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Abstract

We study the classical optimization prob-
lem minx∈Rd f(x) and analyze the gradi-
ent descent (GD) method in both noncon-
vex and convex settings. It is well-known
that, under the L–smoothness assumption
(∥∇2f(x)∥ ≤ L), the optimal point min-
imizing the quadratic upper bound f(xk) +

⟨∇f(xk), xk+1 − xk⟩ + L/2 ∥xk+1 − xk∥2 is
xk+1 = xk − γk∇f(xk) with step size γk =
1/L. Surprisingly, a similar result can be derived
under the ℓ-generalized smoothness assumption
(∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥)). In this case, we de-
rive the step size

γk =

∫ 1

0

dv

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
.

Using this step size rule, we improve upon exist-
ing theoretical convergence rates and obtain new
results in several previously unexplored setups.

1. Introduction
We consider optimization problems of the form

min
x∈Rd

f(x), (1)

where f : Rd → R ∪ {∞}. Our goal is to find an ε–
stationary point, x̄ ∈ Rd such that ∥∇f(x̄)∥2 ≤ ε, in the
nonconvex setting, and an ε-solution, x̄ ∈ Rd such that
f(x̄)− infx∈Rd f(x) ≤ ε, in the convex setting. We define
X =

{
x ∈ Rd | f(x) <∞

}
, and assume that X is open

convex, f is smooth on X , and continuous on the closure of
X .

This is a classical and well-studied problem in optimization
(Nesterov, 2018; Lan, 2020). We investigate arguably the
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most popular numerical first-order method, gradient descent
(GD):

xk+1 = xk − γk∇f(xk), (2)

where x0 is starting point, and {γk} are step sizes.

GD is pretty well understood under the traditional
L–smoothness assumption, i.e., ∥∇f(x)−∇f(y)∥ ≤
L ∥x− y∥ or

∥∥∇2f(x)
∥∥ ≤ L for all x, y ∈ X . However,

instead of L–smoothness, we investigate ℓ–smoothness, i.e.,∥∥∇2f(x)
∥∥ ≤ ℓ(∥∇f(x)∥) (3)

for all x ∈ X (see Assumption 3.1), where ℓ is any non-
decreasing positive locally Lipchitz function. This is a
recent assumption that captures a much wider set of func-
tions (Li et al., 2024a). In particular, if ℓ(s) = L, then
we get L–smoothness. If ℓ(s) = L0 + L1s, then we get
(L0, L1)–smoothness (Zhang et al., 2019). L–smoothness
can typically capture “quadratic–like” functions and does
not include even f(x) = xp for p > 2 or f(x) = ex. A
similar problem arises with (L0, L1)–smoothness: it does
not include f(x) = − log x, for instance. The class of ℓ–
smooth functions can include all these examples and more
(Li et al., 2024a).

1.1. Related work

L–smoothness: Under L–smoothness, it is well-known
that GD converges to an ε–stationary point after O (L∆/ε),
and to an ε-solution after O

(
LR2

/ε
)

iterations (Nesterov,
2018), where ∆ := f(x0) − f∗, R := ∥x0 − x∗∥ ,
f∗ = infx∈Rd f(x), and x∗ ∈ Rd is a solution of (1).
Interestingly, this result can be further improved by
employing non-constant step sizes (Altschuler & Parrilo,
2024; Grimmer et al., 2024), although relying on the
L–smoothness assumption.

(L0, L1)–smoothness and nonconvex setup: In the
nonconvex setting, Zhang et al. (2019) analyzed the
(L0, L1)–smoothness assumption, which is stated for twice
differentiable functions as

∥∥∇2f(x)
∥∥ ≤ L0 +L1 ∥∇f(x)∥

for all x ∈ X . Zhang et al. (2019) showed that a clipped
version of GD, i.e., (2) with appropriately chosen step
sizes, finds an ε–stationary point after O

(
L0∆/ε+ L2

1∆/L0

)
iterations. Subsequently, Crawshaw et al. (2022); Chen
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Table 1: Summary of convergence rates for various GD methods under generalized smoothness assumptions in the nonconvex
setting. Abbreviations: R := ∥x0 − x∗∥ ,∆ := f(x0)− f(x∗), ε = error tolerance. With the green color we highlight our
new results and improvements.

Setting Rate References

L–Smoothness(
∥∇2f(x)∥ ≤ L

) L∆
ε —

(L0, L1)–Smoothness(
∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥

) L0∆
ε + L1∆√

ε
(Vankov et al., 2024)

(ρ, L0, L1)–Smoothness
with 0 ≤ ρ ≤ 2(

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ρ
)

L0∆+L1∥∇f(x0)∥ρ∆
ε

(Li et al., 2024a)
(no guarantees when ρ = 2)

L0∆
ε + L1∆

ε(2−ρ)/2

Sec. 5.3 (new)
(L0∆/ε+ L1∆ when ρ = 2)

(ρ, L0, L1)–Smoothness
with ρ > 2

L0∆
ε + L1∆(2M)ρ−2 Sec. 6.2 (new)

(requires A.6.1)
Exponential growth of ℓ(

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥2 exp(∥∇f(x)∥)
) L0∆

ε + L1∆e
2M Sec. 6.1 (new)

(requires A.6.1)

et al. (2023); Wang et al. (2023); Koloskova et al. (2023);
Li et al. (2024a;b); Hübler et al. (2024); Vankov et al.
(2024) considered the same setup, where the state-of-the-art
theoretical iteration complexity O (L0∆/ε+ L1∆/

√
ε) is

obtained by Vankov et al. (2024), without requiring a
bounded gradient assumption, dependence on ∥∇f(x0)∥,
or L-smoothness of f .

(L0, L1)–smoothness and convex setup: Convex
problems were investigated by Koloskova et al. (2023).
They showed that (2) with normalized step sizes guarantees
O
(
L0R

2
/ε+

√
L/εL1R

2
)

rate, which requires the L–
smoothness of f. Li et al. (2024a), using GD and accelerated
GD (Nesterov, 1983), obtained O

(
(L0+L1∥∇f(x0)∥)R2

/ε
)

and O
(√

(L0+L1∥∇f(x0)∥)R2
/ε
)
, which depend on the

norm of the initial gradient ∥∇f(x0)∥ . Furthermore,
Takezawa et al. (2024) get O

(
L0R

2
/ε+

√
L/εL1R

2
)

rate
using the Polyak step size (Polyak, 1987), which also re-
quires L–smoothness. Using adaptive step sizes, Gorbunov
et al. (2024); Vankov et al. (2024) concurrently provided
the convergence rate O

(
L0R

2
/ε+ L2

1R
2
)
. Also, with a

fixed step size, (Li et al., 2024a) proved the convergence
rate O

(
L0R

2
/ε+ L1∥∇f(x0)∥R2

/ε
)
. Gorbunov et al. (2024);

Vankov et al. (2024) also analyzed accelerated versions
of GD, but Gorbunov et al. (2024) get an exponential
dependence on L1 and R, while Vankov et al. (2024)
requires solving an auxiliary one-dimensional optimization
problem in each iteration.

ℓ–smoothness: Li et al. (2024a) introduced the ℓ–
smoothness assumption and analyzed GD as well as an

accelerated version of GD. They obtained convergence
rates of O

(
ℓ(∥∇f(x0)∥)R2

/ε
)

and O
(√

ℓ(∥∇f(x0)∥)R2
/ε
)

for GD and accelerated GD in the convex setting, and a
rate of O (ℓ(∥∇f(x0)∥)∆/ε) in the nonconvex setting for GD.
In all cases, their results depend on ℓ(∥∇f(x0)∥)/ε and
require that the function ℓ(s) grows more slowly than s2 in
the nonconvex setting. For instance, they cannot guarantee
convergence when ℓ(s) = L0 + L1s

2. The ℓ–smoothness
assumption was also consider in online learning (Xie et al.,
2024).

1.2. Contributions

We take the next step in the theoretical understanding of op-
timization for ℓ–smooth functions. Using new bounds, we
discover a new step size rule in Algorithm 1, which not only
improves previous theoretical guarantees but also provides
results in settings where GD’s convergence was previously
unknown (see Tables 1 and 2). In particular,
• We prove new key auxiliary results, Lemmas 4.3 and 4.5,
which generalize the classical results and allow us to derive
the step size γk =

∫ 1

0
dv

ℓ(∥∇f(xk)∥+∥∇f(xk)∥v) .

• Using this step size, we significantly improve the conver-
gence rate established by Li et al. (2024a) in the nonconvex
setting. For instance, under the (ρ, L0, L1)–smooth assump-
tion with 0 ≤ ρ < 2, we improve their convergence rate of
GD from L0∆

ε + L1∥∇f(x0)∥ρ∆
ε to L0∆

ε + L1∆
ε(2−ρ)/2 . More-

over, Li et al. (2024a) do not guarantee the convergence of
GD when ρ = 2, while our theory, for the first time, estab-
lishes the rate L0∆

ε + L1∆, which we believe is important
in view of the motivating examples from Section 2. Despite
the (ρ, L0, L1)–smoothness assumption, our theory remains

2



Toward a Unified Theory of Gradient Descent under Generalized Smoothness

Table 2: Summary of convergence rates for various GD methods under generalized smoothness assumptions in the convex
setting. Abbreviations: R := ∥x0 − x∗∥ , ∆ := f(x0) − f(x∗), M0 := ∥∇f(x0)∥ , ε = error tolerance. With the green
color we highlight our new results and improvements.

Setting Rate References

L–Smoothness LR2

ε —(a)

(L0, L1)–Smoothness

L0R2

ε + min{L2
1R

2,
L1M0R2

ε }
(Li et al., 2024a)

(Gorbunov et al., 2024)
(Vankov et al., 2024)

L0R2

ε + min

{
L1∆1/2R

ε1/2
, L2

1R
2,

L1M0R2

ε

}
Sec. 7.2 and 8.1 (new)

(ρ, L0, L1)–Smoothness
with 0 ≤ ρ ≤ 1

L0R2+L1M
ρ
0 R2

ε
(Li et al., 2024a)

L0R2

ε + min

{
L1∆ρ/2R2−ρ

ε1−ρ/2
,

L
2/(2−ρ)
1 R2

ε2(1−ρ)/(2−ρ)
,
L1M

ρ
0 R2

ε

}
Sec. 7.2 and 8.1 (new)

(ρ, L0, L1)–Smoothness
with 1 < ρ < 2

L0R2+L1M
ρ
0 R2

ε
(Li et al., 2024a)

L0R2

ε + min

{
L1∆ρ/2R2−ρ

ε1−ρ/2
, L

2
2−ρ
1 R2∆

2(ρ−1)
2−ρ ,

L1M
ρ
0 R2

ε

}
Sec. 7.2 and 8.1 (new)

(ρ, L0, L1)–Smoothness
with ρ ≥ 2

L0R2+L1M
ρ
0 R2

ε
(Li et al., 2024a)

L0R2

ε + min

{
L1∆(2M0)

ρ−2 +
L

ρ
2+ρ
0 ∆

ρ
2+ρ L

2
2+ρ
1 R

4
2+ρ

ε
2

2+ρ

,
L1M

ρ
0 R2

ε

}
Sec. 8.2 (new)

General Result
(works with any ℓ)

ℓ(M0)R2

ε
(Li et al., 2024a)

ℓ(0)R2

ε + min

{
T̄ ,

ℓ(M0)R2

ε

}
,

where T̄ does not depend on ε.
(convergence rate is ℓ(0)R2/ε for ε small enough)

Sec. 8.3 (new)

(a) The canonical analysis can be found in (Nesterov, 2018; Lan, 2020). However, using non-constant step sizes, it is possible to improve the complexity
of GD under L–smoothness (Altschuler & Parrilo, 2024; Grimmer et al., 2024).

applicable to virtually any ℓ functions.
• In the convex setting, we also improve all known previous
results (see Table 2). Specifically, we refine the dominat-
ing term1 from ℓ(∥∇f(x0)∥)R2

ε (Li et al., 2024a) to ℓ(0)R2

ε
under the ℓ–smoothness assumptions, which is significant
improvement because the initial norm ∥∇f(x0)∥ can be
large. Additionally, we derive tighter non-dominating terms,
further enhancing the current theoretical state-of-the-art
results (Li et al., 2024a; Gorbunov et al., 2024; Vankov
et al., 2024). Even under the well-explored (L0, L1)–
smoothness assumption, we discover a new convergence rate
L0R

2

ε + min
{
L1∆

1/2R
ε1/2

, L2
1R

2, L1M0R
2

ε

}
, where the first

term in min is new and can be better in practical regimes
(see Section 8).
• We extend our theoretical results to stochastic optimization
and verify the obtained results with numerical experiments.

2. Motivating Examples
One notable reason for the popularity of the (L0, L1)–
assumption, i.e.,

∥∥∇2f(x)
∥∥ ≤ L0+L1 ∥∇f(x)∥ for all x ∈

X , is the observation that, in modern neural networks, the
spectral norms of the Hessians exhibit a linear dependence
on the norm of the gradients (Zhang et al., 2019). However,

1terms that dominate when ε is small.

there are many examples when (L0, L1)–assumption fails
to hold. The simplest example is f(x) = − log x, which
has the Hessian (second derivative) that depends quadrati-
cally on the norm of gradient (first derivative). Moreover,
we argue that (L0, L1)–assumption is not appropriate even
for modern optimization problems with neural networks.
Indeed, consider a toy example f : R2 → R such that
f(x, y) = log(1 + exp(−xy)). A two-layers neural net-
work with log loss, one feature, and one sample reduces
to this function. Then ∇f(x, y) = − 1

1+exy (y, x)
⊤ ∈

R2 and ∇2f(x, y) = ( exy

(1+exy)2 y
2, exy

(1+exy)2xy −
1

1+exy ;
exy

(1+exy)2xy − 1
1+exy ,

exy

(1+exy)2x
2) ∈ R2×2. In the

regime xy = −1, when the sample is not correctly clas-
sified, we get ∇f(x, y) ≈ −(y, x)⊤ and ∇2f(x, y) ≈
(y2,−1;−1, x2) ∈ R2×2. Notice that

∥∥∇2f(x, y)
∥∥ ≈ y2

and ∥∇f(x, y)∥ ≈ y if y → ∞ and x = 1/y, Thus, a more
appropriate assumption would be (ρ, L0, L1)–smoothness,
i.e.,

∥∥∇2f(x, y)
∥∥ ≤ L0 + L1 ∥∇f(x, y)∥ρ for all x ∈ X

with ρ ≥ 2. Furthermore, there exist examples of func-
tions that satisfy (ρ, L0, L1)–smoothness with only ρ > 2.
For instance, take f(x) = −

√
1− x, which is (3, L0, L1)–

smooth. This is why exploring a more general assumption,
ℓ-smoothness, is important. Another example where the
(L0, L1)–assumption is not satisfied in practice is given in
(Cooper, 2024; Chen et al., 2023).
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Algorithm 1 Gradient Descent (GD) with ℓ-Smoothness

1: Input: starting point x0 ∈ X , function ℓ from Assump-
tion 3.1

2: for k = 0, 1, . . . do
3: Find the step size

γk =

∫ 1

0

dv

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)

analytically or numerically (Simpson’s rule or Fig. 1)
4: xk+1 = xk − γk∇f(xk)
5: end for

3. Assumptions in Nonconvex World
Following (Li et al., 2024a), we consider the following
assumption:

Assumption 3.1. A function f : Rd → R ∪ {∞} is ℓ–
smooth if f is twice differentiable on X , f is continuous on
the closure of X , and there exists a non-decreasing positive
locally Lipchitz function ℓ : [0,∞) → (0,∞) such that∥∥∇2f(x)

∥∥ ≤ ℓ(∥∇f(x)∥) (4)

for all x ∈ X .

This assumption generalizes L–smoothness, (L0, L1)–
smoothness, and (ρ, L0, L1)–smoothness, i.e.,∥∥∇2f(x)

∥∥ ≤ L0 + L1 ∥∇f(x)∥ρ for all x ∈ X . In
order to introduce Assumption 3.1, we have to assume that
f is twice differentiable. Through this paper, we do not
calculate Hessians of f in methods, and we only use them
in Assumption 3.1. Later, we will prove (6) (Lemma 4.3)
that involves only gradients of f, and it can taken as an
alternative to Assumption 3.1 if f is not twice differential.
However, (6) is much less interpretable and intuitive.

We start out work with the nonconvex setting. Thus addi-
tionally to Assumption 3.1, we only consider the standard
assumption that the function is bounded:

Assumption 3.2. There exists f∗ ∈ R such that f(x) ≥ f∗

for all x ∈ X . We define ∆ := f(x0)− f∗, where x0 is a
starting point of numerical methods.

Notations: R+ := [0,∞); N := {1, 2, . . . }; ∥x∥ is the
output of the standard Euclidean norm for all x ∈ Rd;
⟨x, y⟩ =

∑d
i=1 xiyi is the standard dot product; ∥A∥ is

the standard spectral norm for all A ∈ Rd×d; g = O(f) :
exist C > 0 such that g(z) ≤ C × f(z) for all z ∈ Z;
g = Ω(f) : exist C > 0 such that g(z) ≥ C × f(z) for all
z ∈ Z; g = Θ(f) : g = O(f) and g = Ω(f); g = Θ̃(f) :
the same as g = Ω(f) but up to logarithmic factors; g ≃ h :
g and h are equal up to a universal constant.

import scipy.integrate as integrate

def find_step_size(ell, norm_grad):
h = lambda v: 1 / ell(norm_grad * (1 + v))
return integrate.quad(h, 0, 1)[0]

Figure 1: Python function to compute the step sizes {γk}
using SciPy (Virtanen et al., 2020).

4. Preliminary Theoretical Properties
Before we state our main properties and theorems, we will
introduce the q–function:

Definition 4.1 (q–function). Let Assumption 3.1 hold. For
all a ≥ 0, we define the function q : R+ → [0, qmax(a))
such that

q(s; a) =

∫ s

0

dv

ℓ(a+ v)
(5)

where qmax(a) :=
∫∞
0

dv
ℓ(a+v) ∈ (0,∞].

Proposition 4.2. The function q is invertible, differentiable,
positive, and strongly increasing, and the inverse function
q−1 : [0, qmax(a)) → R+ of q is also differentiable, posi-
tive, and strongly increasing.

The function q is primarily defined because its inverse, q−1,
plays a key role in the main results, and q−1 does not gener-
ally have a (nice) closed-form explicit formula.

Under L–smoothness, it is known that
∥∇f(y)−∇f(x)∥ ≤ L ∥y − x∥ for all x, y ∈ X .
In the first lemma of the proof, we will obtain a generalized
bound under Assumption 3.1:

Lemma 4.3. For all x, y ∈ X such that ∥y − x∥ ∈
[0, qmax), if f is ℓ–smooth (Assumption 3.1), then

∥∇f(y)−∇f(x)∥ ≤ q−1(∥y − x∥ ; ∥∇f(x)∥), (6)

where q and qmax ≡ qmax(∥∇f(x)∥) are defined in Defini-
tion 4.1.

Let us consider some examples. L–smoothness: if
ℓ(s) = L, then q(s; a) = s/L and q−1(z; a) = Lz; thus
∥∇f(y)−∇f(x)∥ ≤ L ∥y − x∥ , recovering the classical
assumption. (L0, L1)–smoothness: if ℓ(s) = L0 + L1s,
then q(s; a) = log(L0+L1s)/L1 and q−1(z; a) = (L0 +
L1 ∥f(x)∥)(exp(L1z)− 1)/L1, recovering the result from
(Vankov et al., 2024). However, (6) works with virtually
any other choice of ℓ. Remarkably and unexpectedly, it is
never necessary to explicitly compute q−1 in theory. We will
see later that the final results do not depend on q−1.

Remark 4.4. An important note is that instead of Assump-
tion 3.1, we can assume (6) for functions that are not twice
differentiable. All the subsequent theory remains valid.
However, (6) is arguably less intuitive than (4).
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The next step is to generalize the inequality

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L∥y−x∥2

2 (7)

for all x, y ∈ X , which is true for L–smooth functions.

Lemma 4.5. For all x, y ∈ X such that ∥y − x∥ ∈
[0, qmax(∥∇f(x)∥)), if f is ℓ–smooth (Assumption 3.1),
then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩

+

∫ ∥y−x∥

0

q−1(τ ; ∥∇f(x)∥)dτ
(8)

where q and qmax(∥∇f(x)∥) are defined in Definition 4.1.

Using the same reasoning as with the previous lemma, this
bound generalizes the previous bounds for L–smoothness
and (L0, L1)–smoothness.

4.1. Derivation of the optimal gradient descent rule

Under L–smoothness, it is well-known that y = x −
1
L∇f(x) is the optimal point that minimizes the upper
bound in (7). We now aim to extend this reasoning to (8)
and determine the “right” GD method under Assumption 3.1.
At first glance, it may seem infeasible to find an explicit
formula for the optimal step size using (8). However, sur-
prisingly, we can derive it:

Corollary 4.6. For a fixed x ∈ X , the upper bound

f(x) + ⟨∇f(x), y − x⟩+
∫ ∥y−x∥

0

q−1(τ ; ∥∇f(x)∥)dτ

from (8) is minimized with

y∗ = x−
∫ 1

0

dv

ℓ(∥∇f(x)∥+ ∥∇f(x)∥ v)
∇f(x) ∈ X .

With the optimal y∗, the upper bound equals

f(x)− ∥∇f(x)∥2
∫ 1

0

1− v

ℓ(∥∇f(x)∥+ ∥∇f(x)∥ v)
dv.

This corollary follows from Lemma D.1. By leveraging
this result, we can immediately propose a new GD method,
detailed in Algorithm 1. The algorithm is the standard GD
method but with the step size γk. In some cases, such as L–
smoothness and (L0, L1)–smoothness, one can easily calcu-
late γk. Indeed, if ℓ(s) = L, then γk = 1/L. If ℓ(s) = L0+

L1s, then γk = 1
L1∥∇f(xk)∥ log

(
1 + L1∥∇f(xk)∥

L0+L1∥∇f(xk)∥

)
,

getting the same rule as in (Vankov et al., 2024). Our rule of
the step size in Algorithm 1 works with arbitrary ℓ function.
If it is not possible explicitly, numerical methods like Simp-
son’s rule can be applied instead or SciPy library (Virtanen
et al., 2020) (see Figure 1).

Remark 4.7. Since ℓ is non-decreasing, we can get the fol-
lowing bounds on the optimal step size: 1

ℓ(2∥∇f(xk)∥) ≤
γk =

∫ 1

0
dv

ℓ(∥∇f(xk)∥+∥∇f(xk)∥v) ≤ 1
ℓ(∥∇f(xk)∥) . One can

take the step size rule γ̄k := 1
ℓ(2∥∇f(xk)∥) instead of γk and

avoid the integration, though this approach may result in
a less tight final result. For a clean and rigorous theory, it
is crucial to work with the optimal step size γk. Notably,
in some parts of our proofs, we leverage elegant proper-
ties such as q−1(γk ∥∇f(xk)∥ ; ∥∇f(xk)∥) = ∥∇f(xk)∥ ,
particularly in the arguments surrounding (34) and (24).

Let us take another example and consider (ρ, L0, L1)–
smoothness, ℓ(s) = L0+L1s

ρ for any p ≥ 0. Then, in view
of Remark 4.7, we obtain (L0 + 2ρL1 ∥∇f(xk)∥ρ)−1 ≤
γk ≤ (L0 + L1 ∥∇f(xk)∥ρ)−1; thus, roughly, γk ≈
(L0 + L1 ∥∇f(xk)∥)−1 ≈ min{1/L0, 1/L1 ∥∇f(xk)∥}
if ρ = 1, which coincides with the famous clipping rule
(Koloskova et al., 2023; Gorbunov et al., 2024; Vankov
et al., 2024). However, one can take not only any ρ ≥ 0, but
also any non-decreasing positive locally Lipchitz function
ℓ. The step size rule in Algorithm 1 is universal.

5. Convergence Theory in Nonconvex Setting
In the previous section, we derived the optimal step size rule
for GD that minimizes the upper bound (8). We are now
ready to present the convergence guarantees of this method
in the nonconvex setting.
Theorem 5.1. Suppose that Assumptions 3.1 and 3.2 hold.
Then Algorithm 1 guarantees that f(xk+1) ≤ f(xk) −
γk
4 ∥∇f(xk)∥2 for all k ≥ 0, and

min
k∈{0,...,T−1}

∥∇f(xk)∥2

ℓ(2 ∥∇f(xk)∥)
≤ 4∆

T
(9)

for all T ≥ 1.

Theorem 5.1 is our main result for nonconvex functions.
Evidently, (9) does not provide the convergence rate of
mink∈{0,...,T−1} ∥∇f(xk)∥

2
. However, if the function

ψ2(x) :=
x2

ℓ(2x) is strictly increasing, we finally obtain the
rate:
Corollary 5.2. In view of Theorem 5.1 and assuming that
the function ψ2(x) :=

x2

ℓ(2x) is strictly increasing, we get

min
k∈{0,...,T−1}

∥∇f(xk)∥ ≤ ψ−1
2

(
8∆

T

)
(10)

for Algorithm 1 and for all T ≥ 1 such that2 8∆/T ∈
im(ψ2).

If ψ2 is invertible, there is a straightforward strategy to
determine an explicit convergence rate: derive ψ−1

2 and
apply Corollary 5.2. Below are some illustrative examples:

2if ψ2(∞) = ∞, then the corollary is true for all T ≥ 1.
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5.1. L–smoothness

We start with the simplest and straightforward example:
ℓ(s) = L, indicating that f is L–smooth. In this case, we
can use Corollary 5.2 with ψ2(x) =

x2

L and get

min
k∈{0,...,T−1}

∥∇f(xk)∥ ≤
√

4L∆

T
,

which is a classical and optimal result (Carmon et al., 2020)
(up to a constant factor).

5.2. (L0, L1)–smoothness

For (L0, L1)–smoothness, we should take ℓ(s) = L0+L1s,
use Corollary 5.2, and get

min
k∈{0,...,T−1}

∥∇f(xk)∥ ≤ 8L1∆

T
+

√
4L0∆

T

since ψ−1
2 (z) = L1z +

√
L2
1z

2 + L0z ≤ 2L1z +
√
L0z.

This rate coincides with the results from (Vankov et al.,
2024).

5.3. (ρ, L0, L1)–smoothness with 0 ≤ ρ ≤ 2

As far as we know, this result is new. Applying Theorem 5.1
with ℓ(s) = ℓ(s) = L0 + L1s

ρ, we obtain

min
k∈{0,...,T−1}

∥∇f(xk)∥2

L0 + 2ρL1 ∥∇f(xk)∥ρ
≤ 4∆

T
. (11)

Using the same reasoning as in the previous sec-
tions (see details in Section G), one can show that
mink∈{0,...,T−1} ∥∇f(xk)∥

2 ≤ ε after at most

max

{
8L0∆

ε
,
32L1∆

ε(2−ρ)/2

}
(12)

iterations. For (2, L0, L1)–smoothness, we get
max

{
8L0∆
ε , 32L1∆

}
. In contrast, the previous work (Li

et al., 2024a) on ℓ–smoothness does not guarantee any
convergence if ρ = 2 for their variant of GD. Unlike (Li
et al., 2024a), we use non-constant and adaptive step sizes,
which enables us to get better convergence guarantees.

6. Superquadratic Growth of ℓ-Function

Corollary 5.2 works only if ψ2(x) =
x2

ℓ(2x) is strictly increas-
ing. If ℓ(2x) grows too quickly, Corollary 5.2 cannot be
applied. However, using Theorem 5.1, we can still get con-
vergence guarantees, though with the additional assumption
that the gradients are bounded:
Assumption 6.1 (we assume it only in this section with
superquadratic growth of ℓ-function and nonconvex setting).
A function f : Rd → R ∪ {∞} has bounded gradients for
some M ≥ 0 : ∥∇f(x)∥ ≤M for all x ∈ X .

In general, ψ2 can behave in a highly non-trivial manner.
Therefore, each possible ℓ function needs to be analyzed
individually. If ℓ(s) = L0 + L1s

ρ for ρ > 2 or ℓ(s) =
L0+L1s

2es, then function ψ2 first increases and then starts
decreasing, and we can apply the following analysis.

6.1. Exponential growth of ℓ

Let us consider an example when ℓ grows exponen-
tially3: ℓ(s) = L0 + L1s

2es. Then ψ2(x) =
x2

L0+4L1x2e2x ≥ 1
2 min

{
x2

L0
, 1
4L1e2x

}
. Theorem 5.1 en-

sures that min
k∈{0,...,T−1}

min
{

∥∇f(xk)∥2

L0
, 1

4L1e
2∥∇f(xk)∥

}
≤

8∆
T . Thus, either min

k∈{0,...,T−1}
∥∇f(xk)∥ ≤

√
8L0∆
T or

max
k∈{0,...,T−1}

∥∇f(xk)∥2 ≥ 1
2 log

T
32L1∆

. Since the gradi-

ents are bounded by M, we can conclude that the method
finds an ε–stationary point after

T = max

{
8L0∆

ε
, 32L1∆e

2M

}
(13)

iterations.
Remark 6.2. One can notice that if the gradients are
bounded, then Algorithm 1 is not necessary, since∥∥∇2f(x)

∥∥ ≤ ℓ(M). In this case, it is sufficient to use
the classical GD theory with the step size γ = 1

ℓ(M) =
1

L0+L1M2eM
. However, one would get the iteration com-

plexity O
(
max

{
L0∆
ε , L1∆M

2eM

ε

})
, which is worse than

(13) up to the constant factors, and depends on ε in the sec-
ond term. Thus, our new step size rule provably helps even
if ℓ grows quickly.

6.2. (ρ, L0, L1)–smoothness with ρ > 2

Similarly, we can show that the method finds an ε–stationary
after

max

{
8L0∆

ε
, 64L1∆(2M)ρ−2

}
steps with (ρ, L0, L1)–smoothness and ρ > 2 (see Sec. H).

7. Convergence Theory in Convex Setting
We now analyze how Alg. 1 works with convex problems,
and use the following standard assumption.
Assumption 7.1. A function f : Rd → R∪{∞} is convex
and attains the minimum at a (non-unique) x∗ ∈ Rd. We
define R := ∥x0 − x∗∥ , where x0 is a starting point of
numerical methods.

Under generalized ℓ–smoothness, we can prove a conver-
gence rate for convex functions:

3We multiply the exponent by s2 for convenience
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Theorem 7.2. Suppose that Assumptions 3.1 and 7.1 hold.
Additionally, the function ψ2(x) =

x2

ℓ(2x) is strictly increas-
ing and ψ2(∞) = ∞. Then Algorithm 1 guarantees that

min
k∈{0,...,T}

f(xk)− f(x∗)

ℓ
(

2
√
T+1(f(xk)−f(x∗))

∥x0−x∗∥

) ≤ ∥x0 − x∗∥2

T + 1
.

As with Theorem 5.1, this theorem provides an implicit
convergence rate of f(xT )− f(x∗). Moreover, the theorem
offers guarantees only if ψ2(x) =

x2

ℓ(2x) is strictly increasing
and ψ2(∞) = ∞. We now consider some examples.

7.1. L–smoothness

If ℓ(s) = L, then f(xT ) − f(x∗) ≤ L∥x0−x∗∥2

T+1 because
{f(xk)} is a decreasing sequence (Theorem 5.1). This is
the classical rate of GD (Nesterov, 2018).

7.2. (ρ, L0, L1)–smoothness with 0 < ρ < 2

In Section K, we show that the method finds ε–solution after
at most

max

{
2L0R

2

ε
,
4L

2/(2−ρ)
1 R2

ε2(1−ρ)/(2−ρ)

}
iterations for ρ ≤ 1. And after at most

max

{
2L0R

2

ε
, 16L

2
2−ρ

1 R2∆
2(ρ−1)
2−ρ

}
(14)

iterations for 1 < ρ < 2.

8. Alternative Convergence Theory in Convex
Setting

The main disadvantage of Theorem 7.2 is that it works only
if ψ2(x) =

x2

ℓ(2x) is strictly increasing and ψ2(∞) = ∞. To
address this limitation, we introduce a new proof technique
for GD from Algorithm 1, which not only works in cases
of superquadratic growth of ℓ but also guarantees better
convergence rates than Theorem 7.2 in certain practical
regimes.

Theorem 8.1. Suppose that Assumptions 3.1 and 7.1 hold.
Then Algorithm 1 guarantees f(xT )− f(x∗) ≤ ε after

inf
M>0

[
T̄ (M) +

ℓ(2M) ∥x0 − x∗∥2

2ε

]
(15)

iterations, where T̄ (M) is the number of iterations required
to obtain

∥∥∇f(xT̄ (M))
∥∥ ≤M.

Remark 8.2. This convergence rate can be combined with
Theorem 7.2. Thus, one can take the minimum of the results
from Theorems 8.1 and 7.2.

We complement this theorem with another important result:

Theorem 8.3. Suppose that Assumptions 3.1 and 7.1 hold.
Then the sequence ∥∇f(xk)∥ is decreasing.

The idea behind this result is as follows: first, we wait
for the moment when GD returns a point xT̄ (M) such that∥∥∇f(xT̄ (M))

∥∥ ≤ M, which takes T̄ (M) iterations. After
that, GD works in a region where the norm of the Hessians
is bounded by ℓ(2M), allowing us to apply classical conver-
gence reasoning. The key observation is that this reasoning
remains valid for all M > 0; therefore, we take the infimum
over M > 0.

While Theorem 8.1 does not provide the final convergence
rate for f(xT ) − f(x∗), we now illustrate the steps that
should be taken next. Due to Theorem 8.3, the sequence
{∥∇f(xk)∥} is decreasing. Using Theorem 5.1, one should
should find T̄ (M) as a function of M, substitute T̄ (M) into
(15), and minimize the obtained formula over M > 0. Let
us illustrate this on (ρ, L0, L1)–smooth functions.

8.1. (ρ, L0, L1)–smoothness with 0 < ρ ≤ 2

According to (12), T̄ (M) = max
{

8L0∆
M2 , 32L1∆

M2−ρ

}
if M <

∥∇f(x0)∥ and T̄ (M) = 0 if M ≥ ∥∇f(x0)∥ . Since
ℓ(s) = L0 + L1s

ρ, we should minimize (15) and consider

≃ min
{

inf
M<∥∇f(x0)∥

[
T̄ (M) + ℓ(2M)R2

2ε

]
,

inf
M≥∥∇f(x0)∥

[
T̄ (M) + ℓ(2M)R2

2ε

]}
≃ min

{
infM≥0

[
max

{
L0∆
M2 ,

L1∆
M2−ρ ,

L0R
2

ε , L1M
ρR2

ε

}]
,

max
{
L0R

2

ε , L1∥∇f(x0)∥ρR2

ε

}}
,

where, for simplicity, we ignore all universal constants. The
term with inf is minimized with M =

√
ε∆/R2. Thus, we

get

max
{
L0R

2

ε ,min
{
L1∆

ρ/2R2−ρ

ε1−ρ/2 , L1∥∇f(x0)∥ρR2

ε

}}
. (16)

Unlike (14), (16) is finite when ρ = 2. For
ρ = 1, this setting reduces to the (L0, L1)–
smooth case with the complexity T̃ :=
O
(
max

{
L0R

2
/ε,min{L1∆

1/2R/ε1/2, L1∥∇f(x0)∥R2
/ε}
})
.

This complexity can be better than
O
(
max

{
L0R

2
/ε,min{L2

1R
2, L1∥∇f(x0)∥R2

/ε}
})

and
improve the results by Li et al. (2024a); Gorbunov et al.
(2024); Vankov et al. (2024). As an example, consider the
convex function f : R → R such that f(x) = −µx+eL1x,
which is (L1µ,L1)–smooth (see Section Q). Taking
x0 = 0, we get f(x0) − f(x∗) ≤ 1. At the same time,
letting µ → 0, the distance R = 1/L1 |log(µ/L1)|
diverges to infinity, µL1R

2
/ε converges to zero, and
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Algorithm 2 Stochastic Gradient Descent (SGD) with ℓ-
Smoothness

1: Input: starting point x0 ∈ X , function ℓ from Assump-
tion 3.1, batch size B

2: Find the ratio r = sup
s≥0

[ℓ(2s)/ℓ(s)]

3: for k = 0, 1, . . . do
4: Calculate gk = 1

B

∑B
j=1 ∇f(xk; ξkj)

({ξkj} are i.i.d.)

5: γk =
1

5r

∫ 1

0

dv

ℓ (∥gk∥+ ∥gk∥ v)
6: xk+1 = xk − γkgk
7: end for

min{L2
1R

2, L1∥∇f(x0)∥R2
/ε} can become arbitrarily larger

than L1∆
1/2R/ε1/2, because the latter scales linearly with R.

8.2. (ρ, L0, L1)–smoothness with ρ > 2

Theorem 8.1 works even if ρ > 2 in (ρ, L0, L1)–
smoothness. In the convex setting, Assumption 6.1 is not
required since ∥∇f(xk)∥ ≤ ∥∇f(x0)∥ for all k ≥ 0. Simi-
larly to Section 6.2, we can conclude that

∥∥∇f(xT̄ (M))
∥∥ ≤

M for T̄ (M) = max
{

8L0∆
M2 , 64L1∆(2 ∥∇f(x0)∥)ρ−2

}
if

M < ∥∇f(x0)∥ , and T̄ (M) = 0 if M ≥ ∥∇f(x0)∥ .
Substituting T̄ (M) into (15), we obtain

L0R
2

ε +min

{
L1∆(2M0)

ρ−2

+
L

ρ
2+ρ
0 ∆

ρ
2+ρ L

2
2+ρ
1 R

4
2+ρ

ε
2

2+ρ
,
L1M

ρ
0R

2

ε

}
,

(17)

up to universal constant factors, where M0 := ∥∇f(x0)∥ .

8.3. Convergence guarantees for small ε

In many practical problems, finding a term in convergence
rates that dominates when ε is small is sufficient. We notice
that the term L0R

2
/ε dominates in all derived complexities.

It turns out we can generalize this observation:

Corollary 8.4 (Subquadratic and Quadratic Growth of ℓ).
Consider Theorem 8.1. Additionally, assume that the func-
tion ψ2(x) =

x2

ℓ(2x) is strictly increasing. Then GD finds an
ε–solution after at most

ℓ(0)R2

ε +min
{
T̄ (ℓ,∆) , ℓ(2M0)R

2

2ε

}
(18)

iterations, where M0 := ∥∇f(x0)∥ . T̄ (ℓ,∆) depends only
on ℓ and ∆, and does not depend on ε.

Corollary 8.5 (Superquadratic Growth of ℓ). Consider The-
orem 8.1. Then GD finds an ε–solution after at most

ℓ(0)R2

ε +min
{
T̄ (ℓ,∆,M0) ,

ℓ(2M0)R
2

2ε

}
(19)

iterations, where M0 := ∥∇f(x0)∥ . T̄ (ℓ,∆,M0) depends
only on ℓ,∆, and M0, and does not depend on ε.

Thus, for small ε, Algorithm 1 converges after at most
Θ
(
ℓ(0)R2

/ε
)

iterations. In other words, Algorithm 1 behaves
like the classical GD method with the step size 1/ℓ(0). In
contrast, Li et al. (2024a) proved a significantly weaker
convergence rate Θ

(
ℓ(∥∇f(x0)∥)R2

/ε
)

for GD.

9. Stochastic Gradient Descent
We can obtain similar results in a stochastic setting, where
we access to stochastic gradients ∇f(x; ξ) characterized by
the following “light-tail” assumption (Lan, 2020).

Assumption 9.1. For all x ∈ X , the stochastic gra-
dients ∇f(x; ξ) satisfy Eξ [∇f(x; ξ)] = ∇f(x) and

Eξ
[
exp

(
∥∇f(x; ξ)−∇f(x)∥2 /σ2

)]
≤ exp(1) for

some σ > 0.

We can prove the following result that extend Theorem 5.1:

Theorem 9.2. Suppose that Assumptions 3.1, 3.2, and 9.1
hold. Let T denote the number required to ensure that
mink∈{0,...,T−1} ∥∇f(xk)∥

2 ≤ ε based on

min
k∈{0,...,T−1}

( 32 ∥∇f(xk)∥)
2

ℓ (3 ∥∇f(xk)∥)
≤ r × 45∆

T
. (20)

Then, with probability 1 − δ and batch size B =

max

{⌈
32
(
1 +

√
3 log(T/δ)

)2
σ2/ε

⌉
, 1

}
, Algorithm 2

finds an ε–stationary point after T iterations, and the total
number of computed stochastic gradients is B × T.

Let us explain how the theorem works. Notice that the
convergence guarantee (20) coincides with (9), differing
only in r and universal constants. To find T, one can use
exactly the same reasoning as in Section 5. Specifically, T
is shown to be the same as in that section, multiplied by
r and a universal constant. The main difference lies in r.
For instance, r = 2ρ for (ρ, L0, L1)–smoothness. If ρ ≤ 2,
then r ≤ 4, meaning it is simply a constant factor. Overall,
for any ℓ, the total number of computed stochastic gradients
is Θ(B × T ). For (ρ, L0, L1)–smoothness with 0 < ρ ≤ 2,
we get

Θ̃

(
σ2L0∆

ε2
+

σ2L1∆

ε(4−ρ)/2
+
L0∆

ε
+

L1∆

ε(2−ρ)/2

)
,

ignoring the logarithmic factor. For ε small enough, the
dominating term is Θ̃

(
σ2L0∆/ε2

)
, that, up to logarithmic

factors, recovers the optimal rate (Arjevani et al., 2022).
Furthermore, unlike (Li et al., 2024a), we can extend these
convergence guarantees to cases where ρ ≥ 2, and the
dominating term does not depend on L1. Our approach
assumes stochastic gradients with “light tails,” which is

8
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necessary for handling the non-constant, gradient-dependent
step sizes in Algorithm 2. Extending these results to settings
with “heavy tails” is an important and challenging research
question.

10. Conclusion and Future Work
This work offers new insights into modern optimization
within the framework of the ℓ-smoothness assumption. We
present new lemmas, algorithms, and convergence rates.
However, numerous other directions remain to be explored,
including stochastic optimization with “heavy tails” (Rob-
bins & Monro, 1951; Lan, 2020), acceleration of Algo-
rithm 1 (addressing the exponential dependence on L1

and R, or resolving the need to solve an auxiliary one-
dimensional optimization problem in each iteration (Gor-
bunov et al., 2024; Vankov et al., 2024)), variance reduction
(Schmidt et al., 2017), federated learning, and distributed
optimization (Konečný et al., 2016).
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Toward a Unified Theory of Gradient Descent under Generalized Smoothness

A. Experiments
We verify our theoretical results by asking whether it is necessary to use the step size rule from Algorithm 1, and maybe
it is sufficient to use the step size rules by Li et al. (2024a); Vankov et al. (2024) instead. We first take the function
f : [0, 0.1] → R ∪ {∞} defined as f(x) = − log x− log(0.1− x) (see Figure 2), which has its minimum at x∗ = 0.05.
This function is (ρ, 800, 2)–smooth with ρ = 2; however, it is not (L0, L1)–smooth for any L0, L1 ≥ 0. Consequently, we
run Algorithm 1 with ℓ(s) = 800 + 2s2, starting at x0 = 10−7, and observe that it converges4 after 75 iterations. Next,
we take the step size γk = 1/(800 + 2(2f ′(x0))

2) from (Li et al., 2024a) and observe that GD requires at least 20.000
iterations because f ′(x0) is huge. Finally, to verify whether the exponent 2 is necessary, we take ℓ(s) = 800 + 2s (Vankov
et al., 2024). For this choice of ℓ, GD diverges.

0 10 20 30 40 50 60 70 80
iterations

10 5

10 4

10 3

10 2

10 1

100

101

f(x
k )

f(x
* )

(ours)
(Vankov et al., 2024) (diverged)
(Li et al., 2024a)

Figure 2: Experiment with f(x) = − log x− log(0.1− x).

We repeat this experiment with the function f : R → R defined as f(x) = ex+ e1−x (see Figure 3) which has its minimum
at x∗ = 0.5. This function is (3.3, 1)–smooth, meaning we can run Algorithm 1 with ℓ(s) = 3.3 + s. It converges after at
most 20 iterations. At the same time, if we choose ℓ(s) = 3.3 + s2 or γk = (3.3 + 2 |f ′(x0)|)−1 (Li et al., 2024a), GD
requires at least 200 iterations to converge. These experiments underscore the importance of our step size rule and the right
choice of step size and normalization.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iterations
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101

103

f(x
k )

f(x
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(s) = 3.3 + s2

(s) = 3.3 + s
(Li et al., 2024a)

Figure 3: Experiment with f(x) = ex + e1−x.

4finds x̄ such that f(x̄)− f(x∗) ≤ 10−5
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B. Proof of Lemma 4.3
The following proof is based on the techniques from (Li et al., 2024a; Vankov et al., 2024).

Proof. It is sufficient to prove that for all x, x+ th ∈ X , t ∈ [0, qmax) such that ∥h∥ = 1, if f is ℓ–smooth (Assumption 3.1),
then

∥∇f(x+ th)−∇f(x)∥ ≤ q−1(t; ∥∇f(x)∥), (21)

where q and qmax ≡ qmax(∥∇f(x)∥) are defined in Definition 4.1. One can get (6) from (21) with y = x + th and
t = ∥y − x∥ .

Let us define v(t) :=
∫ t
0
ℓ(∥∇f(x+ hτ)∥)dτ. Using Taylor expansion, we get

∥∇f(x+ ht)−∇f(x)∥ =

∥∥∥∥∫ t

0

∇2f(x+ hτ)dτh

∥∥∥∥ ≤ ∥h∥
∫ t

0

∥∥∇2f(x+ hτ)
∥∥ dτ

=

∫ t

0

∥∥∇2f(x+ hτ)
∥∥ dτ ≤

∫ t

0

ℓ(∥∇f(x+ hτ)∥)dτ = v(t).

(22)

In the first inequality, we use the definition of the operator norm and the triangle inequality for the integral. The triangle
inequality yields

∥∇f(x+ ht)∥ ≤ ∥∇f(x)∥+ ∥∇f(x+ ht)−∇f(x)∥ ≤ ∥∇f(x)∥+ v(t).

Note that v′(t) = ℓ(∥∇f(x+ ht)∥) and ℓ is non-decreasing. Thus v′(t) ≤ ℓ(∥∇f(x)∥+ v(t)) for all t ≥ 0 and v(0) = 0.
Instead of this inequality, consider the differential equation

g′(t) = ℓ(∥∇f(x)∥+ g(t)), g(0) = 0, (23)

where g : R+ → R is a solution, and ∥∇f(x)∥ is a fixed quantity. Using the standard differential algebra, we can solve it:

dg(t)

ℓ(∥∇f(x)∥+ g(t))
= dt⇒

∫ t

0

dg(v)

ℓ(∥∇f(x)∥+ g(v))
= t⇒

∫ g(t)

0

dv

ℓ(∥∇f(x)∥+ v)
= t.

Recall the definition of the function q, which is an increasing and differentiable function on R+ with q′(s; ·, ·) > 0 for all
s ∈ R+. Therefore, q−1 is strongly increasing and differentiable on [0, qmax) and we can take g(t) = q−1(t; ∥∇f(x)∥) for
all t ∈ [0, qmax). One can check that g(t) is a solution of (23). Let us define p(t) := v(t)− g(t). Then p(0) = 0 and

p′(t) = (v(t)− g(t))′ ≤ ℓ(∥∇f(x)∥+ v(t))− ℓ(∥∇f(x)∥+ g(t)).

Let us fix any b ∈ [0, qmax). Since ℓ is locally Lipchitz, there exists M ≥ 0 such that

p′(t) ≤M ∥h∥ (v(t)− g(t)) =M ∥h∥ p(t)

for all t ∈ [0, b] because v(t) and g(t) are bounded on [0, b]. Using Grönwall’s lemma (Gronwall, 1919), we can conclude
that p(t) ≤ p(0) exp(Mt) = 0. Thus v(t) ≤ g(t) = q−1(t; ∥∇f(x)∥) for all t ∈ [0, b]. The last inequality holds for all
t ∈ [0, qmax) because b is an arbitrary value from [0, qmax). Finally, using (22), we get (21).

C. Proof of Lemma 4.5
Proof. If x = y, then the lemma holds, since q−1 is non-negative. Otherwise, using Taylor expansion, we get

f(y) = f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(x+ τ(y − x))−∇f(x), y − x⟩ dτ

≤ f(x) + ⟨∇f(x), y − x⟩+ ∥y − x∥
∫ 1

0

∥∇f(x+ τ(y − x))−∇f(x)∥ dτ.

Due to Lemma 4.3:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ ∥y − x∥
∫ 1

0

q−1(τ ∥y − x∥ ; ∥∇f(x)∥)dτ

12
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= f(x) + ⟨∇f(x), y − x⟩+
∫ ∥y−x∥

0

q−1(τ ; ∥∇f(x)∥)dτ.

where we changed variables in the integral.

D. Auxiliary Lemmas
We need this auxiliary lemma to find the optimal choice of γk in Algorithm 1, and in Lemma I.1.

Lemma D.1. For all z ∈ Rd and s ≥ 0, the term

U ≡ U(t, h) := ⟨z, th⟩+
∫ t

0

q−1(τ ; s)dτ

under the constraints ∥h∥ = 1 and t ∈ [0, qmax(s)) is minimized with t∗ = q(∥z∥ ; s) = ∥z∥
∫ 1

0
dv

ℓ(s+∥z∥v) and h∗ = − z
∥z∥

if z ̸= 0, and with t∗ = 0 and any h∗ ∈ Rd such that ∥h∗∥ = 1 if z = 0. With the optimal t∗ and h∗, the term U equals

U∗ := −∥z∥2
∫ 1

0

1− v

ℓ(s+ ∥z∥ v)
dv.

Proof. The term U depends on h only in ⟨z, th⟩ . Since ∥h∥ = 1, the term is minimized with h∗ = − z
∥z∥ if z ̸= 0, and with

any h∗ ∈ Rd such that ∥h∗∥ = 1 if z = 0. In both cases, we get

U = −t ∥z∥+
∫ t

0

q−1(τ ; s)dτ

with an optimal choice of h. Next, we can take the derivative w.r.t. t and obtain

U ′
t = −∥z∥+ q−1(t; s).

U ′
t is strongly increasing because q−1 is strongly increasing (see Definition 4.1). Moreover U ′

t ≤ 0 when t = 0. Thus, there
exists the optimal t∗ defined by the equation

− ∥z∥+ q−1(t∗; s) = 0 ⇔ t∗ = q(∥z∥ ; s). (24)

If ∥z∥ = 0, then t∗ = 0. Otherwise,

t∗ =

∫ ∥z∥

0

dv

ℓ(s+ v)
= ∥z∥

∫ 1

0

dv

ℓ(s+ ∥z∥ v)

For this choice of t∗ and h∗, using the change of variables p = q−1(τ ; s), we get

U = −q(∥z∥ ; s) ∥z∥+
∫ q(∥z∥;s)

0

q−1(τ ; s)dτ = −q(∥z∥ ; s) ∥z∥+
∫ ∥z∥

0

pdq(p; s)

(5)
= −∥z∥

∫ ∥z∥

0

1

ℓ(s+ v)
dv +

∫ ∥z∥

0

v

ℓ(s+ v)
dv = −∥z∥2

∫ 1

0

1− v

ℓ(s+ ∥z∥ v)
dv.

We will require the following lemma to ensure that Algorithm 1 is well-defined. This lemma says we can safely do a step in
a direction with a step size t ∈ [0, qmax(∥∇f(x)∥)).
Lemma D.2. For a fixed x ∈ X , the point y = x+ th ∈ X for all t ∈ [0, qmax(∥∇f(x)∥)) and h ∈ Rd such that ∥h∥ = 1.

The proof is a bit technical and can be skipped by the reader if X = Rd.
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Proof. Let us define y(µ) := x+µth for all µ ∈ [0, 1].Note that y(1) = y and y(0) = x ∈ X .Using proof by contradiction,
assume that y(1) ̸∈ X . Then

µ̄ := sup{µ ≥ 0 | y(µ) ∈ X} ∈ [0, 1],

y(µ̄) ̸∈ X , and y(µ̄) belongs to the closure of X because X is open convex and f is continuous on the closure of X . Next,
y(µ) ∈ X for all µ < µ̄ and

f(y(µ)) ≤ f(x) + µt ⟨∇f(x), h⟩+
∫ µt

0

q−1(τ ; ∥∇f(x)∥)dτ (25)

for all µ < µ̄ due to Lemma 4.5. Since the r.h.s. is continuous for all µ ∈ [0, 1] because t ∈ [0, qmax(∥∇f(x)∥)), we can
take a sequence {µn} such that µn < µ̄ and limn→∞ µn = µ̄. Thus

lim
n→∞

[
f(x)− µnt ⟨∇f(x), h⟩+

∫ µnt

0

q−1(τ ; ∥∇f(x)∥)dτ
]

= f(x)− µ̄t ⟨∇f(x), h⟩+
∫ µ̄t

0

q−1(τ ; ∥∇f(x)∥)dτ <∞.

(26)

Since f is continuous on the closure of X , we have

f(y(µ̄)) = lim
n→∞

f(y(µn))
(25),(26)
< ∞,

which contradicts y(µ̄) ̸∈ X .

E. Proof of Corollary 4.6
Proof. Corollary 4.6 follows from Lemma D.1 with s = ∥∇f(x)∥ , z = ∇f(x), and y∗ = x+ t∗h∗. It is only left to show
that y∗ ∈ X , which follows from Lemma D.2.

F. Proof of Theorem 5.1
Proof. Notice that Algorithm 1 uses the optimal gradient descent rule from Corollary 4.6. Thus, for Algorithm 1, we have

f(xk+1) ≤ f(xk)− ∥∇f(xk)∥2
∫ 1

0

1− v

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv. (27)

Corollary 4.6 automatically ensures that xk+1 ∈ X if xk ∈ X . Thus Algorithm 1 is well-defined because x0 ∈ X . Note that∫ 1

0

1− v

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv ≥

∫ 1/2

0

1− v

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv

≥ 1

2

∫ 1/2

0

1

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv ≥ 1

4

∫ 1

0

1

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv =

γk
4
.

where the last inequality because ℓ is non-decreasing. Substituting this to (27), we get

f(xk+1) ≤ f(xk)−
γk
4

∥∇f(xk)∥2 .

Summing this inequality for k = 0, . . . , T − 1, dividing the result by T, taking the minimum over k ∈ {0, . . . , T − 1}, and
using Assumption 3.2 and Remark 4.7, one can get (9).

G. Derivation of the Rate from Section 5.3
Let us now apply Theorem 5.1 with ℓ(s) = ℓ(s) = L0 + L1s

ρ and 0 ≤ ρ ≤ 2 :

min
k∈{0,...,T−1}

∥∇f(xk)∥2

L0 + 2ρL1 ∥∇f(xk)∥ρ
≤ 4∆

T
. (28)

14
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Remark G.1. Due to Theorem 5.1 and Remark 4.7, the term 2ρ is not tight and could potentially be improved. However,
achieving this improvement would require calculating the integral in γk explicitly instead, which results in “lengthy
trigonometric formulas.”

We continue with (28) to get

min
k∈{0,...,T−1}

min

{
∥∇f(xk)∥2

L0
,
∥∇f(xk)∥2−ρ

2ρL1

}
≤ 8∆

T
(29)

for all ρ ≥ 0 because 2max{x, y} ≥ x+y for all x, y ≥ 0. If ρ ≤ 2, then we can guarantee mink∈{0,...,T−1} ∥∇f(xk)∥
2 ≤

ε after at most

max

{
8L0∆

ε
,
32L1∆

ε(2−ρ)/2

}
iterations.

H. Derivation of the Rate from Section 6.2
Using (29), either

min
k∈{0,...,T−1}

∥∇f(xk)∥2 ≤ 8L0∆

T
or max

k∈{0,...,T−1}
∥∇f(xk)∥ρ−2 ≥ T

2ρ+3L1∆
.

We now require Assumption 6.1. Since the gradients are bounded by M, we can conclude that the method finds an
ε–stationary after

max

{
8L0∆

ε
, 64L1∆(2M)ρ−2

}
iterations because maxk∈{0,...,T−1} ∥∇f(xk)∥

ρ−2 ≤Mρ−2.

I. Proof of Lemmas in the Convex World
The following proof technique is based on the classical approaches by Nesterov (2018). We start our proof by
generalizing the inequalities 1

2L ∥∇f(x)−∇f(y)∥2 ≤ f(x) − f(y) − ⟨∇f(y), x− y⟩ and ∥∇f(x)−∇f(y)∥2 ≤
L ⟨∇f(x)−∇f(y), x− y⟩ , which are true under L–smoothness (Nesterov, 2018).

Lemma I.1. For all x, y ∈ X , if f is ℓ–smooth (Assumption 3.1) and convex, then

∥∇f(x)−∇f(y)∥2
∫ 1

0

1− v

ℓ(∥∇f(x)∥+ ∥∇f(x)−∇f(y)∥ v)
dv ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ (30)

and

⟨∇f(x)−∇f(y), x− y⟩

≥ ∥∇f(x)−∇f(y)∥2
∫ 1

0

(
1− v

ℓ(∥∇f(x)∥+ ∥∇f(x)−∇f(y)∥ v)
+

1− v

ℓ(∥∇f(y)∥+ ∥∇f(x)−∇f(y)∥ v)

)
dv.

(31)

Proof. As in (Nesterov, 2018), we define the function ϕ(y) := f(y)− ⟨∇f(x0), y⟩ for a fixed x0 ∈ X . For all x ∈ X , we
have

ϕ(x0) = min
y∈X

ϕ(y) = min
y∈X

{f(y)− ⟨∇f(x0), y⟩}

Lemma 4.5
≤ min

y∈X

{
f(x) + ⟨∇f(x), y − x⟩+

∫ ∥y−x∥

0

q−1(τ ; ∥∇f(x)∥)dτ − ⟨∇f(x0), y⟩

}

15
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= min
y∈X

{
f(x) + ⟨∇f(x)−∇f(x0), y − x⟩+

∫ ∥y−x∥

0

q−1(τ ; ∥∇f(x)∥)dτ − ⟨∇f(x0), x⟩

}

= ϕ(x) + min
y∈X

{
⟨∇f(x)−∇f(x0), y − x⟩+

∫ ∥y−x∥

0

q−1(τ ; ∥∇f(x)∥)dτ

}

≤ ϕ(x) + min
∥h∥=1,t∈[0,qmax(∥∇f(x)∥))

{
⟨∇f(x)−∇f(x0), th⟩+

∫ t

0

q−1(τ ; ∥∇f(x)∥)dτ
}
.

Lemma D.1 with z = ∇f(x)−∇f(x0) and s = ∥∇f(x)∥ ensures that

ϕ(x0) ≤ ϕ(x)− ∥∇f(x)−∇f(x0)∥2
∫ 1

0

1− v

ℓ(∥∇f(x)∥+ ∥∇f(x)−∇f(x0)∥ v)
dv.

Thus, we get (30). One can get (31) interchanging x and y in (30) and using (30) two times.

Lemma I.2. Suppose that Assumptions 3.1 and 7.1 hold. Then Algorithm 1 guarantees that

1

2
∥xk+1 − x∗∥2 ≤ 1

2
∥xk − x∗∥2 −

f(xk)− f(x∗)

ℓ(2 ∥∇f(xk)∥)

for all k ≥ 0.

Proof. Due to the strategy from Alg. 1, we get

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γk ⟨xk − x∗,∇f(xk)⟩+ γ2k ∥∇f(xk)∥
2
. (32)

We now consider the last two terms:

− 2γk ⟨xk − x∗,∇f(xk)⟩+ γ2k ∥∇f(xk)∥
2

= 2γk (−f(x∗) + f(xk) + ⟨∇f(xk), x∗ − xk⟩ − f(xk) + f(x∗)) + γ2k ∥∇f(xk)∥
2

(30)
≤ γk ∥∇f(xk)∥2

(
γk − 2

∫ 1

0

1− v

ℓ(∥∇f(xk)∥ v)
dv

)
− 2γk (f(xk)− f(x∗)) .

Note that

γk − 2

∫ 1

0

1− v

ℓ(∥∇f(xk)∥ v)
dv =

∫ 1

0

dv

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
− 2

∫ 1

0

1− v

ℓ(∥∇f(xk)∥ v)
dv

≤
∫ 1

0

(2v − 1)dv

ℓ(∥∇f(xk)∥ v)
≤ 0

because ℓ is non-decreasing. Thus

− 2γk ⟨xk − x∗,∇f(xk)⟩+ γ2k ∥∇f(xk)∥
2 ≤ −2γk (f(xk)− f(x∗)) .

Substituting this inequality to (32), we get

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γk (f(xk)− f(x∗))

and

1

2
∥xk+1 − x∗∥2 ≤ 1

2
∥xk − x∗∥2 −

f(xk)− f(x∗)

ℓ(2 ∥∇f(xk)∥)

due to Remark 4.7.
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J. Proof of Theorem 7.2
The following proof is based on the techniques from (Vankov et al., 2024).

Proof. Using Lemma I.2, we obtain

1

2
∥xk+1 − x∗∥2 ≤ 1

2
∥xk − x∗∥2 −

f(xk)− f(x∗)

ℓ(2 ∥∇f(xk)∥)

At the same time, using Theorem 5.1 and Remark 4.7, we obtain

∥∇f(xk)∥2

4ℓ(2 ∥∇f(xk)∥)
≤ γk

4
∥∇f(xk)∥2 ≤ f(xk)− f(x∗)

and

∥∇f(xk)∥2

ℓ(2 ∥∇f(xk)∥)
≤ 4(f(xk)− f(x∗)).

Defining fk := f(xk)− f(x∗) and ψ2(x) :=
x2

ℓ(2x) , we get5 ∥∇f(xk)∥2 ≤ ψ−1
2 (4fk) and

1

2
∥xk+1 − x∗∥2 ≤ 1

2
∥xk − x∗∥2 −

fk

ℓ(2ψ−1
2 (4fk))

=
1

2
∥xk − x∗∥2 −

(
ψ−1
2 (4fk)

)2 × fk(
ψ−1
2 (4fk)

)2 × ℓ(2ψ−1
2 (4fk))

.

where the first inequality because ℓ is non-decreasing. The equality (ψ−1
2 (4fk))

2

ℓ(2ψ−1
2 (4fk))

= ψ2(ψ
−1
2 (4fk)) = 4fk simplifies the last

inequality to

1

2
∥xk+1 − x∗∥2 ≤ 1

2
∥xk − x∗∥2 −

4(fk)
2(

ψ−1
2 (4fk)

)2 .
Summing the inequality for k ∈ {0, . . . , T − 1}, we obtain

T−1∑
k=0

4(fk)
2(

ψ−1
2 (4fk)

)2 ≤ 1

2
∥x0 − x∗∥2 ,

min
k∈{0,...,T−1}

(fk)
2(

ψ−1
2 (4fk)

)2 ≤ ∥x0 − x∗∥2

8T
,

and

min
k∈{0,...,T−1}

fk

ψ−1
2 (4fk)

≤ ∥x0 − x∗∥
2
√
T

.

For all x, t > 0, notice that

x

ψ−1
2 (4x)

= t⇔ x

t
= ψ−1

2 (4x) ⇔ ψ2

(x
t

)
= 4x⇔

x2

t2

ℓ
(
x
t

) = 4x⇔ x

4ℓ
(
x
t

) = t2.

Thus

min
k∈{0,...,T−1}

fk

ℓ
(

2
√
Tfk

∥x0−x∗∥

) ≤ ∥x0 − x∗∥2

T
.

5This is the place we use that the function ψ2(x) =
x2

ℓ(2x)
is strictly increasing and ψ2(∞) = ∞.
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K. Derivation of the Rate from Section 7.2
Let us define fk := f(xk) − f(x∗). Then fT = mink∈{0,...,T} fk and ∆ = f0. For (ρ, L0, L1)–smoothness, we should
take ℓ(s) = L0 + L1s

ρ, use Theorem 7.2, and get min
k∈{0,...,T}

fk

L0+L1

(
2
√

T+1fk
R

)ρ ≤ R2

T+1 . Using the inequality x + y ≤

2max{x, y}, we obtain min
k∈{0,...,T}

min

{
fk
2L0

, 1

2L1f
ρ−1
k

(
2
√

T+1
R

)ρ

}
≤ R2

T+1 . For ρ ≤ 1, the method finds ε–solution after at

most

T :=

⌈
max

{
2L0R

2

ε
,
16L

2/(2−ρ)
1 R2

ε2(1−ρ)/(2−ρ)

}⌉

iterations. One can easily show this by swapping min
k∈0,...,T

min, noticing that the terms under the min operations are

non-decreasing functions of fk and fT = min
k∈0,...,T

fk, and considering three cases: (i) fT
2L0

≤ 1

2L1f
ρ−1
T

(
2
√

T+1
R

)ρ , (ii)

fT
2L0

> 1

2L1f
ρ−1
T

(
2
√

T+1
R

)ρ and ρ = 1, and (iii) fT
2L0

> 1

2L1f
ρ−1
T

(
2
√

T+1
R

)ρ and ρ < 1.

For 1 < ρ < 2, either fT ≤ 2L0R
2

T+1 or (T+1)1−
ρ
2

L12ρ+1R2−ρ ≤ max
k∈{0,...,T}

fρ−1
k . Since fk is decreasing (see Theorem 5.1), the second

option implies (T + 1)1−
ρ
2 ≤ L12

ρ+1R2−ρfρ−1
0 , meaning the method finds ε–solution after at most

max

{
2L0R

2

ε
, 16L

2
2−ρ

1 R2∆
2(ρ−1)
2−ρ

}
iterations.

L. Proof of Theorem 8.1
Proof. Using Lemma I.2, we obtain

1

2
∥xk+1 − x∗∥2 ≤ 1

2
∥xk − x∗∥2 −

f(xk)− f(x∗)

ℓ(2 ∥∇f(xk)∥)
(33)

for all k ≥ 0. ∥∇f(xk)∥ is decreasing due to Theorem 8.3. We fix any T̄ ≥ 0. Thus, for all k ≥ T̄ , we get

1

2
∥xk+1 − x∗∥2 ≤ 1

2
∥xk − x∗∥2 −

f(xk)− f(x∗)

ℓ(2 ∥∇f(xT̄ )∥)

Summing the last inequality for k = T̄ , . . . , T and dividing by T − T̄ − 1, we obtain

f(xT )− f(x∗) ≤
ℓ(2 ∥∇f(xT̄ )∥) ∥xT̄ − x∗∥2

2(T − T̄ + 1)
≤ ℓ(2 ∥∇f(xT̄ )∥) ∥x0 − x∗∥2

2(T − T̄ + 1)
,

where use the inequalities ∥x0 − x∗∥2 ≥ ∥xT̄ − x∗∥2 ≥ ∥xT − x∗∥2 ≥ 0 due to (33). For any M ≥ 0, taking T̄ (M) such
that ∥∇f(xT̄ )∥ ≤M, we get

f(xT )− f(x∗) ≤
ℓ(2M) ∥x0 − x∗∥2

2(T − T̄ (M) + 1)
.

Thus, after

T̄ (M) +
ℓ(2M) ∥x0 − x∗∥2

2ε

iterations the inequality f(xT )− f(x∗) ≤ ε holds. The final result holds since M > 0 is arbitrary.
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M. Proof of Theorem 8.3
Proof. We have

∥∇f(xk+1)∥2 = ∥∇f(xk)∥2 + 2 ⟨∇f(xk),∇f(xk+1)−∇f(xk)⟩+ ∥∇f(xk+1)−∇f(xk)∥2

= ∥∇f(xk)∥2 −
2

γk
⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩+ ∥∇f(xk+1)−∇f(xk)∥2 .

Lemma 4.3 guarantees that

∥∇f(xk+1)−∇f(xk)∥ ≤ q−1(γk ∥∇f(xk)∥ ; ∥∇f(xk)∥).

Notice that

γk ∥∇f(xk)∥ =

∫ 1

0

d ∥∇f(xk)∥ v
ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)

=

∫ ∥∇f(xk)∥

0

dv

ℓ(∥∇f(xk)∥+ v)

Def.5
= q(∥∇f(xk)∥ ; ∥∇f(xk)∥).

Thus q−1(γk ∥∇f(xk)∥ ; ∥∇f(xk)∥) = ∥∇f(xk)∥ and

∥∇f(xk+1)−∇f(xk)∥ ≤ ∥∇f(xk)∥ . (34)

Ignoring the first non-negative term in the integral of (31), we obtain

⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩ ≥ ∥∇f(xk+1)−∇f(xk)∥2
∫ 1

0

1− v

ℓ(∥∇f(xk)∥+ ∥∇f(xk+1)−∇f(xk)∥ v)
dv

(34)
≥ ∥∇f(xk+1)−∇f(xk)∥2

∫ 1

0

1− v

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv.

Therefore

∥∇f(xk+1)∥2 ≤ ∥∇f(xk)∥2 −
1

γk

(
2

∫ 1

0

1− v

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv − γk

)
∥∇f(xk+1)−∇f(xk)∥2

= ∥∇f(xk)∥2 −
1

γk

(∫ 1

0

1− 2v

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv

)
∥∇f(xk+1)−∇f(xk)∥2

Since ℓ is increasing, we obtain ∫ 1

0

1− 2v

ℓ(∥∇f(xk)∥+ ∥∇f(xk)∥ v)
dv ≥ 0

and

∥∇f(xk+1)∥2 ≤ ∥∇f(xk)∥2 .

N. Proof of Corollary 8.4
Proof. For all δ > 0, using Theorem 8.3, Corollary 5.2, and the fact that supx≥0 ψ2(x) > 0, there exists T̄1(ℓ,∆, δ) large
enough, which depends only on ℓ,∆, and δ, such that

∥∥∇f(xT̄1
)
∥∥ ≤ δ. Since ℓ is continuous, there exists δ̄(ℓ) > 0, which

depends only on ℓ, such that ℓ(2δ̄(ℓ)) ≤ 2ℓ(0). Taking T̄ ≡ T̄ (ℓ,∆) := T̄1(ℓ,∆, δ̄(ℓ)), we get ∥∇f(xT̄ )∥ ≤ δ̄(ℓ) and

(15) ≤ T̄ +
ℓ(2δ̄(ℓ))R2

2ε
≤ T̄ +

ℓ(0)R2

ε
.

Thus Algorithm 1 converges after ℓ(0)R
2

ε + T̄ (ℓ,∆) iterations because it converges after (15) iterations (Theorem 8.1).
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Additionally, we know that

(15) ≤ T̄ (∥∇f(x0)∥) +
ℓ(2 ∥∇f(x0)∥)R2

2ε
=
ℓ(2 ∥∇f(x0)∥)R2

2ε
,

where T̄ (∥∇f(x0)∥) = 0 because it is required zero iterations to find a point such that the norm of a gradient is ∥∇f(x0)∥
(the starting point satisfies this criterion). In total, Algorithm 1 converges after at most

min

{
ℓ(0)R2

ε
+ T̄ (ℓ,∆) ,

ℓ(2 ∥∇f(x0)∥)R2

2ε

}
≤ ℓ(0)R2

ε
+min

{
T̄ (ℓ,∆) ,

ℓ(2 ∥∇f(x0)∥)R2

2ε

}
iterations.

O. Proof of Corollary 8.5
Proof. Using Theorem 5.1 and Theorem 8.3, we get

∥∇f(xT−1)∥2 ≤ 4ℓ(2 ∥∇f(x0)∥)∆
T

.

Thus, for all δ > 0, one can take T̄1(ℓ,∆, ∥∇f(x0)∥ , δ) = 4ℓ(2∥∇f(x0)∥)∆
δ to ensure that

∥∥∇f(xT̄1
)
∥∥ ≤ δ. Since ℓ is

continuous, there exists δ̄(ℓ) > 0,which depends only on ℓ, such that ℓ(2δ̄(ℓ)) ≤ 2ℓ(0). Taking T̄ ≡ T̄ (ℓ,∆, ∥∇f(x0)∥) :=
T̄1(ℓ,∆, ∥∇f(x0)∥ , δ̄(ℓ)), we get ∥∇f(xT̄ )∥ ≤ δ̄(ℓ) and

(15) ≤ T̄ +
ℓ(2δ̄(ℓ))R2

2ε
≤ T̄ +

ℓ(0)R2

ε
.

Thus Algorithm 1 converges after (19) iterations because it converges after (15) iterations (Theorem 8.1). One can get the
second term in the min using the same reasoning as at the end of the proof of Corollary 8.4.

P. Proof of Theorem 9.2
Let us recall the standard result regarding the large derivation of the sum of i.i.d. random vectors.

Lemma P.1 (Simplified Version of Theorem 2.1 from (Juditsky & Nemirovski, 2008)). Assume that {ηi}mi=1 are i.i.d.

random vectors such that ηi ∈ Rd, E [ηi] = 0, and E
[
exp

(
∥ηi∥2 /σ2

)]
≤ exp(1) for all i ∈ [n]. Then

P

(∥∥∥∥∥
m∑
i=1

ηi

∥∥∥∥∥ ≥
√
2(1 + λ)

√
mσ

)
≤ exp(−λ2/3)

for all λ ≥ 0.

We now proof the main theorem:

Proof. Using Lemma P.1, we get

P

∥∥∥∥∥∥ 1

B

B∑
j=1

(∇f(xk; ξkj)−∇f(xk))

∥∥∥∥∥∥ ≥
√
2(1 + λ)σ/

√
B


= E

P
∥∥∥∥∥∥ 1

B

B∑
j=1

(∇f(xk; ξkj)−∇f(xk))

∥∥∥∥∥∥ ≥
√
2(1 + λ)σ/

√
B

∣∣∣∣∣∣xk
 ≤ exp(−λ2/3)

for all k ≥ 0, where P (·|xk) is the probability conditioned on xk. Using the union bound, we obtain

P

T−1⋃
k=0


∥∥∥∥∥∥ 1

B

B∑
j=1

(∇f(xk; ξkj)−∇f(xk))

∥∥∥∥∥∥ ≥
√
2(1 + λ)σ/

√
B
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≤
T−1∑
k=0

P

∥∥∥∥∥∥ 1

B

B∑
j=1

(∇f(xk; ξkj)−∇f(xk))

∥∥∥∥∥∥ ≥
√
2(1 + λ)σ/

√
B

 ≤ T exp(−λ2/3).

Taking λ =
√

3 log(T/δ) and B = max

{⌈
32

(
1+

√
3 log(T/δ)

)2
σ2

ε

⌉
, 1

}
, we can conclude that with probability 1− δ,

∥gk −∇f(xk)∥ =

∥∥∥∥∥∥ 1

B

B∑
j=1

(∇f(xk; ξkj)−∇f(xk))

∥∥∥∥∥∥ ≤
√
ε

4
(35)

and

∥∇f(xk)∥ −
√
ε

4
≤ ∥gk∥ ≤ ∥∇f(xk)∥+

√
ε

4
(36)

for all k ∈ {0, . . . , T − 1}, where we use the triangle inequality.

To simplify the notation, we assume that all subsequent derivations hold with probability 1− δ, omitting the explicit mention
of it each time. Using proof by contradiction, we now prove that there exists k ∈ {0, . . . , T − 1} such that ∥∇f(xk)∥2 ≤ ε.
Assume that

∥∇f(xk)∥2 > ε (37)

for all k ∈ {0, . . . , T − 1}. Then

∥gk −∇f(xk)∥ ≤ ∥∇f(xk)∥
4

(38)

and

3

4
∥∇f(xk)∥ ≤ ∥gk∥ ≤ 5

4
∥∇f(xk)∥ (39)

from (35) and (36). Since ℓ is increasing, we obtain

γk ∥gk∥ =
1

5r

∫ 1

0

∥gk∥ dv
ℓ (∥gk∥+ ∥gk∥ v)

(39)
≤ 1

4

∫ 1

0

∥∇f(xk)∥ dv
r × ℓ

(
1
2 ∥∇f(xk)∥+

1
2 ∥∇f(xk)∥ v

) .
By the definition of the ratio r, we get r ≥ ℓ(∥∇f(xk)∥+∥∇f(xk)∥v)

ℓ( 1
2∥∇f(xk)∥+ 1

2∥∇f(xk)∥v)
. Therefore

γk ∥gk∥ ≤ 1

4

∫ 1

0

∥∇f(xk)∥ dv
ℓ (∥∇f(xk)∥+ ∥∇f(xk)∥ v)

≤
∫ 1

0

1
4 ∥∇f(xk)∥ dv

ℓ
(
∥∇f(xk)∥+ 1

4 ∥∇f(xk)∥ v
) = q(1/4 ∥∇f(xk)∥ ; ∥∇f(xk)∥),

(40)

where q is defined in Definition 4.1. Notice that xk+1 = xk − γkgk = xk − γk ∥gk∥ gk
∥gk∥ and γk ∥gk∥ ≤

q( 14 ∥∇f(xk)∥ ; ∥∇f(xk)∥) < qmax(∥∇f(xk)∥). Thus, xk+1 ∈ X due to Lemma D.2 and we can use Lemma 4.5 to
obtain

f(xk+1) ≤ f(xk)− γk ⟨∇f(xk), gk⟩+
∫ γk∥gk∥

0

q−1(τ ; ∥∇f(xk)∥)dτ

= f(xk)− γk ∥∇f(xk)∥2 − γk ⟨∇f(xk), gk −∇f(xk)⟩+
∫ γk∥gk∥

0

q−1(τ ; ∥∇f(xk)∥)dτ
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C-S
≤ f(xk)− γk ∥∇f(xk)∥2 + γk ∥∇f(xk)∥ ∥gk −∇f(xk)∥+

∫ γk∥gk∥

0

q−1(τ ; ∥∇f(xk)∥)dτ

(38)
≤ f(xk)−

3γk
4

∥∇f(xk)∥2 +
∫ γk∥gk∥

0

q−1(τ ; ∥∇f(xk)∥)dτ.

Since q−1 is increasing (Propostion 4.2), we have

f(xk+1) ≤ f(xk)−
3γk
4

∥∇f(xk)∥2 + γk ∥gk∥ q−1(γk ∥gk∥ ; ∥∇f(xk)∥)
(40)
≤ f(xk)−

3γk
4

∥∇f(xk)∥2 +
γk
4

∥gk∥ ∥∇f(xk)∥
(39)
≤ f(xk)−

3γk
4

∥∇f(xk)∥2 +
5γk
16

∥∇f(xk)∥2

≤ f(xk)−
γk
4

∥∇f(xk)∥2 .

It is left to sum this inequality for k = {0, . . . , T − 1} and use Assumption 6.1 to get

1

T

T−1∑
k=0

γk ∥∇f(xk)∥2 ≤ 4∆

T

and

min
k∈{0,...,T−1}

γk ∥∇f(xk)∥2 ≤ 4∆

T
.

Due to Remark 4.7 and (39),

γk ≥ 1

5rℓ (3 ∥∇f(xk)∥)

and

min
k∈{0,...,T−1}

( 32 ∥∇f(xk)∥)
2

ℓ (3 ∥∇f(xk)∥)
≤ r × 45∆

T
. (41)

Since (41) holds, we conclude that mink∈{0,...,T−1} ∥∇f(xk)∥
2 ≤ ε due the choice of T specified in the theorem. This

result contradicts (37).

Q. Function −µx+ eL1x is (L1µ, L1)–smooth
In this section, we prove that the convex function f : R → R such that f(x) = −µx+ eL1x is (L1µ,L1)–smooth. Indeed,∥∥∇2f(x)

∥∥ = L2
1e
L1x.

Then ∥∥∇2f(x)
∥∥ = L2

1e
L1x ≤ L1µ+ L1

∣∣L1e
L1x − µ

∣∣ ≤ L1µ+ L1 ∥∇f(x)∥

because

∥∇f(x)∥2 =
(
L1e

L1x − µ
)2
.

Finally, ∥∥∇2f(x)
∥∥ ≤ L1µ+ L1 ∥∇f(x)∥ .

At the same time, for any A ≥ 0, there exists x such that L1e
L1x ≥ 2µ+ 2A

L1
. We get L1

2 e
L1x ≤ ∥∇f(x)∥ ≤ L1e

L1x and

A+ 2L1 ∥∇f(x)∥ ≥
∥∥∇2f(x)

∥∥ = L2
1e
L1x ≥ A+

L1

2
∥∇f(x)∥ .

Thus, the second constant in the assumption can be improved by at most of factor 4.
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