
Under review as a conference paper at ICLR 2024

CORRUPTING MULTIPLICATION-BASED UNLEARN-
ABLE DATASETS WITH PIXEL-BASED IMAGE TRANS-
FORMATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Unlearnable datasets (UDs) lead to a drastic drop in the generalization perfor-
mance of models trained on them by introducing elaborate and imperceptible per-
turbations into clean training sets. Many existing defenses, e.g., JPEG compres-
sion and adversarial training, effectively counter UDs based on norm-constrained
additive noise. However, a fire-new type of multiplication-based UDs have been
proposed and render existing defenses all ineffective, presenting a greater chal-
lenge to defenders. To address this, we express the multiplication-based unlearn-
able sample as the result of multiplying a matrix by a clean sample in a simpli-
fied scenario, and formalize the intra-class matrix inconsistency as Θimi, inter-
class matrix consistency as Θimc to investigate the working mechanism of the
multiplication-based UDs. We conjecture that increasing both of these metrics
will mitigate the unlearnability effect. Through validation experiments that com-
mendably support our hypothesis, we further design a random matrix to boost both
Θimi and Θimc, achieving a notable degree of defense effect. Additionally, we
have also designed two new forms of multiplication-based UDs, and demonstrate
that our defense is effective against both of these UDs as well. Hence, by building
upon and extending these facts, we first propose a brand-new image COrruption
that employs randomly multiplicative transformation via INterpolation operation
(COIN) to successfully defend against multiplication-based UDs. Our approach
leverages global pixel random interpolations, effectively suppressing the impact of
multiplicative noise in multiplication-based UDs. Extensive experiments demon-
strate that our defense approach outperforms state-of-the-art defenses against
multiplication-based UDs, achieving an improvement of 19.17%-44.63% in av-
erage test accuracy on the CIFAR-10 and CIFAR-100 dataset.

1 INTRODUCTION

The triumph of deep neural networks (DNNs) hinges on copious high-quality training data, moti-
vating many commercial enterprises to scrape images from unidentified sources. In this scenario,
adversaries may introduce elaborate and imperceptible perturbations to each image in the dataset,
thereby creating an unlearnable dataset (UD) that is subsequently disseminated online. This ma-
nipulation ultimately leads to a diminished generalization capacity of the victim model after being
trained on such a dataset. Previous UDs were devoted to applying additive perturbations under the
constraint of Lp norm to ensure their visual concealment, i.e., bounded UDs (Huang et al., 2021;
Fowl et al., 2021; Tao et al., 2021; Fu et al., 2022; Yu et al., 2022; Sandoval-Segura et al., 2022b;
Ren et al., 2023; Chen et al., 2023; Wen et al., 2023; Wu et al., 2023).

Correspondingly, many defense schemes (Tao et al., 2021; Liu et al., 2023b; Qin et al., 2023b;
Dolatabadi et al., 2023; Segura et al., 2023) against bounded UDs have been proposed. Among them,
the most outstanding and widely-used defense solutions are techniques like adversarial training
(AT) (Tao et al., 2021) and JPEG compression (Liu et al., 2023b), as demonstrated in Fig. 1 (a)1.
The ease with which bounded UDs are successfully defended can be attributed to the fact that the
introduced additive noise is limited, which renders the noise distribution easily disrupted.

1The accuracy results of these bounded UDs are reproduced based on their released source codes.

1

Under review as a conference paper at ICLR 2024

EM TAP REM SEP URP LSP AR
0

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

Accuracy w/o defense and with AT, JPEG on bounded UDs

w/o defense
with AT
with JPEG

(a) Defense against seven SOTA bounded UDs.

w/o AT AVATAR AA OP ISS-G ISS-J
10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Defense Effect Against CUDA

(b) Defense against CUDA with SOTA defenses.

Figure 1: (a) Using AT and JPEG is enough to effectively defend against so many SOTA bounded
UDs. (b) Using existing SOTA defense schemes is powerless against CUDA. The accuracy results
of Fig. 1 (a) (using ResNet18), and (b) (using ResNet50) are obtained on the CIFAR-10 dataset
using SGD with a momentum of 0.9, a learning rate of 0.1, and a batch size of 128 for training 80
epochs. The compression factor of JPEG is set to 10 as suggested by Liu et al. (2023b).

However, the latest proposed UD that employs multiplicative convolution operations without norm
constraints (i.e., multiplication-based UDs) (Sadasivan et al., 2023) has tremendously shaken the
existing circumstances. Specifically, convolution-based multiplication-based UD (CUDA) (Sada-
sivan et al., 2023) has expanded the scope by using multiplication to broaden the noise spectrum,
causing existing defense schemes to be completely ineffective as shown in Fig. 1 (b). Furthermore,
as of now, no tailored defense against multiplication-based UDs has been proposed, presenting a
significant and unprecedented challenge to defenders.

To the best of our knowledge, none of the existing defense mechanisms
demonstrate efficacy in effectively mitigating multiplication-based UDs.

Given this context, there is an urgent need to formulate a defense paradigm against the prevailing
multiplication-based UDs to tackle the challenges at hand. For designing a custom defense against
multiplication-based UDs, we first align with Min et al. (2021); Javanmard & Soltanolkotabi (2022);
Sadasivan et al. (2023) in simplifying the image samples as column vectors generated by a Gaus-
sian mixture model (GMM) (Reynolds et al., 2009). In this manner, existing multiplication-based
unlearnable samples can be expressed as the product of a matrix and clean samples. This multiplica-
tive matrix can be understood as multiplicative perturbations, in contrast to the additive perturbations
in most bounded UDs.

Meanwhile, Sadasivan et al. (2023) find that the test accuracy breathtakingly surpasses 90% when
adding universal multiplicative noise to the dataset, which implies that it is not the multiplicative
noise itself that renders the dataset unlearnable. Hence, the reasons behind the effectiveness of
multiplication-based UDs remain to be further investigated. Inspired by the proposition from Yu
et al. (2022) that the linearity separability property of noise is the reason for the effectiveness of
UDs, we conjecture that either increasing the inconsistency within intra-class multiplicative noise or
enhancing the similarity within inter-class multiplicative noise can both impair unlearnable effects.
Back to the previously mentioned scenario with perfect multiplicative expression of unlearnable
samples, we first formally define these two metrics as Θimi and Θimc customized for multiplication-
based UDs. Then we conduct validation experiments based on these two quantitative indicators,
consequently supporting our hypothesis. Now we are just motivated to design a transformation
technique for the multiplicative matrix to effectively boost Θimi and Θimc, and then extend this
technique to defend against real unlearnable images. Specifically, we leverage a uniform distribu-
tion to generate random values and random shifts to construct a new random matrix, which is uni-
versally applied to left-multiply unlearnable samples. This transformation simultaneously achieves
an enhancement in both Θimi and Θimc, subsequently improving the test accuracy.

By expanding this random matrix to high-dimensional real multiplication-based unlearnable sam-
ples, we first propose COIN, a newly designed defense strategy for countering multiplication-based

2

Under review as a conference paper at ICLR 2024

UDs, employing randomly multiplicative image transformation as its mechanism. Concretely, we
first sample random variables ω and m from a uniform distribution. Afterwards, m is used to obtain
random pixels from unlearnable images for interpolation, and then we convert unlearnable samples
to new samples via bilinear interpolation, involving ω for randomness. Extensive experiments reveal
that our approach significantly overwhelms existing defense schemes, ranging from 19.17%-44.63%
in test accuracy on CIFAR-10 and CIFAR-100. Our contributions are summarized as:

• We are the first to focus on defenses against multiplication-based UDs and the first to
propose two brand-new metrics Θimi and Θimc tailored for multiplication-based UDs to
explore the underlying mechanism of them.

• To the best of our knowledge, we propose the first highly effective defense strategy against
multiplication-based UDs, termed as COIN, which utilizes a random pixel-based transfor-
mation and serves as a vital complement to the community of defense efforts against UDs.

• We further propose two new forms of multiplicative-based UDs in the context of GMM,
and validate the effectiveness of our defense approach against them.

• Extensive experiments against existing multiplication-based UDs on three benchmark
datasets and six commonly-used model architectures validate the effectiveness of our de-
fense strategy.

2 RELATED WORK

2.1 UNLEARNABLE DATASETS

Current unlearnable datasets can be classified into two categories, i.e., bounded UDs and
multiplication-based UDs. The methods for crafting bounded UDs are as follows: Huang et al.
(2021) first introduce the concept of “unlearnable examples” and utilize a dual minimization op-
timization approach to generate additive unlearnable noise with a restricted range. Subsequently,
generation methods based on targeted adversarial samples (Fowl et al., 2021), universal random
noise (Tao et al., 2021), robust unlearnable examples (Fu et al., 2022), linearly separable perturba-
tions (Yu et al., 2022), autoregressive processes (Sandoval-Segura et al., 2022b), one-pixel short-
cut (Wu et al., 2023)2, and self-ensemble checkpoints (Chen et al., 2023) are successively proposed.
Nonetheless, recent studies have indicated that popularly used defense techniques like AT and JPEG
compression can readily counteract existing bounded UDs (Tao et al., 2021; Liu et al., 2023b).

Recently, a new type of multiplication-based UDs have been newly proposed, i.e., Sadasivan et al.
(2023) employ multiplicative convolutional operations to generate multiplicative noise without norm
constraints. Unfortunately, all currently available defense methods prove ineffective against it, and
there is currently no research exploring viable defense strategies.

2.2 DEFENSES AGAINST UDS

Method↓ Metric→ Effective for
CUDA [12]

Effective for
OPS [13]

Low time
overhead

No need for
external models

AT [8]
ISS-G [9]
ISS-J [9]
AA [10]

AVATAR [11]
OP [15] ---
Ours

Defense↓ Metric→ Effective for
CUDA

No need for
external models

AT
ISS-G
ISS-J
AA

AVATAR
OP

COIN (Ours)

Figure 2: The defense effective-
ness against CUDA and depen-
dence on external models are pre-
sented. “•” denotes fully satisfying
the condition.

There are many defense techniques proposed for UDs so
far. Tao et al. (2021) experimentally and theoretically demon-
strate AT can effectively defend against bounded UDs, and Liu
et al. (2023b) discover that simple image transformation tech-
niques, i.e., grayscale transformation (a.k.a., ISS-G), and
JPEG compression can also effectively defend against UDs.
Thereafter, Qin et al. (2023b) employ adversarial augmenta-
tions (AA), Dolatabadi et al. (2023) purify UDs through dif-
fusion models (AVATAR), while Segura et al. (2023) train
a linear regression model to perform orthogonal projection
(OP) on unlearnable samples. Nevertheless, none of these de-
fense methods are tailor-made for multiplication-based UDs,
with all of them failing against CUDA (Sadasivan et al.,
2023). In contrast, our proposed defense is specifically de-
signed for multiplication-based UDs, which effectively safe-

2We treat OPS as a case of bounded UD with L0 = 1 similar to (Liu et al., 2023b; Qin et al., 2023a).

3

Under review as a conference paper at ICLR 2024

guards against existing multiplication-based UD CUDA, offering a viable solution to the current
vulnerability of security threats brought by multiplication-based UDs. A detailed comparison of
defense schemes can be found in Fig. 2.

3 EXPLAINING THE MECHANISM OF MULTIPLICATION-BASED UDS

3.1 THREAT MODEL

The attacker creates a multiplication-based unlearnable dataset by multiplying the carefully crafted
perturbation δi in some way to each image xi in the training set Dc, thus causing the model F with
parameter θ trained on this dataset to generalize poorly to a clean test distribution D (Huang et al.,
2021; Fowl et al., 2021; Yu et al., 2022; Sandoval-Segura et al., 2022b; Chen et al., 2023; Sadasivan
et al., 2023; Wu et al., 2023). Formally, the attacker expects to work out the following bi-level
objective:

max E
(x,y)∼D

[L (F (x; θp) , y)] (1)

s.t. θp = argmin
θ

∑
(xi,yi)∈Dc

L (F (xi ⊗ δi; θ) , yi) (2)

where (xi, yi) represents the clean data from Dc, L is a loss function, e.g., cross-entropy loss, and
⊗ represents some kind of multiplicative operation, while ensuring the modifications to xi are not
excessive for preserving the concealment of the sample.

As for defenders, in the absence of any knowledge of clean samples xi, they aim to perform certain
operations on UDs to achieve the opposite goal of Eq. (1).

3.2 CHALLENGES

Yu et al. (2022) reveal that the effectiveness of bounded UDs can be attributed to the linear sepa-
rability of additive noise. However, Segura et al. (2023) discover that not all bounded UDs exhibit
this property, providing a counterexample (Sandoval-Segura et al., 2022b). Consequently, there is
still no clear consensus on how bounded UDs are effective. More importantly, there are signifi-
cant differences in the form of the noise between multiplication-based UDs and bounded UDs, e.g.,
class-wise multiplication-based perturbations from CUDA (Sadasivan et al., 2023) within the same
class yet show non-identical noise, as illustrated in Fig. 9. This implies that the properties satisfied
by the multiplicative noise corresponding to multiplication-based UDs may be different from those
of bounded UDs. Therefore, we are motivated to design custom evaluation metrics for assessing the
“multiplication linearity separability” properties of multiplication-based UDs, aiming to investigate
the reasons behind the effectiveness of this new type of UDs.

3.3 PRELIMINARIES

Similar to Min et al. (2021); Javanmard & Soltanolkotabi (2022); Sadasivan et al. (2023), we define
a binary classification problem involving a Bayesian classifier (Friedman et al., 1997), and the clean
dataset Dc is sampled from a Gaussian mixture model N (yµ, I). Here, y represents the labels
{±1}, with mean µ ∈ Rd, and covariance I ∈ Rd×d as the identity matrix (d represents the
feature dimension). We denote the clean sample as x ∈ Rd, the multiplication-based unlearnable
example xu in existing multiplication-based UDs can be formulated as left-multiplying the class-
wise matrices A(ay) by x, formulated as:

xu = A(ay) · x (3)

where ay is a parameter used to create a multiplicative matrix A (i.e., multiplicative noise) with
respect to label y. Specifically, CUDA employs a tridiagonal matrix Ac (ay), characterized by
diagonal elements equal to 1, with the lower and upper diagonal elements set to ay . We have
further designed multiplicative UDs in the forms of upper triangular matrices and lower triangular
matrices to demonstrate the generalizability of our proposed defense approach in Section 3.6. The
more intuitive forms of these matrices are provided in the Appendix A.1.1.

4

Under review as a conference paper at ICLR 2024

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Varying a 1

0.96

0.97

0.98

0.99

1.00

im
c

CUDA : a1 = 0.6, imi = 0

imc

Test accuracy
60

65

70

75

80

85

90

95

Te
st

 a
cc

ur
ac

y(
%

)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Varying a 1

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

im
c

CUDA : a1 = 0.7, imi = 0

imc

Test accuracy
60

70

80

90

Te
st

 a
cc

ur
ac

y(
%

)

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Varying a 1

0.975

0.980

0.985

0.990

0.995

1.000

im
c

CUDA : a1 = 0.8, imi = 0

imc

Test accuracy
50

60

70

80

90

Te
st

 a
cc

ur
ac

y(
%

)

aL1 aL2 aL3 aL4 aL5

Diverse classes y={±1} share the same aLi

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

im
i

CUDA : imc = 1.000

imi

Test accuracy
98.4

98.6

98.8

99.0

Te
st

 a
cc

ur
ac

y(
%

)

aL6 aL7 aL8 aL9 aL10

Diverse classes y={±1} share the same aLi

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

im
i

CUDA : imc = 1.000

imi

Test accuracy
97.4

97.6

97.8

98.0

98.2

98.4

Te
st

 a
cc

ur
ac

y(
%

)

aL11 aL12 aL13 aL14 aL15

Diverse classes y={±1} share the same aLi

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

im
i

CUDA : imc = 1.000

imi

Test accuracy 96.50

96.75

97.00

97.25

97.50

97.75

98.00

Te
st

 a
cc

ur
ac

y(
%

)

Figure 3: We explore the impact of Θimc (top row) and Θimi (bottom row) on test accuracy by
manipulating the parameter ay in the process of generating CUDA datasets.

3.4 HYPOTHESIS AND VALIDATIONS

Definition 1: We define the intra-class matrix inconsistency, denoted as Θimi, as follows: Given
the multiplicative matrices {Ai | i = 1, 2, · · · , n} within a certain class yk (containing n samples),
we have an intra-class average matrix defined as Aµk = 1

n

∑n
i=1Ai, an intra-class matrix variance

defined as Dk = 1
n

∑n
i=1(Ai −Aµk)

2 ∈ Rd×d, an intra-class matrix variance mean value defined
as Vmk = 1

d2

∑d−1
i=0

∑d−1
j=0 Dk [i] [j], and then we have Θimi =

1
c

∑c−1
k=0 Vmk, where c denotes the

number of classes in Dc.

Definition 2: We define the inter-class matrix consistency, denoted as Θimc, as follows: Given the
flattened intra-class average matrices of the j-th and k-th classes flat(Aµj), flat(Aµk), we then
have Θimc = sim(flat(Aµj), f lat(Aµk)), where flat () denotes flattening the matrix into a row
vector and sim(·, ·) denotes cosine similarity, i.e., sim(u, v) = uvT /(∥u∥ ∥v∥).
Inspired by the linear separability of additive noise in most bounded UDs, our intuition is that by
decreasing the consistency of intra-class multiplicative matrices or increasing the consistency of
inter-class multiplicative matrices, we can make the noise information introduced by the matrices
more disordered and then less susceptible to be captured. This leads to classifiers failing to learn
information unrelated to image features, thus resulting in an increase in test accuracy. In light of
this, we propose our hypothesis as follows:

Hypothesis 1: When ay in the multiplicative matrix is within a reasonable range, increasing Θimi

or Θimc can both improve the test accuracy of classifiers trained on multiplication-based UDs, and
vice versa.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Varying a 1

60

65

70

75

80

85

90

95

Te
st

 a
cc

ur
ac

y
(%

)

Applying Ar() on CUDA: a1 = 0.6

w/o Ar

= 0.5 with Ar

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Varying a 1

60

70

80

90

Te
st

 a
cc

ur
ac

y
(%

)

Applying Ar() on CUDA: a1 = 0.7

w/o Ar

= 0.5 with Ar

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Varying a 1

50

60

70

80

90

Te
st

 a
cc

ur
ac

y
(%

)

Applying Ar() on CUDA: a1 = 0.8

w/o Ar

= 0.5 with Ar

Figure 4: Comparison results of test accuracy before and after left-multiplying a random matrix
Ar(α) on all CUDA samples. α is all set to 0.5.
Validation: We first conduct experiments based on the preliminaries in Section 3.3 to construct
CUDA datasets to validate our hypothesis. It can be observed from the top row of Fig. 3 that when

5

Under review as a conference paper at ICLR 2024

Θimi remains constant, an increase in Θimc corresponds to an improvement in test accuracy, whereas
a decrease in Θimc leads to a decline in test accuracy, i.e., Θimc and test accuracy exhibit the same
trend of change. On the other hand, in the bottom row of Fig. 3, when Θimc is held constant, test
accuracy increases as Θimi rises and decreases as Θimi falls. Hence, these experimental phenomena
strongly support our proposed hypothesis. Additionally, we further explore in the top row Fig. 3,
it is worth noting that when Θimc=1.000 (i.e., a1 equals a−1), it is equivalent to multiplying all
clean samples by the same matrix Ac, which obtains high test accuracy results of exceeding 90%
regardless of ay equals 0.6, 0.7, or 0.8. The implementation details of these plots and the specific
values of matrix lists aL1 -aL15 are provided in Appendix A.3.

3.5 OUR DESIGN: RANDOM MATRIX Ar

Based on the hypothesis and supporting experimental results mentioned above, we are motivated to
find a method that perturbs the distributions of multiplicative matrix A(ay) in multiplication-based
UDs for increasing Θimi and Θimc, thereby improving test accuracy to achieve defense effect.

Our intuition is to further left-multiply A(ay) by a random matrix Ar ∈ Rd×d to disrupt the matrix
distribution. Concretely, to introduce randomness to the diagonal matrix A(ay) for increasing Θimi,
we first set random values filled with the diagonal of Ar. However, the form of A(ay) remains
unchanged by multiplying this Ar, thus limiting the introduced randomness. Therefore, we add
another set of random variables above the diagonal, but Ac still maintains the tridiagonal matrix
structure. Thus, we shift variables by mi units simultaneously for each row to further enhance
randomness. Due to the space limitation, more specific details regarding the above design reason on
Ar are given in Appendix A.1.2. Next, we unify the random values and random shifts mentioned
above using a uniform distribution U(−α, α), and ensure that the α is consistent for each class,
thereby striving to enhance Θimc as much as possible while already improving Θimi. During matrix
Ar creation process, we first sample a variable s ∼ U(−α, α, size = d), s ∈ Rd, and then obtain
mi = ⌊si⌋ , ni = si − mi, 0 ≤ i ≤ d − 1. The random matrix Ar is parameterized by α and is
designed as:

Ar(α) =

1− n0 n0 0 0 . . . 0
0 1− n1 n1 0 . . . 0
0 0 1− n2 n2 . . . 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
0 0 1− nd−1

∈ Rd×d (4)

where the i-th and (i+1)-th elements of the i-th row (0≤ i ≤ d-1) are 1−ni and ni, and “1− ni, ni”
means that the positions of these two elements for each row are shifted by mi units simultaneously.
When the new location i + mi or i + 1 + mi exceeds the matrix boundaries, we take its modulus
with respect to d to obtain the new position. The implementation process of the Ar(α) can be found
in Algorithm 1.

Whereupon, we obtain test accuracy by left-multiplying all CUDA unlearnable samples with a ran-
dom matrix Ar(α), and then compare it with accuracy after training on the CUDA UD without
Ar(α). Firstly, both Θimi and Θimc increase indeed when Ar(α) is employed as demonstrated
in Tables 6 to 8. Secondly, we observe that the test accuracy with employing Ar is ahead of the
accuracy obtained without using Ar regardless of a1 is set to 0.6, 0.7, or 0.8 , as shown in Fig. 4,
which is also consistent with our hypothesis. Ablation experiments on parameter α in Ar are in Ap-
pendix A.4.

3.6 EFFECTIVENESS OF OUR DEFENSE AGAINST OTHER MULTIPLICATION-BASED UDS

In order to further validate the effectiveness of our defense against multiplication-based UDs, we
have newly designed two forms of multiplication-based UDs in GMM scenario, i.e., we replace the
A(ay) in Eq. (3) with the matrices from Eq. (15) and Eq. (16), forming upper triangular and lower
triangular multiplication-based UD respectively.

Consistent with the default settings in Fig. 4, after applying the defense using the self-designed
random matrix Ar, the test accuracy has been coherently improved, as shown in Tables 1 and 2.

6

Under review as a conference paper at ICLR 2024

Defenses ↓ Values of a1, a−1 → 0.2, 0.8 0.2, 1.0 0.2, 1.2 0.2, 1.4 0.2, 1.6
w/o 92.2 80.6 64.6 55.2 52.0

Applying Ar(0.5) 95.2 91.0 84.4 74.2 64.2

Table 1: Test accuracy (%) results against upper triangle multiplication-based UD.

Defenses ↓ Values of a1, a−1 → 0.2, 0.8 0.2, 1.0 0.2, 1.2 0.2, 1.4 0.2, 1.6
w/o 94.0 77.6 62.0 55.0 52.0

Applying Ar(0.5) 94.4 89.8 82.2 77.8 63.2

Table 2: Test accuracy (%) results against lower triangle multiplication-based UD.

These results indicate that our designed defense solution is effective not only for tridiagonal matrix-
based UDs from CUDA but also can be utilized to defend against attacks formed by other types of
multiplicative matrices.

4 METHODOLOGY

4.1 OUR DESIGN FOR COIN

P

Unlearnable image Output image

𝑄𝑄12 (𝑥𝑥1,𝑦𝑦2)

1

0

𝑄𝑄11(𝑥𝑥1,𝑦𝑦1)

𝑄𝑄22(𝑥𝑥2,𝑦𝑦2)

𝑄𝑄21(𝑥𝑥2,𝑦𝑦1)

(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

f(P) = [1-Δx Δx]
1-Δy

Δy

f (X): pixel value at point X

f(Q11)

f(Q21)

f(Q12)

f(Q22)

X

Y

𝑥𝑥𝑖𝑖

P(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

11

O

Q12 Q22

Q21

1-ΔxΔx

Δy

1-Δy

𝑥𝑥1 𝑥𝑥2

𝑦𝑦𝑖𝑖

𝑦𝑦1

𝑦𝑦2

Pixel value tensor range

f(Q11)

f(Q12)

f(Q21)

f(Q22)
f(P)

Q

H

W
C

Figure 5: Our defense scheme COIN.

Inspired by the linear interpolation process (Blu
et al., 2004), we find that the two random val-
ues in each row of Ar can be effectively mod-
eled as two weighting coefficients, and the ran-
dom location offset mi in each row can be di-
rectly exploited to find the positions for interpo-
lation. Therefore, the previous process of left-
multiplying the matrix Ar can be modeled as a
random linear interpolation process to be ap-
plied for image transformations. In view of
this, we are able to directly extend random ma-
trix Ar to be employed in real image domain.
Unlike the previous sample x ∈ Rd, the un-
learnable image xu ∈ RC×H×W requires vari-
ables along with both horizontal and vertical
directions and employing bilinear interpolation
instead of linear interpolation. The formulaic
definitions are as follows:

sx, sy ∼ U(−α, α, size = H ·W) (5)
where U denotes a uniform distribution with size of height H multiplied by width W , α controls the
range of the generated random variables. Considering that sx and sy are both fundamentally arrays
with size of H ·W , we obtain arrays mx and my by rounding down each variable from the arrays
to its integer part (i.e., random location offsets), formulated as follows:

mxi = ⌊sxi⌋ , myi =
⌊
syi

⌋
(6)

where ⌊ ⌋ represents the floor function, and i is the index in the array, ranging from 0 to H ·W − 1
(with the same meaning in the equations below). Subsequently, the arrays with coefficients required
for interpolation ωx, ωy are computed as follows:

ωxi = sxi −mxi, ωyi = sxi −myi (7)

To obtain the coordinates of the pixels used for interpolation, we first initialize a coordinate grid:

cx, cy = meshgrid(arange(W), arange(H)) ∈ RH×W (8)

where meshgrid denotes coordinate grid creation function, arange is employed to produce an array
with values evenly distributed within a specified range. So now we can obtain the coordinates of the
four nearest pixel points around the desired interpolation point in the bilinear interpolation process:

q11i = ((cxi +mxi)%W, (cyi +myi)%H) (9)

7

Under review as a conference paper at ICLR 2024

q21i = ((cxi +mxi + 1)%W, (cyi +myi)%H) (10)

q12i = ((cxi +mxi)%W, (cyi +myi + 1)%H) (11)

q22i = ((cxi +mxi + 1)%W, (cyi +myi + 1)%H) (12)

where % represents the modulo function, ensuring that the horizontal coordinate ranges from 0 to
W − 1 and the vertical coordinate ranges from 0 to H − 1. Hence, we obtain new pixel values by
using the pixel values of the four points mentioned above through bilinear interpolation:

Fj(pi) = [1− ωxi ωxi]

[
Fj(q11i) Fj(q12i)
Fj(q21i) Fj(q22i)

] [
1− ωyi
ωyi

]
(13)

where Fj() denotes the pixel value of the j-th channel at a certain coordinate point, pi denotes the
coordinate of the newly generated pixel point. Each generated pixel value should be clipped within
the range (0,1). Finally, we gain the transformed image xt by applying Eq. (13) and clipping to
pixel values of each channel of the image xu. The schematic diagram of the above process is shown
in Fig. 5, and we summarize the complete process in Algorithm 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Four widely-used network architectures including ResNet (RN) (He et al., 2016), DenseNet
(DN) (Huang et al., 2017), MobileNetV2 (MNV2) (Sandler et al., 2018), GoogleNet (GN) (Szegedy
et al., 2015), InceptionNetV3 (INV3) (Szegedy et al., 2016), and VGG (Simonyan & Zisserman,
2014) are selected. Meanwhile, three benchmark datasets CIFAR-10 (Krizhevsky & Hinton, 2009),
CIFAR-100 (Krizhevsky & Hinton, 2009), and ImageNet100 (Deng et al., 2009)3 are employed. The
uniform distribution range α is set to 2.0. During training on existing multiplication-based UDs, we
use SGD for training for 80 epochs with a momentum of 0.9, a learning rate of 0.1, and batch sizes
of 128, 32 for CIFAR dataset, ImageNet100 dataset, respectively.

Datasets CIFAR-10 (Krizhevsky & Hinton, 2009) CIFAR-100 (Krizhevsky & Hinton, 2009) AVGDefenses↓ Models→ RN18 VGG16 DN121 MNV2 GN INV3 RN18 VGG16 DN121 MNV2
w/o 26.49 24.65 27.21 21.34 18.73 21.10 14.31 12.53 13.90 12.94 19.32

MU (Zhang et al., 2018) 26.72 28.07 24.67 24.63 26.04 24.99 17.09 13.35 19.97 13.55 21.91
CM (Yun et al., 2019) 26.02 28.53 24.64 20.73 20.11 24.25 12.51 10.14 20.77 10.14 19.78

CO (DeVries & Taylor, 2017) 20.07 27.58 24.86 20.46 18.87 26.06 12.80 10.56 16.19 13.56 19.10
DP-SGD (Hong et al., 2020) 25.50 23.02 25.25 25.78 17.65 21.18 12.42 10.56 16.36 12.72 19.04

AT (Tao et al., 2021) 50.59 45.95 49.01 42.59 50.62 47.66 37.27 28.18 34.21 35.74 42.18
AVATAR (Dolatabadi et al., 2023) 30.67 29.57 33.15 28.53 30.40 24.68 14.49 10.81 12.97 13.85 22.91

AA (Qin et al., 2023b) 39.85 38.68 38.92 41.06 38.58 39.01 24.83 1.00 27.89 20.49 31.03
OP (Segura et al., 2023) 29.77 30.33 33.82 28.86 26.52 23.94 20.17 14.59 15.55 23.02 24.66
ISS-G (Liu et al., 2023b) 25.77 21.42 26.73 19.85 15.41 22.63 8.80 6.40 11.48 8.71 16.72
ISS-J (Liu et al., 2023b) 45.10 40.26 39.79 41.46 38.49 41.49 33.62 26.92 28.94 31.23 36.73

COIN (Ours) 71.90 73.65 70.45 73.63 72.88 69.07 48.63 46.74 45.72 48.53 61.35

Table 3: Test accuracy (%) on CIFAR-10 and CIFAR-100 with defenses against CUDA.

5.2 DEFENSE COMPETITORS

Defenses↓ Models→ RN18 RN50 DN121 MNV2 AVG
w/o 25.74 26.66 21.70 16.30 22.60

MU (Zhang et al., 2018) 34.96 19.38 27.78 15.60 24.43
CM (Yun et al., 2019) 16.54 24.04 23.58 8.00 18.04

CO (DeVries & Taylor, 2017) 25.46 29.20 23.90 17.58 24.04
AT (Tao et al., 2021) 37.82 36.80 30.34 41.42 36.60

ISS-G (Liu et al., 2023b) 14.92 13.50 9.78 5.78 11.00
ISS-J (Liu et al., 2023b) 30.10 37.04 25.52 28.04 30.18

COIN (Ours) 37.80 35.38 35.22 41.50 37.48

Table 4: Test accuracy (%) on ImageNet
with defenses against CUDA.

We compare our defense COIN with SOTA defenses
against UDs, i.e., AT (Tao et al., 2021), ISS (Liu
et al., 2023b) (including JPEG compression, a.k.a.,
ISS-J and grayscale transformation, a.k.a., ISS-G),
AVATAR (Dolatabadi et al., 2023), OP (Segura et al.,
2023), and AA (Qin et al., 2023b). We also apply four
defense strategies proposed by Borgnia et al. (2021), i.e.,
differential privacy SGD (DP-SGD) (Hong et al., 2020),
cutmix (CM) (Yun et al., 2019), cutout (CO) (DeVries & Taylor, 2017), and mixup (MU) (Zhang
et al., 2018), which are popularly used to test whether it can defend against UDs. Consistent with
previous works (Liu et al., 2023b; Tao et al., 2021; Qin et al., 2023b), we evaluate defense schemes
with test accuracy, i.e., the model accuracy on a clean test set after training on UDs.

5.3 EVALUATION ON OUR DEFENSE COIN

3We select the first 100 classes from the ImageNet dataset with image size of 224×224.

8

Under review as a conference paper at ICLR 2024

1.6 2.0 2.4 2.8
Uniform distribution range ()

45

50

55

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

)

CUDA_RN18
CUDA_VGG16

Figure 6: Using COIN against
CUDA with varying α on
RN18 and VGG16.

The test accuracy results for defense against existing multiplication-
based UDs on benchmark datasets are presented in Tables 3 and 4.
“AVG” denotes the average value for each row. The values covered
by deep green denote the best defense effect, while values covered

by light green denote the second-best defense effect.

It can be observed the average test accuracy (i.e., values in AVG col-
umn) obtained by existing defense schemes against CUDA (Sada-
sivan et al., 2023) lag behind COIN by as much as 19.17%-44.63%
as shown in Table 3, which demonstrates the superiority of our de-
fense. Meanwhile, our defense scheme also maintains a leading
advantage of 0.88%-26.48% on large datasets as shown in Table 4.
The reason ISS-J largely lags behind COIN against CUDA can be
deduced from Fig. 9, i.e., the excessive global multiplicative noise
introduced by CUDA results in a significant loss of features after the
lossy compression from ISS-J. Additional explorations in COIN against bounded UDs are demon-
strated in Appendix A.5.

5.4 ABLATION EXPERIMENTS ON α

AT AVATAR AA OP ISS-G ISS-J COIN (Ours)
0

20

40

60

80

100

120

Ti
m

e
ov

er
he

ad
 (

m
in

ut
es

)

Figure 7: Time overhead on
CIFAR-10 using RN18.

We investigate the impact of uniform distribution range α on the
effectiveness of our defense COIN, as shown in Fig. 6. The test
accuracy against CUDA increases initially with the rise in α and
then starts to decrease. This is because initially, as α increases, the
CUDA perturbations gradually become disrupted. However, as α
continues to increase, excessive corruptions damage image features,
leading to a deterioration in defense effect. We opt for an α of 2.0
that yields the highest average defense effect.

5.5 TIME COMPLEXITY ANALYSIS FOR COIN

Assuming that the time complexity of each line of code in Algo-
rithm 2 is O(1), then for an multiplication-based UD Du = {xui ∈
RC×H×W }Ni=1, the overall time complexity of performing COIN is
O(N × C × H × W) + O(N × H × W) + O(N). Due to the
fact that the values of C, H , and W of image xui are constant, e.g., C=3, H=32, and W=32 for
CIFAR-10 images, the final time complexity is optimized to: O(N) + O(N) + O(N) = O(N).
We then employ multiple defense strategies when training ResNet18 on CUDA CIFAR-10 for 80
epochs, and measure their corresponding time overheads, as shown in Fig. 7. We can conclude that
our defense approach COIN is relatively efficient compared with existing defense schemes.

6 CONCLUSION

In this paper, we demonstrate for the first time that existing defense mechanisms against UDs are
all ineffective against multiplication-based UDs. In light of this, we focus for the first time the chal-
lenging issue of defending against multiplication-based UDs. Subsequently, we model the process
of existing multiplication-based UDs based on GMMs and Bayesian binary problems by applying
multiplicative matrices to samples. Simultaneously, we discover that the consistency of intra-class
and inter-class noise in multiplication-based UDs has a profound impact on the unlearnable effect,
then we define two quantitative metrics Θimi and Θimc and investigate how to mitigate the impact
of multiplicative matrices. We find increasing both of these two metrics can mitigate the effective-
ness of multiplication-based UDs and design a new random matrix to increase both metrics. In
addition, we have newly designed two different types of multiplication-based UDs and experimen-
tally validated the effectiveness of our defense approach against all of them. Furthermore, in the
context of real samples and based on the above ideas, we first propose a novel image transformation
based on global pixel-level random resampling via bilinear interpolation, which universally guards
against existing multiplication-based UDs. Extensive experiments on various benchmark datasets
and widely-used models verified the effectiveness of our defense.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Thierry Blu, Philippe Thévenaz, and Michael Unser. Linear interpolation revitalized. IEEE Trans-
actions on Image Processing, 13(5):710–719, 2004.

Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geiping, Micah Goldblum,
Tom Goldstein, and Arjun Gupta. Strong data augmentation sanitizes poisoning and backdoor
attacks without an accuracy tradeoff. In Proceedings of the 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’21), pp. 3855–3859, 2021.

Sizhe Chen, Geng Yuan, Xinwen Cheng, Yifan Gong, Minghai Qin, Yanzhi Wang, and Xiaolin
Huang. Self-ensemble protection: Training checkpoints are good data protectors. In Proceedings
of the 11th International Conference on Learning Representations (ICLR’23), 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the 2009 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR’09), pp. 248–255, 2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Hadi M Dolatabadi, Sarah Erfani, and Christopher Leckie. The devil’s advocate: Shattering the
illusion of unexploitable data using diffusion models. arXiv preprint arXiv:2303.08500, 2023.

Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and Tom Gold-
stein. Adversarial examples make strong poisons. In Proceedings of the 35th Neural Information
Processing Systems (NeurIPS’21), volume 34, pp. 30339–30351, 2021.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine Learn-
ing, 29:131–163, 1997.

Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen, and Dacheng Tao. Robust unlearnable examples:
Protecting data privacy against adversarial learning. In Proceedings of the 10th International
Conference on Learning Representations (ICLR’22), 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR’16), pp. 770–778, 2016.

Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and Nicolas Papernot.
On the effectiveness of mitigating data poisoning attacks with gradient shaping. arXiv preprint
arXiv:2002.11497, 2020.

Shengshan Hu, Wei Liu, Minghui Li, Yechao Zhang, Xiaogeng Liu, Xianlong Wang, Leo Yu Zhang,
and Junhui Hou. Pointcrt: Detecting backdoor in 3d point cloud via corruption robustness. In
Proceedings of the 31st ACM International Conference on Multimedia (MM’23), pp. 666–675,
2023.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR’17), pp. 4700–4708, 2017.

Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearnable
examples: Making personal data unexploitable. In Proceedings of the 9th International Confer-
ence on Learning Representations (ICLR’21), 2021.

Adel Javanmard and Mahdi Soltanolkotabi. Precise statistical analysis of classification accuracies
for adversarial training. The Annals of Statistics, 50(4):2127–2156, 2022.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Xiaogeng Liu, Minghui Li, Haoyu Wang, Shengshan Hu, Dengpan Ye, Hai Jin, Libing Wu, and
Chaowei Xiao. Detecting backdoors during the inference stage based on corruption robustness
consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR’23), pp. 16363–16372, 2023a.

10

Under review as a conference paper at ICLR 2024

Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Image shortcut squeezing: Countering perturba-
tive availability poisons with compression. In Proceedings of the 40th International Conference
on Machine Learning (ICML’23), 2023b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proceedings of the 6th Interna-
tional Conference on Learning Representations (ICLR’18), 2018.

Yifei Min, Lin Chen, and Amin Karbasi. The curious case of adversarially robust models: More
data can help, double descend, or hurt generalization. In Uncertainty in Artificial Intelligence, pp.
129–139. PMLR, 2021.

Tianrui Qin, Xitong Gao, Juanjuan Zhao, Kejiang Ye, and Cheng-Zhong Xu. Apbench: A unified
benchmark for availability poisoning attacks and defenses. arXiv preprint arXiv:2308.03258,
2023a.

Tianrui Qin, Xitong Gao, Juanjuan Zhao, Kejiang Ye, and Cheng-Zhong Xu. Learning the un-
learnable: Adversarial augmentations suppress unlearnable example attacks. arXiv preprint
arXiv:2303.15127, 2023b.

Jie Ren, Han Xu, Yuxuan Wan, Xingjun Ma, Lichao Sun, and Jiliang Tang. Transferable unlearnable
examples. In Proceedings of the 11th International Conference on Learning Representations
(ICLR’23), 2023.

Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of Biometrics, 741(659-663),
2009.

Vinu Sankar Sadasivan, Mahdi Soltanolkotabi, and Soheil Feizi. Cuda: Convolution-based unlearn-
able datasets. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR’23), pp. 3862–3871, 2023.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the 2018 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’18), pp. 4510–4520, 2018.

Pedro Sandoval-Segura, Vasu Singla, Liam Fowl, Jonas Geiping, Micah Goldblum, David Jacobs,
and Tom Goldstein. Poisons that are learned faster are more effective. In Proceedings of the 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’22),
pp. 198–205, 2022a.

Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, and
David W Jacobs. Autoregressive perturbations for data poisoning. In Proceedings of the 36th
Neural Information Processing Systems (NeurIPS’22), volume 35, 2022b.

Pedro Sandoval Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, and Tom Goldstein. What
can we learn from unlearnable datasets? In Proceedings of the 37th Neural Information Process-
ing Systems (NeurIPS’23), 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR’15), pp. 1–9, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the 2016 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR’16), pp. 2818–2826, 2016.

Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Better safe than sorry: Pre-
venting delusive adversaries with adversarial training. In Proceedings of the 35th Neural Infor-
mation Processing Systems (NeurIPS’21), volume 34, pp. 16209–16225, 2021.

11

Under review as a conference paper at ICLR 2024

Rui Wen, Zhengyu Zhao, Zhuoran Liu, Michael Backes, Tianhao Wang, and Yang Zhang. Is ad-
versarial training really a silver bullet for mitigating data poisoning? In Proceedings of the 11th
International Conference on Learning Representations (ICLR’23), 2023.

Shutong Wu, Sizhe Chen, Cihang Xie, and Xiaolin Huang. One-pixel shortcut: On the learning
preference of deep neural networks. In Proceedings of the 11th International Conference on
Learning Representations (ICLR’23), 2023.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Availability attacks create shortcuts.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD’22), pp. 2367–2376, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the 17th International Conference on Computer Vision (ICCV’19), 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond empiri-
cal risk minimization. In Proceedings of the 6th International Conference on Learning Represen-
tations (ICLR’18), 2018.

A APPENDIX

A.1 INTUITIVE DISPLAYS OF MATRICES

A.1.1 INTUITIVE DISPLAYS OF A(ay) AND Ar(α)

During CUDA UDs (Sadasivan et al., 2023) generation process, the tridiagonal matrix Ac (ay) is
designed as:

Ac (ay) =

1 ay 0 0 . . . 0
ay 1 ay 0 . . . 0

0 ay 1 ay . . .
...

...
...

...
. 0

...
...

...
...

. . . ay
0 0 ay 1

∈ Rd×d (14)

where constant ay corresponding to different y is also different.

As for our newly designed upper triangular matrix, which is defined as:

Au (ay) =

1 ay 0 0 . . . 0
0 1 ay 0 . . . 0

0 0 1 ay . . .
...

...
...

...
. 0

...
...

...
...

. . . ay
0 0 0 1

∈ Rd×d (15)

where constant ay corresponding to different y is also different. Similarly, the lower triangular
matrix is defined as:

Al (ay) =

1 0 0 0 . . . 0
ay 1 0 0 . . . 0

0 ay 1 0 . . .
...

...
...

...
. 0

...
...

...
...

. . . 0
0 0 ay 1

∈ Rd×d (16)

where constant ay corresponding to different y is also different.

12

Under review as a conference paper at ICLR 2024

Algorithm 1: Matrix Ar(α) creation process
Input: Feature dimension d; matrix strength α.
Output: Matrix Ar(α).
Function: Uniform distribution U .

1 Randomly sample s = U(−α, α, size = d);
2 Round down to the integer m = ⌊s⌋;
3 Fractional part n = s−m;
4 Initialize a matrix with all zeros Ar(α) ∈ Rd×d;
5 for i = 0 to (d− 1) do
6 for j = 0 to (d− 1) do
7 if i+m[i] < 0 then
8 x = i+m[i] + d− 1;
9 end

10 else if i+m[i] > d− 1 then
11 x = i+m[i]− d+ 1;
12 end
13 else
14 x = i+m[i];
15 end
16 if x == j then
17 Ar(α)[i, j] = 1− n[i];
18 end
19 else if (x+ 1)%d == j then
20 Ar(α)[i, j] = n[i];
21 end
22 end
23 end
24 Return: Matrix Ar(α).

During matrix Ar creation process, we first sample a variable s ∼ U(−α, α, size = d), s ∈ Rd, and
then obtain mi = ⌊si⌋ , ni = si −mi, 0 ≤ i ≤ d − 1. The random matrix Ar is parameterized by
α and is designed as:

Ar(α) =

1− n0 n0 0 0 . . . 0
0 1− n1 n1 0 . . . 0
0 0 1− n2 n2 . . . 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
0 0 1− nd−1

∈ Rd×d (17)

where the i-th and (i+1)-th elements of the i-th row (0≤ i ≤ d-1) are 1−ni and ni, and “1− ni, ni”
means that the positions of these two elements for each row are shifted by mi units simultaneously.
When the new location i + mi or i + 1 + mi exceeds the matrix boundaries, we take its modulus
with respect to d to obtain the new position. The detailed process can be referred to in Algorithm 1.

A.1.2 WHY DO WE DESIGN Ar LIKE THIS?

We will explain the rationale behind the design of the Ar matrix. First of all, we define a diagonal
matrix Ao, which might be a new matrix representation of a potential multiplication-based attack
similar to bounded UD OPS (Wu et al., 2023), and a matrix Atr with random values on its diagonal

13

Under review as a conference paper at ICLR 2024

elements formulated as:

Ao (ay, i) =

1 0 0 0 . . . 0

0
. . . 0 0 . . . 0

0 0 1 0 . . . 0
...

...
... ay

...
...

...
...

...
... 1

...
0 0 0 1

∈ Rd×d (18)

Atr =

n0 0 0 0 . . . 0
0 n1 0 0 . . . 0

0 0
. . . 0 . . . 0

...
...

... ni

...
...

...
...

...
...

. . .
...

0 0 0 nd−1

∈ Rd×d (19)

where n0, n1, ..., nd−1 are all random values. If we multiply matrix Atr by A(ay), we will get new
matrices as:

Atr · Ac(ay) =

n0 n0ay 0 0 . . . 0
n1ay n1 n1ay 0 . . . 0

0
. 0

...
... niay ni niay

...
...

...
...

.
...

0 0 nd−1ay nd−1

∈ Rd×d (20)

Atr · Ao(ay) =

n0 0 0 0 . . . 0
0 n1 0 0 . . . 0

0 0
. . . 0 . . . 0

...
...

... niay
...

...
...

...
...

...
. . .

...
0 0 0 nd−1

∈ Rd×d (21)

Apparently, setting random variables only on the diagonal like Atr does not alter the original form
of the multiplicative matrix, i.e., Ac remains a tridiagonal matrix, and Ao remains a diagonal matrix,
which has a very limited effect on disrupting the distribution of the original matrix.

So, how would adding another set of random variables above the diagonal change the form of the
matrix? Thus, we define a new matrix Asr as:

Asr =

1− n0 n0 0 0 . . . 0
0 1− n1 n1 0 . . . 0
0 0 1− n2 n2 . . . 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
0 0 1− nd−1

∈ Rd×d (22)

where n0, n1, ..., nd−1 are all random values. Similarly, we multiply it with A(ay) to obtain the
following result:

Asr · Ac (ay) =

1− n0 + n0ay (1− n0)ay + n0 n0ay 0 . . . 0
(1− n1)ay 1− n1 + n1ay (1− n1)ay + n1 n1ay . . . 0

0 (1− n2)ay 1− n2 + n2ay (1− n2)ay + n2 . . .
...

...
...

...
. 0

...
...

...
...

. . . nd−1ay
0 0 (1− nd−1)ay (1− nd−1) + nd−1ay

(23)

14

Under review as a conference paper at ICLR 2024

Asr · Ao(ay, i) =

1− n0 n0 0 0
0 1− n1 n1 0 . . . 0
...

...
.

...
...

...
... (1− ni)ay ni . . .

...
...

...
...

.
0 1− nd−1

(24)

It can be observed that the matrix Ao has completely altered its form, accommodating more ran-
domness. However, Ac still maintains the tridiagonal matrix form. So, in order to alter the form
of Ac as much as possible for introducing as much randomness as possible, it seems reasonable to
add another set of random values below the diagonal of Asr. However, this idea encounters two
challenging practical issues: I: Adding more diagonal values would significantly increase the com-
putational cost of matrix multiplication, which is not conducive to efficient algorithms. II: More
diagonal values correspond to more noise, which will harm sample features. Therefore, this way
is not feasible. So, we come up with the idea of introducing small random offsets to the random
variables for each row. This approach both does not introduce new variables also breaks the original
tridiagonal form of the matrix Ac(ay), thus further increasing randomness.

A.2 FURTHER STUDY ON IMAGE CORRUPTIONS

The defense strategy we propose, along with ISS-G and ISS-J, fundamentally fall within the do-
main of corruption techniques (Liu et al., 2023a; Hu et al., 2023). Hence, we aim to explore ad-
ditional image corruption operations to ascertain the possibility of more potential defenses against
multiplication-based UDs, as illustrated in Fig. 8. It can be observed that the majority of these com-
monly used image corruptions are largely ineffective in defending against multiplication-based UDs.
Delving deeper into the defense against these image corruption techniques for multiplication-based
UDs would be a meaningful avenue for future research.

Ga
us

sia
n

no
ise

Sh
ot

 n
oi

se

Im
pu

lse
 n

oi
se

De
fo

cu
s b

lu
r

Gl
as

s b
lu

r

M
ot

io
n

bl
ur

Zo
om

 b
lu

r

Sn
ow

Fr
os

t

Fo
g

Br
ig

ht
ne

ss

Co
nt

ra
st

Pi
xe

la
te

Sp
ec

kl
e

no
ise

Ga
us

sia
n

bl
ur

Sp
at

te
r

Sa
tu

ra
te

10

15

20

25

30

35

Te
st

 a
cc

ur
ac

y
(%

)

Test Accuracy on UDs with Diverse Image Corruptions
Employing on CUDA

Figure 8: Test accuracy (%) on CIFAR-10 using RN18 with corruptions against CUDA.

Matrix list aLi
aL1

aL2
aL3

aL4
aL5

ay values in list [0.4] [0.2, 0.3, 0.4] [0.03, 0.06, 0.1, 0.2, 0.3, 0.4] [0.05, 0.1, 0.2, 0.3, 0.4] [0.1, 0.2, 0.3, 0.4]
Matrix list aLi

aL6
aL7

aL8
aL9

aL10

ay values in list [0.5] [0.3, 0.5, 0.7] [0.05, 0.1, 0.5, 0.7] [0.1, 0.5, 0.7] [0.2, 0.5, 0.7]
Matrix list aLi

aL11
aL12

aL13
aL14

aL15

ay values in list [0.6] [0.4, 0.6, 0.8] [0.05, 0.1, 0.3, 0.6, 0.9] [0.1, 0.2, 0.4, 0.6, 0.8, 0.9] [0.2, 0.4, 0.6, 0.8]

Table 5: The specific values of the matrix lists aL1-aL15 are shown. Each ay value corresponds to
the matrix Ac(ay), and the matrix lists aLi used for both classes are identical.

15

Under review as a conference paper at ICLR 2024

w/o Ar, a−1 → 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Θimi 0 0 0 0 0 0 0
Θimc 0.955 0.982 0.996 1.000 0.997 0.990 0.980

Ar(0.5), a−1 → 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Θimi 0.000664 0.000663 0.000674 0.000698 0.000738 0.000782 0.000845
Θimc 0.981 0.993 0.998 1.000 0.999 0.996 0.992

Table 6: The specific values of Θimi and Θimc before and after using Ar on CUDA samples with
a1 = 0.6 and varying a−1 in Fig. 4.

A.3 IMPLEMENTATION DETAILS OF VALIDATION EXPERIMENTS

Similar to CUDA (Sadasivan et al., 2023), we sample 1000 samples from the Gaussian Mixture
Model (with ∥µ∥2=2.0, d=100) as described in Section 3.3, and evenly split them into a training set
(used for generating new training sets by CUDA) and a test set. We train a Naive Bayes classifier
on the new training set and then calculate the test accuracy on the test set with the trained classifier.
The results of test accuracy reported in Section 3.4 are the average results obtained after running the
experiments 10 times with diverse random seeds.

w/o Ar, a−1 → 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Θimi 0 0 0 0 0 0 0
Θimc 0.965 0.986 0.997 1.000 0.998 0.992 0.985

Ar(0.5), a−1 → 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Θimi 0.000701 0.000712 0.000734 0.000770 0.000822 0.000877 0.000953
Θimc 0.986 0.994 0.999 1.000 0.999 0.997 0.994

Table 7: The specific values of Θimi and Θimc before and after using Ar on CUDA samples with
a1 = 0.7 and varying a−1 in Fig. 4.

w/o Ar, a−1 → 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Θimi 0 0 0 0 0 0 0
Θimc 0.973 0.990 0.998 1.000 0.998 0.994 0.988

Ar(0.5), a−1 → 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Θimi 0.000762 0.000785 0.000818 0.000865 0.000929 0.000996 0.001083
Θimc 0.989 0.996 0.999 1.000 0.999 0.997 0.995

Table 8: The specific values of Θimi and Θimc before and after using Ar on CUDA samples with
a1 = 0.8 and varying a−1 in Fig. 4.

In the process of constructing the CUDA UD, Ac(a1) represents the left-multiplying matrix for
samples of class 1, and Ac(a−1) is the left-multiplying matrix for samples of class -1.

In the top three subplots of Fig. 4, we apply class-wise matrices separately to all samples of class 1
or class -1, i.e., all samples within the same class receive the same matrix to ensure Θimi=0. Then,
by changing the value of a−1 (while keeping a1 fixed), we can achieve variations in Θimc.

In the bottom three subplots of Fig. 4, to investigate the impact of Θimi on test accuracy, we first
designed a list of matrices, denoted as aLi

, which contains several matrices. For each sample in
a specific class, we randomly selected a matrix from the list to perform the matrix multiplication.
By controlling the diversity of matrices in the list, we could control the variations in Θimi. We set
the matrix lists for each class to be the same to make Θimc remain fixed at 1.000. The specific
configuration of the matrix list aLi

is shown in the table below:

It can be observed that from aL1
to aL5

, aL6
to aL10

, and aL11
to aL15

, the fluctuations in the matrix
lists increase, leading to larger values of Θimi accordingly.

A.4 ADDITIONAL VALIDATION EXPERIMENTAL DETAILS AND RESULTS

A.4.1 ABLATION VALIDATION EXPERIMENTS ON α OF Ar(α)

Building upon Fig. 4, we further explore the impact of different α parameters of Ar(α) on the final
defense effectiveness. The values of Θimi, Θimc, and test accuracy results after applying Ar(α)

16

Under review as a conference paper at ICLR 2024

Ar(0.4), a1 = 0.6, a−1 → 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Θimi 0.000446 0.000446 0.000454 0.000470 0.000497 0.000527 0.000569
Θimc 0.976 0.991 0.998 1.000 0.998 0.995 0.990

Test accuracy (%) 92.08 93.10 94.70 96.44 92.08 79.18 64.18
Ar(0.4), a1 = 0.7, a−1 → 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Θimi 0.000471 0.000478 0.000495 0.000522 0.000551 0.000593 0.000642
Θimc 0.982 0.993 0.998 1.000 0.999 0.996 0.992

Test accuracy (%) 84.74 86.22 92.68 95.60 88.24 71.98 56.94
Ar(0.4), a1 = 0.8, a−1 → 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Θimi 0.000513 0.000529 0.000552 0.000583 0.000625 0.000670 0.000728
Θimc 0.987 0.995 0.999 1.000 0.999 0.997 0.994

Test accuracy (%) 73.18 80.30 88.08 94.66 85.14 65.32 54.00

Table 9: The values of Θimi, Θimc, and test accuracy after applying Ar(0.4) on CUDA samples
with a1 = 0.6, 0.7, 0.8 and corresponding varying a−1.

Ar(0.6), a1 = 0.6, a−1 → 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Θimi 0.000931 0.000929 0.000943 0.000976 0.001032 0.001093 0.001183
Θimc 0.985 0.994 0.999 1.000 0.999 0.997 0.994

Test accuracy (%) 91.82 92.78 94.10 96.08 92.10 79.48 64.96
Ar(0.6), a1 = 0.7, a−1 → 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Θimi 0.000982 0.000997 0.001027 0.001077 0.001149 0.001227 0.001334
Θimc 0.989 0.996 0.999 1.000 0.999 0.997 0.995

Test accuracy (%) 84.08 87.32 91.40 95.44 89.06 72.80 58.32
Ar(0.6), a1 = 0.8, a−1 → 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Θimi 0.001067 0.001098 0.001145 0.001210 0.001300 0.001394 0.001518
Θimc 0.992 0.997 0.999 1.000 0.999 0.998 0.996

Test accuracy (%) 73.62 80.80 88.16 94.90 85.62 66.56 54.62

Table 10: The values of Θimi, Θimc, and test accuracy after applying Ar(0.6) on CUDA samples
with a1 = 0.6, 0.7, 0.8 and corresponding varying a−1.

with varying α on CUDA are demonstrated in Tables 9 and 10. We compare these test accuracy
results with original accuracy results (i.e., w/o applying Ar) in Tables 6 to 8. It can be found that
there is an improvement in test accuracy when α is set to 0.4 or 0.6, indicating the presence of the
defense effect. Furthermore, after applying Ar, both Θimi and Θimc values increase, which also
aligns with the conclusions drawn from Fig. 4.

Clean
images

CUDA
images

Unbounded
perturbations

from CUDA

Employ

CUDA

Employ

CUDA

Employ

CUDA

Employ

CUDA

Employ

CUDA

JPEG

CUDA images
with JPEG

CUDA images
with COIN

COIN

COIN

JPEG

JPEG

JPEG

JPEG

COIN

COIN

COIN

COIN

Perturbations
after COIN

Employing CUDA
with class-wise

convolutional filters

Figure 9: Clean images, CUDA images, CUDA images with JPEG defense and our defense COIN,
and perturbations from class of ‘cock’ of the ImageNet UD.

17

Under review as a conference paper at ICLR 2024

A.5 ADDITIONAL MAIN EXPERIMENTAL RESULTS AND DETAILS

A.5.1 ADDITIONAL MAIN EXPERIMENTS ON BOUNDED UDS

While our COIN defense scheme is custom-designed for existing multiplication-based UDs, we are
also interested in its effectiveness against bounded UDs. We select four SOTA unlearnable tech-
niques for generating bounded UDs (Fowl et al., 2021; Tao et al., 2021; Chen et al., 2023; Wu et al.,
2023) and compare the results in test accuracy before and after using COIN, as shown in Table 12.
Specific experimental parameter settings are completely consistent with the main experiments. The
details of reproducing these three bounded UDs are given in Appendix A.5.2.

From the results in this table, we can see that COIN has effective defense capabilities against URP,
TAP, and OPS. However, its defense effectiveness against SEP is limited and falls below an accept-
able level. Therefore, while COIN greatly excels in defending against multiplication-based UDs, it
still has limitations when it comes to defending against bounded UDs.

A.5.2 ADDITIONAL DETAILS

Standard data augmentations like random cropping and random flipping are adopted in our experi-
ments. As for the generation process of multiplication-based UDs, we also utilize their open-source
code as follows:

• During generating CUDA UDs (Sadasivan et al., 2023), we directly run their
official codes with default parameters https://github.com/vinusankars/
Convolution-based-Unlearnability.

Remarks: Due to insufficient GPU capacity, a batch size of 64 was set when applying AA on CIFAR-
10, CIFAR-100 using ResNet50.

During exploring COIN on bounded UDs, we mostly utilize their official codes. Detailed processes
are as follows:

• For generating the TAP UD (Fowl et al., 2021), we simply crafted targeted adversarial
exmples through PGD method (Madry et al., 2018) with iteration of 40, step size of 2/255
and perturbation budget of 8/255 in ℓ∞-norm based on their unlearnable scheme.

• For generating the URP UD (Huang et al., 2021; Tao et al., 2021), we run the official codes
https://github.com/TLMichael/Delusive-Adversary.

• For generating the SEP UD (Chen et al., 2023), we run their official codes https://
github.com/Sizhe-Chen/SEP to produce UDs using ResNet18 checkpoints.

• During generating the OPS UD (Wu et al., 2023), we also run their official codes with de-
fault parametes https://github.com/cychomatica/One-Pixel-Shotcut.

A.6 GAINING A VISUAL INSIGHT INTO DEFENSE METHODS

We visually demonstrate unlearnable images crafted by CUDA (CUDA images), along with their
clean images and perturbations as shown in Fig. 9. We obtain “class-wise multiplication-based per-
turbations from CUDA” by subtracting the corresponding clean images from the CUDA images.
The perturbations from CUDA within the same class yet show non-identical noise, which differs to
the class-wise form we understand in additive noise, and such noise does not exhibit linear sepa-
rability like previous bounded UDs. To prove this, we train a linear logistic regression model on
CUDA perturbations and report train accuracy following OP (Segura et al., 2023) and their official
code, as shown in Table 11. This indicates that the added perturbations in CUDA are different from
class-wise bounded perturbations, and indeed not totally linearly separable. Additionally, it can be
observed that the JPEG transformation subjected to lossy compression tends to lose more features
after employing CUDA images, which may be one of the reasons why JPEG compression fails to
effectively defend against CUDA. After applying our COIN defense to CUDA images, visually, we
are able to distinguish the specific categories of the images.

18

https://github.com/vinusankars/Convolution-based-Unlearnability
https://github.com/vinusankars/Convolution-based-Unlearnability
https://github.com/TLMichael/Delusive-Adversary
https://github.com/Sizhe-Chen/SEP
https://github.com/Sizhe-Chen/SEP
https://github.com/cychomatica/One-Pixel-Shotcut

Under review as a conference paper at ICLR 2024

UDs Train acc (%) Is it linearly separable for added perturbations?
◦EM (Huang et al., 2021) 100 YES

◦Regions-4 (Sandoval-Segura et al., 2022a) 100 YES
◦Random Noise 100 YES

CUDA (Sadasivan et al., 2023) 77.12 NO

Table 11: The linear separability of perturbations from UDs (“◦” denotes class-wise noise patterns).

Bounded UDs→ URP (Tao et al., 2021) TAP (Fowl et al., 2021) SEP (Chen et al., 2023) OPS (Wu et al., 2023)
Defense↓ Model→ RN18 VGG19 AVG RN18 VGG19 AVG RN18 VGG19 AVG RN18 VGG19 AVG

w/o 16.80 16.53 16.66 26.16 27.81 26.98 9.01 12.70 10.86 28.39 20.15 24.27
COIN 81.11 77.85 79.48 76.41 71.26 73.84 48.09 46.72 47.41 80.13 74.58 77.36

Table 12: The test accuracy results on three CIFAR-10 bounded UDs with and w/o applying COIN.

Algorithm 2: Our defense COIN

Input: Unbounded unlearnable dataset Du = {(xui, yi)|i = 1, 2, · · · , N, xui ∈ RC×H×W };
range of random variables α.

Output: Transformed dataset Dt = {(xti, yi)|i = 1, 2, · · · , N, xti ∈ RC×H×W }.
Function: Coordinate grid function meshgrid; uniform distribution U ; arange function

returns evenly spaced values within a given interval; clip function clips values
outside the interval to the interval edges.

1 for cnt = 1 to N do
2 Sample random horizontal and vertical variables sx, sy ∼ U(−α, α, size = H ·W);
3 Initialize a coordinate grid cx, cy = meshgrid(arange(W), arange(H));
4 Initialize a pixel value list Lp = [];
5 for i = 0 to H ·W − 1 do
6 Get a random horizontal and vertical location offset mxi and myi;
7 Calculate horizontal and vertical weight coefficient ωxi and ωyi;
8 Obtain the coordinates of the nearest four points: q11i, q21i, q12i, q22i;
9 for j = 1 to C do

10 Apply bilinear interpolation to obtain new pixel value Fj(pi);
11 Fj(pi) = clip(Fj(pi), 0, 1);
12 end
13 Lp.append([F1(pi),F2(pi), · · · ,FC(pi)]);
14 end
15 Output transformed image xti by filling the pixel values using Lp;
16 end
17 Return: Transformed dataset Dt = {(xti, yi)|i = 1, 2, · · · , N, xti ∈ RC×H×W }.

19

	Introduction
	Related Work
	Unlearnable Datasets
	Defenses Against UDs

	Explaining the Mechanism of Multiplication-based UDs
	Threat Model
	Challenges
	Preliminaries
	Hypothesis and Validations
	Our design: Random Matrix Ar
	Effectiveness of Our Defense Against Other Multiplication-based UDs

	Methodology
	Our Design for COIN

	Experiments
	Experimental Settings
	Defense Competitors
	Evaluation on Our Defense COIN
	Ablation Experiments on
	Time complexity analysis for COIN

	Conclusion
	Appendix
	Intuitive displays of Matrices
	Intuitive displays of A(ay) and Ar()
	Why do we design Ar like this?

	Further Study on Image Corruptions
	Implementation details of Validation experiments
	Additional validation experimental details and results
	Ablation validation experiments on of Ar()

	Additional main experimental results and details
	Additional main experiments on bounded UDs
	Additional details

	Gaining a Visual Insight into Defense Methods

