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Abstract

Decision trees have long been recognized as models of choice in sensitive applica-1

tions where interpretability is of paramount importance. In this paper, we examine2

the computational ability of Boolean decision trees in deriving, minimizing, and3

counting sufficient reasons and contrastive explanations. We prove that the set4

of all sufficient reasons of minimal size for an instance given a decision tree can5

be exponentially larger than the size of the input (the instance and the decision6

tree). Therefore, generating the full set of sufficient reasons can be out of reach. In7

addition, computing a single sufficient reason does not prove enough in general;8

indeed, two sufficient reasons for the same instance may differ on many features.9

To deal with this issue and generate synthetic views of the set of all sufficient10

reasons, we introduce the notions of relevant features and of necessary features that11

characterize the (possibly negated) features appearing in at least one or in every12

sufficient reason, and we show that they can be computed in polynomial time. We13

also introduce the notion of explanatory importance, that indicates how frequent14

each (possibly negated) feature is in the set of all sufficient reasons. We show how15

the explanatory importance of a feature and the number of sufficient reasons can be16

obtained via a model counting operation, which turns out to be practical in many17

cases. We also explain how to enumerate sufficient reasons of minimal size. We18

finally show that, unlike sufficient reasons, the set of all contrastive explanations19

for an instance given a decision tree can be derived, minimized and counted in20

polynomial time.21

1 Introduction22

In essence, explaining a decision to a person is to give the details or reasons that help a person23

(the explainee) understand why the decision has been made. This is a significant issue especially24

when decisions are made by Machine Learning (ML) models, such as random forests, Markov25

networks, support vector machines, and deep neural networks. Actually, with the growing number26

of applications that rely on ML techniques, researches on eXplainable AI (XAI) have become27

increasingly important, by providing efficient methods for interpreting ML models, and explaining28

their decisions (see for instance [10, 11, 12, 13, 16, 19, 22, 23, 24, 28, 30]).29

When dealing with Boolean classifiers, which is what we do in this paper, two decisions are possible,30

only: 1 for the instances classified as positive instances, and 0 for the remaining ones (the negative31

instances). Whatever the way x has been classified, an explainee may seek for explanations from32

two distinct types [23]. On the one hand, abductive explanations for x are intended to explain why x33

has been classified in the way it has been classified by the ML model (thus, addressing the “Why?”34

question). On the other hand, the purpose of contrastive (also known as counterfactual) explanations35

for x is to explain why x has not been classified by the ML model as the explainee expected it (thus,36

addressing the “Why not?” question). In both cases, explanations that are as simple as possible are37

preferred (where simplicity is modeled as irredundancy, or even as size minimality).38
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Although there is no formal notion of interpretability [21], for classification problems, decision trees39

[3, 26] are arguably among the most interpretable ML models. Because of their interpretability,40

decision trees are often considered as target models for distilling a black-box model into a compre-41

hensible one [4, 10]. Furthermore, decision trees are often the components of choice for building42

(less interpretable, but potentially more accurate) ensemble classifiers, such as random forests [2] and43

gradient boosted decision trees [5].44

The interpretability of decision trees is endowed with two key characteristics. On the one hand,45

decision trees are transparent: each node in a decision tree has some meaning, and the principles used46

for generating all nodes can be explained. On the other hand, decision trees are locally explainable:47

by construction of a decision tree T , any input instance x is mapped to a unique root-to-leaf path48

that yields to a decision label. The subset of (positive and negative) features tTx occurring in the49

path used to find the right label 1 or 0 for x in the decision tree T can be viewed as a “direct reason”50

for classifying x as a positive instance or as a negative instance. tTx is an abductive explanation for51

x given T , which explains why x has been classified by T as it has been classified. Indeed, every52

instance x′ that coincides with x on tTx is classified by T in the same way as x. However, such53

“direct reasons” can contain arbitrarily many redundant features [17]. This motivates to take account54

for other types of abductive explanations in the case of decision trees, namely, sufficient reasons [7]55

(also known as prime implicant explanations [29]), that are irredundant abductive explanations, and56

minimal sufficient reasons (i.e., those sufficient reasons of minimal size).57

In this paper, we examine the computational ability of Boolean decision trees in deriving, minimizing58

and counting sufficient reasons and contrastive explanations. We prove that the set of all sufficient59

reasons of minimal size for an instance given a decision tree can be exponentially larger than the size60

of the input. When this is the case, generating the full set of sufficient reasons (i.e., the complete61

reason for the instance [7]) is typically out of reach. In addition, computing a single sufficient reason62

does not prove enough in general; indeed; two sufficient reasons for the same instance may differ on63

many features. To deal with this issue and generate synthetic views of the set of all sufficient reasons,64

we introduce the notions of relevant features and of necessary features that characterize the (possibly65

negated) features appearing in at least one or in every sufficient reason, and we show that they can be66

computed in polynomial time. We also introduce the notion of explanatory importance, that indicates67

how frequent each (possibly negated) feature is in the set of all sufficient reasons. Though deriving68

the explanatory importance of a feature in the set of sufficient reasons and determining the cardinality69

of this set are two computationally demanding tasks, we show how they can be achieved thanks to70

model counting operation, which turns out to be practical in many cases. We also explain how to71

enumerate sufficient reasons of minimal size, which is a way to count them when they are not too72

numerous. We finally show that, from a computational standpoint, contrastive explanations highly73

depart from sufficient reasons. Indeed, the set of all contrastive explanations for an instance given a74

decision tree can be computed in polynomial time. As a consequence, such explanations can also be75

minimized and counted in polynomial time.76

The rest of the paper is organized as follows. Preliminaries about decision trees, abductive reasons,77

and contrastive explanations are given in Section 2. The computation of all sufficient reasons is78

considered in Section 3. Necessary and relevant features are presented in this section, as well as79

the approach for assessing the explanatory importance of a feature and for counting the number of80

sufficient reasons. We also explain there how minimal sufficient reasons can be enumerated. An81

algorithm for computing all the contrastive explanations for the instance given the decision tree is82

presented in Section 4. Experimental results are reported in Section 5. Finally, Section 6 concludes83

the paper. All the proofs and additional empirical results are reported as a supplementary material.84

2 Decision Trees, Abductive and Contrastive Explanations85

For an integer n, let [n] be the set {1, · · · , n}. By Fn we denote the class of all Boolean functions86

from {0, 1}n to {0, 1}, and we use Xn = {x1, · · · , xn} to denote the set of input Boolean variables,87

corresponding to the features under consideration. Any assignment x ∈ {0, 1}n is called an instance.88

If f(x) = 1 for some f ∈ Fn, then x is called a model of f . x is a positive instance when f(x) = 189

and a negative instance when f(x) = 0.90

We refer to f as a propositional formula when it is described using the Boolean connectives ∧91

(conjunction), ∨ (disjunction) and ¬ (negation), together with the Boolean constants 1 (true) and 092
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Figure 1: A decision tree T for recognizing Cattleya orchids. The left (resp. right) child of any decision node
labelled by xi corresponds to the assignment of xi to 0 (resp. 1).

(false). As usual, a literal ` is a variable xi (a positive literal) or its negation ¬xi, also denoted xi (a93

negative literal). A positive literal xi is associated with a positive feature (i.e., xi is set to 1), while a94

negative literal xi is associated with a negative feature (i.e., xi is set to 0). A term (or monomial) t is95

a conjunction of literals, and a clause c is a disjunction of literals. A DNF formula is a disjunction96

of terms and a CNF formula is a conjunction of clauses. The set of variables occurring in a formula97

f is denoted Var(f). A formula f is consistent if and only if it has a model. A CNF formula is98

monotone whenever every occurrence of a literal in the formula has the same polarity (i.e., if a literal99

occurs positively (resp. negatively) in the formula, then it does not have any negative (resp. positive)100

occurrence in the formula). A formula f1 implies a formula f2, noted f1 |= f2, if and only if every101

model of f1 is a model of f2. Two formulae f1 and f2 are equivalent, noted f1 ≡ f2 whenever they102

have the same models. The conditioning of a formula f by a literal `, denoted f | `, is the formula103

obtained from f by replacing each occurrence of xi with 1 (resp. 0) and each occurrence of xi with 0104

(resp. 1) if ` = xi (resp. ` = xi).105

In what follows, we shall often treat assignments as terms, and terms and clauses as sets of literals.106

Given an assignment z ∈ {0, 1}n, the corresponding term is defined as107

tz =

n∧
i=1

xzi
i where x0

i = xi and x1
i = xi

A term t covers an assignment z if t ⊆ tz . An implicant of a Boolean function f is a term that implies108

f . A prime implicant of f is an implicant t of f such that no proper subset of t is an implicant of f .109

Dually, an implicate of a Boolean function f is a clause that is implied by f , and a prime implicate of110

f is an implicate c of f such that no proper subset of c is an implicate of f .111

With these basic notions in hand, we shall focus on the following representation class of Boolean112

functions:113

Definition 1 (Decision Tree). A (Boolean) decision tree is a binary tree T , each of whose internal114

nodes is labeled with one of n input Boolean variables, and whose leaves are labeled 0 or 1. Every115

variable is assumed (without loss of generality) to appear at most once on any root-to-leaf path116

(read-once property). The value T (x) ∈ {0, 1} of T on an input instance x is given by the label of117

the leaf reached from the root as follows: at each node, go to the left or right child depending on118

whether the input value of the corresponding variable is 0 or 1, respectively. The size of T , denoted119

|T |, is given by the number of its nodes.120

The class of decision trees over Xn is denoted DTn. It is well-known that any decision tree T ∈ DTn121

can be transformed in linear time into an equivalent disjunction of terms, denoted DNF(T ), where122

each term corresponds to a path from the root to a leaf labeled with 1. Dually, T can be transformed123

in linear time into a conjunction of clauses, denoted CNF(T ), where each clause is the negation of the124

term describing a path from the root to a leaf labeled with 0.125

For illustration, the following toy example will be used throughout the paper as a running example:126

Example 1. The decision tree in Figure 1 separates Cattleya orchids from other orchids using the127

following features: x1: “has fragrant flowers”, x2: “has one or two leaves”, x3: “has large flowers”,128

and x4: “is sympodial”.129
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As a salient characteristic, decision trees convey a single explicit abductive explanation for classifying130

any input instance:131

Definition 2 (Direct Reason). Let T ∈ DTn and x ∈ {0, 1}n. The direct reason for x given T is the132

term, denoted tTx , corresponding to the unique root-to-leaf path of T that is compatible with x.133

Another important notion of abductive explanations is the following concept of sufficient reason[7],134

that, unlike the notion of direct reason, is not specific to decision trees:135

Definition 3 (Sufficient Reason). Let f ∈ Fn and x ∈ {0, 1}n such that f(x) = 1 (resp. f(x) = 0).136

A sufficient reason for x given f is a prime implicant t of f (resp. ¬f ) that covers x. sr(x, f)137

denotes the set of sufficient reasons for x given f .138

Thus, a sufficient reason [7] (also known as prime implicant explanation [29]) for an instance x given139

a class described by a Boolean function f is a subset t of the characteristics of x that is minimal w.r.t.140

set inclusion such that any instance x′ sharing this set t of characteristics is classified by f as x is.141

Thus, when f(x) = 1, t is a sufficient reason for x given f if and only if t is a prime implicant of f142

such that x implies t, and when f(x) = 0, t is a sufficient reason for x given f if and only if t is a143

prime implicant of ¬f such that t covers x. Accordingly, sufficient reasons are suited to explain why144

the instance at hand x has been classified by f as it has been classified. Unlike direct reasons [17],145

sufficient reasons do not contain any redundant feature.146

When considering the sufficient reasons of the input instance, one may be interested in focusing on147

the shortest ones, alias the minimal sufficient reasons. Those reasons are valuable since conciseness148

is often a desirable property of explanations (Occam’s razor). Formally:149

Definition 4 (Minimal Sufficient Reason). Let f ∈ Fn and x ∈ {0, 1}n. A minimal sufficient reason150

for x given f is a sufficient reason for x given f that contains a minimal number of literals.151

Finally, unlike direct and (possibly minimal) sufficient reasons that aim to explain the classification152

of the instance x under consideration as achieved by the classifier f , contrastive explanations are153

valuable when x has not been classified by f as expected by the explainee. In this case, one looks for154

minimal subsets of the features that when switched in x are enough to get instances that are classified155

positively (resp. negatively) by f if x is classified negatively (resp. positively) by f . Formally, a156

contrastive explanation for x given f [15] is a subset t of the characteristics of x that is minimal157

w.r.t. set inclusion among those such that at least one instance x′ that coincides with x except on the158

characteristics from t is not classified by f as x is.159

Definition 5 (Contrastive Explanation). Let f ∈ Fn and x ∈ {0, 1}n such that f(x) = 1 (resp.160

f(x) = 0). A contrastive explanation for x given f is a term t over Xn such that t ⊆ tx, tx \ t is not161

an implicant of f (resp. ¬f ), and for every ` ∈ t, t \ {`} does not satisfy this last condition.162

Example 2. Based on our running example, we can observe that T (x) = 1 for the instance163

x = (1, 1, 1, 1). The direct reason for x given T is the term tTx = x1 ∧ x2 ∧ x3 ∧ x4. x1 ∧ x4 and164

x2 ∧ x3 ∧ x4 are the sufficient reasons for x given T . x1 ∧ x4 is the unique minimal sufficient reason165

for x given T . x4, x1 ∧ x2, and x1 ∧ x3 are the contrastive explanations for x given T . Thus, the166

instance (1, 1, 1, 0) that differs with x only on x4 is not classified by T as x is ((1, 1, 1, 0) is classified167

as a negative instance).168

We mention in passing that when dealing with decision trees T , we could have focused only on169

explanations for the positive instances x given T . This comes from the fact that DTn is closed under170

negation, in the sense that for any T ∈ DTn, ¬T can be obtained by just replacing from T the label171

of each leaf with its complement. So, for any instance x ∈ {0, 1}n, a direct reason (resp. sufficient172

reason, minimal sufficient reason, contrastive explanation) explaining why T (x) = 0 is precisely the173

same as a direct reason (resp. sufficient reason, minimal sufficient reason, contrastive explanation)174

explaining why (¬T )(x) = 1. Considering T or its negation ¬T has no computational impact since175

¬T can be computed in time linear in the size of T .176

3 Computing All Sufficient Reasons177

Sufficient reasons can be exponentially numerous. When switching from the direct reason for178

an instance (that is unique but not always redundancy-free) to its sufficient reasons, a main obstacle179

to be dealt with lies in the number of reasons to be considered. Indeed, even for the restricted class180
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Figure 2: Two sufficient reasons for an mnist instance (top), and an explanatory heat map and the explanatory
features for an mnist instance (bottom).

of decision trees with logarithmic depth, an input instance can have exponentially many sufficient181

reasons:182

Proposition 1. There is a decision tree T ∈ DTn of depth log2(n+1) such that for any x ∈ {0, 1}n,183

the number of sufficient reasons for x given T is at least b 32
n+1
2 c.184

By definition, the minimal sufficient reasons for x given T cannot be more numerous than its185

sufficient reasons. However, focusing on minimal sufficient reasons does not solve the problem since186

an instance can also have exponentially many minimal sufficient reasons:187

Proposition 2. For every n ∈ N such that n is odd, there is a decision tree T ∈ DTn of depth n+1
2188

such that T contains 2n + 1 nodes and there is an instance x ∈ {0, 1}n such that the number of189

minimal sufficient reasons for x given T is equal to 2
√
n−1.190

In many practical cases, the number of sufficient reasons for an instance given a decision tree can191

be very large. Figure 2 (top) shows an mnist instance (the leftmost subfigure) that has 482 185 073192

664 sufficient reasons. Among them there are very dissimilar sufficient reasons. As an illustration,193

the two rightmost subfigures present two sufficient reasons for this instance, and they differ on many194

features (blue (resp. red) dots correspond to pixels on (resp. off)).195

For such datasets, computing the set of all the sufficient reasons for a given instance is not always196

feasible. Furthermore, if the computation succeeds but the number of sufficient reasons is huge, their197

(disjunctively interpreted) set, alias the complete reason for the instance [7], can hardly be considered198

as intelligible by the explainee. Finally, due to the number of sufficient reasons and their diversity,199

deriving one of them is not informative enough. Thus, one needs to design approaches to synthesizing200

their set while avoiding the two pitfalls (the computational one and the informational one).201

Synthesizing the set of sufficient reasons. In this objective, the following notions of necessary /202

(ir)relevant features appear useful. These notions of necessity and relevance echo the ones that have203

been considered in [9] for logic-based abduction.204

Definition 6 (Explanatory Features). Let f ∈ Fn, and x ∈ {0, 1}n be an instance. Let e be an205

explanation type.1206

• A literal ` over Xn is a necessary feature for the family e of explanations for x given f if207

and only if ` belongs to every explanation t for x given f such that t is of type e. Nece(x, f)208

denotes the set of all necessary features for the family e of explanations for x given f .209

• A literal ` over Xn is a relevant feature for the family e of explanations for x given f if210

and only if ` belongs to at least one explanation t for x given f such that t is of type e.211

Rele(x, f) denotes the set of all relevant features for the family e of explanations for x212

1For instance, e can be s when the sufficient reasons for x given f are targeted or c when the contrastive
explanations for x given f are targeted.
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given f . Irre(x, f), which is the complement of Rele(x, f) in the set of all literals over213

Xn, denotes the set of all irrelevant features for the family e of explanations for x given f .214

The necessary (resp. irrelevant) features for the family s of sufficient reasons for x given f are the215

most (resp. less) important features for explaining the classification of x by f , since they belong to216

every (resp. no) sufficient reason for x given f .217

When a single sufficient reason t for x given f has been computed, the cardinality of t deprived from218

the features of Necs(x, f) is small, and the cardinality of the symmetric difference between t and219

Rels(x, f) is small as well, t can be viewed as a good representative of the complete reason for x220

given f in the sense that a sufficient reason t′ for x given f that differs a lot from t cannot exist.221

In the case when f is a decision tree T , though the set of all sufficient reasons for x given T cannot222

be generated when it is too large, Necs(x, f), Rels(x, f), and Irrs(x, f) can be derived efficiently:223

Proposition 3. Let T ∈ DTn, and x ∈ {0, 1}n. Computing Necs(x, T ), Rels(x, f), and Irrs(x, T )224

can be done in O((n+ |T |)× |T |) time.225

Going a step further consists in evaluating the explanatory importance of every (positive or negative)226

feature:227

Definition 7 (Explanatory Importance). Let f ∈ Fn, and x ∈ {0, 1}n be an instance. Let e be
an explanation type, and Ee(x, f) the set of all explanations for x given f that are of type e. The
explanatory importance of a literal ` over Xn for x given f w.r.t. e is given by

Impe(`,x, f) =
#({t ∈ Ee(x, f) : ` ∈ t})

#(Ee(x, f))
.

Example 3. On the running example, we have Necs(x, T ) = {x4}, and Rels(x, T ) = {x1, x2, x3,228

x4}. We also have Imps(x4,x, T ) = 1, Imps(x1,x, T ) = Imps(x2,x, T ) = Imps(x3,x, T ) =
1
2 ,229

and Imps(`,x, T ) = 0 for every other literal ` (the negative ones over {x1, x2, x3, x4}).230

The notion of explanatory importance must not be confused with the notions of feature importance231

(which can be defined and assessed in many different ways): the former is local (i.e., relative to an232

instance) and not global, it concerns literals and not variables (polarity matters), and it is about the233

explanation task, not the prediction one.234

In order to compute the explanatory importance of a literal, a straightforward approach consists in235

enumerating the explanations of Ee(x, f). This is feasible when this set is not too large, which is not236

always the case for sufficient reasons even when f is a decision tree T . Thus, for dealing with the237

remaining case, an alternative approach must be looked for.238

We designed such an approach for computing Imps(`,x, T ). We know that sr(x, T ) is by construc-239

tion the set of prime implicants of g = {c ∩ tx : c ∈ CNF(T )}. Thus, we exploited the translation240

presented in [18] showing how to associate in polynomial time with a given CNF formula (here,241

g) another formula (over a distinct set of variables), let us say h, such that the models of h are242

in one-to-one correspondence with the prime implicants of g. In our case, the translation can be243

simplified because g is a monotone CNF formula. Since h is not primarily a CNF formula, leveraging244

Tseitin transformation [31], we turned h in linear time into a query-equivalent CNF formula i. Note245

that every auxiliary variable that is introduced in i is defined from the other variables (those occurring246

in h), so that the number of models of i is the same as the number of models of h. Finally, we took247

advantage of the compilation-based model counter D4 [20] to compile i into a d-DNNF circuit [6],248

and this enabled us to compute in time polynomial in the size of i both the number of sufficient249

reasons and the explanatory importance of every literal (indeed, the d-DNNF language supports in250

polytime the model counting query and the conditioning transformation [8]). We show in Section251

5 that, despite a high complexity in the worst case (the size of i can be exponential in |T |), this252

approach based on knowledge compilation proves quite efficient in practice.253

Clearly enough, when Impe(`,x, T ) has been computed for every `, one can easily generate ex-254

planatory heat maps. Figure 2 (bottom) shows an mnist instance (the leftmost subfigure) that has255

19 115 685 sufficient reasons, 6 necessary literals, and 94 relevant literals. The central subfigure256

is the corresponding heat map. Blue (resp. red) pixels correspond to positive (resp. negative)257

literals in the instance, and the intensity of the color aims to reflect the explanatory importance of258

the corresponding literal. The rightmost subfigure gives the explanatory features (dark pixels are259

associated with necessary literals, and light pixels to relevant literals).260
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Enumerating the minimal sufficient reasons. An approach to synthesizing the set of sufficient261

reasons consists in focusing on the minimal ones. Indeed, though the set of minimal sufficient reasons262

for an instance given a decision tree can be exponentially large, the number of minimal sufficient263

reasons cannot exceed the number of sufficient reasons, and it can be significantly lower in practice.264

However, unlike sufficient reasons that can be generated in polynomial time using a greedy algorithm265

(see e.g., [17]), computing minimal reasons is not an easy task:266

Proposition 4. Let T ∈ DTn and x ∈ {0, 1}n. Computing a minimal sufficient reason for x given T267

is NP-hard.268

Despite this intractability result, minimal sufficient reasons can be generated in many practical cases.269

A common approach for handling NP-optimization problems is to rely on modern constraint solvers.270

One follows this direction here and casts the task of finding minimal sufficient reasons as a Boolean271

constraint optimization problem. We first need to recall that a PARTIAL MAXSAT problem consists272

of a pair (Csoft, Chard) where Csoft and Chard are (finite) set of clauses. The goal is to find a Boolean273

assignment that maximizes the number of clauses c in Csoft that are satisfied, while satisfying all274

clauses in Chard.275

Proposition 5. Let T be a decision tree in DTn and x ∈ {0, 1}n be an instance such that T (x) = 1.
Let (Csoft, Chard) be an instance of the PARTIAL MAXSAT problem such that:

Csoft = {xi : xi ∈ tx} ∪ {xi : xi ∈ tx} and Chard = {c ∩ tx : c ∈ CNF(T )}.

The intersection of tx with tx∗ where x∗ is an optimal solution of (Chard, Csoft), is a minimal276

sufficient reason for x given T .277

Clearly enough, if x is such that T (x) = 0, then it is enough to consider the same instance of278

PARTIAL MAXSAT as above, except that Chard = {c ∩ tx : c ∈ CNF(¬T )}.279

Finally, one can take advantage of this PARTIAL MAXSAT characterization for generating a preset280

number of minimal sufficient reasons (basically, one generates a first reason t, then one adds to Chard281

the negation of t as a clause as well as a CNF encoding of a cardinality constraint for ensuring that the282

next reasons to be generated have the same size as the one of t, and we resume until the bound is283

reached or no solution exists).284

4 Computing All Contrastive Explanations285

Interestingly, it has been shown that sufficient reasons and contrastive explanations are connected286

by a minimal hitting set duality [15]. This duality can be leveraged to derive one of the two sets of287

explanations from the other one using algorithms for computing minimal hitting sets [27, 32].288

However, in the case of decision trees, a more direct and much more efficient approach to derive all289

the contrastive explanations for x ∈ {0, 1}n given T ∈ DTn can be designed. Indeed, unlike what290

happens for sufficient reasons (see Section 3), the set of all contrastive explanations for x ∈ {0, 1}n291

given a decision tree T ∈ DTn can be computed in polynomial time from x and T :292

Proposition 6. The set of all contrastive explanations for x ∈ {0, 1}n given a decision tree T ∈ DTn293

can be computed in time polynomial in n+ |T | as min({c ∩ tx : c ∈ CNF(f)},⊆).294

Example 4. On the running example, we have CNF(T ) = {x1 ∨x2, x1 ∨x2 ∨x3, x1 ∨x2 ∨x3 ∨x4,295

x1∨x2∨x3∨x4, x1∨x2∨x3∨x4, x1∨x2∨x3∨x4, x1∨x2∨x3∨x4}. Thus, with x = (1, 1, 1, 1), we296

have min({c∩ tx : c ∈ CNF(f)},⊆) = {x1∨x2, x1∨x3, x4}, which corresponds to the contrastive297

explanations x1 ∧ x2, x1 ∧ x3, x4 for x given T (viewing clauses and terms as sets of literals).298

As straightforward consequences of Proposition 6, computing necessary / relevant features and299

computing the explanatory importance of features w.r.t. contrastive explanations can be achieved in300

time polynomial in n + |T |. Similarly, statistics about the size of contrastive explanations can be301

easily established, and contrastive explanations can be easily minimized and counted.302

5 Experiments303

Empirical setting. We have considered 90 datasets, which are standard benchmarks from the well-304

known repositories Kaggle (www.kaggle.com), OpenML (www.openml.org), and UCI (archive.305
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Table 1: Empirical results based on 12 datasets.
Decision Tree |Sufficient| |Minimal| #Nec. Features #Rel. Features

Dataset %A #N #B med max med max med max med max

recidivism 63.41 13828.80 147.60 14 22 13 22 6 19 60 98
adult 81.36 12934.00 2974.80 16 36 16 36 7 22 263 543
bank marketing 87.40 6656.40 1432.60 14 21 14 21 3 16 247 398
bank 88.99 5523.60 977.80 13 24 13 24 4 15 200 330
lending loan 73.49 2610.40 1131.40 16 31 16 31 8 25 226 442
contraceptive 50.44 1252.20 88.60 11 20 11 20 8 17 25 47
compas 65.98 1230.00 46.20 6 14 6 14 3 12 16 33
christine 63.36 853.20 426 12 47 12 47 8 41 92 202
farm-ads 86.75 544.80 264.60 20 99 20 99 16 92 73 192
mnist49 95.47 539.60 267.90 22 30 22 30 9 19 91 166
spambase 91.94 536.40 264.80 15 29 15 29 9 24 68 146
mnist38 96.07 506.60 251.40 19 28 19 28 8 20 93.50 157

#Sufficient #Contrastive |Contrastive| #Minimal

Dataset med max med max med max med max

recidivism 10387 9734080 54 145 3 16 2 144
adult - ≥ 1573835722607300000000000 201 470 4 16 3 256
bank marketing - ≥ 7460375213484350000000 189 337 4 13 8 432
bank - ≥ 7433951979018500000 150 277 4 13 4 168
lending loan 459258918095775 943243242816203000000000000000 157 311 3 12 3 192
contraceptive 20,50 4272 21 52 2 11 2 48
compas 16 444 13 33 2 11 2 21
christine 63108 2167735434744 71 151 3 8 2 4096
farm-ads 1177,50 921895392 59 166 2 10 - ≥ 10000
mnist49 7392384 715892613696000 61 106 2 12 - ≥ 10000
spambase 15712 2535069312 50 107 2 11 4 384
mnist38 14849376 16922386736640 62 107 3 11 32 3072

ics.uci.edu/ml/). mnist38 and mnist49 are subsets of the mnist dataset, restricted to the306

instances of 3 and 8 (resp. 4 and 9) digits. Because some datasets are suited to the multi-label307

classification task, we used the standard “one versus all” policy to deal with them: all the classes but308

the target one are considered as the complementary class of the target. Categorical features have been309

treated as arbitrary numbers (the scale is nominal). As to numeric features, no data preprocessing has310

taken place: these features have been binarized on-the-fly by the decision tree learning algorithm that311

has been used.312

For every benchmark b, a 10-fold cross validation process has been achieved. Namely, a set of 10313

decision trees Tb have been computed and evaluated from the labelled instances of b, partitioned into314

10 parts. One part was used as the test set and the remaining 9 parts as the training set for generating315

a decision tree. This tree is thus in 1-to-1 correspondence with the test set chosen within the whole316

dataset b. The classification performance for b was measured as the mean accuracy obtained over the317

10 decision trees generated from b. The CART algorithm, and more specifically its implementation318

provided by the Scikit-Learn library [25] has been used to learn decision trees. All hyper-parameters319

of the learning algorithm have been set to their default value. Notably, decision trees have been320

learned using the Gini criterion, and without any maximal depth or any other manual limitation.321

For each benchmark b, each decision tree Tb, and a subset of at most 100 instances x picked up322

at random in the test set following a uniform distribution, we computed a sufficient reason for x323

given Tb (using the standard greedy algorithm run on the direct reason tTb
x ), and a minimal sufficient324

reason for x given Tb using the PARTIAL MAXSAT encoding presented in Proposition 5. This325

enabled us to draw some statistics (median, maximum) about the sizes of the reasons that have been326

generated. Using the algorithm presented in the proof of Proposition 3, we also derived the necessary327

and relevant explanatory features for each x, and again drew some statistics about them. Exploiting328

the model counter D4, we computed the number of sufficient reasons for x given Tb, as well as the329

explanatory importance of every feature. Taking advantage of the algorithm given in Proposition330

4, we computed the number of contrastive explanations for x given Tb, and drew some statistics331

about those numbers and about the sizes of the contrastive explanations. Finally, using the approach332

described in Section 3, we enumerated all the minimal sufficient reasons for x given Tb up to a limit333

of 10 000, and again drew some statistics about the numbers of minimal sufficient reasons. Of course,334

for each computation, we measured the corresponding runtimes since this is fundamental to determine335

the extent to which the algorithms are practical (details are provided as a supplementary material).336

All the experiments have been conducted on a computer equipped with Intel(R) XEON E5-2637 CPU337

@ 3.5 GHz and 128 GiB of memory. D4 [20] was run with its default parameters. For computing338

8

archive.ics.uci.edu/ml/
archive.ics.uci.edu/ml/


minimal reasons, we used the Pysat library [14], which provides the implementation of the RC2339

PARTIAL MAXSAT solver. This solver was run using the parameters corresponding to the “Glucose”340

setting. A time-out of 100s per instance was set for D4.341

Results. Table 1 (top and bottom) reports an excerpt of our results, focusing on 12 benchmarks342

out of 90 (the selected datasets are among those containing many instances and/or many features).343

The leftmost column gives the name of the dataset b. Columns %A, %N , and #B give, respectively,344

the mean accuracy over the 10 decision trees, the average number of nodes in those trees, and the345

average number of binary features they are based on. The next columns give statistics (median,346

maximum) about, respectively, the size of the sufficient reasons (|Sufficient|) and of the minimal347

sufficient reasons (|Minimal|) that have been computed, as well as about the number of necessary348

(#Nec. Features) and relevant (#Rel. Features) features that appear in the full set of sufficient349

reasons for the instance. Table 1 (bottom) give statistics (median, maximum) about, respectively, the350

number of sufficient reasons (#Sufficient), the number of contrastive explanations (#Contrastive)351

and their sizes (|Contrastive|), and finally the number of minimal sufficient reasons (#Minimal).352

As to the computation times, it turns out that all the algorithms described in the previous sections353

proved as efficient in practice. This is not surprising for those algorithms having a polytime worst-case354

complexity (the greedy algorithm for computing a sufficient reason, the one for deriving explanatory355

features, and the one for computing all the contrastive explanations). It was less obvious at first356

sight for the algorithms used for counting the number of sufficient reasons and for computing the357

explanatory importance of features. However, all the computations that have been run have terminated358

in due time, except for 3 datasets out of 90, namely adult, bank_marketing, and bank. For these359

datasets, the time limit of 100s has been reached for, respectively, 203, 150, and 336 instances out of360

1000 (in this case, the median number of sufficient reasons has not been reported). Notably, for all361

the 90 datasets but those 3, the median time required for counting the number of sufficient reasons362

and computing the explanatory importance of features never exceeded 1s. Computing a minimal363

sufficient reason, and more generally all such reasons looked challenging as well, due to both the364

intrinsic complexity of computing a minimal sufficient reason and to their number. Nevertheless,365

our enumeration algorithm succeeded in deriving all the minimal sufficient reasons for every dataset366

except 3 out of 90, namely farm-ads, mnist49, and gisette. For these datasets, the limit of 10367

000 reasons has been reached for, respectively, 5, 16, and 3 instances out of 1000. Interestingly,368

the median time needed to derive all the minimal sufficient reasons for the instances for which the369

computation has been successful exceeded 1s only for 2 datasets (adult and bank_marketing).370

Beyond providing evidence that the number of reasons can be huge, our experiments have highlighted371

that the greedy algorithm for deriving a sufficient reason computes in practice a minimal sufficient372

reason in many cases. They have also shown that the number of explanatory relevant features for an373

instance is typically much lower than the number of binary features used to describe it, and that the374

number of explanatory necessary features is also significantly lower than the number of explanatory375

relevant features. The gap between the two explains the possibly enormous number of sufficient376

reasons. When considering the full set of reasons, a considerable difference between the number of377

sufficient reasons and the number of minimal sufficient reasons can also be observed. Finally, like378

minimal sufficient reasons, the number of contrastive explanations appears in many cases not very379

large, which is a good point from an intelligibility perspective.380

6 Conclusion381

In light of our results, it turns out that the explanatory power of decision trees goes far beyond its382

ability to generate direct reasons. From a decision tree, the explanatory importance of features and383

the minimal sufficient reasons for an instance can be computed efficiently most of the time. For384

decision trees, fully addressing the “Why not?” question also appears as easier than fully addressing385

the “Why?” question: computing the full set of sufficient reasons for the instance at hand is typically386

out of reach, while computing its full set of contrastive explanations is tractable.387

Accordingly, the language of decision trees appears not only as appealing for the learning purpose,388

but also as a good target when one needs to reason on the various forms of explanations (abductive389

and contrastive ones) associated with the predictions made. This coheres with (and completes) the390

results reported in [1], showing that many other explanation and verification tasks are tractable for391

decision tree classifiers.392
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