
Under review as a conference paper at ICLR 2023

USING THE TRAINING HISTORY TO DETECT AND PRE-
VENT OVERFITTING IN DEEP LEARNING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Overfitting occurs in deep learning models when instead of learning from the train-
ing data, they tend to memorize it, resulting in poor generalizability. Overfitting
can be (1) prevented (e.g., using dropout or early stopping) or (2) detected in a
trained model (e.g., using correlation-based methods). We propose a method that
can both detect and prevent overfitting based on the training history (i.e., valida-
tion losses). Our method first trains a time series classifier on training histories of
overfit models. This classifier is then used to detect if a trained model is overfit.
In addition, our trained classifier can be used to prevent overfitting by identify-
ing the optimal point to stop a model’s training. We evaluate our method on its
ability to identify and prevent overfitting in real-world samples (collected from
papers published in the last 5 years at top AI venues). We compare our method
against correlation-based detection methods and the most commonly used preven-
tion method (i.e., early stopping). Our method achieves an F1 score of 0.91 which
is at least 5% higher than the current best-performing non-intrusive overfitting de-
tection method. In addition, our method can find the optimal epoch and avoid
overfitting at least 32% earlier than early stopping and achieve at least the same
rate (often better) of achieving the optimal epoch as early stopping.

1 INTRODUCTION

Training loss
Validation loss

(a) Overfitting

Training loss
Validation loss

(b) Non-overfitting

Figure 1: Example training
histories of overfit and non-
overfit models.

Overfitting is one of the fundamental issues that plagues the field
of machine learning (Nowlan & Hinton, 1992; Ng, 1997; Caruana
et al., 2000; Cawley & Talbot, 2007; Erhan et al., 2010; Srivastava
et al., 2014; Zhao et al., 2020), which can also occur when training
a deep learning (DL) model. An overfit model increases the risk of
inaccurate predictions, misleading feature importance, and wasted
resources (Hawkins, 2004). Figure 1 shows example training his-
tories (i.e., the training and validation losses curves) of an overfit
and a non-overfit model. The training and validation losses of the
overfit model both decrease at the beginning of the training process.
Following that, the validation loss increases while the training loss
decreases, resulting in a large gap between the training and vali-
dation losses. Such a trend indicates that the trained model is not
generalizing well to new data.

Currently, the problem of overfitting is addressed by either (1) pre-
venting it from happening in the first place or (2) detecting it in
a trained model. Overfitting prevention methods stop overfitting
from happening through methods such as early stopping (Morgan
& Bourlard, 1989), data augmentation (Shorten & Khoshgoftaar,
2019), regularization (Kukačka et al., 2017), modifying the model
by adding dropout layers (Srivastava et al., 2014) or batch normal-
ization (Ioffe & Szegedy, 2015). Many of these methods are in-
trusive and require modifying the data or the model structure and
expertise to execute correctly. Furthermore, even the non-intrusive
prevention methods such as early stopping incur a trade-off between model accuracy and training
time (Prechelt, 2012). For example, when using the early stopping method, stopping too late may

1

Under review as a conference paper at ICLR 2023

improve model accuracy but also increase training time while stopping too early could result in a
model that performs sub-optimally.

Overfitting detection methods typically attempt to identify if a trained model is overfit by retraining
the model with noisy data points and observing the impact of these noisy data points on the model’s
accuracy (as an overfit model can learn the noise to reduce the impact) (Zhang et al., 2019). Al-
ternatively, some detection methods check the hypothesis that the trained model and the data are
independent, e.g., Werpachowski et al. (2019) check the hypothesis by comparing the test error with
the estimated test error based on adversarial examples of the test set. However, similar to intrusive
overfitting prevention methods, significant expertise is typically required to use existing detection
methods. In addition, these methods require extra computational resources for activities such as
generating adversarial examples, retraining the models, and converting the model.

In this paper, we are the first to propose a method for both overfitting detection and prevention based
on training histories. Training histories have been used by researchers before to make decisions
such as quantitative data acquisition and model selection (van Rijn et al., 2015; Strang et al., 2018;
Bornschein et al., 2020; Mohr & van Rijn, 2021; 2022; Brazdil et al., 2022). Similarly, our method
trains a time series classifier on a simulated dataset of training histories (i.e., labelled validation
loss curves over epochs of training) of models that overfit the training data. Our trained time series
classifier detects if a trained DL model is overfitting the training data by inspecting the validation loss
history (which is captured as part of the training history). In contrast to existing overfitting detection
methods, our method does not incur additional resources or costs since the training history is a
byproduct of the training process. Additionally, our method (i.e., the trained time series classifier)
can be used to prevent overfitting based on the validation losses of recent epochs (e.g., the last 20
epochs).

While we train our method on a simulated dataset, we evaluate it on a real-world dataset, collected
from papers from top AI venues from the last 5 years. We collected the training histories from these
papers that are explicitly labelled as overfitting or non-overfitting by the authors as the ground truth.
Our results show that our method outperforms the state-of-the-art by at least 5% in terms of F-score
for overfitting detection, with an F-score of 0.91. In addition, our method can prevent overfitting
from happening at least 32% earlier than early stopping while having the same (and often better)
rate of achieving the optimal epoch.

2 BACKGROUND AND RELATED WORK

2.1 OVERFITTING

Overfitting is a well-known and explored problem in the area of machine learning (Nowlan & Hin-
ton, 1992; Ng, 1997; Caruana et al., 2000; Cawley & Talbot, 2007; Erhan et al., 2010; Srivastava
et al., 2014; Zhao et al., 2020). Recent research has further noted the widespread presence and
impact of overfitting in the sub-fields of machine learning including reinforcement learning (Song
et al., 2020), adversarial learning (Rice et al., 2020), and recommender systems (Peng et al., 2021).
For recommender systems that deal with massive amounts of data every day, incremental model
updates are required to catch the most recent trend. However, the incrementally updated model may
overfit to the most current data and forget previously learned knowledge (Peng et al., 2021). Song
et al. (2020) study the observational overfitting regime in reinforcement learning, which overfits to
only a small proportion of the observation space. Furthermore, Rice et al. (2020) report that over-
fitting happens more frequently in adversarial training than in traditional DL. Overfitting hurts the
generalizability of a trained model, but generally predicting whether a model will overfit to a certain
dataset before training it is formally undecidable (Bashir et al., 2020). In this paper, we study how to
detect if a trained model is overfit and how overfitting can be prevented from happening during the
training process. Below, we give an overview of existing methods to detect and prevent overfitting,
and we describe the methods that we used as baselines to evaluate the accuracy of our method.

2.2 OVERFITTING DETECTION

In the field of symbolic regression, Kronberger et al. (2011) propose computing Spearman’s
non-parametric rank correlation coefficient (Spearman, 1987) between training and validation fit-
ness (i.e., an evaluation metric for the symbolic regression model) to detect overfitting. Researchers

2

Under review as a conference paper at ICLR 2023

have also studied how to detect overfitting by injecting noise into the training data or generating new
data. They typically retrain the model that is being tested with this noisy or new data and observe
the impact on its performance to detect if the model is overfitting. For instance, Zhang et al. (2019)
propose a Perturbation Validation (PV) method, which retrains the model after injecting different
levels of noise (perturbation) into the labels. They retrain the model for each noise level and collect
the training history to compute the PV measurement. The PV measurement shows how the accuracy
changes in response to the injected noise and indicates that overfitting is present if the accuracy
does not decrease significantly on the noisy data. Werpachowski et al. (2019) generate adversar-
ial examples to detect whether an image classification model is overfit to the test set. Chatterjee &
Mishchenko (2020) describe a method that converts machine learning models to logic circuits and
detects overfitting by inspecting rare patterns of handling training samples in the model. In this
paper, we propose an overfitting detection method based on time series classifiers that only relies on
the training history of a trained model and does not involve model conversion or retraining. We train
the time series classifiers with training histories and labels indicating whether or not there is overfit-
ting, hence, the classifiers can identify overfitting from the training history of a trained model. Since
similar to our method, correlation-based methods detect overfitting based on the training history as
well, we select them as the baseline to compare our method against and introduce it below.

Correlation-based methods. Inspired by the overfitting detection method of Kronberger et al.
(2011), we compute correlation metrics between the training and validation loss to detect overfitting
in DL models. The idea behind this method is intuitive: the training and validation loss (similar
to the training and validation fitness in symbolic regression) are expected to be strongly correlated
when there is no overfitting and the correlation should be weak when there is overfitting. The
calculated correlation metrics are compared with a threshold (more details on how we select the
threshold in Section 4) to determine if there is overfitting. We choose three correlation metrics:
Spearman, Pearson (Hauke & Kossowski, 2011), and time-lagged Pearson correlation coefficients.
We calculate both Spearman and Pearson correlation coefficients since we do not know whether
the relationship between training and validation loss is linear. In addition, we compute the Pearson
correlation coefficient between the time-lagged version (5-epoch lagged) of the training loss and
the validation loss. This method is inspired by autocorrelation (Brockwell & Davis, 2002), which
computes the correlation between a time series data and a time-lagged version of itself.

2.3 OVERFITTING PREVENTION

Bejani & Ghatee (2021) identify three categories of overfitting prevention methods: passive, ac-
tive and semi-active methods. Passive methods are employed before training a model, and include
methods such as hyper-parameter optimization and model selection. For instance, Sun et al. (2017)
improve the backpropagation algorithm to speed up the training process and avoid overfitting. Xu
et al. (2021) introduce a learning algorithm based on a probabilistic model for avoiding overfitting
to the noise in the training data. Active methods prevent overfitting by either imposing noise to the
data or model through methods like adding dropout layers or other regularization schemes so that
models cannot memorize the patterns in the data. For instance, Dropout (Srivastava et al., 2014), a
simple and popular overfitting prevention method, randomly disables a part of the DL model during
training to prevent overfitting. Finally, semi-active methods change the model architecture during the
training process. They either work by adding hidden nodes or pruning existing nodes. All aforemen-
tioned overfitting prevention methods are typically intrusive (i.e., they require either modification of
the model internals or data that is fed to the model) and require considerable expertise to accurately
execute. For instance, using passive methods such as hyperparameter optimization to avoid overfit-
ting requires expertise on the right optimization method to choose and the right parameters to tune,
which is a vast area of research in itself (Bergstra & Bengio, 2012; Falkner et al., 2018; Bischl et al.,
2021). Similarly, active and semi-active methods such as dropout or pruning require either adding
layers or dynamically editing the model structure. In addition, even though these methods have been
known to avoid overfitting they cannot guarantee that the model does not overfit and they typically
employ methods like Early stopping (Morgan & Bourlard, 1989; Prechelt, 2012) to further predict
if overfit might occur. Early stopping is a widely used overfitting prevention method (which we
explain below) that is non-intrusive and does not require considerable expertise to execute.

Early stopping. Early stopping stops training when there is no improvement in a fixed number
of epochs (indicated by the patience parameter) and returns the best epoch which has the lowest
validation loss. The idea behind this method is that the training will converge or become overfit

3

Under review as a conference paper at ICLR 2023

Overfitting
prevention when
training a model

Continue training for
the model

Y

Is overfitting?

Extract the latest
history with a rolling

window

Stop training and
return the epoch that

has the lowest
validation loss

Use the whole
observed history

Training histories
with labels

Feed data (with
labels) to time series
classifier for training

Training the time series classifier

Trained time series
classifier

N Overfitting detection
using the training

history

Validation losses

Interpolate the
validation losses to
the same length as
the data in training

Perform inference to
identify overfitting

Overfitting or
non-overfitting

Overfitting detection using the training history

Training
history

Figure 2: Our method for overfitting detection and prevention.

when the validation loss stops improving. However, Prechelt (2012) studied three stopping criteria
of early stopping and found that using a slow stopping criterion will increase the training time while
producing only a small improvement in generalization. In this paper, we propose using overfitting
detection methods during the training process to prevent overfitting. Hence, our method prevents
overfitting based on the byproduct (i.e., the training history) of the training process. We compare
our method to the early stopping method, as both methods are non-intrusive and do not require
significant expertise. We also include the results of an alternative version of early stopping based on
smoothed validation loss in Appendix E.

3 OUR METHOD

Figure 2 shows an overview of our proposed method. Our method uses a time series classifier to
detect and prevent overfitting. To the best of our knowledge, we are the first to use a time series
classification-based method to detect and prevent overfitting. First, we collect a simulated dataset
(more details on how we collect the data in Section 4) that contains training histories (i.e., training
and validation loss curves, however we only use the validation loss curves in our method) with labels
indicating whether overfitting occurs in order to train our time series classifier. Second, we train a
time series classifier on all the training histories of the simulated dataset. We evaluate six state-of-
the-art time series classifiers (see Appendix A) to identify the best-performing one. Finally, we use
the trained time series classifier to perform both overfitting detection and prevention as follows.

Overfitting detection. To detect overfitting in a trained model, we first collect its validation losses
over the training epochs. We feed this loss to our trained time series classifier to detect if there is
overfitting. However, we cannot directly feed these validation losses to our classifier as the length
of the validation losses might not be of the same length as that of the data used to train these time
series classifiers. Except KNN-DTW all the studied time series classifiers expect the length of the
inputs used for training for which the inference is made to be the same. Therefore, we first linearly
interpolate the validation losses of the model for which we need to detect overfit to the same length
as the training histories used to train the studied time series classifiers. We feed the interpolated
validation losses to our trained time series classifier and perform inference to determine if the model
is overfit. Figure 4 shows how the linear interpolation process works; if we only have validation
losses over 8 epochs and our time series classifier was trained over 80 epoch validation loss values,
we interpolate the 8 epoch losses to 80 so that we can feed it to the trained time series classifier.

Overfitting prevention. To prevent overfitting, we feed the training history (i.e., validation loss
curve) of a DL model that is being trained to our trained time series classifier during the training
process. The history is fed for inference in two different ways: (1) as a rolling window: we extract
the latest history in a fixed window size (e.g., the latest 20 epochs), and (2) as the whole observed
history (from the first to the latest epochs). Our time series classifier detects if in the fed history

4

Under review as a conference paper at ICLR 2023

Datasets

EvaluationExperiment

Label training
histories

Download the
datasets for
overfitting
simulation

Simulate
overfitting by

training neural
networks

Simulated training
dataset (419

training histories)

Choose
thresholds for
correlation-

based methods

Train our
methods

Compare
overfitting
detection
methods

Identify related
conferences
and journals

Collect existing
training history or

reproduce the
training history

Real-world test
dataset (40

training histories)

Search for
papers that

have samples of
overfitting

Correlation-
based methods
with thresholds

Trained time
series

classifiers

Compare
overfitting
prevention
methods

Early stopping

Figure 3: Overview of the experimental setup.

0 2 4 6 8

20

40

60

80

Lo
ss

Original data

0 20 40 60 80
Epoch

20

40

60

80

Lo
ss

Linear interpolation

Figure 4: An example of lin-
early interpolation.

overfitting occurs. Similar to overfitting detection, we linearly interpolate the data before feeding
it into our model. If there is no overfit occurring, we continue the training and repeat the above
procedure until the model has finished training. For the rolling window, we move the window by a
fixed step size and make another prediction. If our model detects the presence of overfit in the fed
history, we return the lowest validation loss in the observed epochs as the best epoch.

4 EXPERIMENTAL SETUP

In this section, we introduce the datasets for training and evaluating the studied overfitting detection
and prevention methods, the experiments of our study, and the evaluation metrics for the studied
methods. Figure 3 shows an overview of the experimental setup.

4.1 DATASETS

Simulated training dataset. We use simulated training histories with labels to determine the thresh-
old for the correlation-based methods (see Section 2.2) and to train our method as we explain in
Section 3. We create our simulated dataset by training neural networks with different model com-
plexities to generate the training history of overfitting and non-overfitting samples as follows:

Step 1 – Download the datasets for overfitting simulation. We download 12 datasets of real-world
problems from the Proben1 (Prechelt et al., 1994) benchmark set for training neural networks (the
information about the studied datasets can be found in Appendix A). These datasets were used by
Prechelt (2012) to simulate training histories for studying early stopping. Furthermore, all of these
datasets (except the “building” one) were originally collected from the UCI machine learning repos-
itory (Blake et al., 1998), which has been widely used in deep learning research (Kuleshov et al.,
2018; Sajeev et al., 2019; Shi et al., 2021; Gadde et al., 2021). These datasets are pre-partitioned
into training, validation, and test set (respectively 50%, 25%, and 25% of the data). In addition,
Proben1 partitions each dataset three times in order to generate three distinct permutations. Hence,
in total we collect 36 datasets from Proben1.

Step 2 – Simulate overfitting by training neural networks. We train Neural Networks (NNs) with
various architectures on the collected 36 datasets. We do so to vary the model complexity which in
turn increases the chance of producing an overfitted model, in the same way as Prechelt (2012) did in
their study. The input/output layer contains the same number of nodes as the number of input/output
coefficients of the datasets (see Appendix A) and rectified linear units (ReLUs) are used for all
hidden layers. The structures of the NNs are as follows: (1) 6 one-hidden-layer NNs with hidden
nodes of 2, 4, 8, 16, 24, 32, and (2) 6 two-hidden-layer NNs with hidden nodes (represented as first

5

Under review as a conference paper at ICLR 2023

layer hidden nodes + second layer hidden nodes) of 2+2, 4+2, 4+4, 8+4, 8+8, 16+8. We use the
mean square error (MSE) as the loss function for regression problems, and cross entropy as the loss
function for classification problems. Additionally, we used SGD as the optimizer for all of these
problems. To increase the likelihood of overfitting, we train these 12 neural network architectures
on each dataset (of the collected 36 datasets) for 1,000 epochs, producing 432 training histories.

Step 3 – Label training histories. To train our proposed method and the correlation-based methods,
we need to manually label the training history as either “overfit”, “non-overfit” or “uncertain”. To
ensure the robustness of our manual labelling process, we follow the approach outlined by Ding
et al. (2020). The first and second authors of this paper independently labelled the 432 data points
and discussed the results. In the first discussion round, the authors reached a 95% agreement (410
data points), and 10 data points that were labelled as “uncertain” by both authors were eliminated.
In the second round, we discussed the 22 disagreements. Following the discussion, we eliminated
3 data points (labelled “uncertain” by both authors) and agreed on the labels for the remaining 19
data points. The final data set consists of 44 overfit and 375 non-overfit training histories. As an
alternative (automated) approach for collecting the labels we experimented with a heuristic method,
however, this method did not perform well (see Appendix H).

Real-world test dataset. To evaluate our method on real-world data, we surveyed papers from
conferences and journals to collect samples of overfit and non-overfit models:

Step 1 – Identify related conferences and journals. We identify related conferences and journals
based on the Computing Research and Education Association of Australasia (CORE1) and China
Computer Federation (CCF2) ranking systems. Under the CCF A rank, we have 7 conferences and
4 journals in the “Artificial Intelligence” field. Under the CORE A* rank, we have 16 conferences
in the “machine learning” and “artificial intelligence” fields and 12 journals in the “artificial intelli-
gence and image processing” field. We get 17 conferences and 12 journals after merging the results
because of the overlap between these two ranking systems.

Step 2 – Search for papers that have samples of overfitting. We found 33 full papers (see Ap-
pendix C) with the “overfit” keyword (which includes e.g., “overfitting”) in the title that were pub-
lished at the selected conferences and journals in the last 5 years. Five papers contain samples of
overfitting: P2 - Chatterjee & Mishchenko (2020); P4 - Chen et al. (2021) P13 - Kim et al. (2021);
P17 - Rice et al. (2020) and P23 - Singla et al. (2021). Appendix C lists the papers and the number
of collected samples of overfitting (some of them also provide samples of non-overfitting).

Step 3 – Collect existing training history or reproduce the training history. Paper P17 shared the
training history, making its replication straightforward. We replicated the other papers that provide
overfitting samples to collect the training histories of these samples. We ran the code from the papers
that provide replication packages (P4, P13, and P23) to generate the training history, but we were
unable to replicate paper P13’s results. We followed the methodology to replicate the results and
training history for paper P2, which did not provide a replication package. In total, we collected 29
training histories of overfit models and 11 of non-overfit models (see Appendix C for details).

4.2 EXPERIMENTS

Overfitting detection. We train the time series classifiers based on the simulated dataset. We per-
formed a grid search with 3-fold cross validation to tune the hyperparameters for each classifier
based on the simulated dataset. After selecting the hyperparameters, we trained each time series
classifier using the training histories and labels from the simulated dataset and saved the trained
classifier. Furthermore, we search thresholds for the correlation-based methods on the simulated
dataset. We perform a grid search for the thresholds between -1 and 1 based on the collected simu-
lated dataset to select the threshold which has the best F-score.

Overfitting prevention. We reused the trained time series classifiers from the previous step to
perform inference during the training process to prevent overfitting. We applied our method to the
trained models in every 10 epochs (i.e., the step size) with 20, 40, 60, 80, and 100 epochs as different
rolling window sizes. We set the patience values for early stopping from 5 to 115 epochs.

1https://www.core.edu.au/conference-portal
2https://ccf.atom.im/

6

https://www.core.edu.au/conference-portal
https://ccf.atom.im/

Under review as a conference paper at ICLR 2023

Table 1: Results of the overfitting detection methods on the real-world dataset (Prec: precision; Rec:
recall; F-s: F-score; Avg F-s: average F-score), and the time cost of training the studied methods on
the simulated dataset and performing inference on the real-world dataset (per sample).

Detection method Non-overfitting Overfitting Avg
F-s

Training
time (s)

Inference
time (ms)Prec Rec F-s Prec Rec F-s

Correlation
based

Spearman 0.71 0.91 0.80 0.96 0.86 0.91 0.86 2.461 0.908
Pearson 0.78 0.64 0.70 0.87 0.93 0.90 0.80 0.222 0.025
Autocorr 0.80 0.73 0.76 0.90 0.93 0.92 0.84 0.233 0.026

Time
series
classifier
(ours)

KNN-DTW 0.79 1.00 0.88 1.00 0.90 0.95 0.91 0.001 180.512
HMM-GMM 0.30 0.27 0.28 0.73 0.76 0.75 0.52 99.751 17.750
TSF 0.77 0.91 0.83 0.96 0.90 0.93 0.88 0.311 17.209
TSBF 0.79 1.00 0.88 1.00 0.90 0.95 0.91 0.301 31.683
BOSSVS 0.46 0.91 0.61 0.94 0.59 0.72 0.67 1.877 19.342
SAX-VSM 0.83 0.91 0.87 0.96 0.93 0.95 0.91 0.912 17.474

4.3 EVALUATION

Evaluation metrics for overfitting detection. To evaluate the classification performance of over-
fitting detection methods, we calculated the precision, recall, and F-score for overfitting and non-
overfitting samples in the real-world test dataset. In addition, we calculated the average F-score for
directly comparing the classification performance of the studied methods. To evaluate the time cost
of training and using the studied methods, we report the training time (in seconds) of each method
on the simulated dataset and the inference time (in milliseconds) on the real-world dataset.

Evaluation metrics for overfitting prevention. Ideally, an overfitting prevention method returns
the optimal epoch that has the optimal predictive performance for the model on the validation set and
stops the training process as fast as possible. We define the optimal rate of an overfitting prevention
method as the percentage of times the optimal epoch is identified. To evaluate the speed of the
method, we define the delay as the epoch difference between the stopped epoch and the best epoch,
e.g., the delay will be 10 epochs if a prevention method stops at the 123th epoch while the 113th

epoch is the best one. For early stopping, the delay will be the same as the patience parameter.

5 RESULTS

Overfitting detection. Our overfitting detection approach using time series classifiers (except
HMM-GMM and BOSSVS) has a better classification performance than the correlation-based meth-
ods for overfitting detection. Table 1 shows that our approach using KNN-DTW, TSBF, and SAX-
VSM have the best F-score (0.91) on the real-world dataset, followed by TSF which outperforms
the baseline methods as well. Even though our approach using BOSSVS achieves an F-score of 1
on the simulated dataset (see Appendix B), it performs poorly on the real-world dataset. From the
results on both simulated and real-world datasets, the HMM-GMM time series classifier performs
poorly for the problem of overfitting detection. We also note that the investigated correlation-based
methods have a reasonably good performance. All of the studied correlation-based overfitting de-
tection methods have F-scores above 0.8. However, our approach outperforms the best performing
correlation-based overfitting detection approach by at least 5% on the studied real-world dataset. We
also report the results of using perturbation validation for overfitting detection as an example of an
intrusive overfitting detection method in Appendix D.

The studied time series classifiers are more computationally intensive than correlation-based meth-
ods for inference, yet they are still useful in practice. As shown in Table 1, our method requires more
time for performing inference than the correlation-based methods. For instance, TSF has the fastest
inference time among the classifiers but is around 20 times slower than the Spearman correlation-
based method and around 700 times slower than the other two correlation-based methods. However,
the speed of our method is not prohibitive in practice since overfitting detection is only executed
once after the training is complete. It is also useful to note that the training times of the time series
classifiers in our approach are not excessive. For instance, the training times of TSF and TSBF are
around 300 milliseconds and KNN-DTW, our best performing time series classifier can finish train-

7

Under review as a conference paper at ICLR 2023

20 40 60 80 100
Window size (epoch)

0.0

0.2

0.4

0.6

0.8

1.0

Op
tim

al
 ra

te

Early stopping
KNN-DTW
HMM-GMM
TSF
TSBF
SAX-VSM
BOSSVS

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115
Patience (epoch)

Figure 5: The optimal rate of our methods (using a rolling window) and early stopping with different
patience values.

ing in 1 millisecond. However, KNN-DTW requires the longest time for inference which is around
180 milliseconds for a training history.

Overfitting prevention. Our method with KNN-DTW (both using rolling window and whole ob-
served history) is often more accurate than early stopping for overfitting prevention. Other studied
classifiers do not perform as well as KNN-DTW for overfitting prevention. As Figure 5 and Table 2
show, both our approach based on rolling window and whole observed history has higher accuracy
than early stopping at identifying the optimal epoch. In particular, our approach with KNN-DTW
based on rolling window is more accurate (see Figure 5) than early stopping when using up to 80
epochs as the patience parameter and window size. For example, our method with KNN-DTW
obtains 78% accuracy when setting the window size to 20 epochs, while early stopping has 48%
accuracy when setting the patience parameter to that number of epochs. However, we find that early
stopping achieves nearly perfect accuracy when the patience is larger than 80 epochs. The reason is
that 90% of the training histories in the real-world dataset have around 200 epochs, hence, a large
patience value makes it easy for early stopping to choose the optimal epoch. In addition, Table 2
shows that our method with KNN-DTW based on the whole observed history also obtains higher
accuracy than early stopping. For instance, the KNN-DTW classifier has 95% accuracy with a me-
dian delay of 43.5 epochs while early stopping has only 83% using the same number (i.e., between
40 to 45 epochs patience in Figure 5).

Table 2: The optimal rate and median delay
of our overfitting prevention methods that are
based on the whole observed history.

Classifier Optimum
rate

Median
delay

KNN-DTW 0.95 43.5
HMM-GMM 0.18 0.0
TSF 0.90 35.0
TSBF 0.83 31.0
BOSSVS 0.65 21.0
SAX-VSM 0.33 10.0

Table 3: The median delay of our overfitting preven-
tion methods that are based on the rolling window
with different window sizes.

Classifier Window size (epoch)

20 40 60 80 100

KNN-DTW 31.0 27.0 37.5 42.5 45.5
HMM-GMM 5.0 6.5 16.5 28.0 41.5
TSF 12.5 22.0 31.0 39.5 44.0
TSBF 8.5 15.0 25.0 37.0 47.0
BOSSVS 7.0 29.0 34.5 48.5 56.5
SAX-VSM 4.0 11.0 9.5 16.0 24.0

Our method using KNN-DTW and a rolling window can stop training a DL model earlier than
early stopping. As shown in Table 3, with the same number of epochs for the patience parameter
and window size, our method with KNN-DTW based on the rolling window (except window size
20) can save training time (i.e., there is a smaller delay between the stopped epoch and the best
epoch) over early stopping. For instance, when setting both the patience parameter and window
size to 40 epochs, KNN-DTW and early stopping have the same accuracy and KNN-DTW has a

8

Under review as a conference paper at ICLR 2023

(a) Our method stops earlier than the early stopping
but both achieve the same optimal epoch.

(b) Our method stops later than the early stopping but
achieves the optimal epoch.

Figure 6: Examples of overfitting prevention based on KNN-DTW (set the window size as 40
epochs) and early stopping (set the patience parameter as 40 epochs).

median delay of 27 epochs while early stopping has a fixed delay of 40 epochs (which is the same
as the patience parameter). In comparison to the delay in early stopping, the delay between the
stopped epoch and the best epoch is at least 32% shorter with our method using KNN-DTW (see
Appendix F for the significance testing results). Figure 6a shows an example in which early stopping
and our method both identify the optimal epoch, but our method stops 21 epochs earlier than early
stopping (which stops with a 40 epochs delay). In addition, our method does not sacrifice accuracy
for a shorter delay (as shown in Figure 5). Figure 6b shows an example in which our method stops
later than early stopping but identifies the optimal epoch when using the same number of epochs
for the patience parameter and window size. Furthermore, our overfitting detection approach can
be used with zero-one validation loss; the results of our approach and early stopping with zero-one
validation loss can be found in Appendix G.

Among our two approaches for overfitting prevention we recommend the usage of KNN-DTW with
rolling window. Though using the whole observed history may be more accurate at predicting the
optimal epoch than using a rolling window for our approach, we note that we can predict the optimal
epoch much earlier with the rolling window approach for a very small trade-off in accuracy. As
shown in the Table 3 and Figure 5, our method with KNN-DTW achieves 83% accuracy with a
median delay of 27 epochs and 90% accuracy with a median delay of 37.5 epochs using the window
size as 40 and 60 epochs respectively. However, the median delay of KNN-DTW when using whole
observed history is 43.5 while using the rolling window with a window size of 80 or more epochs
can achieve a higher accuracy (98% vs. 95% accuracy) with a shorter delay (42.5 vs. 43.5 epochs).
In summary, we suggest using the rolling window approach since it is stops earlier with a relatively
small accuracy drop using a small window (e.g., 40 epochs) and performs better than the observed
whole history approach when using a large window size (e.g., 80 epochs).

6 CONCLUSION AND FUTURE WORK

We propose a non-intrusive overfitting detection and prevention method that is based on time series
classifiers trained on the training history of DL models. Our method (when using the KNN-DTW
time series classifier) has (1) better classification performance than correlation-based methods for
overfitting detection, and (2) greater accuracy than early stopping for overfitting prevention with a
shorter delay. We do so using a real-world dataset of labelled training histories collected from the
papers published at top AI venues in the last 5 years. Furthermore, the trained time series classifiers
are included in our replication package for use by other researchers. One of the downsides of our
approach is that our best performing time series classifier takes longer to perform the inference re-
quired to detect and prevent overfit than the studied baselines. We encourage future work to optimize
time series classifiers to enable overfitting detection and prevention in real-time with smaller delays.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The replication package can be found at: https://github.com/anonymous-p/overfit_
detect. This package includes the code for training and using the studied methods, notebooks for
analysing the results, the simulated and real-world datasets, and the trained models. Furthermore, we
are currently developing a tool to use the studied methods and will make it public once completed.

Experimental environment. We use Python 3.8 with TensorFlow 2.9.0 and run experiments on
Ubuntu 20.04 with Linux kernel 5.15.0. The hardware specifications are as follows: (1) NVIDIA
RTX 3090 GPU with 24 GB memory (the versions of CUDA and cuDNN are 10.1.243 and 7.6.5),
(2) 3.50 GHz Intel(R) Core(TM) i9-11900K CPU, and (3) 64 GB RAM.

REFERENCES

Basavaraj S Anami and Venkatesh A Bhandage. A comparative study of suitability of certain fea-
tures in classification of bharatanatyam mudra images using artificial neural network. Neural
Processing Letters, 50(1):741–769, 2019.

Daniel Bashir, George D. Montañez, Sonia Sehra, Pedro Sandoval Segura, and Julius Lauw. An
Information-Theoretic Perspective on Overfitting and Underfitting. In Marcus Gallagher, Nour
Moustafa, and Erandi Lakshika (eds.), AI 2020: Advances in Artificial Intelligence, Lecture Notes
in Computer Science, pp. 347–358, Cham, 2020. Springer International Publishing. ISBN 978-3-
030-64984-5. doi: 10.1007/978-3-030-64984-5 27.

Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. A bag-of-features framework to clas-
sify time series. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2796–
2802, 2013. doi: 10.1109/TPAMI.2013.72.

Mohammad Mahdi Bejani and Mehdi Ghatee. A systematic review on overfitting control in shallow
and deep neural networks. Artificial Intelligence Review, 54(8):6391–6438, 2021.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

Gérard Biau and Erwan Scornet. A random forest guided tour. Test, 25(2):197–227, 2016.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter
optimization: Foundations, algorithms, best practices and open challenges. arXiv preprint
arXiv:2107.05847, 2021.

C. Blake, E. Keogh, and Christopher Merz. UCI repository of machine learning databases. 01 1998.

Jörg Bornschein, Francesco Visin, and Simon Osindero. Small data, big decisions: Model selec-
tion in the small-data regime. In Proceedings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org, 2020.

Pavel Brazdil, Jan N van Rijn, Carlos Soares, and Joaquin Vanschoren. Metalearning: Applications
to Automated Machine Learning and Data Mining. Springer Nature, 2022.

Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting. Springer, 2002.

Rich Caruana, Steve Lawrence, and C Giles. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. Advances in neural information processing systems, 13, 2000.

Gavin C Cawley and Nicola LC Talbot. Preventing over-fitting during model selection via bayesian
regularisation of the hyper-parameters. Journal of Machine Learning Research, 8(4), 2007.

Satrajit Chatterjee and Alan Mishchenko. Circuit-based intrinsic methods to detect overfitting.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 1459–1468.
PMLR, 13–18 Jul 2020.

10

https://github.com/anonymous-p/overfit_detect
https://github.com/anonymous-p/overfit_detect

Under review as a conference paper at ICLR 2023

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2021.

Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. A time series forest for
classification and feature extraction. Information Sciences, 239:142–153, 2013. ISSN 0020-0255.
doi: https://doi.org/10.1016/j.ins.2013.02.030.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Querying and
mining of time series data: Experimental comparison of representations and distance measures.
Proc. VLDB Endow., 1(2):1542–1552, aug 2008. ISSN 2150-8097. doi: 10.14778/1454159.
1454226.

Zishuo Ding, Jinfu Chen, and Weiyi Shang. Towards the use of the readily available tests from
the release pipeline as performance tests: Are we there yet? In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ICSE ’20, pp. 1435—-1446, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450371216. doi: 10.1145/
3377811.3380351.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11:
625—-660, mar 2010. ISSN 1532-4435.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. In International Conference on Machine Learning, pp. 1437–1446. PMLR,
2018.

Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang. Music classification via the bag-of-
features approach. Pattern Recognition Letters, 32(14):1768–1777, 2011. ISSN 0167-8655. doi:
https://doi.org/10.1016/j.patrec.2011.06.026.

Sridevi Gadde, A. Lakshmanarao, and S. Satyanarayana. Sms spam detection using machine learn-
ing and deep learning techniques. In 2021 7th International Conference on Advanced Com-
puting and Communication Systems (ICACCS), volume 1, pp. 358–362, 2021. doi: 10.1109/
ICACCS51430.2021.9441783.

J.-L. Gauvain and Chin-Hui Lee. Maximum a posteriori estimation for multivariate gaussian mixture
observations of markov chains. IEEE Transactions on Speech and Audio Processing, 2(2):291–
298, 1994. doi: 10.1109/89.279278.

David J Hand. Principles of data mining. Drug safety, 30(7):621–622, 2007.

Jan Hauke and Tomasz Kossowski. Comparison of values of Pearson’s and Spearman’s correlation
coefficients on the same sets of data. Quaestiones Geographicae, 30(2):87–93, 2011. doi: doi:
10.2478/v10117-011-0021-1.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Shihao Ji, B. Krishnapuram, and L. Carin. Variational bayes for continuous hidden markov mod-
els and its application to active learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(4):522–532, 2006. doi: 10.1109/TPAMI.2006.85.

Hoki Kim, Woojin Lee, and Jaewook Lee. Understanding catastrophic overfitting in single-step
adversarial training. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9):8119–
8127, May 2021.

11

Under review as a conference paper at ICLR 2023

Gabriel Kronberger, Michael Kommenda, and Michael Affenzeller. Overfitting detection and adap-
tive covariant parsimony pressure for symbolic regression. In Proceedings of the 13th Annual
Conference Companion on Genetic and Evolutionary Computation, GECCO ’11, pp. 631–638,
New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450306904. doi:
10.1145/2001858.2002060.

Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy.
arXiv preprint arXiv:1710.10686, 2017.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2796–2804. PMLR, 10–15 Jul 2018.

Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: a novel symbolic
representation of time series. Data Mining and knowledge discovery, 15(2):107–144, 2007.

Jeffrey D. Long, Du Feng, and Norman Cliff. Ordinal Analysis of Behavioral Data. In Irving B.
Weiner (ed.), Handbook of Psychology, chapter 25, pp. 635–661. John Wiley & Sons, Inc., Hobo-
ken, NJ, USA, April 2003. ISBN 978-0-471-26438-5. doi: 10.1002/0471264385.wei0225.

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically
larger than the other. Annals of Mathematical Statistics, 18:50–60, 1947.

Felix Mohr and Jan N van Rijn. Towards model selection using learning curve cross-validation. In
8th ICML Workshop on automated machine learning (AutoML), 2021.

Felix Mohr and Jan N. van Rijn. Learning curves for decision making in supervised machine learning
- A survey. CoRR, abs/2201.12150, 2022. URL https://arxiv.org/abs/2201.12150.

Kumar Molugaram and G. Shanker Rao. Statistical Techniques for Transportation Engineer-
ing. Butterworth-Heinemann, January 2017. ISBN 978-0-12-811555-8. doi: 10.1016/
B978-0-12-811555-8.00012-X.

Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation in feedforward nets:
Some experiments. Advances in neural information processing systems, 2, 1989.

Andrew Y. Ng. Preventing ”overfitting” of cross-validation data. In Proceedings of the Fourteenth
International Conference on Machine Learning, ICML ’97, pp. 245—-253, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc. ISBN 1558604863.

Steven J. Nowlan and Geoffrey E. Hinton. Simplifying neural networks by soft weight-sharing.
Neural Computation, 4(4):473–493, 1992. doi: 10.1162/neco.1992.4.4.473.

Danni Peng, Sinno Jialin Pan, Jie Zhang, and Anxiang Zeng. Learning an adaptive meta model-
generator for incrementally updating recommender systems. In Proceedings of the 15th ACM
Conference on Recommender Systems, RecSys ’21, pp. 411—-421, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450384582. doi: 10.1145/3460231.3474239.

Tao Peng, Lu Liu, and Wanli Zuo. PU text classification enhanced by term frequency–inverse docu-
ment frequency-improved weighting. Concurrency and Computation: Practice and Experience,
26(3):728–741, 2014. doi: https://doi.org/10.1002/cpe.3040.

Lutz Prechelt. Early Stopping — But When? In Grégoire Montavon, Geneviève B. Orr, and Klaus-
Robert Müller (eds.), Neural Networks: Tricks of the Trade: Second Edition, Lecture Notes in
Computer Science, pp. 53–67. Springer, Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8.
doi: 10.1007/978-3-642-35289-8 5.

Lutz Prechelt et al. Proben1: A set of neural network benchmark problems and benchmarking rules.
1994.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 8093–8104.
PMLR, 13–18 Jul 2020.

12

https://arxiv.org/abs/2201.12150

Under review as a conference paper at ICLR 2023

Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda Devine. Exploring
methods for evaluating group differences on the NSSE and other surveys: Are the t-test and
Cohen’sd indices the most appropriate choices. In annual meeting of the Southern Association
for Institutional Research, pp. 1–51. Citeseer, 2006.

Shelda Sajeev, Anthony Maeder, Stephanie Champion, Alline Beleigoli, Cheng Ton, Xianglong
Kong, and Minglei Shu. Deep learning to improve heart disease risk prediction. In Machine
Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and
Computer Assisted Stenting, pp. 96–103. Springer, 2019.

Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

Patrick Schäfer. Scalable time series classification. Data Mining and Knowledge Discovery, 30(5):
1273–1298, 2016.

Patrick Schäfer and Mikael Högqvist. SFA: A symbolic fourier approximation and index for simi-
larity search in high dimensional datasets. In Proceedings of the 15th International Conference
on Extending Database Technology, EDBT ’12, pp. 516—-527, New York, NY, USA, 2012. As-
sociation for Computing Machinery. ISBN 9781450307901. doi: 10.1145/2247596.2247656.

Qiushi Shi, Rakesh Katuwal, P.N. Suganthan, and M. Tanveer. Random vector functional link neural
network based ensemble deep learning. Pattern Recognition, 117:107978, 2021. ISSN 0031-
3203. doi: https://doi.org/10.1016/j.patcog.2021.107978.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications: With R Exam-
ples. Springer Texts in Statistics. Springer International Publishing, Cham, 2017. ISBN 978-3-
319-52451-1 978-3-319-52452-8. doi: 10.1007/978-3-319-52452-8.

Vasu Singla, Sahil Singla, Soheil Feizi, and David Jacobs. Low curvature activations reduce overfit-
ting in adversarial training. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 16423–16433, October 2021.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational over-
fitting in reinforcement learning. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Charles Spearman. The proof and measurement of association between two things. The American
journal of psychology, 100(3/4):441–471, 1987.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Benjamin Strang, Peter van der Putten, Jan N. van Rijn, and Frank Hutter. Don’t rule out sim-
ple models prematurely: A large scale benchmark comparing linear and non-linear classifiers in
openml. In Wouter Duivesteijn, Arno Siebes, and Antti Ukkonen (eds.), Advances in Intelligent
Data Analysis XVII, pp. 303–315, Cham, 2018. Springer International Publishing. ISBN 978-3-
030-01768-2.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In International Conference on Machine
Learning, pp. 3299–3308. PMLR, 2017.

Jan N. van Rijn, Salisu Mamman Abdulrahman, Pavel Brazdil, and Joaquin Vanschoren. Fast algo-
rithm selection using learning curves. In Elisa Fromont, Tijl De Bie, and Matthijs van Leeuwen
(eds.), Advances in Intelligent Data Analysis XIV, pp. 298–309, Cham, 2015. Springer Interna-
tional Publishing. ISBN 978-3-319-24465-5.

Onur Varol, Emilio Ferrara, Filippo Menczer, and Alessandro Flammini. Early detection of pro-
moted campaigns on social media. EPJ data science, 6:1–19, 2017.

13

Under review as a conference paper at ICLR 2023

Zhongju Wang, Long Wang, Chao Huang, Zijun Zhang, and Xiong Luo. Soil-moisture-sensor-based
automated soil water content cycle classification with a hybrid symbolic aggregate approximation
algorithm. IEEE Internet of Things Journal, 8(18):14003–14012, 2021.

Roman Werpachowski, András György, and Csaba Szepesvári. Detecting overfitting via adversarial
examples. Advances in Neural Information Processing Systems, 32, 2019.

Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann Ratanamahatana. Fast
time series classification using numerosity reduction. In Proceedings of the 23rd international
conference on Machine learning, pp. 1033–1040, 2006.

Le Xu, Lei Cheng, Ngai Wong, and Yik-Chung Wu. Overfitting avoidance in tensor train factor-
ization and completion: Prior analysis and inference. In 2021 IEEE International Conference on
Data Mining (ICDM), pp. 1439–1444, 2021. doi: 10.1109/ICDM51629.2021.00185.

Jie M. Zhang, Earl T. Barr, Benjamin Guedj, Mark Harman, and John Shawe-Taylor. Perturbed
model validation: A new framework to validate model relevance. CoRR, abs/1905.10201, 2019.
URL http://arxiv.org/abs/1905.10201.

Minghang Zhao, Baoping Tang, Lei Deng, and Michael Pecht. Multiple wavelet regularized deep
residual networks for fault diagnosis. Measurement, 152:107331, 2020. ISSN 0263-2241. doi:
https://doi.org/10.1016/j.measurement.2019.107331.

14

http://arxiv.org/abs/1905.10201

Under review as a conference paper at ICLR 2023

A STUDIED DATASETS AND TIME SERIES CLASSIFIERS

Table 4 shows the information about the studied datasets. There are 3 datasets for regression tasks
and 9 datasets for classification tasks.

Table 4: Information about studied datasets.

Dataset Type #In #Out #Examples

building regression 14 3 4,208
cancer classification 9 2 699
card classification 51 2 690
diabetes classification 8 2 768
flare regression 24 3 1,066
gene classification 120 3 3,175
glass classification 9 6 214
heart classification 35 2 920
hearta regression 35 1 920
horse classification 58 3 364
soybean classification 82 19 683
thyroid classification 21 3 7,200

Table 5 introduces the studied time series classifiers. Since there has been no prior systematic
research on time series classifiers for training histories as a reference, we choose the classifiers that
have been reported as baselines or state-of-the-art in studies (Xi et al., 2006; Varol et al., 2017;
Anami & Bhandage, 2019; Wang et al., 2021)

Table 5: Studied time series classifiers.

Classifier Description

KNN-DTW∗ Uses K-Nearest Neighbors (Hand, 2007) and Dynamic Time Warping (Ding et al., 2008)
as the distance metric

HMM-GMM Uses Hidden Markov Model for modeling time series data and Gaussian Mixture Model as
the emissions probability density (Gauvain & Lee, 1994; Ji et al., 2006)

TSF Uses a random forest (Biau & Scornet, 2016) for time series data using an ensemble of time
series trees (Deng et al., 2013)

TSBF Time Series Bag-of-Features (Baydogan et al., 2013) extracts features based on the bag-of-
features approach (Fu et al., 2011) to create a random forest

SAX-VSM Symbolic Aggregate approXimation transforms the data into symbolic representations (Lin
et al., 2007) and Vector Space Model (Salton et al., 1975; Peng et al., 2014) transforms them
into vectors to calculate similarity for classification

BOSSVS Bag-of-SFA Symbols in Vector Space (Schäfer, 2016) is similar to SAX-VSM but use
SFA (Schäfer & Högqvist, 2012) to transform the data instead of SAX

∗ We do not interpolate the validation loss for KNN-DTW since it does not require a constant length
input signal.

B RESULTS OF TRAINING OVERFITTING DETECTION METHODS

As mentioned in Section 4.2, we tune the hyperparameters of the time series classifiers by perform-
ing a grid search with 3-fold cross validation. Table 6 shows that all the classifiers achieve F-scores
of more than 0.95 in the 3-fold cross validation except HMM-GMM which obtains only an aver-
age F-score of only 0.6. Table 7 shows the results of training correlation-based methods and our
method on the simulated dataset. Generally, the time series classifiers achieve better performance
on the simulated dataset than the other methods (except the HMM-GMM classifier) and three of the
classifiers can even correctly identify all the data in the simulated dataset.

We notice that KNN-DTW performs well on both the simulated and real-world datasets. One pos-
sible reason for the performance of KNN-DTW might be that DTW is good at measuring similarity

15

Under review as a conference paper at ICLR 2023

Table 6: The F-scores of the time series classifiers in 3-fold cross validation (CV) on the simulated
dataset.

Classifier CV1 CV2 CV3 Avg Variance

KNN-DTW 0.98 0.98 0.96 0.97 0.00
HMM-GMM 0.41 0.38 1.00 0.59 0.08
TSF 0.98 0.98 1.00 0.99 0.00
TSBF 0.98 0.98 1.00 0.99 0.00
BOSSVS 1.00 1.00 1.00 1.00 0.00
SAX-VSM 0.96 0.96 0.96 0.96 0.00

Table 7: Results of overfitting detection methods on the simulated dataset. (Prec: precision; Rec:
recall; F-s: F-score; Avg F-s: macro average F-score)

Detection method Non-overfitting Overfitting Avg
F-sPrec Rec F-s Prec Rec F-s

Correlation
based

Spearman 0.99 1.00 0.99 0.95 0.89 0.92 0.95
Pearson 0.99 0.97 0.98 0.79 0.93 0.85 0.92
Autocorr 0.97 0.94 0.95 0.59 0.73 0.65 0.80

Time
series
classifier
(ours)

KNN-DTW 0.99 1.00 1.00 0.98 0.93 0.95 0.97
HMM-GMM 0.95 0.55 0.70 0.16 0.75 0.27 0.48
TSF 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TSBF 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BOSSVS 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SAX-VSM 0.99 1.00 0.99 0.98 0.91 0.94 0.97

across curves, which aids KNN in distinguishing between overfit and non-overfit samples. In con-
trast, HMM-GMM performs poorly on both the simulated training and real-world test datasets. One
possible explanation is that the extracted state models (via HMM) of the curves do not follow a
Gaussian probability distribution. BOSSVS correctly identifies all the data in the simulated dataset
but performs poorly on the real-world dataset (as shown in Table 1), which may be due to overfitting
the simulated dataset.

C SURVEYED PAPERS

Table 8 lists the 33 papers we surveyed from top AI conferences and journals. We found 5 papers
out of the 33 papers provide samples of overfit and fit models and collected 40 samples from these
papers (as shown in Table 9).

Table 8: Information about the surveyed papers.

#P Authors Title Venue Year

P1 Belkin et al. Overfitting or perfect fitting? risk bounds for classifica-
tion and regression rules that interpolate.

NeurIPS 2018

P2 Chatterjee
&
Mishchenko

Circuit-based intrinsic methods to detect overfitting. ICML 2020

P3 Chatterji &
Long

Foolish crowds support benign overfitting. JMLR 2022

P4 Chen et al. Robust overfitting may be mitigated by properly learned
smoothening.

ICLR 2021

P5 d’Ascoli et
al.

Triple descent and the two kinds of overfitting: where
& why do they appear?

NeurIPS 2020

Continued on next page

16

Under review as a conference paper at ICLR 2023

Table 8 – continued from previous page
#P Authors Title Venue Year

P6 Feldman et
al.

The advantages of multiple classes for reducing overfit-
ting from test set reuse.

ICML 2019

P7 Feldman et
al.

Open problem: how fast can a multiclass test set be
overfit?

COLT 2019

P8 Frei et al. Benign overfitting without linearity: neural network
classifiers trained by gradient descent for noisy linear
data.

COLT 2022

P9 He et al. Sparse double descent: where network pruning aggra-
vates overfitting.

ICML 2022

P10 Huang et al. Sparse progressive distillation: resolving overfitting un-
der pretrain-and-finetune paradigm.

ACL 2022

P11 Ju et al. Overfitting can be harmless for basis pursuit, but only
to a degree.

NeurIPS 2020

P12 Ju et al. On the generalization power of overfitted two-layer
neural tangent kernel models.

ICML 2021

P13 Kim et al. Understanding catastrophic overfitting in single-step
adversarial training.

AAAI 2021

P14 Koehler et
al.

Uniform convergence of interpolators: Gaussian width,
norm bounds and benign overfitting.

NeurIPS 2021

P15 Liu et al. Overfitting the data: compact neural video delivery via
content-aware feature modulation.

ICCV 2021

P16 Mohammed
& Cawley

Over-fitting in model selection with Gaussian process
regression.

ICML 2017

P17 Rice et al. Overfitting in adversarially robust deep learning. ICML 2020
P18 Roelofs et

al.
A meta-analysis of overfitting in machine learning. NeurIPS 2019

P19 Rozendaal
et al.

Overfitting for fun and profit: instance-adaptive data
compression.

ICLR 2021

P20 Russo &
Zou

How much does your data exploration overfit? control-
ling bias via information usage.

IEEE
Trans.
Inf.
Theory

2020

P21 Sanyal et al. How benign is benign overfitting? ICLR 2021
P22 Shamir The implicit bias of benign overfitting. COLT 2022
P23 Singla et al. Low curvature activations reduce overfitting in adver-

sarial training.
ICCV 2021

P24 Song et al. Observational overfitting in reinforcement learning. ICLR 2020
P25 Steck Autoencoders that don’t overfit towards the identity. NeurIPS 2020
P26 Sun et al. meProp: sparsified back propagation for accelerated

deep learning with reduced overfitting.
ICML 2017

P27 Telgarsky Stochastic linear optimization never overfits with
quadratically-bounded losses on general data.

COLT 2022

P28 Wang et al. Benign overfitting in multiclass classification: all roads
lead to interpolation.

NeurIPS 2021

P29 Webster et
al.

Detecting overfitting of deep generative networks via
latent recovery.

CVPR 2019

P30 Werpachowski
et al.

Detecting overfitting via adversarial examples. NeurIPS 2019

P31 Xu et al. Overfitting avoidance in tensor train factorization and
completion: prior analysis and inference.

ICDM 2021

P32 Zhang &
Amini

Label consistency in overfitted generalized k-means. NeurIPS 2021

P33 Zhang et al. Why overfitting isn’t always bad: retrofitting cross-
lingual word embeddings to dictionaries.

ACL 2020

17

Under review as a conference paper at ICLR 2023

Table 9: Information about collected samples from surveyed papers.

Paper Labels for the training history in the manuscript #Overfit #Non-overfit

P2 “[...] the validation accuracy of nn-random is 9.73% (i.e.,
close to chance) confirming that it is horribly overfit”

2 0

P4 “We first observe that the robust overfitting prevails in all
Baseline cases”
“Our methods effectively mitigates the robust overfitting”

3 3

P13 “Figure 4 [...] that is, catastrophic overfitting occurs.”
“Figure 6 shows that the proposed method also successfully
prevents catastrophic overfitting [...]”

N/A∗ N/A∗

P17 “Figure 24 [...] We see clear robust overfitting for the smaller
two options in λ, and find no overfitting but highly regular-
ized models for the larger two options [...]”

20 4

P23 “These results therefore validate our claim that low curvature
activations reduce robust overfitting”

4 4

∗: Cannot reproduce the same results as the paper.

Table 10: Results of the Perturbation Validation method for overfitting detection methods on the
simulated dataset.

Non-overfitting Overfitting Average
F-scorePrecision Recall F-score Precision Recall F-score

0.89 0.85 0.87 0.07 0.09 0.08 0.47

D PERTURBATION VALIDATION FOR OVERFITTING DETECTION

Training data of
a dataset

Model
Inject noise into the

training data at levels
of 0.1, 0.2, and 0.3

Retrain the model
with the training data
at each noise level

Calculate PV
measurement PV > threshold? Overfitting or

non-overfitting

Training histories
(at all noise

levels)

PV measurement

Figure 7: Our method for overfitting detection and prevention.

Zhang et al. (2019) suggest the perturbation validation (PV) assessment to determine whether a
model fits the training data properly (i.e., ensure that it is neither overfitting nor underfit). As shown
in Figure 7, We inject three levels of noise (0.1, 0.2, and 0.3) as the original paper (Zhang et al., 2019)
into the labels in the training set and retrain the model. We repeat the training for each noise level and
collect the training history to compute the PV measurement. The proposed PV measurement will
show how much the accuracy decreases in response to the injected noise and indicate if overfitting
is present. The idea behind this method is that overfit or underfit models would lose accuracy more
slowly when trained using the noise-injected training set than optimally-fitted models. Since the
calculated PV measurement is only one value and we compare it with a threshold to determine if
there is overfitting. To select the threshold, we performed a grid search for the thresholds between
-1 and 1 based on the F-score on the simulated dataset.

The PV measurement requires retraining the models, which takes a significant amount of compu-
tational time but results in poor performance in the simulated dataset (see Table 10). We do not
calculate the PV measurement on the real-world dataset since retraining the models takes too long,
and the performance on the simulated dataset does not justify this extra effort.

18

Under review as a conference paper at ICLR 2023

Table 11: Results of early stopping based on the smoothed validation loss curves.

Patience Smooth
epochs

Optimum
rate

Median
delay Patience Smooth

epochs
Optimum

rate
Median

delay

20

0 0.48 20.0

60

0 0.90 60.0
5 0.38 20.0 5 0.93 61.0

10 0.40 20.0 10 0.93 62.0
15 0.55 22.0 15 0.90 62.0

40

0 0.83 40.0

80

0 0.98 80.0
5 0.85 42.0 5 0.98 81.0

10 0.83 43.5 10 0.98 82.0
15 0.88 44.5 15 0.90 81.5

E EARLY STOPPING BASED ON SMOOTHED VALIDATION LOSS CURVES

An alternate version of early stopping inspects the moving average of the smoothed validation loss
curves (Shumway & Stoffer, 2017; Molugaram & Rao, 2017) to determine whether to stop the
training process. After terminating the training process, early stopping returns the best epoch which
has the lowest validation loss (not the smoothed value). Table 11 shows that using a smoothed
validation loss curve may increase the optimal rate and slightly increases the delay. However, it
does not have better performance than the basic form of early stopping and cannot compete with our
approach. Figure 8 shows an example in which early stopping achieves the optimal epoch after using
the smoothed validation loss. However, the smoothed curves can also hurt the performance, such as
dropping 10% of the optimal rate when early stopping using a smoothing window of 5 epochs and a
patience parameter of 20 epochs. Figure 9 illustrates an example of missing the optimal epoch after
smoothing the validation loss curve.

F SIGNIFICANCE TEST FOR THE RESULTS OF OVERFITTING PREVENTION

To study the difference in delay across overfitting prevention approaches, we performed the Mann-
Whitney U test (Mann & Whitney, 1947) at a significance level of α = 0.05 to determine whether
the distributions of the delay epochs of early stopping and our approach are significantly different.
We also computed Cliff’s delta d (Long et al., 2003) effect size to quantify the difference based on
the provided thresholds (Romano et al., 2006):

0 25 50 75 100 125 150 175 200
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Before smoothing

Training loss
Validation loss
Return epoch
Stop epoch

0 25 50 75 100 125 150 175 200
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
After smoothing

Training loss
Validation loss
Return epoch
Stop epoch

Figure 8: An example in which early stopping achieves the optimal epoch based on smoothed vali-
dation loss (the patience parameter is set to 40 epochs and the smoothing window size is 5).

19

Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Before smoothing

Training loss
Validation loss
Return epoch
Stop epoch

0 25 50 75 100 125 150 175 200
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2
After smoothing

Training loss
Validation loss
Return epoch
Stop epoch

Figure 9: An example in which early stopping cannot achieve the optimal epoch based on smoothed
validation loss (the patience parameter is set to 20 epochs and the smoothing window size is 5).

Table 12: Significance testing results of the delays for overfitting prevention. (Ws.: Window size)

Classifier Ws. P Effect
Size

Cliff’s
d value Classifier Ws. P Effect

Size
Cliff’s

d value

BOSSVS

20 0.000 large -0.600

SAX-VSM

20 0.000 large -1.000
40 0.001 medium -0.405 40 0.000 large -0.956
60 0.000 large -0.476 60 0.000 large -0.868
80 0.000 large -0.522 80 0.000 large -0.817

100 0.001 medium -0.449 100 0.000 large -0.681

HMM-GMM

20 0.000 large -1.000

TSBF

20 0.000 large -0.875
40 0.000 large -0.966 40 0.000 large -0.893
60 0.000 large -0.859 60 0.000 large -0.742
80 0.000 large -0.793 80 0.000 large -0.748

100 0.000 large -0.633 100 0.000 large -0.581

KNN-DTW

20 0.101 small 0.200

TSF

20 0.000 large -0.525
40 0.001 medium -0.392 40 0.000 large -0.804
60 0.000 large -0.485 60 0.000 large -0.700
80 0.000 large -0.541 80 0.000 large -0.709

100 0.000 large -0.517 100 0.000 large -0.619

Effect size =

negligible, if |d| ≤ 0.147
small, if 0.147 < |d| ≤ 0.33
medium, if 0.33 < |d| ≤ 0.474
large, if 0.474 < |d| ≤ 1

(1)

Table 12 shows that the distributions of delay of early stopping and our methods are significantly
different except for KNN-DTW with a window size of 20 epochs. In addition, the delays of our
methods are shorter than early stopping (except for KNN-DTW with a window size of 20 epochs)
with at least a medium effect size.

G USING ZERO-ONE LOSS FOR OVERFITTING PREVENTION

Overfitting prevention methods may stop the training process by inspecting the validation accuracy
error (i.e., zero-one loss) rather than the loss utilized for optimizing the model. Figure 10 shows
the optimal rate of our approaches as well as early stopping based on zero-one validation loss.
When compared to the results in Figure 5 (which uses validation loss), the optimal rate of early
stopping based on zero-one loss is quite similar. The results show that the optimal rate improves
(with an average of 2.5%) when the patience value is between 35 and 90 epochs but declines (with an

20

Under review as a conference paper at ICLR 2023

20 40 60 80 100
Window size (epoch)

0.0

0.2

0.4

0.6

0.8

1.0

Op
tim

al
 ra

te

Early stopping
KNN-DTW
HMM-GMM
TSF
TSBF
SAX-VSM
BOSSVS

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115
Patience (epoch)

Figure 10: The optimal rate of our methods (using a rolling window) and early stopping with differ-
ent patience values based on zero-one validation loss curves.

average of 2.9%) when the patience value is less than 35 epochs. For our method with KNN-DTW,
the results show that using zero-one loss curves increases the optimal rate, which still outperforms
early stopping and other time series classifiers. However, the delay of the KNN-DTW also increases
and stops later than early stopping when the window size is less than or equal to 40 epochs (please
see Table 13 for details). Furthermore, we found that our approach with KNN-DTW has a higher
optimal rate but longer delay while using the zero-one loss curves (compared to using the original
loss curves).

20 40 60 80 100
Window size (epoch)

0.0

0.2

0.4

0.6

0.8

1.0

Op
tim

al
 ra

te

Early stopping
KNN-DTW
HMM-GMM
TSF
TSBF
SAX-VSM
BOSSVS

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115
Patience (epoch)

Figure 11: The optimal rate of our methods (using a rolling window) and early stopping with dif-
ferent patience values. (This figure is the same as Figure 5, we added it here for easy comparison to
Figure 10.)

H A HEURISTIC METHOD FOR AUTOMATIC LABELLING

We developed a heuristic method for labelling the training history in the simulated dataset as over-
fitting based on the following conditions:

• The training loss and validation loss both decrease in the first incp percentage of the train-
ing history.

• The training loss and validation loss both decrease in the last decp percentage of the training
history.

21

Under review as a conference paper at ICLR 2023

Table 13: The median delay and significant testing of our overfitting prevention methods based on
zero-one validation loss curves with different window sizes. (Ws.: Window size; Md.: Median
delay)

Ws. Classifier Md. P Effect
size

Cliff’s
d value Classifier Md. P Effect

size
Cliff’s

d value

20

BOSSVS

13.5 0.684 neg -0.050

SAX-VSM

5.0 0.000 large -0.950
40 46.0 0.109 small 0.198 5.5 0.000 large -0.976
60 44.5 0.494 neg -0.087 11.5 0.000 large -0.884
80 46.5 0.115 small -0.202 14.5 0.000 large -0.806

100 49.5 0.029 small -0.284 26.5 0.000 large -0.716

20

HMM-GMM

2.0 0.000 large -0.850

TSBF

7.5 0.000 large -0.750
40 5.0 0.000 large -0.739 14.5 0.000 large -0.867
60 8.0 0.000 large -0.656 27.0 0.000 large -0.809
80 18.0 0.000 large -0.719 37.0 0.000 large -0.708

100 46.5 0.001 medium -0.431 45.0 0.000 large -0.561

20

KNN-DTW

48.5 0.000 large 0.650

TSF

12.5 0.001 medium -0.400
40 44.0 0.027 small 0.273 24.0 0.000 large -0.726
60 47.0 0.392 neg -0.109 31.0 0.000 large -0.630
80 48.5 0.194 small -0.166 42.5 0.000 large -0.596

100 56.5 0.024 small -0.292 47.0 0.000 large -0.479

• The gap between the training loss and validation loss exceeds gapp percentage of the sum
of the training and validation loss.

To select the thresholds, we performed a grid search between 10% to 50% for incp and decp, and a
grid search between 1% to 50% for gapp. The best performance of the heuristic method can achieve
is a 0.75 F-score for the overfitting samples with 0.96 precision and 0.61 recall. The result shows that
the heuristic method does not work well on the simulated dataset in comparison to other methods
(see Table 7). Furthermore, the heuristic method performs poorly on the real-world dataset, with a
0.22 average F-score. Hence, human labels are still required for training the time series classifiers.

22

	1 Introduction
	2 Background and Related Work
	2.1 Overfitting
	2.2 Overfitting detection
	2.3 Overfitting prevention

	3 Our method
	4 Experimental setup
	4.1 Datasets
	4.2 Experiments
	4.3 Evaluation

	5 Results
	6 Conclusion and future work
	A Studied datasets and time series classifiers
	B Results of training overfitting detection methods
	C Surveyed papers
	D Perturbation validation for overfitting detection
	E Early stopping based on smoothed validation loss curves
	F Significance test for the results of overfitting prevention
	G Using zero-one loss for overfitting prevention
	H A heuristic method for automatic labelling

