*
546 *on Graphs Conference*, October 2025.

547 Katrin Amunts, Claude Lepage, Louis Borgeat, Hartmut Mohlberg, Timo Dickscheid, Marc-Étienne
548 Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lindsay B. Lewis, Ana-Maria Oros-Peusquens,
549 Nadim J. Shah, Thomas Lippert, Karl Zilles, and Alan C. Evans. Bigbrain: An ultrahigh-
550 resolution 3d human brain model. *Science*, 340(6139):1472–1475, 2013.

551 Brian D. O. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their*
552 *Applications*, 12(3):313–326, 1982.

553 Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. *An Introduction to Random Matrices*. Cam-
554 bridge University Press, 2009.

555 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In *Proceedings of*
556 *the Forty-Eighth Annual ACM Symposium on Theory of Computing*, 2016.

557 Maya Bechler-Speicher, Ben Finkelstein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Sir-
558 audin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin,
559 and Christopher Morris. Position: Graph Learning Will Lose Relevance Due To Poor Bench-
560 marks. In *International Conference on Machine Learning Position Paper Track*, 2025.

561 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
562 representation. *Neural computation*, 15(6):1373–1396, 2003.

563 Marco Bertolini, Tuan Le, and Djork-Arné Clevert. Diffusion Generative Modeling on Lie Group
564 Representations. In *The Thirty-ninth Annual Conference on Neural Information Processing Sys-
565 tems*, October 2025.

566 Andries E. Brouwer and Willem H. Haemers. *Spectra of Graphs*. Universitext. Springer New
567 York, New York, NY, 2012. ISBN 978-1-4614-1938-9 978-1-4614-1939-6. doi: 10.1007/
568 978-1-4614-1939-6.

569 H. Y. Chen, Raphaël Liégeois, John R. de Bruyn, and Andrea Soddu. Principal-component analysis
570 of particle motion. *Physical Review E*, 91(4):042308, 2015.

571 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion Models
572 in Vision: A Survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
573 10850–10869, September 2023.

574 Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
575 Arnaud Doucet. Riemannian Score-Based Generative Modelling. *Advances in Neural Information*
576 *Processing Systems*, 35:2406–2422, December 2022.

577 Freeman J. Dyson. A Brownian-Motion Model for the Eigenvalues of a Random Matrix. *Journal of*
578 *Mathematical Physics*, 3(6):1191–1198, 1962.

579 Maxime Estavoyer and Olivier François. Theoretical analysis of principal components in an um-
580 brella model of intraspecific evolution. *Theoretical Population Biology*, 148:11–21, December
581 2022.

582 Github. DyDM GitHub Repository. [https://anonymous.4open.science/r/
583 DyDM-C854/](https://anonymous.4open.science/r/DyDM-C854/).

584 Turkan Haliloglu, Ivet Bahar, and Burak Erman. Gaussian Dynamics of Folded Proteins. *Physical*
585 *Review Letters*, 79(16):3090–3093, October 1997.

586 Berk Hess. Similarities between principal components of protein dynamics and random diffusion.
587 *Physical Review E*, 62(6):8438–8448, December 2000.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, 2020.

595

596

597 Elton P. Hsu. *Stochastic analysis on manifolds*, volume 38 of *Graduate Studies in Mathematics*.

598 American Mathematical Society, Providence, RI, 2002. ISBN 0-8218-0802-8. doi: 10.1090/gsm/038. URL <https://doi.org/10.1090/gsm/038>.

599

600 Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. GraphGDP: Generative Diffusion

601 Processes for Permutation Invariant Graph Generation. In *IEEE International Conference on Data*

602 *Mining*, 2022.

603

604 Jiaoyang Huang and Horng-Tzer Yau. Spectrum of random d-regular graphs up to the edge. *Com-*

605 *munications on Pure and Applied Mathematics*, 77(3):1635–1723, 2024. ISSN 1097-0312.

606 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan Taylor. *An Introduct-*

607 *tion to Statistical Learning: With Applications in Python*. Springer Texts in Statistics. 2023.

608

609 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the

610 System of Stochastic Differential Equations. In *International Conference on Machine Learning*,

611 2022.

612 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-

613 ing and Improving the Training Dynamics of Diffusion Models. In *Proceedings of the IEEE/CVF*

614 *Conference on Computer Vision and Pattern Recognition*, 2024.

615

616 Makoto Katori and Hideki Tanemura. Noncolliding Brownian motions and Harish-Chandra formula.

617 *Electronic Communications in Probability*, 8:112–121, 2003.

618 John P. Keating. Random Matrix Theory. Lecture Notes, Oxford University, 2023.

619

620 Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and

621 filtered transformations. *Differentiable Programming workshop at Neural Information Processing*

622 *Systems*, 2021.

623 Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast Graph Generation via Spectral Diffusion.

624 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46:3496–3508, 2024.

625

626 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudeau, and Roger Wattenhofer. SPECTRE:

627 Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Genera-

628 tors. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan

629 Sabato (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Bal-*

630 *timore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 15159–

631 15179. PMLR, 2022.

632

633 Markus Meringer. Fast generation of regular graphs and construction of cages. *Journal of Graph*

634 *Theory*, 30(2):137–146, 1999.

635

636 Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Gen-

637 erating graphs via spectral diffusion. In *The Thirteenth International Conference on Learn-*

638 *ing Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL

639 <https://openreview.net/forum?id=AAXBfJNHDt>.

640

641 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-

642 rav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural

643 Networks. In *AAAI Conference on Artificial Intelligence*, 2019.

644

645 Mark EJ Newman. Spectral methods for community detection and graph partitioning. *Physical*

646 *Review E—Statistical, Nonlinear, and Soft Matter Physics*, 88(4):042822, 2013.

647

648 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-

649 mutation Invariant Graph Generation via Score-Based Generative Modeling. In *International*

650 *Conference on Artificial Intelligence and Statistics*, 2020.

651

652 Bernt Øksendal. *Stochastic Differential Equations*. Universitext. Springer Berlin Heidelberg, 2003.

648 Grigorios A. Pavliotis. *Stochastic Processes and Applications: Diffusion Processes, the Fokker-
649 Planck and Langevin Equations*. Texts in Applied Mathematics. Springer New York, 2014.
650

651 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph an-
652 alytics and visualization. In *AAAI Conference on Artificial Intelligence*, 2015. URL <http://networkrepository.com>.
653

654 Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. *IEEE Transactions on
655 pattern analysis and machine intelligence*, 22(8):888–905, 2000.
656

657 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsuper-
658 vised Learning using Nonequilibrium Thermodynamics. In *International Conference on Machine
659 Learning*, 2015.

660 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. In
661 *Advances in Neural Information Processing Systems*, 2020.
662

663 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
664 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
665 *International Conference on Learning Representations*, 2021.

666 Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Op-
667 timization. In *Thirty-Seventh Conference on Neural Information Processing Systems*, November
668 2023.

669 Yu Tian and Renaud Lambiotte. Structural Balance and Random Walks on Complex Networks with
670 Complex Weights. *SIAM Journal on Mathematics of Data Science*, 6(2):372–399, June 2024.
671

672 Monique M. Tirion. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic
673 Analysis. *Physical Review Letters*, 77(9):1905–1908, 1996.
674

675 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
676 Frossard. DiGress: Discrete Denoising diffusion for graph generation. In *International Con-
677 ference on Learning Representations*, 2022.

678 Xiyuan Wang, Yewei Liu, Lexi Pang, Siwei Chen, and Muhan Zhang. Do Graph Diffusion Models
679 Accurately Capture and Generate Substructure Distributions? *arXiv preprint arXiv:2502.02488*,
680 2025.
681

682 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
683 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
684 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
685 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
686 Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
687 Baek, and David Baker. De novo design of protein structure and function with RFdiffusion.
688 *Nature*, 620(7976):1089–1100, August 2023.
689

690 Richard C Wilson and Ping Zhu. A study of graph spectra for comparing graphs and trees. *Pattern
691 Recognition*, 41(9):2833–2841, 2008.
692

693 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
694 Networks? In *International Conference on Learning Representations*, 2018.
695

696 Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
697 Mahashweta Das, and Hanghang Tong. Discrete-state Continuous-time Diffusion for Graph Gen-
698 eration. In *Advances in Neural Information Processing Systems*, 2024.
699

700 Fang Yang. Topics in random matrix theory. [https://yangf75.github.io/RMT\(2022Fall,49-61\).pdf](https://yangf75.github.io/RMT(2022Fall,49-61).pdf),
701 2022.
702

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
703 Realistic Graphs with Deep Auto-regressive Models. In *International Conference on Machine
704 Learning*, 2018.

702 Chenshuang Zhang, Chaoning Zhang, Sheng Zheng, Mengchun Zhang, Maryam Qamar, Sung-Ho
703 Bae, and In So Kweon. A Survey on Audio Diffusion Models: Text To Speech Synthesis and
704 Enhancement in Generative AI. *arXiv preprint arXiv:2303.13336*, 2023.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

The Appendix is structured as follows. We first derive the tractable loss $\tilde{L}(\theta)$ in Appendix A. We then provide proofs of the **Dyson-BM** SDE in Appendix B as well as for the **Eigenvector-SDE** in Appendix C. We then explain the applicability of Anderson's time reversal (Appendix D), and provide a time-rescaling of **Dyson-BM** in Appendix E. In Appendix F, we provide the adaptive step size controller, followed by an explanation of the shooting mechanism (Appendix G). We provide a theoretical analysis of the complexity of the numerical update steps for **Dyson-BM** and **Eigenvector-SDE** in dependence of the graph size n in Appendix H, followed by a discussion of empirical resource considerations in Appendix I. We then explain the sampling procedure (Appendix J) and give engineering details (Appendix K). We explain the challenges of Dyson's Brownian Motion which we overcame with DyDM in Appendix L. We present our theoretical argument for using inductive bias in Appendix M and prove the Lemma on WL equivalence of k -regular graphs in Appendix N. In Appendix O, we demonstrate DyDM on the Graph Laplacian, showing its applicability beyond adjacency spectra and show how it can learn properties such as the algebraic connectivity (Fiedler value). For the experiments, we first elaborate on the datasets (Appendix P) followed by an explanation of our extensive benchmarking in Appendix Q, including a comment about undersampling in some benchmark datasets in Appendix Q.1. We show the learning dynamics of 4 different runs of EDP-GNN in Appendix R. We give mathematical details for the extension to **Eigenvector-SDE** and its time-reversal in Appendix S.

A MAKING THE LOSS TRACTABLE

In this section, we deduce a general loss formula for an SDE on \mathbb{R} that will be applied to **(Dyson-BM)**. We consider the process $X = (X(t))_{t \geq 0}$ determined by the SDE

$$dX(t) = a(t, X(t))dt + b(t, X(t))dW_t$$

with initial condition $X(0)$. We assume throughout this section that $X(t)$ is absolutely continuous for all $t \geq 0$ and denote by p_t the density of $X(t)$. We furthermore assume that the joint densities of $X(t)$ and $X(s)$ also have density for all $t, s \geq 0$ that we write as $p_{t,s}$. Observe that by Bayes formula for $t \geq s \geq 0$ we have for $x, y \in \mathbb{R}^d$ that

$$p_{t,s}(y, x) = p_{t|s}(y|x)p_s(x), \quad (9)$$

where $p_{t|s}(y|x)$ is the conditional density of y given x .

The canonical loss arising from $s(y, t) = \nabla_{M(t)} \log p_t(M)$ is

$$L'(\theta) = \mathbb{E}_{t \sim \text{Unif}[0, T], M(0) \sim p_0, M(t) \sim p_{t|0}(\cdot|M(0))} \left[\|s_\theta(M(t), t) - \nabla_{M(t)} \log p_t(M(t))\|_2^2 \right]. \quad (10)$$

Note that the difference between $L'(\theta)$ and $L(\theta)$ is that we use the gradient of the *conditional* density $\nabla_{M(t)} \log p_{t|0}(M(t)|M(0))$ in $L(\theta)$. It is a well-known fact that $L'(\theta) = L(\theta) + \text{const}(\theta)$. We will first explain how the loss $L'(\theta)$ from (10) and $\tilde{L}(\theta)$ from (6) are the same up to a constant, that is $L'(\theta) = \tilde{L}(\theta) + \text{const}(\theta)$, which therefore results in the same gradient descent as with $L(\theta)$.

We generalize the loss from (10) to weighing the time by a function η . So we consider the following generalized loss

$$\begin{aligned} L'(\theta) &:= \frac{1}{T} \int_0^T \eta(t) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \|s_\theta(y, t) - \nabla_y \log(p_t(y))\|_2^2 p_{t,0}(y, x) dy dx dt \\ &= \frac{1}{T} \int_0^T \eta(t) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \|s_\theta(y, t) - \nabla_y \log(p_t(y))\|_2^2 p_{t|0}(y|x) p_0(x) dx dt, \end{aligned} \quad (11)$$

where $\eta(t)$ is some weighting function with $\int_0^T \eta(t) dt = 1$. We wrote it in the above form with $p_{t|0}$ denoting the conditional density, since the three integrals can be replaced by $\mathbb{E}_{t \sim U[0, T]} \left[\cdots \mathbb{E}_{x \sim p_0} \left[\mathbb{E}_{y \sim p_{t|0}(\cdot|x)} \left[\|\cdots\|_2^2 \right] \right] \right]$, which we can sample from if we assume (1) sample access to p_0 , (2) known density at any t given a dirac-delta p_0 , (3) the term in the norm is tractable. (1) is assumed by the problem definition, (2) is known for an Ornstein-Uhlenbeck forward

810 SDE, (3) can be solved by realizing that there is an equivalent loss function $\hat{L}(\theta) = L(\theta) + \text{const}(\theta)$
 811 where p_t inside the norm is converted to a $p_{t|0}$, which is known (gaussian density) in an OU setting.
 812

813 Here, steps (2) and (3) fail. Note that by the polarization identity

$$814 \|s_\theta(y, t) - \nabla_y \log(p_t(y))\|_2^2 = \|s_\theta(y, t)\|_2^2 + \|\nabla_y \log(p_t(y))\|_2^2 - 2s_\theta(y, t)^T \nabla_y \log(p_t(y))$$

815 We will rewrite the mixed term $s_\theta(y, t)^T \nabla_y \log(p_t(y))$ of the L^2 norm in such a way that the first
 816 quadratic term $\|s_\theta(y, t)\|_2^2$ remains unchanged and the second quadratic term $\|\nabla_y \log(p_t(y))\|_2^2$ is
 817 constant in θ . First, we rewrite

$$819 \frac{1}{T} \int_0^T \eta(t) \int_{\mathbb{R}^n \times \mathbb{R}^n} s_\theta(y, t)^T \nabla_y \log(p_t(y)) p_{t,0}(y, x) dx dy dt \quad (12)$$

$$822 = \frac{1}{T} \int_0^T \eta(t) \int_{\mathbb{R}^n} s_\theta(y, t)^T \nabla_y \log(p_t(y)) p_t(y) dy dt$$

$$824 = \frac{1}{T} \int_0^T \eta(t) \int_{\mathbb{R}^n} s_\theta(y, t)^T \nabla_y [p_t(y)] dy dt. \quad (13)$$

826 We next observe that for $0 \leq s' \leq s$ we have the following:

$$828 \nabla_y [p_s(y)] = \nabla_y \left[\int_{\mathbb{R}^n} p_{s|s'}(y|z) p_{s'}(z) dz \right] \\ 829 = \int_{\mathbb{R}^n} \nabla_y p_{s|s'}(y|z) p_{s'}(z) dz \\ 830 = \int_{\mathbb{R}^n} \nabla_y p_{s|s'}(y|z) \frac{p_{s,s'}(y, z)}{p_{s|s'}(y|z)} dz \\ 832 = \int_{\mathbb{R}^n} \nabla_y \log p_{s|s'}(y|z) p_{s,s'}(y, z) dz.$$

837 So we now perform in (13) for a small $h > 0$ a change of variables to $t + h$ and apply the latter
 838 equality with $s = t + h$ and $s' = t$. Then up to ignoring the boundary at 0 and T , and using by (9)
 839 that $p_{t+h,t}(y, z) = p_{t+h|t}(y|z)p_t(z)$ it follows that the loss from (6)

$$840 (13) = \frac{1}{T} \int_0^T \eta(t+h) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} s_\theta(y, t+h)^T \nabla_y \log p_{t+h|t}(y|z) p_{t+h|t}(y|z) dy p_t(z) dz dt. \quad (14)$$

843 So it follows that

$$844 \tilde{L}(\theta) = \frac{1}{T} \int_0^T \eta(t+h) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \|s_\theta(y, t+h) - \nabla_y \log(p_{t+h|t}(y|z))\|_2^2 p_{t+h|t}(y|z) dy p_t(z) dz dt \quad (15)$$

847 is equal to $L(\theta)$ up to a constant term in θ (ignoring the boundary terms at 0 and T).

849 We will now make a series of approximations to calculate the loss $\tilde{L}(\theta)$. The first one is to approx-
 850 imate the integral \int_0^T over t by a sum $\sum_{i=1}^k$ over the time points $t_0 < t_1 < \dots < t_k$ with $t_0 = 0$
 851 and $t_k = T$. The second approximation we make is that we approximate the latter integral $\int_{\mathbb{R}^n} \int_{\mathbb{R}^n}$ by
 852 sampling a path from p_t at the time steps t_i . Indeed, we denote for each integer $1 \leq r \leq N$ by
 853 $x_{t_i}^{(r)}$ the sample path of p_t . Moreover, we actually make the time grid also dependent on our sample
 854 path. So for each $1 \leq r \leq N$, let $t_0^{(r)} < t_1^{(r)} < \dots < t_{k(r)}^{(r)}$ with $t_0^{(r)} = 0$ and $t_{k(r)}^{(r)} = T$ be the
 855 discretization of $[0, T]$. Thus, the overall loss can be approximated as

$$857 \tilde{L}(\theta) \approx \frac{1}{N} \sum_{r=1}^N \sum_{i=1}^{k(r)} \frac{t_i^{(r)} - t_{i-1}^{(r)}}{T} \eta(t_i^{(r)}) \|s_\theta(x_i^{(r)}, t_i^{(r)}) - \nabla_{x_i^{(r)}} \left[\log \left(p_{t_i^{(r)}|t_{i-1}^{(r)}}(x_i^{(r)} | x_{i-1}^{(r)}) \right) \right]\|_2^2 \\ 859 + \text{const}(\theta). \quad (16)$$

862 We finally approximate the incremental score function $\nabla_{x_i^{(r)}} \left[\log \left(p_{t_i^{(r)}|t_{i-1}^{(r)}}(x_i^{(r)} | x_{i-1}^{(r)}) \right) \right]$ as fol-
 863 lows. If $h > 0$ is a small time step, we can approximate the conditional random variable $X_{t+h} | \mathcal{F}_t$

864 with $x := X_t$ by
865

$$\begin{aligned} 866 \quad X_{t+h} \mid \mathcal{F}_t &\approx x + a(t, x)h + b(t, x)N(0, h) \\ 867 \quad &\text{(where } N(0, h) \text{ is a centered Gaussian RV with variance } h) \\ 868 \quad &\sim \mathcal{N}(x + a(t, x)h, b^2(t, x)h), \end{aligned} \quad (17)$$

869 so that we have for the density
870

$$871 \quad p_{t+h|t}(y|x) \approx \frac{1}{\sqrt{2\pi b^2(t, x)h}} \exp\left(-\frac{(y - x - a(t, x)h)^2}{2b^2(t, x)h}\right), \quad (18)$$

872 which means for the scores
873

$$875 \quad \nabla_y \log(p_{t+h|t}(y|x)) \approx -\frac{y - x - a(t, x)h}{b^2(t, x)h}. \quad (19)$$

877 Thus, combining (16) and (19), the loss $\tilde{L}(\theta)$ can be approximated by the following as we use in our
878 model:
879

$$880 \quad \frac{1}{N} \sum_{r=1}^N \sum_{i=1}^{k^{(r)}} \frac{t_i^{(r)} - t_{i-1}^{(r)}}{T} \eta(t_i^{(r)}) \left\| s_\theta(x_i^{(r)}, t_i^{(r)}) - \frac{a(t_{i-1}^{(r)}, x_{i-1}^{(r)}) \cdot (t_i^{(r)} - t_{i-1}^{(r)}) - (x_i^{(r)} - x_{i-1}^{(r)})}{b^2(t_{i-1}^{(r)}, x_{i-1}^{(r)}) \cdot (t_i^{(r)} - t_{i-1}^{(r)})} \right\|_2^2 \quad (20)$$

885 B SPECTRAL DYSON SDE

887 **Theorem 3.1 (restated).** Denote by $\lambda(t) = (\lambda_1(t), \dots, \lambda_n(t))$ the ordered spectrum of the matrix-
888 valued Ornstein-Uhlenbeck process $M(t)$ of eq. (1). Then assuming that the initial matrix $M(0)$
889 has simple spectrum, $\lambda(t)$ satisfies for all $1 \leq k \leq n$ the stochastic differential equation

$$891 \quad d\lambda_k(t) = \left(\alpha \sum_{\ell \neq k} \frac{1}{\lambda_k(t) - \lambda_\ell(t)} - \beta \lambda_k(t) \right) dt + \sqrt{2\alpha} dW_k(t), \quad (\text{Dyson-BM})$$

894 for W_1, \dots, W_n independent standard Brownian motions. Moreover the unique stationary distribution of (Dyson-BM) has density
895

$$896 \quad p_{\text{inv}}(\lambda) = \frac{1}{Z} \exp(-U(\lambda)) \quad \text{for} \quad U(\lambda) = \frac{\beta}{2\alpha} \sum_k \lambda_k^2 - \sum_{k < \ell} \ln |\lambda_k - \lambda_\ell|,$$

899 for $\lambda \in C_n$ and Z a normalizing constant so that p_{inv} corresponds to a probability measure.
900

901 *Proof.* We prove the theorem in two parts.
902

903 **Dyson SDE.** We first prove Dyson-BM. This part of the proof is based on Keating (2023) but
904 generalizes it to arbitrary coefficients. For mathematical details on the $\alpha = \frac{1}{n}$, $\beta = 0$ case, see also
905 Anderson et al. (2009). Suppose $M(t)$ satisfies the SDE eq. (1). That is, with $M(0) \in \text{Sym}(\mathbb{R}^{n \times n})$
906 we have

$$907 \quad dM_{ij}(t) = -\beta M_{ij} dt + D_{ij} dB_{ij}$$

909 with $D_{ij} := \sqrt{(1 + \delta_{ij})\alpha}$ for any constants $\alpha, \beta \in \mathbb{R}^+$ with $B_{ij}(t) = B_{ji}(t) \ \forall t > 0$. Let
910 $\lambda_1 \geq \dots \geq \lambda_n$ be the eigenvalues. We choose as v_1, \dots, v_n an orthonormal basis of eigenvectors
911 ($Mv_k = \lambda_k v_k$), which exists by the spectral theorem for symmetric matrices.

912 Due to symmetry, we may constrain the set of indices (i, j) to $\mathcal{I} := \{(i, j) \mid 1 \leq i \leq j \leq n\}$. For
913 any $k \in [n]$, the eigenvalue λ_k can thus be seen as a function of the set of Itô processes $\{M_\eta \mid \eta \in$
914 $\mathcal{I}\}$. Hence, we have by Itô's Lemma,

$$916 \quad d\lambda_k = \underbrace{\frac{\partial \lambda_k}{\partial t} dt}_{\equiv 0} + \sum_{\eta \in \mathcal{I}} \frac{\partial \lambda_k}{\partial M_\eta} dM_\eta + \frac{1}{2} \sum_{\eta, \xi \in \mathcal{I}} \frac{(\partial \lambda_k)^2}{\partial M_\eta \partial M_\xi} dM_\eta dM_\xi, \quad (21)$$

918 where the first part is 0 since $\lambda_k(t)$ is only a function of the $M_\eta(t)$, not of time. By eq. (1), we get
 919

$$920 = \sum_{\eta \in \mathcal{I}} \left(-\beta M_\eta \frac{\partial \lambda_k}{\partial M_\eta} + \frac{1}{2} D_\eta^2 \frac{\partial^2 \lambda_k}{(\partial M_\eta)^2} \right) dt + D_\eta \frac{\partial \lambda_k}{\partial M_\eta} dB_\eta. \quad (22)$$

923 It remains to calculate the partial derivatives. In what follows, we successively apply properties of
 924 the spectrum in order to obtain equations for the partial derivatives. We have
 925

$$926 M v_k = \lambda_k v_k \quad (23)$$

928 taking the partial derivative with respect to M_{ij} for $(i, j) \in \mathcal{I}$ on both sides and applying the product
 929 rule yields

$$930 \frac{\partial M}{\partial M_{ij}} v_k + M \frac{\partial v_k}{\partial M_{ij}} = \frac{\partial \lambda_k}{\partial M_{ij}} v_k + \lambda_k \frac{\partial v_k}{\partial M_{ij}}. \quad (24)$$

933 Further, by orthogonality of the eigenvectors we have for any $k, l \in [n]$

$$934 v_k^T v_l = \delta_{kl} \quad (25)$$

$$936 \frac{\partial v_k^T}{\partial M_{ij}} v_l + v_k^T \frac{\partial v_l}{\partial M_{ij}} = 0. \quad (26)$$

938 which, taking the transpose, implies for $l = k$

$$940 \frac{\partial v_k^T}{\partial M_{ij}} v_k = v_k^T \frac{\partial v_k}{\partial M_{ij}} = 0. \quad (27)$$

943 Multiplying eq. (24) by v_l^T from the left yields

$$945 v_l^T \frac{\partial M}{\partial M_{ij}} v_k + \underbrace{v_l^T M \frac{\partial v_k}{\partial M_{ij}}}_{(I)} = \underbrace{\frac{\partial \lambda_k}{\partial M_{ij}} v_l^T v_k}_{(II)} + \underbrace{\lambda_k v_l^T \frac{\partial v_k}{\partial M_{ij}}}_{(III)} \quad (28)$$

949 where the terms simplify as follows.

$$950 (I) = (1 - \delta_{kl}) \lambda_l v_l^T \frac{\partial v_k}{\partial M_{ij}} \quad (\text{by eq. (27)})$$

$$953 (II) = \delta_{lk} \frac{\partial \lambda_k}{\partial M_{ij}} \quad (29)$$

$$955 (III) = (1 - \delta_{kl}) \lambda_k v_l^T \frac{\partial v_k}{\partial M_{ij}}, \quad (\text{by eq. (27)})$$

957 resulting in the following equation for $l = k$

$$959 v_k^T \frac{\partial M}{\partial M_{ij}} v_k = \frac{\partial \lambda_k}{\partial M_{ij}} \quad (30)$$

961 and for $l \neq k$:

$$963 v_l^T \frac{\partial M}{\partial M_{ij}} v_k + \lambda_l v_l^T \frac{\partial v_k}{\partial M_{ij}} = \lambda_k v_l^T \frac{\partial v_k}{\partial M_{ij}} \quad (31)$$

$$966 v_l^T \frac{\partial M}{\partial M_{ij}} v_k = (\lambda_k - \lambda_l) v_l^T \frac{\partial v_k}{\partial M_{ij}}. \quad (32)$$

968 The matrix derivative is, trivially,

$$970 \left(\frac{\partial M}{\partial M_{ij}} \right)_{kl} = \begin{cases} 1 & \text{for } (k, l) = (i, j) \text{ or } (l, k) = (i, j) \\ 0 & \text{else} \end{cases}, \quad (33)$$

so that we can simplify eq. (30) to

$$\frac{\partial \lambda_k}{\partial M_{ij}} = (v_k)_i (v_k)_j (2 - \delta_{ij}) \quad (34)$$

and eq. (32) to

$$(\lambda_k - \lambda_l) v_l^T \frac{\partial v_k}{\partial M_{ij}} = (v_k)_i (v_l)_j + (1 - \delta_{ij}) (v_k)_j (v_l)_i \quad (35)$$

$$= (v_l)_i (v_k)_j + (1 - \delta_{ij}) (v_l)_j (v_k)_i. \quad (36)$$

Using that the v_k are an ONB of eigenvectors, we can conclude with eq. (34) that the first summand of eq. (22) is

$$\sum_{\eta \in \mathcal{I}} -\beta M_{\eta} \frac{\partial \lambda_k}{\partial M_{\eta}} = -\beta \lambda_k. \quad (37)$$

Since $\{v_1, \dots, v_n\}$ is an orthonormal basis, we may project on the basis vectors as follows

$$\frac{\partial v_k}{\partial M_{ij}} = \sum_{l \in [n]} v_l^T \frac{\partial v_k}{\partial M_{ij}} v_l \quad (\text{projection into ONB basis})$$

applying eq. (27) gives

$$= \sum_{l \in [n] \setminus \{k\}} v_l^T \frac{\partial v_k}{\partial M_{ij}} v_l \quad (38)$$

which yields with eq. (35)

$$= \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l} ((v_k)_i (v_l)_j + (1 - \delta_{ij}) (v_k)_j (v_l)_i) v_l. \quad (39)$$

To obtain the second order partial derivative of λ_k , we observe

$$\begin{aligned} \frac{\partial^2 \lambda_k}{\partial M_{ij} \partial M_{ij}} &= \frac{\partial}{\partial M_{ij}} ((v_k)_i (v_k)_j (2 - \delta_{ij})) && (\text{by eq. (34)}) \\ &= (2 - \delta_{ij}) \left(\frac{\partial (v_k)_i}{\partial M_{ij}} (v_k)_j + (v_k)_i \frac{\partial (v_k)_j}{\partial M_{ij}} \right) \\ &= (2 - \delta_{ij}) \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l} \left((v_l)_i (v_k)_j (v_l)_i (v_k)_j + (v_l)_j (v_k)_i (1 - \delta_{ij}) (v_l)_i (v_k)_j \right. \\ &\quad \left. + (v_l)_i (v_k)_j (v_l)_j (v_k)_i + (v_l)_j (v_k)_i (1 - \delta_{ij}) (v_l)_j (v_k)_i \right) && (\text{by eq. (39)}) \\ &= (2 - \delta_{ij}) \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l} \left((v_l)_i^2 (v_k)_j^2 + (v_l)_j^2 (v_k)_i^2 (1 - \delta_{ij}) \right. \\ &\quad \left. + (v_l)_i (v_l)_j (v_k)_i (v_k)_j (2 - \delta_{ij}) \right). \end{aligned} \quad (40)$$

These second order partial derivative are summed over \mathcal{I} in eq. (22), so that combining eq. (40) with the definition of D_{ij} yields

$$\begin{aligned} \sum_{(i,j) \in \mathcal{I}} D_{ij}^2 \frac{\partial^2 \lambda_k}{(\partial M_{ij})^2} &= \sum_{j=1}^n \sum_{i=1}^j \alpha (1 + \delta_{ij}) (2 - \delta_{ij}) \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l} \left((v_l)_i^2 (v_k)_j^2 \right. \\ &\quad \left. + (v_l)_j^2 (v_k)_i^2 (1 - \delta_{ij}) + (v_l)_i (v_l)_j (v_k)_i (v_k)_j (2 - \delta_{ij}) \right) \end{aligned} \quad (41)$$

1026 we reorder and note that since the summand is symmetric in i, j , we may change the range of
 1027 summation and absorb the coefficient $2 - \delta_{ij}$,

$$1029 = \alpha \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l} \sum_{j=1}^n \sum_{i=1}^n (1 + \delta_{ij}) \left((v_l)_i^2 (v_k)_j^2 \right. \\ 1030 \left. + (v_l)_j^2 (v_k)_i^2 (1 - \delta_{ij}) + (v_l)_i (v_l)_j (v_k)_i (v_k)_j (2 - \delta_{ij}) \right) \quad (42)$$

1034 where we realize that upon accounting for all δ_{ij} , the first two summands are simply $\|v_l\|_2^2 \|v_k\|_2^2$,
 1035 while the third summand may we written an inner product

$$1037 = \alpha \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l} \left(2\|v_l\|_2^2 \|v_k\|_2^2 + 2(\underbrace{v_l^T v_k}_0)^2 \right) \quad (43)$$

1040 since we chose an ONB, this simplifies to

$$1042 = 2\alpha \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l}. \quad (44)$$

1045 It remains to determine an explicit expression of the Brownian motion in eq. (22). We have

$$1049 \sum_{\eta \in \mathcal{I}} D_\eta \frac{\partial \lambda_k}{\partial M_\eta} dB_\eta = \sum_{(i,j) \in \mathcal{I}} \sqrt{(1 + \delta_{ij})\alpha} (2 - \delta_{ij}) (v_k)_i (v_k)_j dB_{ij}$$

1052 using that $B_{ij}(t) = B_{ji}(t)$, we obtain

$$1054 = \sqrt{2\alpha} \sum_{i=1}^n \sum_{j=1}^n \sqrt{\frac{1 + \delta_{ij}}{2}} (v_k)_i (v_k)_j dB_{ij}$$

1056 we may now define $d\tilde{B}_k$ as follows

$$1058 = \sqrt{2\alpha} d\tilde{B}_k. \quad (45)$$

1060 Indeed, the set $\{\tilde{B}_k \mid k \in [n]\}$ is in distribution equal n independent standard Brownian motions,
 1061 since $\mathbb{E}[d\tilde{B}_k] = 0$ and for $k, l \in [n]$

$$1064 \mathbb{E}[d\tilde{B}_k d\tilde{B}_l] = \mathbb{E} \left[\frac{1}{2} \sum_{ij} \sum_{st} \sqrt{1 + \delta_{ij}} \sqrt{1 + \delta_{st}} (v_k)_i (v_k)_j (v_l)_s (v_l)_t dB_{ij} dB_{st} \right]$$

1067 where we realize that the product of the differentials is 0 except for $(i, j) = (s, t)$ and $(i, j) = (t, s)$

$$1069 = \mathbb{E}[v_k^T v_l v_k^T v_l] dt \\ 1070 = \delta_{kl} dt. \quad (46)$$

1073 We can thus conclude that by eq. (22) we have,

$$1076 d\lambda_k = \left(-\beta \lambda_k + \alpha \sum_{l \in [n] \setminus \{k\}} \frac{1}{\lambda_k - \lambda_l} \right) dt + \sqrt{2\alpha} dW_k \quad (47)$$

1079 where $\{W_k \mid k \in [n]\}$ are n independent Brownian motions.

1080

Invariant Distribution. We now show that

1081

1082

1083

$$p_{\text{inv}}(\lambda) = \frac{1}{Z} \exp(-U(\lambda)) \quad \text{for} \quad U(\lambda) = \frac{\beta}{2\alpha} \sum_k \lambda_k^2 - \sum_{k < \ell} \ln |\lambda_k - \lambda_\ell|, \quad (48)$$

1084

1085

for $\lambda \in C_n$ and Z a normalizing constant so that p_{inv} is a probability measure, is the invariant distribution. We use the Fokker-Plank equation. Indeed, recall that if we have an SDE

1086

1087

1088

$$d\lambda_t = f(\lambda_t)dt + L(\lambda_t)dB_t$$

1089

in dimension n , where $f(\lambda) = (f_1(\lambda), \dots, f_n(\lambda))$ is a C^2 -function, $L(\lambda)$ is matrix-valued C^2 -function and B_t is a n -dimensional Brownian motion, then an invariant distribution $p(x)$ satisfies

1090

1091

1092

$$\sum_{i=1}^n \frac{\partial}{\partial \lambda_i} [f_i(\lambda)p(\lambda)] = \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2}{\partial \lambda_i \partial \lambda_j} [L(\lambda)L(\lambda)^T]_{ij} p(\lambda). \quad (49)$$

1093

1094

In our case, for the $\lambda(\alpha, \beta)$ -SDE we have that $L(\lambda, t) = \sqrt{2\alpha}1_n$ and therefore $[L(\lambda, t)L(\lambda, t)^T]_{ij} = 2\alpha\delta_{ij}$. So the right hand side of (49) equals

1095

1096

1097

$$\alpha \sum_{i=1}^n \frac{\partial^2}{(\partial \lambda_i)^2} p(\lambda).$$

1098

Assume for now that $\lambda = (\lambda_1, \dots, \lambda_n)$ satisfies $\lambda_1 > \lambda_2 > \dots > \lambda_n$ and

1099

1100

1101

$$U(\lambda) = c \sum_i \lambda_i^2 - \sum_{i < j} \ln(\lambda_i - \lambda_j)$$

1102

for some constant $c > 0$ to be determined. We first calculate for a fixed i ,

1103

1104

1105

1106

1107

1108

1109

1110

1111

$$\begin{aligned} \frac{\partial}{\partial \lambda_i} p(\lambda) &= -\frac{1}{Z} \exp(-U(\lambda)) \frac{\partial}{\partial \lambda_i} U(\lambda) \\ &= -\frac{1}{Z} \exp(-U(\lambda)) \left(2c\lambda_i - \sum_{i < j} \frac{1}{\lambda_i - \lambda_j} + \sum_{j < i} \frac{1}{\lambda_j - \lambda_i} \right) \\ &= -\frac{1}{Z} \exp(-U(\lambda)) \left(2c\lambda_i - \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} \right). \end{aligned}$$

1112

Therefore,

1113

1114

1115

1116

1117

1118

1119

$$\begin{aligned} \frac{\partial^2}{(\partial \lambda_i)^2} p(\lambda) &= \frac{1}{Z} \exp(-U(\lambda)) \left(2c\lambda_i - \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} \right)^2 - \frac{1}{Z} \exp(-U(\lambda)) \left(2c + \sum_{j \neq i} \frac{1}{(\lambda_i - \lambda_j)^2} \right) \\ &= \left(\sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} - 2c\lambda_i \right) \frac{\partial}{\partial \lambda_i} p(\lambda) - p(\lambda) \left(2c + \sum_{j \neq i} \frac{1}{(\lambda_i - \lambda_j)^2} \right) \end{aligned}$$

1120

and so the right hand side of (49) is equal to

1121

1122

1123

$$\alpha \sum_{i=1}^n \frac{\partial^2}{(\partial \lambda_i)^2} p(\lambda) = \sum_{i=1}^n \left(\alpha \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} - 2\alpha c \lambda_i \right) \frac{\partial}{\partial \lambda_i} p(\lambda) - \sum_{i=1}^n p(\lambda) \left(2\alpha c + \alpha \sum_{j \neq i} \frac{1}{(\lambda_i - \lambda_j)^2} \right)$$

1124

1125

Now the left hand side of (49) is equal to

1126

1127

1128

1129

1130

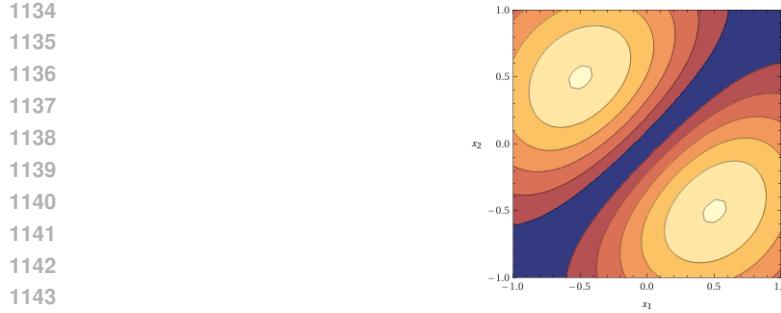
1131

1132

1133

$$\begin{aligned} &\sum_{i=1}^n \frac{\partial}{\partial \lambda_i} \left[\left(\alpha \sum_{i \neq j} \frac{1}{\lambda_i - \lambda_j} - \beta \lambda_i \right) p(\lambda) \right] \\ &= \sum_{i=1}^n \left(\alpha \sum_{i \neq j} \frac{1}{\lambda_i - \lambda_j} - \beta \lambda_i \right) \frac{\partial}{\partial \lambda_i} p(\lambda) + \sum_{i=1}^n \left(-\alpha \sum_{i \neq j} \frac{1}{(\lambda_i - \lambda_j)^2} - \beta \right) p(\lambda) \end{aligned}$$

So it follows that in (49) the left-hand side is equal to the right-hand side if and only if $\beta = 2\alpha c$ or equivalently $c = \beta/2\alpha$, concluding the proof. \square

Figure 5: Plot of the invariant density of Dyson-BM for $d = 2$ and $\alpha = \beta = 1$

C INFERRING THE EIGENVECTOR DYNAMICS

Theorem 3.2 (restated). Denote by $(v_1(t), \dots, v_n(t))$ a tuple of orthonormal eigenvectors associated to the eigenvalues of Theorem 3.1. Assuming that the initial matrix $M(0)$ has simple spectrum, $v_k(t)$ satisfies for $k \in [n]$ the stochastic differential equation

$$dv_k(t) = -\frac{\alpha}{2} \sum_{\ell \neq k} \frac{1}{(\lambda_k(t) - \lambda_\ell(t))^2} v_k(t) dt + \sqrt{\alpha} \sum_{\ell \neq k} \frac{1}{\lambda_k(t) - \lambda_\ell(t)} v_\ell(t) dw_{\ell k}(t) \quad (\text{Eigenvector-SDE})$$

for $\{w_{ij: i \neq j}\}$ standard Brownian motions also independent of the eigenvalue trajectories, with $w_{ji} = w_{ij}$.

Proof. Analogously to the proof of Theorem 3.1, we may view the v_k for $k \in [n]$ as a function of the matrix components M_{ij} for $(i, j) \in \mathcal{I} := \{(i, j) : 1 \leq i \leq j \leq n\}$. We thus have by Itô's lemma

$$\begin{aligned} dv_k &= \sum_{\eta \in \mathcal{I}} \frac{\partial v_k}{\partial M_\eta} dM_\eta + \frac{1}{2} \sum_{\eta, \xi \in \mathcal{I}} \frac{\partial^2 v_k}{\partial M_\eta \partial M_\xi} dM_\eta dM_\xi \\ &= \sum_{\eta \in \mathcal{I}} \left(-\beta M_\eta \frac{\partial v_k}{\partial M_\eta} + \frac{1}{2} D_\eta^2 \frac{\partial^2 v_k}{\partial M_\eta^2} \right) dt + D_\eta \frac{\partial v_k}{\partial M_\eta} dB_\eta. \end{aligned} \quad (50)$$

For the first summand of eq. (50), we observe, using eq. (38), that

$$\sum_{(i,j) \in \mathcal{I}} M_{ij} \frac{\partial v_k}{\partial M_{ij}} dt = \sum_{l \neq k} \sum_{(i,j) \in \mathcal{I}} v_l^T \frac{\partial v_k}{\partial M_{ij}} v_l M_{ij} dt \quad (51)$$

and further use eq. (32)

$$\begin{aligned} &= \sum_{l \neq k} \frac{1}{\lambda_k - \lambda_l} \left(v_l^T \underbrace{\sum_{(i,j) \in \mathcal{I}} \frac{\partial M}{\partial M_{ij}} M_{ij} v_k}_{=M \text{ by eq. (33)}} v_l \right) v_l dt \\ &= \sum_{l \neq k} \frac{\lambda_k}{\lambda_k - \lambda_l} (v_l^T v_k) v_l dt. \end{aligned} \quad (52)$$

Since $l \neq k$ and the $\{v_l \mid l \in [n]\}$ are orthogonal, we get

$$= 0. \quad (53)$$

For the second summand of eq. (50), we observe

$$\frac{\partial^2 v_k}{(\partial M_\eta)^2} = \frac{\partial}{\partial M_\eta} \frac{\partial v_k}{\partial M_\eta} \quad (54)$$

1188 and using Equation (32) and Equation (38) we get
1189

$$1190 = \sum_{m \neq k} \frac{\partial}{\partial M_\eta} \left[\frac{1}{\lambda_k - \lambda_m} v_m^T \frac{\partial M}{\partial M_\eta} v_k v_m \right] \quad (55)$$

1192 by noting $\frac{\partial}{\partial M_\eta} \frac{\partial M}{\partial M_\eta} = 0$, we apply the chain rule to obtain
1193

$$1194 = \sum_{m \neq k} \left\{ - \underbrace{\left(\frac{1}{\lambda_k - \lambda_m} \right)^2 \left(\frac{\partial \lambda_k}{\partial M_\eta} - \frac{\partial \lambda_m}{\partial M_\eta} \right) v_m^T \frac{\partial M}{\partial M_\eta} v_k v_m}_{(i)} + \underbrace{\frac{1}{\lambda_k - \lambda_m} \frac{\partial v_m^T}{\partial M_\eta} \frac{\partial M}{\partial M_\eta} v_k v_m}_{(ii)} \right\} \quad (56)$$

$$1198 + \underbrace{\frac{1}{\lambda_k - \lambda_m} v_m^T \frac{\partial M}{\partial M_\eta} \frac{\partial v_k}{\partial M_\eta} v_m}_{(iii)} + \underbrace{\frac{1}{\lambda_k - \lambda_m} v_m^T \frac{\partial M}{\partial M_\eta} v_k \frac{\partial v_m}{\partial M_\eta}}_{(iv)} \right\}. \quad (57)$$

1201 We now analyze each term.
1202

1203 **Term (i)** We recall Equation (34)

$$1204 \frac{\partial \lambda_k}{\partial M_{ij}} = (v_k)_i (v_k)_j (2 - \delta_{ij}),$$

1205 as well as that the partial derivative $\frac{\partial M}{\partial M_{ij}}$ is 0 except at i, j and j, i , where it is 1 (using symmetry).

1206 Pulling the summation over η and all η -dependent terms in, we have
1207

$$1208 \sum_{\eta \in \mathcal{I}} (1 + \delta_\eta) \left(\frac{\partial \lambda_k}{\partial M_\eta} - \frac{\partial \lambda_m}{\partial M_\eta} \right) v_m^T \frac{\partial M}{\partial M_\eta} v_k \\ 1209 = \sum_{ij \in \mathcal{I}} (1 + \delta_{ij}) \left\{ [(v_k)_i (v_k)_j (2 - \delta_{ij}) - (v_m)_i (v_m)_j (2 - \delta_{ij})] \right. \\ 1210 \left. [(v_m)_i (v_k)_j + (v_m)_j (v_k)_i (1 - \delta_{ij})] \right\} \\ 1211 = 2 [v_k v_k^T v_m - v_m^T v_m v_m^T v_k] \\ 1212 = 2(\delta_{km} - \delta_{km}) \\ 1213 = 0.$$

1214 Thus, the overall contribution of term (i) is 0.
1215

1216 **Term (ii)** For term (ii) we have by Equation (32) and Equation (38)

$$1217 (ii) = \frac{1}{\lambda_k - \lambda_m} \sum_{s \neq m} \frac{1}{\lambda_m - \lambda_s} v_m^T \frac{\partial M}{\partial M_\eta} v_s v_s^T \frac{\partial M}{\partial M_\eta} v_k v_m. \quad (58)$$

1218 Using
1219

$$1220 v_m^T \frac{\partial M}{\partial M_{ij}} v_s = (v_m)_i (v_s)_j + (v_m)_j (v_s)_i (1 - \delta_{ij}), \quad (59)$$

1221 we note that
1222

$$1223 \sum_{\eta \in \mathcal{I}} D_\eta^2 v_m^T \frac{\partial M}{\partial M_\eta} v_s v_s^T \frac{\partial M}{\partial M_\eta} v_k \\ 1224 = \alpha \sum_{i, j \in \mathcal{I}} (1 + \delta_{ij}) [(v_m)_i (v_s)_j + (v_m)_j (v_s)_i (1 - \delta_{ij})] [(v_k)_i (v_s)_j + (v_k)_j (v_s)_i (1 - \delta_{ij})] \\ 1225 = \alpha \left\{ \left[\sum_i (v_m)_i (v_k)_i \right] \left[\sum_i (v_s)_i^2 \right] + v_m^T v_s v_s^T v_k \right\} \\ 1226 = \alpha \delta_{km} + \alpha \delta_{ms} \delta_{sk} \\ 1227 = 0. \quad (60)$$

1242 Thus, the contribution of term (ii) vanishes.
 1243

1244 **Term (iii)** Analogous to term (ii).
 1245

1246 **Term (iv)** By using Equation (32) and Equation (38), we get
 1247

$$\begin{aligned}
 1249 \quad (iv) &= \frac{1}{\lambda_k - \lambda_m} v_m^T \frac{\partial M}{\partial M_\eta} v_k \frac{\partial v_m}{\partial M_\eta} \\
 1250 &= \frac{1}{\lambda_k - \lambda_m} v_m^T \frac{\partial M}{\partial M_\eta} v_k \sum_{p \neq m} \frac{1}{\lambda_m - \lambda_p} v_p^T \frac{\partial M}{\partial M_\eta} v_m v_p \\
 1251 &= \frac{1}{\lambda_k - \lambda_m} \sum_{p \neq m} \frac{1}{\lambda_m - \lambda_p} \left(v_m^T \frac{\partial M}{\partial M_\eta} v_k \right) \left(v_p^T \frac{\partial M}{\partial M_\eta} v_m \right) v_p.
 \end{aligned}$$

1257 By pulling in the η -dependent terms from Equation (50) which affect term (iv), and then by subse-
 1258 quently pulling the sum over η in, we get
 1259

$$\sum_{\eta \in \mathcal{I}} \frac{1}{2} D_\eta^2 v_m^T \frac{\partial M}{\partial M_\eta} v_k v_p^T \frac{\partial M}{\partial M_\eta} v_m \quad (61)$$

1263 which, using eq. (60), becomes
 1264

$$\begin{aligned}
 1265 &= \frac{\alpha}{2} (\delta_{kp} + \delta_{km} \delta_{mp}) \\
 1266 &= \frac{\alpha}{2} \delta_{kp}.
 \end{aligned}$$

1269 Moreover, using that $p \neq m$, we can conclude that the total contribution of term (iv) is
 1270

$$\begin{aligned}
 1272 &\sum_{\eta \in \mathcal{I}} \frac{1}{2} D_\eta^2 \sum_{m \neq k} (iv) \\
 1273 &= -\frac{\alpha}{2} \sum_{m \neq k} \frac{1}{(\lambda_k - \lambda_m)^2} v_k.
 \end{aligned}$$

1278 Before proceeding, we prove the following lemma.
 1279

1280 **Lemma C.1.** Let $v^{(k)}$ be a set of orthonormal vectors and B_{ij} a set of independent standard Brown-
 1281 nian motions with $B_{ij} = B_{ji}$, for $i, j, k \in [n]$. We have that
 1282

$$\tilde{B}_{lk} := (v^{(l)})^T \begin{pmatrix} \sqrt{2}B_{11} & B_{12} & B_{13} & \dots & B_{1n} \\ B_{21} & \sqrt{2}B_{22} & B_{23} & \dots & B_{2n} \\ \vdots & & \vdots & & \vdots \\ B_{n1} & B_{n2} & B_{n3} & \dots & \sqrt{2}B_{nn} \end{pmatrix} v^{(k)}$$

1288 is a Brownian motion with variance $1 + \delta_{lk}$, that is $\tilde{B}_{lk} \stackrel{\text{distr}}{=} \sqrt{1 + \delta_{lk}} B$ for B a standard Brownian
 1289 motion. \tilde{B}_{lk} is independent of \tilde{B}_{ab} for $(l, k) \neq (a, b)$ and $(l, k) \neq (b, a)$.
 1290

1293 *Proof.* We have for any $a, b \in [n]$ that
 1294

$$\text{d}\tilde{B}_{ab} = \sum_{i,j} (v^{(a)})_i (v^{(b)})_j \sqrt{1 + \delta_{ij}} \text{d}B_{ij}.$$

1296 Thus, $\mathbb{E} [\mathrm{d}\tilde{B}_{ab}] = 0$. We further have for $c, d \in [n]$:
 1297

$$\begin{aligned}
 1298 \mathbb{E} [\mathrm{d}\tilde{B}_{ab} \mathrm{d}\tilde{B}_{cd}] &= \sum_{ijkl} (v^{(a)})_i (v^{(b)})_j (v^{(c)})_k (v^{(d)})_l \sqrt{1 + \delta_{ij}} \sqrt{1 + \delta_{kl}} \mathbb{E} [\mathrm{d}B_{ij} \mathrm{d}B_{kl}] \\
 1299 &= \sum_{ijkl} (v^{(a)})_i (v^{(b)})_j (v^{(c)})_k (v^{(d)})_l \sqrt{1 + \delta_{ij}} \sqrt{1 + \delta_{kl}} \mathbb{1}_{(i,j)=(k,l) \vee (i,j)=(l,k)} \mathrm{d}t \\
 1300 &= \sum_{ij} (v^{(a)})_i (v^{(b)})_j \left\{ \mathbb{1}_{i \neq j} \left[(v^{(c)})_i (v^{(d)})_j + (v^{(c)})_j (v^{(d)})_i \right] + \mathbb{1}_{i=j} (v^{(c)})_i (v^{(d)})_i \right\} (1 + \delta_{ij}) \mathrm{d}t \\
 1301 &= \sum_{ij} (v^{(a)})_i (v^{(b)})_j \left[(v^{(c)})_i (v^{(d)})_j + (v^{(c)})_j (v^{(d)})_i \right] \mathrm{d}t \\
 1302 &= \sum_{ij} (v^{(a)})_i (v^{(b)})_j (v^{(c)})_i (v^{(d)})_j \mathrm{d}t + \sum_{ij} (v^{(a)})_i (v^{(b)})_j (v^{(c)})_j (v^{(d)})_i \mathrm{d}t \\
 1303 &= (v^{(a)})^T v^{(c)} (v^{(b)})^T v^{(d)} \mathrm{d}t + (v^{(a)})^T v^{(d)} (v^{(b)})^T v^{(c)} \mathrm{d}t \\
 1304 &= \mathbb{1}_{(a,b)=(c,d)} \mathrm{d}t + \mathbb{1}_{(a,b)=(d,c)} \mathrm{d}t
 \end{aligned} \tag{62}$$

1315
 1316 Thus, in particular the process \tilde{B}_{ab} has variance t for $a \neq b$ and variance $2t$ for $a = b$.
 1317

1318 Since the linear combination of independent Brownian Motions is jointly normal, we see from the
 1319 Covariance property in eq. (62) that \tilde{B}_{lk} is independent of \tilde{B}_{ab} for $(l,k) \neq (a,b)$ and $(l,k) \neq$
 1320 (b,a) . \square

1325 We can now turn to the third summand of eq. (50).
 1326

1327 We have

$$\begin{aligned}
 1328 \sum_{\eta \in \mathcal{I}} D_\eta \frac{\partial v_k}{\partial M_\eta} \mathrm{d}B_\eta \\
 1329 &= \sqrt{\alpha} \sum_{l \neq k} \frac{1}{\lambda_k - \lambda_l} v_l^T \sum_{\eta \in \mathcal{I}} \frac{\partial M}{\partial M_\eta} v_k \sqrt{1 + \delta_\eta} \mathrm{d}B_\eta v_l \\
 1330 &= \sqrt{\alpha} \sum_{l \neq k} \frac{1}{\lambda_k - \lambda_l} v_l^T \begin{pmatrix} \sqrt{2} \mathrm{d}B_{11} & \mathrm{d}B_{12} & \mathrm{d}B_{13} & \dots & \mathrm{d}B_{1n} \\ \mathrm{d}B_{21} & \sqrt{2} \mathrm{d}B_{22} & \mathrm{d}B_{23} & \dots & \mathrm{d}B_{2n} \\ \vdots & & \vdots & & \vdots \\ \mathrm{d}B_{n1} & \mathrm{d}B_{n2} & \mathrm{d}B_{n3} & \dots & \sqrt{2} \mathrm{d}B_{nn} \end{pmatrix} v_k v_l \\
 1331 &= \sqrt{\alpha} \sum_{l \neq k} \frac{1}{\lambda_k - \lambda_l} v_l \mathrm{d}\tilde{B}_{lk}
 \end{aligned} \tag{63}$$

1343 where we used Lemma C.1 in the last step so that $\mathrm{d}\tilde{B}_{lk}$ are symmetric Brownian motions with
 1344 variance $1 + \delta_{lk}$.
 1345

1346 Having established all the terms in the SDE in Theorem 3.2, we check that this dynamics of the
 1347 eigenvectors gives rise to normalized vectors, assuming that the initial vectors $(v_1(0), \dots, v_n(0))$
 1348 are normalized. To this end, it suffices to note that $v_k(t + dt) = v_k(t) + dv_k(t)$ is normalized given
 1349 that $v_k(t)$ is normalized, that is $(v_k(t))^2 = 1$ for any t . By continuity of $t \mapsto v_k(t)$, it suffices to
 show that $v_k(dt) = v_k(0) + dv_k(0)$ remains normalized. We use the SDE from Theorem 3.2 to

compute that up terms of the order of $dt^{3/2}$ or higher we have (omitting “(0)” in the notation)

$$\begin{aligned}
 (v_k(0) + dv_k(0))^2 &= 1 + 2v_k^T dv_k + (dv_k)^2 \\
 &= 1 + 2 \left(\frac{-\alpha}{2} \right) \sum_{l \neq k} \frac{dt}{(\lambda_k - \lambda_l)^2} + 2\sqrt{\alpha} \sum_{l \neq k} \frac{1}{\lambda_l - \lambda_k} \underbrace{v_k^T v_l}_{=0} dw_{lk} \\
 &\quad + \alpha \sum_{l \neq k} \sum_{j \neq k} \frac{dw_{lk} dw_{jk}}{(\lambda_l - \lambda_k)(\lambda_j - \lambda_k)} + \mathcal{O}(dt^{3/2}) \\
 &= 1 - \alpha \sum_{l \neq k} \frac{dt}{(\lambda_k - \lambda_l)^2} + \alpha \sum_{l \neq k} \sum_{j \neq k} \frac{\delta_{jl} dt}{(\lambda_k - \lambda_l)(\lambda_k - \lambda_j)} + \mathcal{O}(dt^{3/2}) \\
 &= 1 + \mathcal{O}(dt^{3/2}).
 \end{aligned} \tag{64}$$

Since contributions of $\mathcal{O}(dt^{3/2})$ do not contribute to the dynamics for $dt \rightarrow 0$, this implies that the $v_k(dt)$ remain normalized. The argument may be iterated, i.e., $(v_k(2dt))^2 = (v_k(dt) + dv_k(dt))^2 = 1 + \mathcal{O}(dt^{3/2})$ and so on, and thus the $v_k(t)$ remain normalized for all $t > 0$.

Finally, as an instructive consistency check, we also show that the eigenvectors remain orthogonal to each other (as they must, since M is symmetric for all $t \geq 0$). This can be checked from the SDE in an analogous manner using again the continuity of $t \mapsto v_k(t)$. Note that for $k \neq l$ and given $v_k^T(0)v_l(0) = 0$, it suffices to show that $v_k^T(dt)v_l(dt) = 0$. Indeed, we have (omitting “(0)” in the notation)

$$\begin{aligned}
 (v_k(0) + dv_k(0))^T (v_l(0) + dv_l(0)) &= 0 + v_k^T dv_l + v_l^T dv_k + dv_k^T dv_l \\
 &= \sqrt{\alpha} \sum_{i \neq l} \frac{1}{\lambda_l - \lambda_i} v_k^T v_i dw_{il} + \sqrt{\alpha} \sum_{j \neq k} \frac{1}{\lambda_k - \lambda_j} v_l^T v_j dw_{jk} \\
 &\quad + \alpha \sum_{j \neq k} \sum_{i \neq l} \frac{v_j^T v_i dw_{il} dw_{jk}}{(\lambda_k - \lambda_j)(\lambda_l - \lambda_i)} + \mathcal{O}(dt^{3/2}) \\
 &= \frac{\sqrt{\alpha}}{\lambda_l - \lambda_k} \underbrace{(dw_{kl} - dw_{lk})}_{=0} + \alpha \sum_{j \neq k} \sum_{i \neq l} \frac{\delta_{ij} \delta_{ik} \delta_{jl} dt}{(\lambda_k - \lambda_j)(\lambda_l - \lambda_i)} + \mathcal{O}(dt^{3/2}) \\
 &= 0 + \mathcal{O}(dt^{3/2}).
 \end{aligned} \tag{65}$$

The argument may be iterated and thus the claim hold for all $t > 0$.

□

D TIME REVERSAL: EXISTENCE AND UNIQUENESS

The time-reversal of the Dyson-BM in the sense of Ref. [Anderson \(1982\)](#) is given in Eq. (5). Since the drift coefficient in the Dyson-BM is not locally Lipschitz continuous, the existence and uniqueness of strong solutions to Dyson-BM and Eq. (5), and the applicability of Ref. [Anderson \(1982\)](#) are not obvious. While the existence and uniqueness of a strong solution to the Dyson-BM is well established (see, e.g., Lemma 4.3.3 in Ref. [Anderson et al. \(2009\)](#)), we here sketch how to ensure the other two points.

To ensure existence and uniqueness of a strong solution to Eq. (5), repeat the arguments in Lemma 4.3.3 in Ref. [Anderson et al. \(2009\)](#), where the divergent x^{-1} -term in the drift is replaced by the locally Lipschitz continuous approximation $\phi(x) = x^{-1}$ for $|x| \geq R^{-1}$ and $\phi(x) = xR^2$ otherwise. For any $\bar{R} > 0$, the desired statements follow from the local Lipschitz continuity of the drift, and details on the limit $R \rightarrow 0$ can be found in Ref. [Anderson et al. \(2009\)](#). The only difference to the forward motion is the additional drift term containing the score function. However, since the dynamics is almost surely contained in the interior of the Weyl chamber ([Katori & Tanemura, 2003](#)), the propagator in the score-contribution is, as usual, dominated by white noise as $dt \rightarrow 0$. Therefore, this term will not cause complications as $R \rightarrow 0$ and the arguments from Ref. [Anderson et al. \(2009\)](#) imply uniqueness and existence of a strong solution to Eq. (5).

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

Using the same regularization of the divergent term, for any $R > 0$ the statements of Ref. [Anderson \(1982\)](#) are directly applicable. Since this regularization is piecewise continuous, we can take the limit $R \rightarrow 0$ under time reversal. Since we just established the existence of the solution to Eq. (5), the limit $R \rightarrow 0$ converges. Furthermore, the arguments are expected to generalize (regularize $\phi(x) = x^{-2}$) to the eigenvector equations and their time reversal.

E TIME RESCALING

We rescale time for [Dyson-BM](#). Let $T(s)$ be a continuous, differentiable rescaling of time, monotonically increasing, with $T(0) = 0$ (for convenience).

Let $\gamma_k(t) := \lambda(T(t))$. With this definition, the Ito SDE eq. [\(Dyson-BM\)](#) corresponds to the Ito integral

$$\begin{aligned} \gamma_k(t) := \lambda_k(T(t)) &= \lambda_k(0) + \int_0^{T(t)} \left(\alpha \sum_{i \neq k} \frac{1}{\lambda_k(s) - \lambda_i(s)} - \beta \lambda_k(s) \right) ds + \int_0^{T(t)} \sqrt{2\alpha} dB_k(s) \\ &= \int_0^t \left(\alpha \sum_{i \neq k} \frac{1}{\lambda_k(T(s)) - \lambda_i(T(s))} - \beta \lambda_k(T(s)) \right) T'(s) ds + \int_0^t \sqrt{2\alpha T'(s)} dB_k(s) \\ &\quad \text{(using Thm. 8.5.7 in } \text{Øksendal (2003)}) \\ &= \int_0^t \left(\alpha \sum_{i \neq k} \frac{1}{\gamma_k(s) - \gamma_i(s)} - \beta \gamma_k(s) \right) T'(s) ds + \int_0^t \sqrt{2\alpha T'(s)} dB_k(s) \end{aligned} \quad (66)$$

which we can write in SDE notation

$$d\gamma_k(t) = \left(\alpha \sum_{i \neq k} \frac{1}{\gamma_k(t) - \gamma_i(t)} - \beta \gamma_k(t) \right) T'(t) dt + \sqrt{2\alpha T'(t)} dB_k(t). \quad (67)$$

By using $T(t) := \frac{1}{\alpha}t$, we obtain

$$d\gamma_k(t) = \left(\sum_{i \neq k} \frac{1}{\gamma_k(t) - \gamma_i(t)} - \frac{\beta}{\alpha} \gamma_k(t) \right) dt + \sqrt{2} dB_k(t), \quad (68)$$

so that we can summarize the two parameters to $\eta := \frac{\beta}{\alpha}$:

$$d\gamma_k(t) = \left(\sum_{i \neq k} \frac{1}{\gamma_k(t) - \gamma_i(t)} - \eta \gamma_k(t) \right) dt + \sqrt{2} dB_k(t) \quad (69)$$

which we call “ $\gamma(\eta)$ -SDE”.

Dyson’s conjecture says that the $\lambda(\frac{1}{N}, \frac{1}{2})$ -SDE converges to global equilibrium in time $\Theta(1)$ (see [Yang \(2022\)](#)). Running $\lambda(\frac{1}{N}, \frac{1}{2})$ until time 1 is the same as running the $\gamma(\frac{N}{2})$ -SDE until time $T(1) = \frac{1}{N}$.

F STEPSIZE CONTROLLER

Dyson Brownian Motion almost surely never crosses the singularities. Hence, conditioning on non-crossing corresponds to conditioning on a probability 1 event, which does not change the dynamics. Given the noise, we can thus calculate the maximal step size, beyond which we would cross the singularity. This is a very useful upper bound, which we employ in practice to get the numerical scheme working. It has two effects: (1) close to the boundary of the Weyl Chamber, it avoids numerically stepping over the singularities and (2) far from the boundary, it allows for larger step size, increasing efficiency.

1458

1459

1460

Algorithm 2 Forward stepsize controller for Dyson SDE

1461

1462

1463

1464

1465

1466

1467

1468

1: **Input:** position $\lambda \in \mathbb{R}^n$, time $t \in \mathbb{R}^+$, independent normal samples $u \sim \mathcal{N}^n$.2: **for** $k \in [n - 1]$ **do**3: $\delta t_k \leftarrow$ maximal step size based on $\lambda_{k+1} - \lambda_k$ and samples u_k, u_{k+1} as described in Appendix F.14: **end for**5: **Output:** stepsize $\min_i \delta t_i$.

1469

Figure 6: Forward step size controller which exploits that non-crossing of paths happens with probability 1. The exact calculations are carried out in Appendix F.1.

1470

1471

F.1 FORWARD IN TIME

1472

The difference between components k and $k + 1$ of λ after a first-order discretization step of size dt reads for any time $t \in \mathbb{R}^+$

1473

1474

1475

$$\Delta_k(t + dt) := \lambda_k(t + dt) - \lambda_{k+1}(t + dt) \quad (70)$$

1476

$$= \lambda_k(t) - \lambda_{k+1}(t) + dt f_k(t) + \sqrt{dt} g_k \quad (71)$$

1477

1478

with functions $f_k(t) := \alpha \left(\sum_{i \neq k} \frac{1}{\lambda_k(t) - \lambda_i(t)} - \sum_{i \neq k+1} \frac{1}{\lambda_{k+1}(t) - \lambda_i(t)} \right) - \beta (\lambda_k(t) - \lambda_{k+1}(t))$,

1479

1480 $g_k := \sqrt{2\alpha} (X_k - X_{k+1})$ where the $X_j \stackrel{iid}{\sim} \mathcal{N}(0, 1)$ are the independent standard gaussian random variables taken in the update step of the numerical SDE scheme. Note that Δ_k is a random variable, but if the step size is sufficiently small we must have almost surely

1481

1482

1483

$$\Delta_k(t + dt) > 0.$$

1484

1485

1486

1487

To find the maximal step size, we observe that the equation above is a quadratic function in the substituted $\tau := \sqrt{dt}$ yielding the inequality that

1488

1489

1490

$$\tau^2 + \frac{g_k}{f_k(t)} \tau + \frac{\Delta_k(t)}{f_k(t)} \quad \text{is} \quad \begin{cases} > 0 & \text{if } f_k(t) > 0, \\ < 0 & \text{if } f_k(t) < 0. \end{cases} \quad (72)$$

1491

We treat first the case $f_k(t) > 0$. The inequality is equivalent to

1492

1493

1494

$$\left(\tau + \frac{g_k}{2f_k(t)} \right)^2 > \left(\frac{g_k}{2f_k(t)} \right)^2 - \frac{\Delta_k(t)}{f_k(t)}, \quad (73)$$

1495

1496

1497

1498

where we know that $\frac{\Delta_k(t)}{f_k(t)} > 0$ must hold. Hence, if $g_k > 0$, any stepsize $dt > 0$ works. Otherwise, if $g_k < 0$, the quadratic formula shows immediately that both roots will be in the $\tau > 0$ regime. Since the parabola is convex in τ , for inequality (73) to be fulfilled, we take τ in the range from 0 to the smallest root. For dt , that means

1499

1500

1501

1502

$$dt \in \left(0, \frac{1}{4} \left(-\frac{g_k}{f_k(t)} - \sqrt{\frac{g_k^2}{f_k(t)^2} - 4 \frac{\Delta_k(t)}{f_k(t)}} \right)^2 \right). \quad (74)$$

1503

1504

If $f_k(t) < 0$, we have

1505

1506

1507

$$\left(\tau + \frac{g_k}{2f_k(t)} \right)^2 < \left(\frac{g_k}{2f_k(t)} \right)^2 - \frac{\Delta_k(t)}{f_k(t)}. \quad (75)$$

1508

1509

Since $\frac{\Delta_k(t)}{f_k(t)} < 0$, we know that the inequality is satisfied at $\tau = 0$, and that the largest root τ_2 will be positive:

1510

1511

$$\tau_{1,2} = \frac{1}{2} \left(-\frac{g_k}{f_k(t)} \mp \sqrt{\frac{g_k^2}{f_k(t)^2} - 4 \frac{\Delta_k(t)}{f_k(t)}} \right).$$

1512 Thus, any stepsize in the following interval is valid
 1513

$$1514 \quad dt \in \left(0, \frac{1}{4} \left(-\frac{g_k}{f_k(t)} + \sqrt{\frac{g_k^2}{f_k(t)^2} - 4 \frac{\Delta_k(t)}{f_k(t)}} \right)^2 \right)$$

$$1515$$

$$1516$$

1517 Note that $f_k(t) \neq 0$ and $g_k \neq 0$ almost surely.
 1518

1519 F.2 BACKWARD IN TIME

1521 Backwards in time, we carry out the analogous computation for the more involved backwards SDE
 1522 in eq. (5). In essence, this boils again down to solving a quadratic equation and considering all edge
 1523 cases.
 1524

1525 G SHOOTING MECHANISM

1527 In the forward dynamics, if a certain step size would lead to the probability-0 event of leaving the
 1528 Weyl-Chamber, we know that the source of the error is the finite-time-step discrete approximation,
 1529 so that decreasing the step size will always provide a fix. In the backward dynamics, however, this
 1530 is not guaranteed: As described in Section 3.2, a possible reason for this probability-0 event in the
 1531 backwards dynamics is that the score s_θ might be not perfectly learned: $s_\theta(\lambda, t) \neq s(\lambda, t)$ for some
 1532 λ, t . To avoid this probability-0 event, we use the following “shooting mechanism”: If we were
 1533 to leave the Weyl-Chamber, we replace the learned score with the analytically known score in the
 1534 invariant state, eliminating the use of the neural network at that point and leading effectively to a
 1535 repulsion with the negative forward drift. This mechanism is not expected to change the dynamics in
 1536 any unfavorable way since it is only applied very rarely, and only in cases where the actual learned
 1537 dynamics is a much worse approximation (since it would give rise to measure zero events).
 1538

1539 H COMPLEXITY DEPENDENCE ON GRAPH SIZE n OF NUMERICAL STEP FOR 1540 DYSON-BM AND EIGENVECTOR-SDE

1542 When simulating the Dyson-BM numerically, for a fixed eigenvalue λ_k , we need to calculate its
 1543 distance to any λ_ℓ for $\ell \in [n] \setminus \{k\}$ in order to obtain the repulsion force entering the drift of the
 1544 Dyson-BM. Since we need to do this for each component, we have for a fixed time step a complexity
 1545 of $\mathcal{O}(n^2)$.
 1546

When simulating Eigenvector-SDE numerically, for one time step, we update the entire set of n
 1547 eigenvectors together. Each of the $n(n - 1)/2$ entries of the Lie algebra can be computed in time
 1548 $\Theta(1)$ (note that $E_{(l,k)}$ is a basis element of the Lie algebra). This update requires thus $\mathcal{O}(n^2)$.
 1549 Accounting for the projection from the Lie algebra in the Lie group, this yields a complexity of
 1550 $\mathcal{O}(n^3)$ for an eigenvector update.
 1551

Since Dyson-BM decouples from Eigenvector-SDE, we thus have a complexity for an update step
 1552 of $\mathcal{O}(n^2)$ if one is interested in only the spectrum, and a complexity of $\mathcal{O}(n^3)$ if one is interested
 1553 in the spectrum and eigenvectors. Note that this modularity allows the practitioner to first learn the
 1554 spectrum in isolation and do any hyperparameter tuning steps on the (smaller) spectral model, and
 1555 then use this already tuned model to train and optimize for the remaining eigenvector dynamics.
 1556

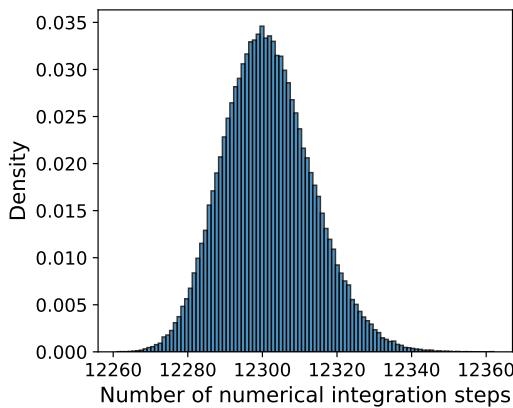
In comparison, an OU-based approach on the entire graph with a GNN-based algorithm requires for
 1557 a fixed time point an update of the SDE in n^2 entries in time $\mathcal{O}(n^2)$ followed by C message passing
 1558 steps (a GNN is trained using message passing, where C is a constant defining how many hops
 1559 a message is being passed), with each message passing taking time $\mathcal{O}(n^3)$, leading to an overall
 1560 complexity of $\mathcal{O}(n^3)$ per time step, assuming that C is constant.
 1561

1562 I EMPIRICAL CONSIDERATIONS

1563 While we give a thorough analysis of the computational complexity of each update step, the number
 1564 of time steps is determined by the adaptive step size algorithm. For practical reasons, our method
 1565

1566 can be configured with a minimal (and maximal) step size. We illustrate the distribution of the
 1567 number of time steps on the Brain dataset in Figure 7, where it can be observed that the number of
 1568 time steps taken concentrates very well. Note that this number of time steps perfectly suffices even
 1569 for a dataset as large as Brain, which contains 15'000 graphs. Note further that while these are the
 1570 number of steps the numerical integrator takes forward, learning has to happen only on much fewer
 1571 steps, through the described pre-defined schedule. In the case of Brain, learning happens only on
 1572 651 time points. The numerical generation of 105'000 paths with step number depicted in Figure 7
 1573 took in total 5 seconds. For memory considerations, note that we require for training only a single
 1574 H100 GPU (80 GB Video Random Access Memory).

1575 We further note that the skip event (see Algorithm 1) is indeed a rare event: In the Brain setting, the
 1576 empirical probability of a step being a skip is 10^{-5} . Similarly, shootings in the analogous backwards
 1577 runs happen rarely. Note that skips and shoots are needed for correctness and stability, but have due
 1578 to their rarity no negative impact on runtime.



1593
 1594 Figure 7: **Concentration of time steps of the numerical integrator:** Within 5 second, we generated
 1595 105'000 forward paths using our numerical scheme, where the total number of steps per path are
 1596 distributed as depicted in this histogram. As can be seen, the distribution concentrates well.

J INFERENCE

1601 We describe in Algorithm 3 the sampling procedure with the shooting mechanism (see Appendix G
 1602 for details) incorporated, ensuring that we remain in the Weyl Chamber.

K ENGINEERING

1606 We follow Karras et al. (2024) by using SiLU activations. We further use EMA to average over
 1607 multiple runs (Song & Ermon, 2020).

1609 A key strength of DyDM is that the score $s_\theta(\lambda, t)$ can be parameterized with any learning archi-
 1610 tecture, without being constrained to GNNs or graph transformers. We demonstrate this by par-
 1611 ameterizing the score with a simple MLP. The size of layers varies by application, and we document
 1612 it for each dataset in [Github](#). For instance, for the large dataset of 15'000 brain ego graphs, our
 1613 model consists of a hidden MLP of depth 4, where the input and output layer have width 64 and the
 1614 hidden layers have width 256. The space + time data is first scaled up with a linear layer from size
 1615 $n + 1 = 11$ followed by a batch norm to feed into the hidden MLP, and upon processing through the
 1616 hidden MLP, it gets scaled down through a simple linear layer to size $n = 10$. In the hidden MLP,
 1617 we employ as nonlinearities scaled SiLU functions, as argued by Karras et al. (2024).

1618 To make full use of the GPU memory, in one epoch, we sample N_{paths} paths in parallel. If the dataset
 1619 is too small to fill the GPU memory, we sample multiple, independent, paths of the same data points
 in parallel. From these samples, we update the score network s_θ in smaller batches. Proceeding in

1620

1621

1622

Algorithm 3 DyDM sampling

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

```

1: Input: dimension  $n$ , schedule  $\mathcal{T} = \{t_j\}$ , trained score network  $s_\theta$ 
2:  $\lambda(T) \leftarrow$  Spectrum of a random GOE matrix.  $\triangleright$  Sampling from invariant distribution.
3:  $t \leftarrow T$ 
4: while  $t > 0$  do
5:   Let  $u \sim \mathcal{N}(0, I_n)$ 
6:    $\delta t \leftarrow \text{BackwardStepsizeController}(\lambda(t), u)$   $\triangleright$  Step size as described F.2.
7:    $\hat{s}_\theta \leftarrow \text{Interpolation of } s_\theta(\lambda, t_j) \text{ and } s_\theta(\lambda, t_{j+1}) \text{ for } t_j, t_{j+1} \in \mathcal{T}$  closest points in schedule
8:   BackwardsDrift  $\leftarrow$  drift of eq. (5) at time  $t$  and point  $\lambda(t)$  with score  $s_\theta(\lambda, t_{j+1})$ 
9:   if  $\lambda_t - \text{BackwardsDrift} \cdot \delta t - u\sqrt{2\alpha\delta t} \in \text{Weyl Chamber}$  then
10:     $\lambda_{t-\delta t} \leftarrow \lambda_t - \text{BackwardsDrift} \cdot \delta t - u\sqrt{2\alpha\delta t}$ 
11:   else  $\triangleright$  Otherwise – in a rare event – shooting mechanism triggers (see Appendix G)
12:     $\lambda_{t-\delta t} \leftarrow \lambda_t - (-\text{ForwardDrift}) \cdot \delta t - u\sqrt{2\alpha\delta t}$   $\triangleright$  ForwardDrift as in 3.1
13:   end if
14:    $t \leftarrow t - \delta t$ 
15: end while
16: Output: spectral sample  $\lambda(0) \in \mathbb{R}^n$ 

```

1640

1641

1642

Figure 8: Sampling from the Dyson Diffusion Model. The eq. (5) is evolved backward in time with the shooting mechanism and an adaptive step size, ensuring that the paths remain in the Weyl Chamber.

1643

1644

1645

this way ensures that JAX uses the full potential of the GPU. These parameters (N_{paths} and batch size) can be specified in the configuration file.

1646

We implement the model in Jax and Equinox (Kidger & Garcia, 2021).

1647

1648

1649

K.1 CHOICE OF TIME GRID

1650

1651

1652

1653

As outlined in Section 3.2, we choose an exponential time grid on which the objective is learned. This is due to the mixing behavior of Dyson’s Brownian Motion. For instance, for the Brain dataset, we use exponential time grid detailed in Table 2.

1654

1655

1656

Table 2: Example of exponential time grid, here for the brain dataset which contains in total 15’000 graphs. dt is 0.05, and the final time is $T = 12.0$.

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

	from	to	stepsize
	0	1/8	$1/64 \cdot dt$
	1/8	1/4	$1/32 \cdot dt$
	1/4	1/2	$1/16 \cdot dt$
	1/2	1	$1/8 \cdot dt$
	1	2	$1/4 \cdot dt$
	2	3	$1/2 \cdot dt$
	3	7	$1 \cdot dt$
	7	T	$2 \cdot dt$

K.2 PREPROCESSING AND DEALING WITH DIFFERENT DIMENSIONS

1669

1670

1671

1672

1673

As is the case for an Ornstein-Uhlenbeck diffusion, the speed of convergence depends for Dyson-BM on (1) the coefficients and (2) the initial condition. We can thus choose to significantly vary the final time T or rescale the initial condition. We choose the latter (although both options are feasible). To that end, we rescale the spectra with an affine transformation in a preprocessing step. In more detail: For a given set of graphs, we perform an eigendecomposition, and rescale so that among the entire dataset the largest eigenvalue is at most λ_{\max} and at least λ_{\min} . For instance, on the

1674 benchmark models we chose $\lambda_{\max} = 5$, $\lambda_{\min} = -5$. If a spectrum has eigenvalues of multiplicities
 1675 greater than 1, we perform an ϵ -perturbation, where the ϵ depends on the distance of the closest
 1676 eigenvalues in the dataset. In postprocessing, the spectra are scaled back and the perturbation is
 1677 undone for eigenvalues that are at most ϵ apart after generation. Note that with this preprocessing,
 1678 only one eigendecomposition per training graph is necessary.
 1679

L CHALLENGES OF DYSON’S BROWNIAN MOTION

1682 Using Dyson’s Brownian Motion for a diffusion presents several challenges, all of which we over-
 1683 came in this paper. First, the Dyson SDE is not an OU process, but instead an SDE with singularities
 1684 of order $\mathcal{O}(1/(\lambda_k - \lambda_l))$ in the drift, posing both theoretical and numerical challenges. Second,
 1685 the conditional density $p(x | x_0)$ is non-Gaussian and challenging to obtain, as with any non-OU
 1686 diffusion process. Therefore, we do not have access to a canonical loss function. Finally, the non-
 1687 availability of conditional distributions means that training is not simulation-free.

1688 We overcome the obstacles mentioned above and provide a diffusion model for the spectra of graphs
 1689 based on the Dyson SDE (Fig. 1). The model is not only efficient but is also able to distinguish
 1690 between spectra of graphs that GNNs are blind to (Fig. 2). In addition, with DyDM, no ad hoc
 1691 data augmentation is necessary. Further, through [Eigenvalue-SDE](#), we give the dynamics of the
 1692 remaining information in form of conditioned eigenvector dynamics, hence making them accessible
 1693 for future work devoted to eigenvector diffusion.

L.1 WHY NOT LOG-TRANSFORM THE SDE?

1697 One idea could be to transform the spectral SDE into terms $\lambda_1, \lambda_2 - \lambda_3, \dots, \lambda_{n-1} - \lambda_n$ and take
 1698 logarithms, to avoid singularities. However, this is no desirable for multiple reasons: First, upon
 1699 applying Ito to this SDE, we (i) lose the log and obtain singularities again and (ii) get higher order
 1700 singularities $d \log(x_t) = \frac{1}{x_t} dx_t - \frac{1}{2x_t^2} (dx_t)^2$. Second, the space that would need to be sampled
 1701 would certainly not decrease, since now the transformed domain reaches from $-\infty$ to $+\infty$. Hence,
 1702 we choose the method described in the main part.

M WHY NOT LEARN ON ALL $n!$ MANY GRAPH REPRESENTATIONS?

1706 In short, learning $n!$ more data is much harder. This point has been mentioned by previous literature,
 1707 e.g. [Niu et al. \(2020\)](#). However, if we go deeper, the interested reader might wonder why exactly.

M.1 RIGOROUS ARGUMENT

1710 We give here a toy example, where the challenge can be phrased rigorously. Suppose we have a
 1711 binary matrix $X \in \{0, 1\}^{m, k}$ with independent entries, which are for $i \in [m], j \in [k]$ distributed as
 1712 $X_{ij} \sim \text{Bernoulli}(p_j)$ for some unknown $p_j \in [0, 1]$. The task is to estimate the p_j . The motivation
 1713 for this example stems from the following setting: We want to learn the probability of k objects (for
 1714 instance, graphs), each having m representations (for instance, representations of graphs such as
 1715 adjacency matrices). Each column of the matrix X thus consists of all representations of the same
 1716 object. We define two estimators, with est_A using the inductive bias and est_B not using it.

1717 To that end, suppose we have N uniformly at random obtained samples Z_1, \dots, Z_N . In more detail,
 1718 that means that we sample for each $\ell \in [N]$ a pair of indices $(i_\ell, j_\ell) \in [m] \times [k]$ uniformly at random,
 1719 and describe the obtained sample by $Z_\ell \sim X_{i_\ell, j_\ell}$. Estimator est_A makes use of the inductive bias.
 1720 That is, for $u \in [m], v \in [k]$ we define

$$\text{est}_A^{(u, v)} := \frac{k}{N} \sum_{\ell \in [N]} Z_\ell \mathbf{1}_{j_\ell=v}.$$

1724 Estimator est_B does not make use of the inductive bias. That is, for $u \in [m], v \in [k]$, we define

$$\text{est}_B^{(u, v)} := \frac{k \cdot m}{N} \sum_{\ell \in [N]} Z_\ell \mathbf{1}_{i_\ell=u, j_\ell=v}.$$

1728 Clearly, both estimators are unbiased: $\mathbb{E} \left[\text{est}_A^{(u,v)} \right] = \mathbb{E} \left[\text{est}_B^{(u,v)} \right] = p_v$. However, their mean
 1729 squared error, defined for $X \in \{A, B\}$ as
 1730

$$1731 \text{MSE}(\text{est}_X) := \frac{1}{m \cdot k} \sum_{u \in [m], v \in [k]} \mathbb{E} \left[\left(\text{est}_X^{(u,v)} - p_v \right)^2 \right],$$

1733 varies significantly between est_A and est_B .

1734 **Corollary M.1** (Mean square error). *In dependence of the problem size m and number of samples
 1735 N , the mean square error of est_A is of order $\Theta(1/N)$, while the mean square error of est_B is of
 1736 order $\Theta(m/N)$.*

1737 To prove Corollary M.1, we derive the mean squared error for both estimators.

1738 **Lemma M.2** (MSE of est_A). *The mean squared error of estimator est_A is*

$$1739 \text{MSE}(\text{est}_A) = \frac{1}{N} \sum_{v \in [k]} \left(p_v - \frac{1}{k} p_v^2 \right).$$

1740 *Proof.* We have for $u \in [m], v \in [k]$

$$\begin{aligned} 1741 \mathbb{E} & \left[\left(\text{est}_A^{(u,v)} - p_v \right)^2 \right] \\ 1742 &= \mathbb{E} \left[\left(\frac{k}{N} \sum_{\ell \in [N]} Z_\ell \mathbf{1}_{j_\ell=v} - p_v \right)^2 \right] \\ 1743 &= \frac{k^2}{N^2} \sum_{\ell \in [N]} \mathbb{E} \left[\sum_{o \in [N]} Z_\ell \mathbf{1}_{j_\ell=v} X_o \mathbf{1}_{j_o=v} \right] - 2 \frac{k}{N} \mathbb{E} \left[\sum_{\ell \in [N]} Z_\ell \mathbf{1}_{j_\ell=v} \right] p_v + p_v^2 \\ 1744 &= \left(1 - \frac{1}{N} \right) p_v^2 + \frac{k}{N} p_v - 2p_v^2 + p_v^2 \\ 1745 &= \frac{k}{N} p_v - \frac{1}{N} p_v^2. \end{aligned}$$

1746 Averaging over all $u \in [m], v \in [k]$, we obtain the desired result. \square

1747 **Lemma M.3** (MSE of est_B). *The mean squared error of estimators $\text{est}_B^{(u,v)}$ for $u \in [m], v \in [k]$ is*

$$1748 \text{MSE}(\text{est}_B) = \frac{1}{N} \sum_{v \in [k]} \left(m \cdot p_v - \frac{1}{k} p_v^2 \right).$$

1749 *Proof.* We have for $u \in [m], v \in [k]$

$$\begin{aligned} 1750 \mathbb{E} & \left[\left(\text{est}_B^{(u,v)} - p_v \right)^2 \right] \\ 1751 &= \mathbb{E} \left[\left(\frac{k \cdot m}{N} \sum_{\ell \in [N]} Z_\ell \mathbf{1}_{i_\ell=u, j_\ell=v} - p_v \right)^2 \right] \\ 1752 &= \frac{k^2 m^2}{N^2} \sum_{\ell \in [N]} \mathbb{E} \left[\sum_{o \in [N]} Z_\ell \mathbf{1}_{i_\ell=u, j_\ell=v} Z_o \mathbf{1}_{i_o=u, j_o=v} \right] - 2 \frac{k m}{N} \mathbb{E} \left[\sum_{\ell \in [N]} Z_\ell \mathbf{1}_{i_\ell=u, j_\ell=v} \right] p_v + p_v^2 \\ 1753 &= \left(1 - \frac{1}{N} \right) p_v^2 + \frac{k m}{N} p_v - 2p_v^2 + p_v^2 \\ 1754 &= \frac{k m}{N} p_v - \frac{1}{N} p_v^2 \end{aligned}$$

1755 Summing over all estimators for $u \in [m], v \in [k]$ gives the desired result. \square

1782 By considering the estimation problem as a problem of parameters m , N , Corollary M.1 follows
 1783 directly from Lemma M.2, Lemma M.3.

1784 The same argument may be carried out with Normal instead of Bernoulli random variables.

1785

1786 N WL-EQUIVALENCE OF REGULAR GRAPHS

1787

1788 We now prove Lemma 2.1.

1789

1790 **Lemma 2.1 (restated).** *For every fixed $n, k \in \mathbb{N}$, all k -regular graphs $G \in \mathcal{G}^n$ are WL equivalent.*
 1791 *Moreover, every graph $G \in \mathcal{G}^n$ that is WL equivalent to a k -regular graph is k -regular.*

1792

1793 *Proof.* Recall that the 1-Weisfeiler-Leman (WL) algorithm tests graph equivalence by iteratively
 1794 updating vertex *colors*. Initially, all vertices share one color. In each step, a vertex’s new color is
 1795 determined by the multiset (a set allowing for duplicates) of its own color and its neighbors’ current
 1796 colors. This continues until the coloring stabilizes. Two graphs are WL-equivalent if this process
 1797 generates identical color counts (histograms) at every step.

1798 For a k -regular graph, since every vertex has exactly k -neighbors, in each iteration of the WL-
 1799 algorithm all vertices have the same color. Thus in particular the histograms are always the same
 1800 and therefore any two k -regular graphs are WL-equivalent.

1801 A k -regular graph is not WL-equivalent to a ℓ -regular graph for $k \neq \ell$ since the colors after the first
 1802 iteration are distinct as the number of neighbors is different. Moreover, if a graph is not regular,
 1803 then the first iteration must assign a different new color to at least two vertices in the first iteration.
 1804 Therefore, the color histogram is not the same as the color histogram of a regular graph and thus they
 1805 are not WL-equivalent. This shows that the WL-equivalence class of a k -regular graph is exactly the
 1806 set k -regular graphs. \square

1807

1808 In particular, it follows from Morris (Morris et al., 2019) that GNNs cannot distinguish k -regular
 1809 graphs.

1810

1811

1812 O LAPLACIAN SPECTRUM

1813

1814 The Laplacian spectrum captures key properties of a graph, such as the Fiedler Value encoding the
 1815 algebraic connectivity of the graph. Our model works perfectly well on the Laplacian spectrum, for
 1816 which we plot the marginal densities on the datasets “Brain” and “Community Small”. Note that the
 1817 model perfectly learns key properties such as the fact that the smallest eigenvalue is 0 and learns the
 1818 distributions well.

1819 For Brain (Figure 9), we plot for each eigenvalue λ_i a histogram of the DyDM-generated marginal
 1820 (blue) compared to a histogram of the Ground Truth (note that brain test for generalization). For the
 1821 commonly used “Community Small” dataset, we show in Figure 10 the first 12 Eigenvectors, since
 1822 only 73 graphs have more than 12 nodes.

1823 Note that in this Section, we use the convention $\lambda_1 \leq \dots \leq \lambda_n$ to stay consistent with Graph
 1824 Laplacian literature.

1825

1826

1827 P DATASETS

1828

1829 **WL-bimodal** The WL-Bimodal graph consists of 80% graph A and 20% graph B (see Fig. 2)
 1830 adjacency matrices. We drew among all permutations 5’000 permutations uniformly at random and
 1831 shuffled the graphs. Hence, we have 5’000 matrices, of which 4’000 represent graph A and 1’000
 1832 represent graph B. Adjacency matrices representing the same graph are not identical matrices, but
 1833 rather permutations of each other, making this dataset relevant to *graph* generative models. The first
 80% of this dataset are used for training, the remaining 20% are used for testing.

1834 **Community-small** This standard benchmark dataset (Niu et al., 2020; Jo et al., 2022; You et al.,
 1835 2018) consists of 100 graphs of size up to 20 vertices. We comment in Appendix Q.1 on the small

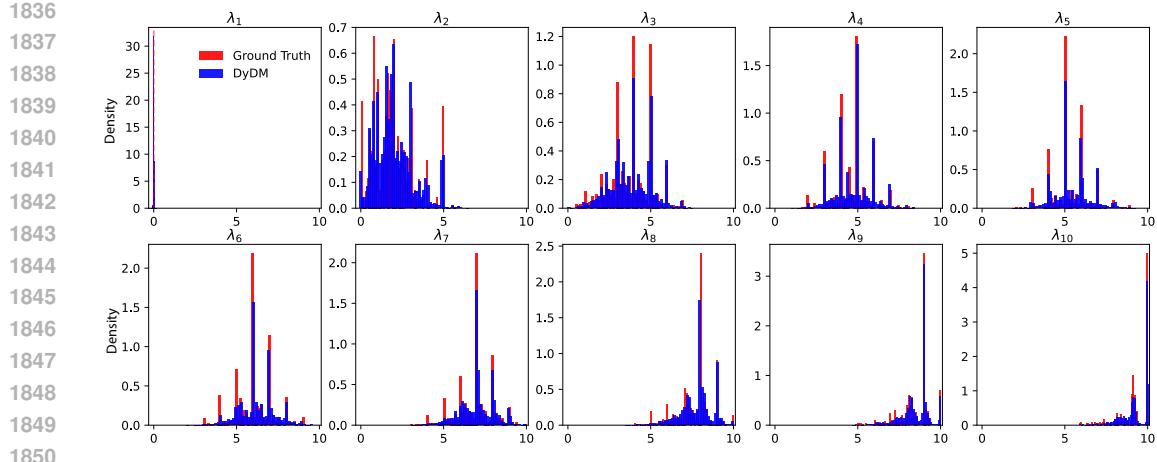


Figure 9: Performance of DyDM on the Laplacian of the Brain dataset compared to the underlying distribution: DyDM perfectly learns the (rough) distribution and key properties such as the smallest eigenvalue always being 0 (faint line, since it is very concentrated) or the distribution of the Fiedler Value (λ_2).

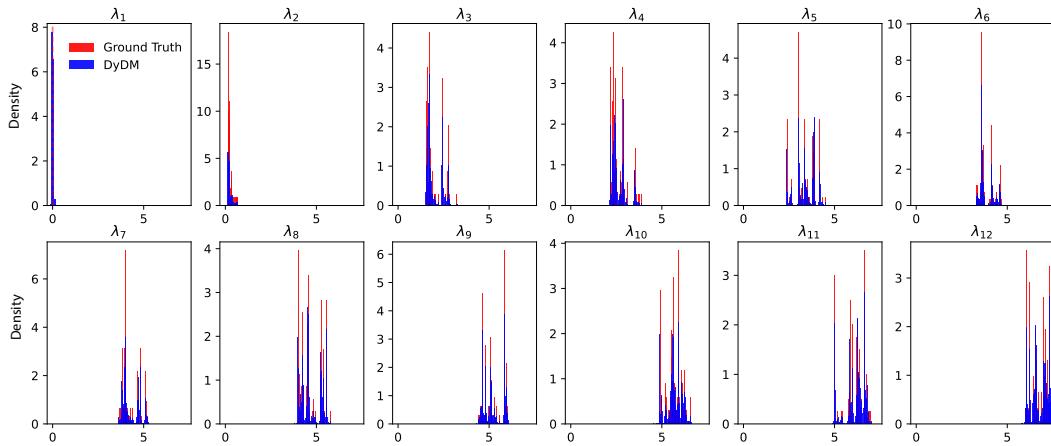


Figure 10: Performance of DyDM on the Laplacian of the Community Small dataset: DyDM learns the distribution and key properties very well.

dataset (100 graphs) compared to the big dimension (up to 20 vertices) and the thereby induced effect of undersampling.

Brain We report this dataset in our repository. In detail, we construct from the brain graph Amunts et al. (2013); Rossi & Ahmed (2015) so-called ego-graphs. That is, we take the (distance 1) neighborhoods of vertices, and consider the induced subgraph. From those, we generate 15'000 graphs of size $n = 5$ to $n = 10$ vertices with eigenvalue multiplicity up to 3, with the closest eigenvalues – which are not multiplicities – having distance 0.036. We take 70% as train graphs, 15% as validation, and the remaining 15% as test graphs.

Q COMPARING TO BENCHMARK MODELS

Q.1 ON UNDERSAMPLING

For the “bimodal” case, we have sufficient statistics for the 10-dimensional space C_{10} ($N = 5'000$ graph samples, each isomorphic to one of two graphs) and know in addition the underlying distribution; hence, an extensive interpretation of this result is appropriate. For a fair comparison, we thus

1890 follow the standard test/train split procedure as reported in (Jo et al., 2022; You et al., 2018; Niu
 1891 et al., 2020) using 80% of the data as train data and the remaining 20% as test data.
 1892

1893 Conversely, the standard benchmark set “community small” (Niu et al., 2020; Jo et al., 2022; You
 1894 et al., 2018) contains *only* 100 graphs, and each has a size of up to $n = 20$ vertices. Thus, a
 1895 comparison from the learned distribution based on (few) training samples to (very few) test samples
 1896 suffers from undersampling. This becomes very stark if one considers the following issue: If one
 1897 would extract 80% of the dataset for training, *where* they are taken from already matters a lot.
 1898 Whether they are taken from the front or back changes the maximal graph size in the training set.
 1899 Depending on whether the training data is taken from the front or back of the dataset, a model
 1900 trained on the training set might thus have no possibility to learn the correct maximal graph size.
 1901 More generally, poorness of benchmarks in graph generative learning has been recently addressed
 1902 by Bechler-Speicher et al. (2025). To offer some consistent comparison, we do include the standard
 1903 benchmark “community small”, but focus on *memorization* rather than the (on those benchmarks
 1904 untestable) generalization.

1904 To overcome the issue of undersampling, we construct a set of 15'000 ego-graphs from the brain
 1905 dataset Amunts et al. (2013) as described in Appendix P, which is sufficiently large to *not* suffer
 1906 from undersampling. We train both our model and DiGress on 70% (= 10'500 graphs), perform
 1907 hyperparameter tuning (see below for details on the DiGress hyperparameter tuning) on a validation
 1908 set of 15%, and test on the remaining 15%.

1909 Q.2 GDSS

1910 To compare to the GDSS model Jo et al. (2022), we take the following approach to ensure a
 1911 fair comparison: The GDSS model has been trained and optimised on the ego small and
 1912 community small dataset, so that we take for these datasets the snapshots and hyperparameters given
 1913 by the original paper Jo et al. (2022). For the remaining datasets, we start with the settings
 1914 from the community-small dataset since that has similar size, adapt the maximal number of
 1915 vertices to the dataset, and then perform hyperparameter tuning as described in Appendix C of the
 1916 GDSS paper: We form a grid search on the model’s following parameters: The scale coefficient in
 1917 $\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$, the signal-to-noise ratio in $\{0.05, 0.1, 0.15, 0.2\}$, and
 1918 in addition to the GDSS paper, we also try different β_{max} in $\{1, 10, 20\}$, and try different batch
 1919 sizes $\{128, 4096\}$. We test with and without EMA. The motivation for the additional parameters we
 1920 hyper tune is that we observed that they further improve the GDSS model. This gives full fairness to
 1921 the model. The training time on one H100 GPU per job was about 24 hours for each of the configu-
 1922 rations with batch size 128 and approximately 1 hour and 45 minutes for each of the configurations
 1923 with batch size 4096.

1924 On the Two-WL graph case, our hyperparameter tuning resulted in 280 models that we trained and
 1925 sampled from. From each of those 280 models, we generated 1'000 graphs. Most of those models
 1926 worked fine, that is 269 models did not contain NaNs in their output. From those, we select the best
 1927 model based on the following relative error: From the generated samples, we calculate the share of
 1928 spectra ϵ -close to the spectrum of graph A , say \hat{p}_A and the share of spectra ϵ -close to graph \hat{p}_B (we
 1929 choose the l_2 distance with $\epsilon = 0.2$). Recall that in the ground truth, we have $p_A = 0.8$, $p_B = 0.2$.
 1930 We then selected the best model based on the relative error

$$1931 \frac{|\hat{p}_A - p_A|}{p_A} + \frac{|\hat{p}_B - p_B|}{p_B}.$$

1932 In summary, we invested a lot of resources in following both the hyperparameter tuning given in the
 1933 GDSS paper and, in addition, tried new hyperparameters, leading to the 280 models that we trained
 1934 and sampled from. This ensures maximal fairness.

1935 Q.3 EDP-GNN

1936 We proceeded analogously to GDSS: We used the given configurations for community small. We
 1937 observe that the model already performs hyperparameter tuning of the noise scales during sampling.
 1938 For the other datasets, we have used the given configurations for community small and in addition
 1939 tried the learning rates $\{0.001, 0.0002\}$, number of diffusion steps $\{1'000, 2'000\}$ and number of
 1940 layers $\{4, 6\}$. In the two graph case, for example, the optimal configuration was with learning rate

1944 0.0002, number of diffusion steps being equal to 2'000 and 6 layers. The training time for 5'000
 1945 epochs on a H100 GPU was approximately 10 hours.
 1946

1947 Q.4 DiGRESS

1949 As with the previous models, we used the given configurations for community small. For the
 1950 other datasets, we have used the given configurations for community small and in addition tried the
 1951 learning rates $\{0.001, 0.0002\}$, weight decay parameters $\{10^{-2}, 10^{-12}\}$, number of diffusion steps
 1952 $\{500, 1'000\}$ and number of layers $\{5, 8\}$. The model was quite robust to hyperparameter tuning
 1953 and in the two graph example, for all parameters the model sampled the 80%-graph with likelihood
 1954 between 75% and 82%. The training time for 1'000 epochs on a H100 GPU was approximately 3
 1955 hours.
 1956

1957 Q.5 CONGRESS

1959 Since Congress and DiGress come from the same paper, we have proceeded almost exactly as in Di-
 1960 gress. We tried the learning rates $\{0.001, 0.0002\}$, weight decay parameters $\{10^{-2}, 10^{-12}\}$, number
 1961 of diffusion steps $\{500, 1'000\}$ and number of layers $\{6, 8\}$. The model was again rather robust to
 1962 hyperparameter tuning, yet not as much as DiGress. In the two graph example, for all parameters
 1963 the model sampled the 80%-graph with likelihood between 10% and 25%. The default learning rate
 1964 from the community-small configuration was 0.0002, yet we have observed that the results were
 1965 significantly better with learning rate 0.001. The training time for 1'000 epochs on a H100 GPU
 1966 was approximately 3 hours.
 1967

1968 Q.6 COMPARISON TABLE WITH MORE DIGITS

1970 We provide here the table shown in the main part Table 1 but with more digits (*not* implying that
 1971 all are statistically significant): This rationalizes which entries in Table 1 are dark green and which
 1972 ones are light green. Note that this result is included only for transparency, since the reported digits
 1973 here go beyond the significant digits.
 1974

1975 Table 3: Statistical distances of DyDM compared to standard models, as in Table 1 but with more
 1976 digits.
 1977

1979 Dataset Distance	1980 WL-Bimodal		1981 Community Small		1982 Brain	
	1983 μ	1984 W_{marg}	1985 μ	1986 W_{marg}	1987 μ	1988 W_{marg}
1989 DyDM (ours)	0.0166	0.0076	0.0671	0.0172	0.0455	0.0275
1990 EDP-GNN	0.1342	0.0750	0.4164	0.1356	0.0723	0.0321
1991 GDSS	0.2289	0.1252	0.4180	0.1444	0.3276	0.1191
1992 ConGress	0.3802	0.1590	0.2741	0.1138	0.1315	0.0296
1993 DiGress (no trick)	1.0568	0.2852	2.5088	0.4481	0.5686	0.1749
1994 DiGress (trick)	0.0302	0.0073	0.0934	0.0254	0.1208	0.0285

1995 R LEARNING DYNAMICS OF EDP-GNN

1996 We report in Figure 11 the learning progress of EDP-GNN on the WL-bimodal dataset. We average
 1997 over 4 different training and sampling runs of EDP-GNN. After 5'000 epochs, we observe the result
 1998 of EDP-GNN reported in Figure 2.

1999 We observe that the model quickly learns the WL equivalence class (the pink line is from epoch 500
 2000 onward close to 1). The share of graph *A* and graph *B* samples initially increase until epoch 1'500,
 2001 but then remain low and significantly different from the ground truth (blue and green dashed lines).
 2002 Importantly, a significant share of the samples are *WL*-equivalent but neither isomorphic to graph
 2003 *A* nor to graph *B*.

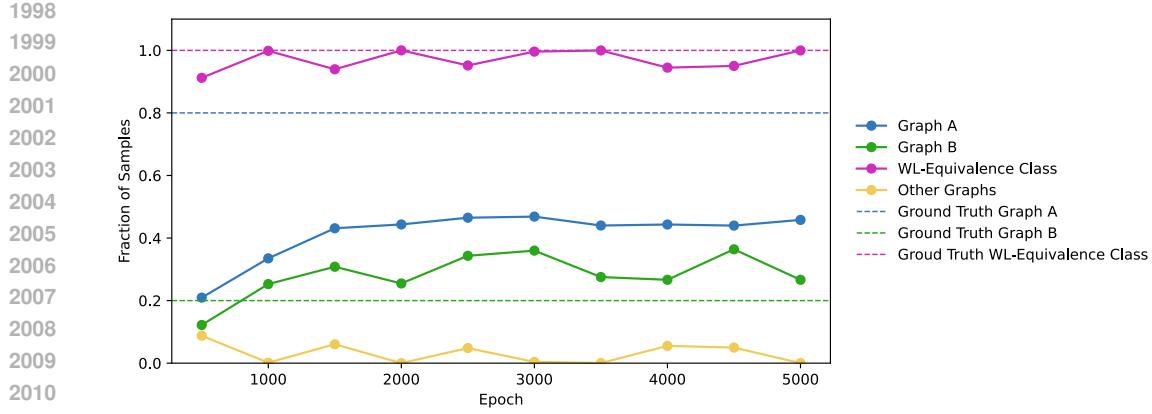


Figure 11: Learning dynamics of EDP-GNN on the WL-bimodal dataset (ground truth = 80% graph A, 20% graph B): The model learns very quickly (after less than 500 epochs) the WL-equivalence class, but struggles to learn graphs A and B.

S TOWARDS A DIFFUSION MODEL FOR EIGENVECTOR SDE

In this appendix, we discuss a diffusion model for the Eigenvector SDE. First, in section S.1 we present some preliminaries on SDEs on $O(n)$. In section S.2 we show that the Stratonovich SDE in (7) agrees with the (Eigenvector-SDE). In section S.3 we establish the time-reversal formula for the eigenvector SDE, and in section S.4 we explain the corresponding loss function.

Foundational results on diffusion models on Riemannian manifolds were established by De Bortoli et al. (2022), treating the case of Brownian motions with a drift. Moreover, recently Bertolini et al. (2025) discussed diffusion models for Lie groups acting on \mathbb{R}^n . However, a diffusion model for SDEs of the type of the (Eigenvector-SDE) has not been studied in the literature so far, and in this appendix we develop initial results towards establishing diffusion models for more general SDEs on Lie groups.

As before, we denote by $O(n)$ the orthogonal group

$$O(n) = \{X \in \text{GL}_d(\mathbb{R}) : X^T = X^{-1}\},$$

where $\text{GL}_d(\mathbb{R}) = \{X \in \mathbb{R}^{n \times n} : \det(X) \neq 0\}$ is the group of invertible $n \times n$ matrices. The Lie algebra of $O(n)$ is the tangent space at the identity and can be calculated to be

$$\mathfrak{o}(n) = T_e O(n) = \{Z \in \mathbb{R}^{n \times n} : Z^T = -Z\}.$$

Moreover, it is then easily seen that the tangent space at $X \in O(n)$ is then given

$$T_X O(n) = X \mathfrak{o}(n) = \{XZ : Z \in \mathfrak{o}(n)\}$$

S.1 PRELIMINARIES ON SDEs ON $O(n)$

We first briefly recall some preliminary material on SDEs, particularly Stratonovich SDEs, on Lie groups. An excellent reference for this topic is Hsu (2002), as well as the appendix in De Bortoli et al. (2022).

Vector Fields and Stratonovich SDEs on \mathbb{R}^n . Recall that a smooth vector field V on \mathbb{R}^d is a map that smoothly assigns to each point a vector. Formally, we can therefore view V as a smooth map

$$V : \mathbb{R}^n \rightarrow \mathbb{R}^n, \quad x \mapsto (V_1(x), \dots, V_n(x)).$$

2052 Given two smooth vector fields V and U on \mathbb{R}^d , we define the covariant derivative $\nabla_U V$ of V with
 2053 respect to U to be the vector field
 2054

$$\begin{aligned} 2055 \quad (\nabla_U V)(x) &= \frac{d}{dt} \Big|_{t=0} V(x + tU(x)) \\ 2056 \quad &= \left(\sum_{j=1}^n U_j(x) \frac{\partial V_1}{\partial x_j}(x), \sum_{j=1}^n U_j(x) \frac{\partial V_2}{\partial x_j}(x), \dots, \sum_{j=1}^n U_j(x) \frac{\partial V_n}{\partial x_j}(x) \right). \\ 2057 \quad & \\ 2058 \quad & \\ 2059 \quad & \\ 2060 \quad & \end{aligned}$$

2061 Given $d \geq 1$, denote by W^1, \dots, W^d independent one-dimensional Brownian motions and let
 2062 V_1, \dots, V_d be vector fields on \mathbb{R}^d . Then the Stratonovich SDE
 2063

$$2064 \quad dX(t) = \sum_i V_i(X_t) \circ dW^i(t) \\ 2065 \quad$$

2066 denotes the Ito SDE
 2067

$$2068 \quad dX(t) = \frac{1}{2} \left(\sum_i (\nabla_{V_i} V_i)(X(t)) \right) dt + \sum_i V_i(X(t)) dW^i(t). \\ 2069 \quad \\ 2070 \quad$$

2071 Just to have a concrete example in mind: The n -dimensional Brownian motion can be written by
 2072 taking $d = n$ and considering the constant vector fields $V_i(x) = e_i$ for e_i the standard basis vectors.
 2073

2074 **Vector Fields and Stratonovich SDEs on $O(n)$.** In this subsection, we consider the concrete case
 2075 of a Stratonovich SDE driven by left invariant vector fields on $O(n)$. Indeed, a left invariant vector
 2076 field V is determined by a Lie algebra element $z \in \mathfrak{o}(n)$ and given by
 2077

$$2078 \quad V(X) = Xz \in T_X O(n).$$

2079 We know exploit that $O(n)$ is embedded in $\mathbb{R}^{n \times n}$ so we can write a Lie group SDE as an SDE on
 2080 $\mathbb{R}^{n \times n}$. Indeed, let V_1, \dots, V_d be left invariant vector fields $V_i(X) = Xz_i$ and consider the Lie group
 2081 SDE

$$2082 \quad dX(t) = \sum_i (X(t)z_i) \circ dW^i(t). \\ 2083 \quad$$

2084 Based on (Hsu, 2002, section 1.2), we can write the above SDE as an Ito SDE on $\mathbb{R}^{n \times n}$ with the
 2085 terms

$$2086 \quad dX(t) = \frac{1}{2} \sum_i (X(t)z_i^2) dt + \sum_i (X(t)z_i) dW^i(t). \quad (76) \\ 2087 \quad \\ 2088 \quad$$

2089 S.2 WRITING THE EIGENVECTOR SDE AS A $O(n)$ STRATONOVICH SDE

2091 **Proposition S.1.** *The $O(n)$ Stratonovich SDE from (7) is the same as (Eigenvector-SDE) viewed as
 2092 an SDE on $\mathbb{R}^{n \times n}$.*

2093
 2094 *Proof.* This follows by a direct calculation using equation (76) for time-dependent vector fields.
 2095 Recall that $E_{(\ell,k)} = e_\ell e_k^T - e_k e_\ell^T$ for $\ell < k$, where e_i is the standard basis vector of \mathbb{R}^n viewed as
 2096 a row vector. Then denoting by e_{ii} the diagonal matrix that is 1 at the (i, i) entry and zero everywhere
 2097 else, it holds that

$$2098 \quad E_{(\ell,k)}^2 = -(e_{\ell\ell} + e_{kk}). \\ 2099 \quad$$

2100 Therefore the $O(n)$ Stratonovich SDE from (7) is the Ito SDE on $\mathbb{R}^{n \times n}$ given by

$$2102 \quad dX(t) = -\frac{\alpha}{2} \sum_{\ell < k} \frac{X(t)(e_{\ell\ell} + e_{kk})}{(\lambda_k(t) - \lambda_\ell(t))^2} + \sqrt{\alpha} \sum_{\ell < k} \frac{X(t)E_{(\ell,k)}}{\lambda_k(t) - \lambda_\ell(t)} dW_{(\ell,k)}(t). \\ 2103 \quad \\ 2104 \quad$$

2105 By writing $X(t) = (v_1(t) \dots v_n(t))$ as row vectors, the last equation is easily seen to be exactly the
 (Eigenvector-SDE). \square

2106 **S.3 DEDUCTION OF TIME REVERSAL FORMULA**
 2107

2108 Recall that the Brownian motion on $O(n)$ is given by the $O(n)$ Stratonovich SDE
 2109

$$2110 dB^{O(n)}(t) = \sum_{\ell < k} (B^{O(n)}(t) E_{(\ell, k)}) \circ dW^{(l, k)}(t).$$

2111 We next consider the time-scaled Brownian motion on $O(n)$ given by
 2112

$$2113 X(t) = g(t) B^{O(n)}(t)$$

2114 for some scalar function $g(t)$.
 2115

2116 As in De Bortoli et al. (2022) we denote by $\nabla \log p_{T-s}$ the gradient vector field of $\log p_{T-s}$. It is
 2117 shown (or rather stated that it can be shown) in (De Bortoli et al., 2022, Theorem 1) that the time
 2118 reversal of the Brownian motion $Y(s) = X(T-s)$ satisfies the SDE
 2119

$$dY(s) = g(T-s)^2 \nabla \log p_{T-s}(Y(s)) dt + g(T-s) dB^{O(n)}(s).$$

2120 The time reversal formula (8) is obtained by adapting the above result to our SDE (7), where the
 2121 vector fields are scaled by the factors $\frac{\sqrt{\alpha}}{\lambda_k(t) - \lambda_\ell(t)}$. The final result is stated in (8).
 2122

2123 **S.4 LOSS FUNCTION**

2124 As for the eigenvalue SDE, we have no direct access to the probability measures $p_t(x_t | x_0)$. We
 2125 therefore employ a loss analogous to the one used to train the eigenvalues and explained in Ap-
 2126 pendix A.
 2127

2128 To approximate the score, we observe that similarly to (De Bortoli et al., 2022, Equation (8)),
 2129

$$\lim_{t \rightarrow s} (t-s) (\nabla \log p_{t|s})(X_t | X_s) \approx -\Sigma(t, s) \cdot \log_{O(n)}(X_t^T X_s) \quad \text{for} \quad \Sigma(t, s) = \text{diag} \left(\frac{\alpha(t-s)}{(\lambda_k(s) - \lambda_\ell(s))^2} \right),$$

2130 where $\log_{O(n)} : O(n) \rightarrow \mathfrak{o}(n)$ is the matrix logarithm given for $X \in O(n)$ by $\log_G(X) =$
 2131 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (X - \text{Id})^k$ and we view $\Sigma(t, s)$ as a diagonal matrix with respect to the standard
 2132 basis $E_{(\ell, k)}$ of $\mathfrak{o}(n)$.
 2133

2134 As discussed in the main part, for a small $h > 0$, we have the approximation
 2135

$$2136 X(t+h) \approx X(t) \exp_{O(n)}(Z) \quad \text{with} \quad Z = \sqrt{\alpha h} \sum_{\ell < k} \frac{E_{(\ell, k)} \mathcal{N}^{(\ell, k)}(0, 1)}{\lambda_k(t) - \lambda_\ell(t)} \in \mathfrak{o}(n),$$

2137 where $\mathcal{N}^{(\ell, k)}(0, 1)$ are independent samples of standard 1-dimensional Gaussians and
 2138 $\exp_{O(n)}(Z) = \sum_{i=0}^{\infty} \frac{Z^i}{i!}$ is the matrix exponential.
 2139

2140 Assume now that we have N discretizations of the interval $[0, T]$ for some $T > 0$ that we denote for
 2141 $1 \leq r \leq N$ as
 2142

$$0 = t_0^{(r)} < t_1^{(r)} < t_2^{(r)} < \dots < t_{k^{(r)}-1}^{(r)} < t_{k^{(r)}}^{(r)} = T.$$

2143 For those we have N sampled paths of our SDE from (7) denoted for $1 \leq r \leq N$ as
 2144

$$2145 X_0^{(r)}, X_{t_1^{(r)}}^{(r)}, X_{t_2^{(r)}}^{(r)}, \dots, X_{t_{k^{(r)}-1}^{(r)}}^{(r)}, X_T^{(r)} \quad \text{with Lie algebra increments} \quad Z_0^{(r)}, Z_{t_1^{(r)}}^{(r)}, Z_{t_2^{(r)}}^{(r)}, \dots, Z_{t_{k^{(r)}-1}^{(r)}}^{(r)}$$

2146 so that for all $0 \leq i \leq k^{(r)} - 1$ it holds that
 2147

$$2148 X_{t_{i+1}^{(r)}}^{(r)} = X_{t_i^{(r)}}^{(r)} \exp_{O(n)}(Z_{t_i^{(r)}}^{(r)}) \quad \text{and therefore} \quad -Z_{t_i^{(r)}}^{(r)} = \log_{O(n)}((X_{t_{i+1}^{(r)}}^{(r)})^T X_{t_i^{(r)}}^{(r)}).$$

2149 By the last equation, it therefore follows that
 2150

$$2151 \nabla \log p_{t|s}(X_{t_{i+1}^{(r)}}^{(r)} | X_{t_i^{(r)}}^{(r)}) \approx \frac{\Sigma(t_{i+1}^{(r)}, t_i^{(r)}) Z_{t_i^{(r)}}^{(r)}}{t_{i+1}^{(r)} - t_i^{(r)}}.$$

2152 Analogously to Appendix A, we therefore want to optimize the loss
 2153

$$2154 \frac{1}{N} \sum_{i=1}^N \sum_{i=1}^{k^{(r)}-1} \frac{t_{i+1}^{(r)} - t_i^{(r)}}{T} \left\| s(X_{t_{i+1}^{(r)}}^{(r)}, t_{i+1}^{(r)}) - \frac{\Sigma(t_{i+1}^{(r)}, t_i^{(r)}) Z_{t_i^{(r)}}^{(r)}}{t_{i+1}^{(r)} - t_i^{(r)}} \right\|,$$

2155 where the norm is the L^2 -norm on the Lie algebra $\mathfrak{o}(n)$.
 2156