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Abstract

With the increasing adoption of Retrieval-Augmented Generation (RAG) systems
for knowledge-intensive tasks, ensuring the adequacy of retrieved documents has be-
come critically important for generation quality. Traditional reranking approaches
face three significant challenges: substantial computational overhead that scales
with document length, dependency on plain text that limits application in sensitive
scenarios, and insufficient assessment of document value beyond simple relevance
metrics. We propose EAReranker, an efficient embedding-based adequacy as-
sessment framework that evaluates document utility for RAG systems without
requiring access to original text content. The framework quantifies document
adequacy through a comprehensive scoring methodology considering verifiability,
coverage, completeness and structural aspects, providing interpretable adequacy
classifications for downstream applications. EAReranker employs a Decoder-
Only Transformer architecture that introduces embedding dimension expansion
method and bin-aware weighted loss, designed specifically to predict adequacy
directly from embedding vectors. Our comprehensive evaluation across four pub-
lic benchmarks demonstrates that EAReranker achieves competitive performance
with state-of-the-art plaintext rerankers while maintaining constant memory usage
(~550MB) regardless of input length and processing 2-3x faster than traditional
approaches. The semantic bin adequacy prediction accuracy of 92.85% LACC@10
and 86.12% LACC @25 demonstrates its capability to effectively filter out inade-
quate documents that could potentially mislead or adversely impact RAG system
performance, thereby ensuring only high-utility information serves as generation
context. These results establish EAReranker as an efficient and practical solution
for enhancing RAG system performance through improved context selection while
addressing the computational and privacy challenges of existing methods. The
source code of EAReranker is available in https://github.com/zjzdy/EAReranker.

1 Introduction

Retrieval-Augmented Generation (RAG) [1] has emerged as a pivotal paradigm for enhancing
Large Language Models (LLMs) in knowledge-intensive applications. By incorporating external
knowledge as context, RAG systems mitigate hallucinations and enhance response accuracy. As
these systems evolve, ensuring retrieved knowledge is not merely relevant but genuinely adequate
in comprehensively and accurately addressing query requirements has become increasingly critical.

The canonical RAG workflow consists of retrieval and reranking stages [2, 3 4} 5, |6]. While
contemporary reranking methods effectively capture semantic relationships through cross-attention
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mechanisms [[7] or pre-trained language models [8§]], their direct dependency on original text introduces
significant limitations.

These limitations manifest in three primary challenges. First, substantial and unstable computa-
tional overhead arises as computational requirements scale with text length, creating deployment
barriers in resource-constrained environments and performance instability with variable document
lengths. Second, dependency on plain text restricts deployment in scenarios where content exposure
raises intellectual property or data governance concerns, impeding wider RAG adoption. Finally,
a more fundamental constraint lies in the lack of refined content value assessment. Traditional
reranking primarily evaluates "relevance,”" whereas effective RAG systems require assessment of
"adequacy," which represents the substantive value and reliability of content in addressing the query
yet remains challenging to quantify.

To address these limitations comprehensively, we propose EAReranker, an efficient embedding-based
adequacy assessment model that predicts document adequacy solely from embedding vectors without
accessing original text. Operating entirely in vector space, EAReranker leverages the semantic
understanding capabilities of pre-trained embedding models to perform sophisticated adequacy
assessment and reranking.

Our contributions include: (1) An embedding-oriented adequacy assessment architecture: EAR-
eranker employs a Decoder-Only Transformer with embedding dimension expansion techniques
and a bin-aware weighted loss function, eliminating dependence on plain text while effectively
utilizing embedded knowledge. (2) A principled adequacy assessment methodology: We intro-
duce a multi-dimensional semantic binning approach that quantifies document utility into discrete
interpretable levels, validated through multiple LLMs to ensure consistent assessment quality. (3)
Empirical validation of efficiency and effectiveness: Comprehensive experiments demonstrate
that EAReranker achieves comparable performance to plaintext models while significantly reducing
computational requirements and maintaining consistent efficiency regardless of document length.

2 Related Work

2.1 Language Embedding Models

Text embedding methods represent a fundamental technology in modern natural language processing,
mapping textual data into continuous vector spaces where semantic relationships can be captured
through geometric proximity. The evolution of these techniques has significantly enhanced the
capabilities of information retrieval and ranking systems.

Embedding approaches have advanced from context-independent word representations to sophisti-
cated contextual models. Early techniques like Word2Vec [9] and GloVe [10] established foundational
vector space modeling principles, while Transformer-based architectures including BERT [11] and
RoBERTa [[12]] later introduced dynamic contextual understanding. The development of sentence-
level embedding frameworks such as Sentence-BERT [13] further refined semantic representation by
optimizing vector spaces specifically for similarity assessment.



Recent architectural innovations have substantially expanded embedding capabilities. Models based
on XLM-RoBERTa [14], such as bge-m3 [[15]] and jina-embeddings-v3 [16], demonstrate robust mul-
tilingual and multi-domain processing abilities. Advanced architectures including Qwen2-based [17]]
KalLM-embedding [[18] and Gemma?2-based [[19] bge-multilingual-gemma2 [15] leverage increased
parameter scales to achieve enhanced semantic modeling and extended context support [20].

The demonstrated capability of modern embeddings to effectively encode semantic content sug-
gests that embedding vectors alone can sufficiently represent semantic adequacy information. Our
EAReranker framework builds upon this foundation, conducting document adequacy evaluation
exclusively within the embedding space while maintaining semantic fidelity.

2.2 Language Reranking Models

Document reranking serves as a critical component in RAG for refining initially retrieved can-
didates [2, 13, 4} 5]]. Traditional approaches utilized lexical heuristics such as BM25 [21] and
TF-IDF [22]], which offer computational efficiency but exhibit limited semantic understanding.

Neural reranking models have introduced sophisticated semantic modeling through various archi-
tectural paradigms. Encoder-based approaches, exemplified by bge-reranker-v2-m3 [15]] and jina-
reranker-v2-base-multilingual [23]], process query-document pairs using token-level cross-attention
mechanisms. Decoder-Only architectures, including bge-reranker-v2-gemma [15] and Ib-reranker [8],
leverage autoregressive modeling over combined sequences to capture complex dependencies.

An alternative approach involves directly prompting large language models for ranking tasks, as
demonstrated by RankGPT [6] and UPR [24]. While this method offers flexibility, it requires
substantial computational resources and full text access.

Current reranking approaches face two significant limitations. First, they require direct access to
query and document text, resulting in computational costs that scale with input length. Second, they
primarily focus on relevance assessment rather than comprehensive adequacy evaluation for RAG.

Our proposed EAReranker addresses these limitations by operating solely on embedding vectors,
enabling efficient computation and privacy preservation while maintaining competitive performance.
This approach represents a significant advancement in developing practical and scalable solutions for
document adequacy assessment in RAG.

3 Embedding Adequacy Assessment Framework

3.1 Framework Overview

Figure [I]contrasts traditional reranker-based RAG systems with our proposed EAReranker approach.
While conventional rerankers perform detailed query-document interaction requiring computational
resources proportional to text length, EAReranker operates exclusively on fixed-dimension embed-
ding vectors, enabling efficient adequacy assessment without accessing original text content. This
design strategically addresses three critical limitations of existing approaches: (1) Computational
invariance: Processing fixed-dimension embeddings decouples runtime and memory requirements.
(2) Avoidance of dependence on original text: By operating solely on embeddings, our method
mitigates issues arising from direct text exposure or handling. (3)Adequacy-centric evaluation: The
model learns to assess multi-dimensional adequacy factors rather than relying solely on relevance.

A critical distinction underlying our work is that between relevance and adequacy. Traditional
retrieval systems prioritize relevance—measuring topical alignment between queries and documents
through lexical or semantic similarity. However, for RAG systems performing complex generation
tasks, relevance alone is insufficient. Adequacy measures a document’s functional utility in enabling
the generation model to produce complete, accurate, and well-structured responses. For instance, a
document containing only the query keywords may achieve high relevance scores but provide minimal
generation value, while a comprehensive, well-structured explanation may score lower on similarity
metrics yet offer substantially higher utility for answer generation. Our adequacy framework evaluates
documents across four complementary dimensions to capture this multi-faceted utility.
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Figure 2: Pipeline of Adequacy Assessment Annotation.

3.2 Problem Formal Characterization

Traditional document reranking is typically defined as learning a function f(g, d) that evaluates the
relevance between the original query text ¢ and document text d, and ranks documents accordingly.
We redefine this task as learning a model M that predicts a scalar score s' € [0, 1] reflecting the
"adequacy" of document d for query ¢, using only their embedding vectors e, € R? and e, € R?
generated by pre-trained embedding models:

f(g,d) — s (Traditional) = M(e,,eq) — s’ (Ours), )
where documents {d;} are then reranked based on these predicted adequacy scores s;.

More precisely, given a query embedding e, and a collection of document embeddings {eq, }¥
obtained during the initial retrieval phase, we aim to train a model M (e, e4,) — s} that approximates
the true adequacy score s; with high fidelity. The final document ranking is determined by sorting the
documents in descending order of their predicted adequacy scores, such that:

i > 8i, > >80, 2)
where (i1, 42, ..., iy ) represents the indices of the documents after ranking. A critical property of our
framework is score interpretability—documents with similar predicted scores should demonstrate
comparable utility across query-document pairs, enabling meaningful threshold-based filtering.

To effectively assess adequacy from embeddings, our model must exhibit four essential capabilities:
extraction of fine-grained semantic information from fixed-dimension vectors; exclusive operation on
embeddings without requiring original text; evaluation across multiple adequacy dimensions beyond
simple relevance; and computational efficiency invariant to document length. These requirements
guide our architectural design and implementation strategies detailed in subsequent sections, with
Section [ presenting our annotation methodology and Section [5]describing our model architecture.

4 Adequacy Assessment Annotation

This section establishes a formal framework for evaluating document adequacy in RAG systems,
transcending traditional relevance metrics to capture the multidimensional utility of retrieved content
as generation context. We introduce a rigorous methodology for quantifying document adequacy
through interpretable value classification, providing both theoretical foundations and high-quality
labeled datasets for training our proposed EAReranker model. As illustrated in Figure [2} our
annotation pipeline integrates semantic bin-based standards, multi-model evaluation, and cross-model
validation to ensure consistency across diverse query-document domains.

4.1 Semantic Bin-Based Adequacy Scoring

Adequacy assessment represents a fundamental advancement beyond conventional relevance eval-
uation. While relevance primarily quantifies semantic proximity between queries and documents,
adequacy measures the substantive utility of documents as generation context. This distinction is
critical: relevance indicates topical alignment, whereas adequacy evaluates whether a document
provides reliable information that comprehensively addresses query requirements.



Table 1: Semantic Binning Scheme for Adequacy Scoring.

Semantic Score Range Verifiability = Need Evidence Structure Description
Bin Coverage Completeness Suitability
Precise [0.90,1.00] High High High High Optimal context
Adequacy
High [0.75,0.90) High High High Medium  High-quality con-
Adequacy text
Middle [0.50,0.75) Medium  Medium Medium Medium  Usable context with
Adequacy supplementation
Marginal  [0.25, 0.50) Low Low Low Low Marginally usable
Relevance context
Weak [0.10,0.25)  Very Low Low Very Low - Negligible  value
Relevance context
Irrelevance  [0.00,0.10) - Very Low - - Unusable context

We formalize adequacy assessment through four complementary dimensions: (1) Verifiability: Quan-
tifies information reliability and factual foundation. High verifiability documents present explicitly
cited or well-established facts, while low verifiability documents contain predominantly unsubstan-
tiated claims. (2) Need Coverage: Evaluates comprehensive addressing of query requirements.
High coverage documents provide complete responses to information needs, whereas low coverage
documents may contain superficially relevant terminology without addressing query intent. (3)
Evidence Completeness: Assesses logical coherence and supporting evidence. Documents with
high completeness present well-structured arguments with sufficient substantiation, while those with
low completeness exhibit logical discontinuities or insufficient support. (4) Structure Suitability:
Measures alignment between document presentation and required content format. High suitability
documents present information in readily utilizable formats, while low suitability documents require
significant transformation.

We discretize the adequacy spectrum into six distinct bins spanning [0,1], as detailed in Table [T} Doc-
uments in the Precise Adequacy bin ([0.90, 1.00]) represent optimal context with high performance
across all dimensions. High Adequacy documents ([0.75, 0.90)) contain all required information
with minimal redundancy. Middle Adequacy documents ([0.50, 0.75)) address main issues but
require supplementation. Marginal Relevance documents ([0.25, 0.50)) cover only peripheral aspects
of the query. Weak Relevance documents ([0.10, 0.25)) provide minimal substantive information.
Irrelevance documents ([0.00, 0.10)) have no discernible relationship to query requirements.

This structured binning provides clear operational thresholds for RAG systems. Documents scoring
above 0.75 can be directly incorporated, while those below 0.25 should generally be excluded to
prevent hallucination or inaccuracy in generated content. The granular discrimination between bins
enables automated optimization of context selection, significantly enhancing generation quality.

4.2 Multi-Model Semantic Bin Scoring

Constructing high-quality training data necessitates a robust annotation methodology. We employ a
multi-model scoring framework that leverages diverse large language models under a principled cross-
validation scheme to ensure reliable and consistent scoring across heterogeneous query-document
pairs. Our framework employs a cross-validation architecture that aggregates assessments from
multiple LLMs with distinct architectures and training paradigms. This approach mitigates indi-
vidual model biases and captures diverse evaluation perspectives, enhancing annotation reliability
particularly for ambiguous cases.

Effective LLM-based scoring relies on carefully engineered prompts encompassing: (1) Professional
role definition with explicit evaluation criteria, (2) Four-dimensional adequacy framework articulation,
(3) Precise semantic bin definitions with boundary cases, and (4) Structured input/output formats. We
incorporate exemplar cases demonstrating assessment criteria across diverse scenarios, enhancing
model understanding of nuanced adequacy distinctions.

The scoring process follows Algorithm[I} which implements a hierarchical validation mechanism
to identify consistent model assessments. The algorithm’s innovation lies in its combinatorial
approach, systematically evaluating all possible combinations of four model scores to find consistent



subsets. Specifically, it begins with four LLM scores and checks consistency (tolerance 0.2); if
unsuccessful, additional models are consulted and all four-score combinations are evaluated to find
self-consistent subsets. This approach offers several advantages: flexibility in finding reliable
assessments without requiring all models to agree, computational efficiency through progressive
validation, and effective handling of outlier scores by identifying alternative combinations that
provide consistent assessments.

Algorithm 1: Multi-Model Semantic Bin Scoring.

Input: Query-document pair (g, d), LLM models M = {M;, ..., M}
Output: LLM adequacy score Siipm,

1 S < {Score(M;, q,d) | i € {1,2,3,4}}; /* Initialize with first 4 scores */

2 p + Mean(S);

3 if maxges|s — p] < 0.2 then

4 | return y;

5 for i < 5tom do

6 S + SU{Score(M;,q,d)};

7 foreach Ssypset € Combinations(S,4) do

8

9

Msubset — Mean(ssubset);

if maxses,, ;... |$ — Msubset| < 0.2 then
10 | return psupser;
11 return Mean(S);

4.3 Within-Bin Score Calibration Methodology

While multi-model validation provides reliable bin assignments, we observed that LLMs tend
to produce clustered scores within each bin, limiting intra-bin differentiation. To enhance score
granularity while preserving semantic boundaries, we developed a within-bin calibration methodology
that incorporates auxiliary ranking signals from diverse reranking models.

The calibration process begins with normalization of reranker scores across the dataset:

gnorm _ SR; — mln(st) 3)

g max(sg,) — min(sg,)’

These normalized scores are aggregated to produce a composite reranking signal:

R
Srerank = <Sré?rm>_‘j:|1~ @

For documents with LLM-assigned scores s;;,, within bin [l;, h;], the calibration formula applies:

Scalibrated = 0.5 x ((Sllm - lz)/(hz - lz) + Srerank) X (hz - ll) + lz (5)

This calibration methodology preserves semantic bin boundaries while enhancing intra-bin differenti-
ation, transforming discrete score clusters into continuous distributions and maintaining semantic
consistency with original assessments.

Through this comprehensive annotation framework, we construct large-scale training datasets with
high-quality adequacy scores. The methodology’s ability to produce consistent, fine-grained ade-
quacy annotations while preserving semantic interpretability represents a significant advancement in
automated document assessment for RAG.

5 Embedding-Based Adequacy Assessment Model

We propose EAReranker, an efficient embedding-based model for document adequacy assessment that
operates exclusively in the vector space, as illustrated in Figure[3] The model leverages a specialized
Decoder-Only Transformer architecture to evaluate adequacy using only query and document embed-
ding, eliminating the need for access to original text while maintaining competitive performance with
traditional text-based approaches. The architecture consists of two primary components:
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Figure 3: Overall of Adequacy Assessment Model.

Embedding Dimension Expansion: To enable rich semantic feature extraction from fixed-
dimensional embeddings, we transform single embedding vectors into sequential representations
through independent projection layers. Given query embedding e, and document embedding e, the
expansion is performed as:

e,; = Lgi(e)) = Wyie, +bgi, ey, =Lai(eq) = Wy eq4+ba, (6)

q,t

where each projection layer L, ; and L, ; is initialized independently to capture distinct semantic
aspects. The expanded sequence combines these transformed embeddings with trainable special
tokens embedding vectors ecrs and espp: [€cLs, €)1, - - e;,N, esep, e;l,l, A eﬁin}.

Transformer Processing: The expanded sequence is processed through L stacked Decoder layers
with Multi-Head Self-Attention and Feed-Forward Networks. The [CLS] token output is passed
through a three-layer MLP head to predict the final adequacy score.

The model is trained using a bin-aware weighted loss function that emphasizes accurate prediction
near semantic bin boundaries:

N
1
[/BWMSE(Struea Spred) = N Z wy - (Strue7i - Spred,i)27 (7)
i=1

where weights w; are computed based on prediction deviation from bin boundaries.

This architecture effectively addresses the key challenges of embedding-based adequacy assessment
while maintaining high computational efficiency and privacy preservation.

6 Experiments

We present a comprehensive evaluation of EAReranker’s effectiveness in embedding-based adequacy
assessment and reranking. Our experiments assess the model’s ranking performance across public
benchmarks, adequacy classification accuracy, and computational efficiency, demonstrating its ability
to achieve competitive results while operating exclusively on embedding vectors.

6.1 Experimental Settings

Our evaluation utilized a dataset comprising 1 million query-document pairs, partitioned into training
(80%) and testing (20%) sets. Vector representations were generated using established embedding
models: bge-m3 (1024-dimensional)[[15], jina-embeddings-v3 (jina-v3, 1024-dimensional) [16]],
gte-multilingual-base (gte-base, 768-dimensional) [18], and KalLM-embedding-multilingual-mini-
instruct-v1.5 (KaLM, 896-dimensional) [20]. We deliberately excluded higher-dimensional models
like NV-Embed-v2 (4096-dimensional) [25] to focus on commonly dimensions in RAG.

The evaluation framework compares EAReranker against multiple baselines: traditional lexical mod-
els (BM25 [21]), embedding cosine similarity methods, and plaintext-based reranking models includ-
ing gte-multilingual-reranker-base [18]], bge-reranker-v2-m3 [[15], jina-reranker-v2-base-multilingual
[23]], and Ib-reranker-v1.0 [&]].

EAReranker employs a stacked Transformer architecture with 4 layers and an embedding dimension
expansion factor of 4, balancing representational capacity with computational efficiency. Training
utilized the AdamW optimizer (batch size 256, learning rate 1e-5) for 50 epochs with early stopping.



Table 2: Comparative Case Study: Traditional Retrieval Scores Versus Adequacy Assessment.
Query Document bge-m3 gte-base bge-r2 gte-rb Adequacy

Introduce China’s capital.  Beijing City (Beijing), abbreviated as Jing, 0.7305 0.7983 2.4641 0.3608  0.9261
historically known as Yanjing and Beiping ...

Introduce China’s capital. ~ The capital is a nation’s most important politi- 0.6684 0.7723  2.4453 0.9229  0.8749
cal center. Throughout Chinese history ...

Introduce China’s capital.  Beijing is the capital of the People’s Republic 0.6717  0.7634  0.7334 0.2303  0.5763
of China, categorized as a super first-tier city.

Introduce China’s capital.  Beijing is the capital 0.7858 0.8427 2.4805 03511 0.3102
Introduce China’s capital.  Introduce China’s capital 1.0000 1.0000 10.1562 3.2539  0.1740
The formula for multiplying 1%5=5; 2*5=10; 3*5=15; 4*5=20 ... 0.6137 0.6300 0.1333 0.3533  0.8137
two numbers to 10.

Where is Egypt located in A 0.3278 0.5939 -4.7656 0.6436  0.1523
Africa?

A. Northeast B. Southwest

What is China’s capital city? Beijing 0.6024 0.7688 2.8633 0.6348  0.1893
What is China’s capital city? The railway runs east to west 03977 0.4263 -10.7734 -0.4365 0.0324

6.2 Metrics

Our evaluation framework incorporates both ranking effectiveness and classification accuracy metrics:

Ranking Metrics: Normalized Discounted Cumulative Gain (NDCG @ 10) evaluates ranking quality
considering both relevance and position. Mean Reciprocal Rank (MRR) quantifies the position of the
first relevant document.

Adequacy Assessment Metrics: ACC25 measures the proportion of samples where the absolute
error between predicted and true scores is within 0.25, directly reflecting bin classification accuracy.
LACC@25 and LACC@10 evaluate binary classification accuracy at thresholds of 0.25 and 0.10
respectively, indicating the model’s ability to distinguish relevant from irrelevant documents. These
metrics are particularly significant for RAG systems that require effective filtering mechanisms to
prevent noise contamination.

6.3 Dataset

We curated a comprehensive adequacy assessment dataset by augmenting the bge-m3-data [15] com-
prising diverse query-document pairs with additional samples sourced from multiple heterogeneous
collections [26 27} 28,29} 130} 31} 132} 133,134} 135]]. This aggregated dataset spans a wide spectrum of
domains and query intents, encompassing fact verification, specialized knowledge retrieval, etc.

To ensure annotation quality, we adopted a multi-model scoring framework employing seven LLMs
[36, 137, 138,139, 17,140, 41]] with diverse architectures and training regimes. Each query-document
pair was scored multiple times, with cross-validation and iterative selection to reduce model-specific
bias and improve consistency, particularly for ambiguous boundary samples.

Table [2] contrasts traditional retrieval scores with our bin-based adequacy assessment across represen-
tative examples. Here, bge-r2 and gte-rb denote reranking scores from bge-reranker-v2-m3 [[15] and
gte-multilingual-reranker-base [[18]], respectively; bge-m3 and gte-base represent cosine similarity
scores. The comparison illustrates how traditional methods often conflate lexical or semantic similar-
ity with true informational value. For instance, exact query repetition achieves maximal similarity
scores but receives low adequacy ratings, reflecting its lack of substantive content. Conversely,
documents offering structured, detailed information receive high adequacy despite lower similarity
scores, highlighting traditional models’ inability to fully capture content utility for generation tasks.

6.4 Performance Experiments

Ranking Effectiveness. Evaluation across four public benchmarks (FEVER [30]], NFCorpus [28]],
DuRetrieval [42], and T2Ranking [43]) reveals consistent performance patterns, as shown in Table
Traditional lexical methods demonstrate the weakest performance, with embedding similarity methods
showing significant improvements in NDCG and MRR. Plaintext-based reranking models achieve
superior performance. However, EAReranker maintains competitive results within 0.54%-1.30%
of the best plaintext model. This performance is particularly noteworthy given that EAReranker



Table 3: Ranking Performance on Public Benchmarks (%).

Type Model FEVER NFCorpus DuRetrieval T2Ranking
NDCG@10 MRR NDCG@10 MRR NDCG@10 MRR NDCG@10 MRR
Lexical BM25 48.09 3297 3208 4396 1947 21.03 4634  35.89
Cosine (gte-base) 92.11 9419 36.66 56.60 87.54 9338 84.71  92.60
Embedding Similarit Cosine (bge-m3) 81.37 8564 314l 5217 8396  90.77 8137  90.30
& Y Cosine (jina-v3) 89.05 91.28 3644 5530 83.17 89.72 83.16 91.53
Cosine (KaLM) 86.54  89.65 2592 3931 80.23  86.49  79.78  87.61
gte-reranker-base 9483  96.12 3879 5925 89.37 9481 87.06  94.37
Plaintext Rerankers bge-reranker-v2-m3 9526  96.78 3941 60.83 90.16 9524 87.85 954l
jina-reranker-v2 9374 9582 38.04 5896 88.65 9394 8634 93.85
Ib-reranker-v1.0 9511 9644 3928  60.71 89.82 9476 8752  94.93
EAReranker (gte-base)  94.36  95.87  38.14 5893 8896 9423  86.47 9391
EAReranker (bge-m3) 9472 96.21 3876 5932 89.57 9482  87.11 94.68

Embedding Reranker ¢\ poranker (jina-v3) 9451 9608 3851 5914 8923 9456 8689  94.32

EAReranker (KaLM) 93.84 9543 37.65 5846 8854 9395 86.12  93.57

Table 4: EAReranker Adequacy Performance(%). Table 6: Inference Computational Efficiency

Embedding ACC25 LACC@25 LACC@I10 Comparison.
Model (Max Length) VRAM(MB) Inference Time(s)

gte-base 81.98 84.17 91.32
bge-m3 84.28 86.12 92.85 gte-reranker-base (8K) 1209-2225  0.1697-0.3506
jina-v3 83.52 85.42 9227 bge-reranker-v2-m3 (8K) 2176-2527  0.1312-0.5468
KalLM 83.09 85.06 91.98 jina-reranker-v2 (1K) 547-603 0.1846-0.2128
Ib-reranker-v1.0 (128K)  967-8441 0.3479-5.9219
Table 5: Ablation Performance on bge-m3 (%).  EAReranker (gte-base) 544 0.1111
: EAReranker (bge-m3) 550 0.1128
Configuration ACC25  LACC@I0 b Reranker (jina-v3) 550 0.1127
Complete model 84.28 92.85 EAReranker (KaLM) 547 0.1124
w/o Dimension Expansion 80.58 (-3.70) 89.62 (-3.23)
w/o Bin-Aware Loss 81.61 (-2.67) 90.65 (-2.20)

w/o Score Calibration 82.95 (-1.33) 91.98 (-0.87)

processes only fixed-dimensional embedding vectors rather than full text. Additional experimental
information is provided in Appendix B.

Adequacy Assessment Capability. Table ] presents the model’s performance on adequacy classifi-
cation metrics. EAReranker achieves 84.28% ACC25 using bge-m3 embeddings, with LACC@10,
reaching 92.85% and LACC @25 achieving 86.12%. These results demonstrate effective discrimina-
tion between adequacy levels, particularly in identifying irrelevant or marginal documents that should
be filtered from RAG contexts.

Computational Efficiency. Table [ compares the computational efficiency of EAReranker with
traditional reranking models. EAReranker demonstrates significant advantages in resource utilization,
maintaining consistent memory usage (~550MB) regardless of input length, while traditional models
exhibit substantial variation (up to 8441MB for Ib-reranker-v1.0).

In terms of inference speed, EAReranker processes queries in 0.11s-0.13s, consistently faster than tra-
ditional models, especially for longer documents. Unlike traditional approaches with fixed maximum
sequence lengths, EAReranker’s processing capability depends only on the underlying embedding
model’s input capacity, providing greater flexibility for varied document lengths.

Component Contribution Analysis. Ablation studies confirm the importance of EAReranker’s
architectural components, as shown in Table 5§} Removing the embedding dimension expansion
strategy results in significant performance degradation (3.70% in ACC25, 3.23% in LACC@10),
demonstrating its essential role in extracting fine-grained semantic features from compressed embed-
dings. Similarly, the bin-aware weighted loss proves crucial for learning precise adequacy boundaries,
with its removal causing notable performance reduction (2.67% in ACC25, 2.20% in LACC@10).
Our score calibration methodology also contributes 1.33% improvement in ACC25, confirming its
effectiveness in enhancing within-bin score granularity.



The experimental results collectively validate EAReranker’s effectiveness as an embedding-based
adequacy assessment model for RAG systems. The model maintains competitive ranking performance
while operating exclusively on embedding vectors, effectively distinguishes between documents, and
significantly reduces computational requirements compared to traditional approaches.

7 Conclusion

This paper introduces a novel framework for document adequacy assessment in RAG systems,
shifting from traditional relevance-centric metrics to a comprehensive multi-dimensional evaluation
framework that encompasses verifiability, need coverage, evidence completeness, and structure
suitability. Through our semantic binning methodology and multi-model scoring approach, we
provide a quantification of retrieved documents’ intrinsic utility as generative context.

Our proposed EAReranker operates exclusively on embedding vectors without accessing original text,
achieving comparable ranking performance to state-of-the-art plaintext models while significantly
reducing computational overhead. This demonstrates the viability of embedding-based methods for
efficient and plaintext-preserving RAG deployments in resource-constrained environments.

Despite promising empirical results, several challenges remain. The current semantic bin segmen-
tation and integration of adequacy dimensions rely on empirically-informed heuristic criteria that
require further theoretical research and discussion. Additionally, our reliance on multi-model LLM
annotations introduces potential biases that warrant systematic investigation through more robust
validation methodologies. Future research directions include refining calibration techniques for
enhanced scoring granularity, and adapting the framework for domain-specific applications to im-
prove generation factuality. Exploring alternative embedding expansion mechanisms and model
architectures may yield further efficiency gains and performance improvements.

In conclusion, this work establishes fundamental theoretical and practical contributions toward
embedding-based adequacy assessment, advancing the development of semantically nuanced, compu-
tationally efficient, and trustworthy retrieval-augmented generation systems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction (L45-58) describe the proposed EAReranker, its
benefits (efficiency, no reliance on plaintext) and the key contributions (embedding-oriented
architecture, adequacy methodology).

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated discussion of limitations and challenges in
the Conclusion section (Section 7, L310-317), outlining areas for future research such as
refining empirical heuristics in annotation and investigating LLM annotation biases.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not center on formal theoretical results or new theorems
but rather on the design and empirical evaluation of a neural architecture and annotation
methodology.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 6.1 and Appendix B provide detailed information on experimental
settings, datasets used, model architecture, hyperparameters, optimizer details, training
epochs, and metrics, sufficient for reproducing the described experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This research utilizes established public datasets in conjunction with open-
source embedding models. The complete implementation code has been made available in
the supplementary materials.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 6.1 and Appendix B.1 provide details on data splits, hyperparameters,
optimizer, training epochs, and hardware/software configuration.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations over 5 runs with different random seeds for the
main adequacy assessment metrics in Appendix B.6 (Table 10).
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix B.1 specifies the technical hardware (GPU, CPU, memory, OS) used
for experiments (lines 521-523), and Table 6 details VRAM usage and inference time for
different models, including EAReranker (lines 282-289).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The work is conducted on public datasets, adheres to responsible data handling
(no private text is exposed). No ethical violations are apparent.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the benefit of improved efficiency and privacy in RAG
systems as well as the potential risks (related to mislabeling or bias in adequacy assessment,
incorrect filtration) in several sections (introduction, conclusion, and limitations).

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not state that high-risk assets such as powerful generative
models or sensitive datasets.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: The paper provides references to all used datasets and models (see References
[15-41]), credits their sources, and discusses licensing and terms of use in each case.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new, annotated adequacy dataset. Collection and
annotation procedures, binning schemes, score distributions, and annotation protocols are
given in Sections 4 and B.2, with codes in supplemental material.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The application of multiple LLMs for semantic bin annotation is front-and-
center in the methodology (see Section 4.2, Appendix A.1-A.3). Prompt engineering, model
aggregation, and LLM selection are described in detail.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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