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ABSTRACT

The training success, training speed and generalization ability of neural networks
rely crucially on the choice of random parameter initialization. It has been shown
for multiple architectures that initial dynamical isometry is particularly advanta-
geous. Known initialization schemes for residual blocks, however, miss this prop-
erty and suffer from degrading separability of different inputs for increasing depth
and instability without Batch Normalization or lack feature diversity. We propose
a random initialization scheme, RISOTTO, that achieves perfect dynamical isome-
try for residual networks with ReLU activation functions even for finite depth and
width. It balances the contributions of the residual and skip branches unlike other
schemes, which initially bias towards the skip connections. In experiments, we
demonstrate that in most cases our approach outperforms initialization schemes
proposed to make Batch Normalization obsolete, including Fixup and SkipInit,
and facilitates stable training. Also in combination with Batch Normalization, we
find that RISOTTO often achieves the overall best result.

1 INTRODUCTION

Random initialization of weights in a neural network play a crucial role in determining the final
performance of the network. This effect becomes even more pronounced for very deep models that
seem to be able to solve many complex tasks more effectively. An important building block of many
models are residual blocks He et al. (2016), in which skip connections between non-consecutive
layers are added to ease signal propagation (Balduzzi et al., 2017) and allow for faster training.
ResNets, which consist of multiple residual blocks, have since become a popular center piece of
many deep learning applications (Bello et al., 2021).

Batch Normalization (BN) (Ioffe & Szegedy, 2015) is a key ingredient to train ResNets on large
datasets. It allows training with larger learning rates, often improves generalization, and makes
the training success robust to different choices of parameter initializations. It has furthermore been
shown to smoothen the loss landscape (Santurkar et al., 2018) and to improve signal propagation
(De & Smith, 2020). However, BN has also several drawbacks: It breaks the independence of
samples in a minibatch and adds considerable computational costs. Sufficiently large batch sizes
to compute robust statistics can be infeasible if the input data requires a lot of memory. Moreover,
BN also prevents adversarial training (Wang et al., 2022). For that reason, it is still an active area
of research to find alternatives to BN Zhang et al. (2018); Brock et al. (2021b). A combinations of
Scaled Weight Standardization and gradient clipping has recently outperformed BN (Brock et al.,
2021b). However, a random parameter initialization scheme that can achieve all the benefits of BN is
still an open problem. An initialization scheme allows deep learning systems the flexibility to drop
in to existing setups without modifying pipelines. For that reason, it is still necessary to develop
initialization schemes that enable learning very deep neural network models without normalization
or standardization methods.

A direction of research pioneered by Saxe et al. (2013); Pennington et al. (2017) has analyzed the
signal propagation through randomly parameterized neural networks in the infinite width limit using
random matrix theory. They have argued that parameter initialization approaches that have the
dynamical isometry (DI) property avoid exploding or vanishing gradients, as the singular values of
the input-output Jacobian are close to unity. DI is key to stable and fast training (Du et al., 2019;
Hu et al., 2020). While Pennington et al. (2017) showed that it is not possible to achieve DI in
networks with ReLU activations with independent weights or orthogonal weight matrices, Burkholz
& Dubatovka (2019); Balduzzi et al. (2017) derived a way to attain perfect DI even in finite ReLU
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networks by parameter sharing. This approach can also be combined (Blumenfeld et al., 2020;
Balduzzi et al., 2017) with orthogonal initialization schemes for convolutional layers (Xiao et al.,
2018). The main idea is to design a random initial network that represents a linear isometric map.
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Figure 1: Features of our initialization
scheme Risotto. This figure has been de-
signed using images from Flaticon.com.

We transfer a similar idea to ResNets but have
to overcome the additional challenge of integrating
residual connections and, in particular, potentially
non-trainable identity mappings. In contrast to other
ResNet initialization schemes that achieve (approxi-
mate) dynamical isometry by initially scaling down
the residual connections, we balance the weight
of skip and residual connections and thus promote
higher initial feature diversity, as highlighted by
Fig. 1. We thus propose RISOTTO (Residual dynam-
ical isometry by initial orthogonality), an initializa-
tion scheme that induces exact dynamical isometry
(DI) for ResNets (He et al., 2016) with convolutional
or fully-connected layers and ReLU activation func-
tions. RISOTTO achieves this for networks of finite
width and finite depth and not only in expectation but exactly. We provide theoretical and empir-
ical evidence that highlight the advantages of our approach. Remarkably and in contrast to other
initialization schemes that aim to improve signal propagation in ResNets, RISOTTO can achieve per-
formance gains even in combination with BN. We hypothesize that this improvement is due to the
balanced skip and residual connections. Furthermore, we demonstrate that RISOTTO can success-
fully train ResNets without BN and achieve the same or better performance than Zhang et al. (2018);
Brock et al. (2021b).

1.1 CONTRIBUTIONS

• To explain the drawbacks of most initialization schemes for residual blocks, we derive sig-
nal propagation results for finite networks without requiring mean field approximations and
highlight input separability issues for large depths. Accordingly, activations corresponding
to different inputs become more similar for increasing depth which makes it harder for the
neural network to distinguish different classes.

• We propose a solution, RISOTTO, which is an initialization scheme for residual blocks that
provably achieves dynamical isometry (exactly for finite networks and not only approxi-
mately). A residual block is initialized so that it acts as an orthogonal, norm and distance
preserving transform.

• In experiments on multiple standard benchmark datasets, we demonstrate that our approach
achieves competitive results in comparison with alternatives:

– We show that RISOTTO facilitates training ResNets without BN or any other nor-
malization method and often outperforms existing BN free methods including Fixup,
SkipInit and NF ResNets.

– It outperforms standard initialization schemes for ResNets with BN on Tiny Imagenet,
CIFAR100, and ImageNet.

1.2 RELATED WORK

Preserving Signal Propagation Random initialization schemes have been designed for a multitude
of neural network architectures and activation functions. Early work has focused on the layerwise
preservation of average squared signal norms (Glorot & Bengio, 2010; He et al., 2015; Hanin, 2018)
and their variance (Hanin & Rolnick, 2018). The mean field theory of infinitely wide networks
has also integrated signal covariances into the analysis and further generated practical insights into
good choices that avoid exploding or vanishing gradients and enable feature learning (Yang & Hu,
2021) if the parameters are drawn independently (Poole et al., 2016; Raghu et al., 2017; Schoenholz
et al., 2017; Yang & Schoenholz, 2017; Xiao et al., 2018). Indirectly, these works demand that
the average eigenvalue of the signal input-output Jacobian is steered towards 1. Yet, in this set-up,
ReLU activation functions fail to support parameter choices that lead to good trainability of very
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deep networks, as outputs corresponding to different inputs become more similar for increasing
depth (Poole et al., 2016; Burkholz & Dubatovka, 2019). Yang & Schoenholz (2017) could show
that ResNets can mitigate this effect and enable training deeper networks, but also cannot distinguish
different inputs eventually.

However, there are exceptions. Balanced networks can improve (Li et al., 2021) interlayer correla-
tions and reduce the variance of the output. A more effective option is to remove the contribution of
the residual part entirely as proposed in successful ResNet initialization schemes like Fixup (Zhang
et al., 2018), SkipInit (De & Smith, 2020), or ISONet (Qi et al., 2020). This, however, limits signif-
icantly the initial feature diversity that is usually crucial for the training success (Blumenfeld et al.,
2020) and scales down the residual connections. A way to address this issue for other architectures
with ReLUs like fully-connected (Burkholz & Dubatovka, 2019) and convolutional (Balduzzi et al.,
2017) layers is a looks-linear weight matrix structure (Shang et al., 2016). This idea has not been
transferred to residual blocks yet but has the advantage that it can be combined with orthogonal sub-
matrices. These matrices induce perfect dynamical isometry (Saxe et al., 2013; Mishkin & Matas,
2015; Poole et al., 2016; Pennington et al., 2017), meaning that the eigenvalues of the initial input-
output Jacobian are identical to 1 or −1 and not just close to unity on average. This property has
been shown to enable the training of very deep neural networks (Xiao et al., 2018) and can improve
their generalization ability (Hayase & Karakida, 2021) and training speed Pennington et al. (2017;
2018). ResNets equipped with ReLUs can currently only achieve this property approximately and
without a practical initialization scheme (Tarnowski et al., 2019) or with reduced feature diversity
(Blumenfeld et al., 2020) and potential training instabilities (Zhang et al., 2018; De & Smith, 2020).

ResNet Initialization Approaches Fixup (Zhang et al., 2018), SkipInit (De & Smith, 2020),
ISONet (Qi et al., 2020), and ReZero (Bachlechner et al., 2021) have been designed to enable
training without requiring BN, yet, can usually not achieve equal performance. Training data in-
formed approaches have also been successful (Zhu et al., 2021; Dauphin & Schoenholz, 2019) but
they require computing the gradient of the input minibatches. Yet, most methods only work well in
combination with BN (Ioffe & Szegedy, 2015), as it seems to improve ill conditioned initializations
(Glorot & Bengio, 2010; He et al., 2016) according to Bjorck et al. (2018), allows training with
larger learning rates (Santurkar et al., 2018), and might initially bias the residual block towards the
identity enabling signal to flow through De & Smith (2020). The additional computational and mem-
ory costs of BN, however, have motivated research on alternatives including different normalization
methods (Wu & He, 2018; Salimans & Kingma, 2016; Ulyanov et al., 2016). Only recently has it
been possible to outperform BN in generalization performance using scaled weight standardization
and gradient clipping (Brock et al., 2021b;a), but this requires careful hyperparameter tuning. In
experiments, we compare our initialization proposal RISOTTO with all three approaches: normal-
ization free methods, BN, and normalization alternatives (e.g NF ResNet).

2 RESNET INITIALIZATION

2.1 BACKGROUND AND NOTATION

The object of our study is a general residual network that is defined by

z0 := W0 ∗ x, xl = ϕ(zl−1), zl := αlf
l(xl) + βlh

l(xl); zout := WoutP (xL) (1)
for 1 ≤ l ≤ L. P (.) denotes an optional pooling operation like maxpool or average pool, f(.)
residual connections, and h(.) the skip connections, which usually represent an identity mapping or
a projection. For simplicity, we assume in our derivations and arguments that these functions are
parameterized as f l(xl) = Wl

2∗ϕ(Wl
1∗xl+bl1)+bl2 and hl(xl) = Wl

skip∗xl+blskip (∗ denotes con-
volution), but our arguments also transfer to residual blocks in which more than one layer is skipped.
Optionally, batch normalization (BN) layers are placed before or after the nonlinear activation func-
tion ϕ(·). We focus on ReLUs ϕ(x) = max{0, x} (Krizhevsky et al., 2012), which are among the
most commonly used activation functions in practice. All biases bl2 ∈ RNl+1 , bl1 ∈ RNml , and
blskip ∈ RNl are assumed to be trainable and set initially to zero. We ignore them in the following,
since we are primarily interested in the neuron states and signal propagation at initialization. The
parameters α and β balance the contribution of the skip and the residual branch, respectively. Note
that α is a trainable parameter, while β is just mentioned for convenience to simplify the compar-
ison with standard He initialization approaches (He et al., 2015). Both parameters could also be
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integrated into the weight parameters Wl
2 ∈ RNl+1×Nml

×kl
2,1×kl

2,2 , Wl
1 ∈ RNml

×Nl×kl
1,2×kl

1,2 ,
and Wl

skip ∈ RNl+1×Nl×1×1, but they make the discussion of different initialization schemes more
convenient and simplify the comparison with standard He initialization approaches (He et al., 2015).

Residual Blocks Following the definition by He et al. (2015), we distinguish two types of residual
blocks, Type B and Type C (see Figure 2a), which differ in the choice of Wl

skip. The Type C
residual block is defined as zl = αf l(xl) + hl(xl) so that shortcuts h(.) are projections with a
1 × 1 kernel with trainable parameters. The type B residual block has identity skip connections
zl = αf l(xl) + xl. Thus, Wl

skip represents the identity and is not trainable.

2.2 SIGNAL PROPAGATION FOR NORMAL RESNET INITIALIZATION

Most initialization methods for ResNets draw weight entries independently at random, including
Fixup and SkipInit. To simplify the theoretical analysis of the induced random networks and to
highlight the shortcomings of the independence assumption, we assume:
Definition 2.1 (Normally Distributed ResNet Parameters). All biases are initialized as zero and all
weight matrix entries are independently normally distributed with
wl

ij,2 ∼ N
(
0, σ2

l,2

)
, wl

ij,1 ∼ N
(
0, σ2

l,1

)
, and wl

ij,skip ∼ N
(
0, σ2

l,skip

)
.

Most studies further focus on special cases of the following set of parameter choices.

Definition 2.2 (Normal ResNet Initialization). The choice σl,1 =
√

2
Nml

kl
1,1k

l
1,2

, σl,2 =√
2

Nl+1kl
2,1k

l
2,2

, σl,skip =
√

2
Nl+1

as used in Definition 2.1 and αl, βl ≥ 0 that fulfill α2
l + β2

l = 1.

Another common choice is Wskip = I instead of random entries. If βl = 1, sometimes also αl ̸= 0
is still common if it accounts for the depth L of the network. In case αl and βl are the same for each
layer we drop the subscript l. For instance, Fixup (Zhang et al., 2018) and SkipInit (De & Smith,
2020) satisfy the above condition with α = 0 and β = 1. De & Smith (2020) argue that BN also
suppresses the residual branch effectively. However, in combination with He initialization (He et al.,
2015) it becomes more similar to α = β =

√
0.5. Li et al. (2021) study the case of free αl but focus

their analysis on identity mappings Wl
1 = I and Wl

skip = I.

As other theoretical work, we focus our following investigations on fully-connected layers to sim-
plify the exposition. Similar insights would transfer to convolutional layers but would require extra
effort (Yang & Schoenholz, 2017). The motivation for the general choice in Definition 2.2 is that it
ensures that the average squared l2-norm of the neuron states is identical in every layer. This has
been shown by Li et al. (2021) for the special choice Wl

1 = I and Wl
skip = I, β = 1 and by (Yang

& Schoenholz, 2017) in the mean field limit with a missing ReLU so that xl = zl−1. (Hanin &
Rolnick, 2018) has also observed for Wl

skip = I and β = 1 that the squared signal norm increases
in
∑

l αl. For completeness, we present the most general case next and prove it in the appendix.
Theorem 2.3 (Norm preservation). Let a neural network consist of fully-connected residual blocks
as defined by Equ. (1) that start with a fully-connected layer at the beginning W0, which contains
N1 output channels. Assume that all biases are initialized as 0 and that all weight matrix entries are
independently normally distributed with wl

ij,2 ∼ N
(
0, σ2

l,2

)
, wl

ij,1 ∼ N
(
0, σ2

l,1

)
, and wl

ij,skip ∼

N
(
0, σ2

l,skip

)
. Then the expected squared norm of the output after one fully-connected layer and L

residual blocks applied to input x is given by

E
(∥∥xL

∥∥2) =
N1

2
σ2
0

L−1∏
l=1

Nl+1

2

(
α2
l σ

2
l,2σ

2
l,1

Nml

2
+ β2

l σ
2
l,skip

)
∥x∥2 .

Note that this result does not rely on any (mean field) approximations and applies also to other
parameter distributions that have zero mean and are symmetric around zero. Inserting the parameters
of Definition 2.1 for fully-connected networks with k = 1 leads to the following insight that explains
why this is the preferred initialization choice.
Insight 2.4 (Norm preserving initialization). Acccording to Theorem 2.3, the normal ResNet initial-
ization (Definition 2.2) preserves the average squared signal norm for arbitrary depth L.
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Figure 2: (a) The two types of considered residual blocks. In Type C the skip connection is a pro-
jection with a 1 × 1 kernel while in Type B the input is directly added to the residual block via the
skip connection. Both these blocks have been described by He et al. (2016). (b) The correlation
between two inputs for different initializations as they pass through a residual network consisting of
a convolution filter followed by 5 residual blocks (Type C), an average pool, and a linear layer on CI-
FAR10. Only RISOTTO maintains constant correlations after each residual block while it increases
for the other initializations with depth. (c) Balancing skip and residual connections: Performance
of RISOTTO for different values of alpha (α) for ResNet 18 (C) on CIFAR10. α = 0 is equivalent to
SkipInit and achieves the lowest accuracy. The better performing α = 1 is implemented in Risotto.

Even though this initialization setting is able to avoid exploding or vanishing signals, it still induces
considerable issues, as the analysis of the joint signal corresponding to different inputs reveals.
According to the next theorem, the signal covariance fulfills a layerwise recurrence relationship that
leads to the observation that signals become more similar with increasing depth.

Theorem 2.5 (Layerwise signal covariance). Let a fully-connected residual block be given as de-
fined by Eq. (1) with random parameters according to Definition 2.2. Let xl+1 denote the neuron
states of Layer l + 1 for input x and x̃l+1 the same neurons but for input x̃. Then their covariance
given all parameters of the previous layers is given as El

(
⟨xl+1, x̃l+1⟩

)
≥ 1

4

Nl+1

2

(
α2σ2

l,2σ
2
l,1

Nml

2
+ 2β2σ2

l,skip

)
⟨xl, x̃l⟩+ c

4
α2Nl+1σ

2
l,2σ

2
l,1Nml

∥∥xl
∥∥∥∥x̃l

∥∥ (2)

+ EWl
1

(√(
α2σ2

l,2

∥∥ϕ(Wl
1x

l)
∥∥2 + β2σ2

l,skip ∥xl∥2
)(

α2σ2
l,2

∥∥ϕ(Wl
1x̃

l)
∥∥2 + β2σ2

l,skip ∥x̃l∥2
))

,

where the expectation El is taken with respect to the initial parameters Wl
2, Wl

1, and Wl
skip and the

constant c fulfills 0.24 ≤ c ≤ 0.25.

Note that this statement holds even for finite networks. To clarify what that means for the separability
of inputs, we have to compute the expectation with respect to the parameters of W1. To gain an
intuition, we employ an approximation that holds for a wide intermediary network.

Insight 2.6 (Covariance of signal for different inputs increases with depth). Let a fully-connected
ResNet with random parameters as in Definition 2.2 be given. It follows from Theorem 2.5 that the
outputs corresponding to different inputs become more difficult to distinguish for increasing depth
L. For simplicity, let us assume that ∥x∥ = ∥x̃∥ = 1. Then, in the mean field limit Nml

→ ∞, the
covariance of the signals is lower bounded by

E
(
⟨xL, x̃L⟩

)
≥ γL

1 ⟨x, x̃⟩+ γ2

L−1∑
k=0

γk
1 = γL

1 ⟨x, x̃⟩+
γ2

1− γ1

(
1− γL

1

)
(3)

for γ1 = 1+β2

4 ≤ 1
2 and γ2 = c(α2 + 2) ≈ α2

4 + 1
2 using El−1∥xl∥∥x̃l∥ ≈ 1.

Since γ1 < 1, the contribution of the original input correlations ⟨x, x̃⟩ vanishes for increasing depth
L. Meanwhile, by adding constant contribution in every layer, irrespective of the input correlations,
E
(
⟨xL, x̃L⟩

)
increases with L and converges to the maximum value 1 (or a slightly smaller value

in case of smaller width Nml
). Thus, deep models essentially map every input to almost the same
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output vector, which makes it impossible for the initial network to distinguish different inputs and
provide information for meaningful gradients. Fig. 2b demonstrates this trend and compares it with
our initialization proposal RISOTTO, which does not suffer from this problem.

While the general trend holds for residual as well as standard fully-connected feed forward networks
(β = 0), interestingly, we still note a mitigation for a strong residual branch (β = 1). The contri-
bution by the input correlations decreases more slowly and the constant contribution is reduced for
larger β. Thus, residual networks make the training of deeper models feasible, as they were de-
signed to do (He et al., 2016). This observation is in line with the findings of Yang & Schoenholz
(2017), which were obtained by mean field approximations for a different case without ReLU af-
ter the residual block (so that xl = zl−1). It also explains how ResNet initialization approaches
like Fixup (Zhang et al., 2018) and SkipInit (De & Smith, 2020) can be successful in training deep
ResNets. They set α = 0 and β = 1. If Wskip = I, this approach even leads to dynamical isometry
but trades it for very limited feature diversity (Blumenfeld et al., 2020) and initially broken residual
branch. Figure 2c highlights potential advantages that can be achieved by α ̸= 0 if the initialization
can still maintain dynamical isometry as our proposal RISOTTO.

2.3 RISOTTO: ORTHOGONAL INITIALIZATION OF RESNETS FOR DYNAMICAL ISOMETRY

Our main objective is to avoid the highlighted drawbacks of the ResNet initialization schemes that
we have discussed in the last section. We aim to not only maintain input correlations on average but
exactly and ensure that the input-output Jacobian of our randomly initialized ResNet is an isometry.
All its eigenvalues equal thus 1 or −1. In comparison with Fixup and SkipInit, we also seek to
increase the feature diversity and allow for arbitrary scaling of the residual versus the skip branch.

Looks-linear matrix structure The first step in designing an orthogonal initialization for a residual
block is to allow signal to propagate through a ReLU activation without loosing half of the informa-
tion. This can be achieved with the help of a looks-linear initialization (Shang et al., 2016; Burkholz
& Dubatovka, 2019; Balduzzi et al., 2017), which leverages the identity x = ϕ(x) − ϕ(−x). Ac-
cordingly, the first layer maps the transformed input to a positive and a negative part. A fully-
connected layer is defined by x1 =

[
x̂1
+; x̂

1
−
]
= ϕ

(
[U0;−U0]x

)
with respect to a submatrix

U0. Note that the difference of both components defines a linear transformation of the input
x̂1
+ − x̂1

− = U0x. Thus, all information about U0x is contained in x1. The next layers con-
tinue to separate the positive and negative part of a signal. Assuming this structure as input, the
next layers xl+1 = ϕ(Wlxl) proceed with the block structure Wl =

[
Ul − Ul;Ul − Ul

]
. As a

consequence, the activations of every layer can be separated into a positive and a negative part as
xl =

[
x̂l
+; x̂

l
−
]

so that
∥∥xl
∥∥ =

∥∥zl−1
∥∥. The submatrices Ul can be specified as in case of a linear

neural network. Thus, if they are orthogonal, they induce a neural network with the dynamical isom-
etry property (Burkholz & Dubatovka, 2019). With the help of the Delta Orthogonal initialization
(Xiao et al., 2018), the same idea can also be transferred to convolutional layers. Given a matrix
H ∈ RNl+1×Nl , a convolutional tensor is defined as W ∈ RNl+1×Nl×k1×k2 as wijk′

1k
′
2
= hij if

k′1 = ⌊k1/2⌋ and k′2 = ⌊k2/2⌋ and wijk′
1k

′
2
= 0 otherwise. We make frequent use of the combina-

tion of the idea behind the Delta Orthogonal initialization and the looks-linear structure.
Definition 2.7 (Looks-linear structure). A tensor W ∈ RNl+1×Nl×k1×k2 is said to have looks-linear
structure with respect to a submatrix U ∈ R⌊Nl+1/2⌋×⌊Nl/2⌋ if

wijk′
1k

′
2
=

{
hij if k′1 = ⌊k1/2⌋ and k′2 = ⌊k2/2⌋,
0 otherwise, H =

[
U −U
−U U

]
(4)

It has first layer looks-linear structure if H = [U;−U].

We impose this structure separately on the residual and skip branch but choose the corresponding
submatrices wisely. To introduce RISOTTO, we only have to specify the corresponding submatrices
for Wl

1, Wl
2, and Wl

skip. The main idea of Risotto is to choose them so that the initial residual block
acts as a linear orthogonal map.

The Type C residual block assumes that the skip connection is a projection such that hl
i(x) =∑

j∈Nl
Wl

ij,skip ∗ xl
j , where Wl

skip ∈ RNl+1×Nl×1×1 is a trainable convolutional tensor with kernel
size 1 × 1. Thus, we can adapt the skip connections to compensate for the added activations of the
residual branch as visualized in Fig. 3.
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Figure 3: A Type C residual block is initialized with Risotto as visually explained.

Definition 2.8 (RISOTTO for Type C residual blocks). For a residual block of the form xl+1 =
ϕ(α∗f l(xl)+hl(xl)), where f l(xl) = Wl

2∗ϕ(Wl
1∗xl), hl(xl) = Wl

skip∗xl, the weights Wl
1,W

l
2

and Wl
skip are initialized with looks-linear structure according to Def. 2.7 with the submatrices Ul

1,
Ul

2 and Ul
skip respectively. The matrices Ul

1, Ul
2, and Ml be drawn independently and uniformly

from all matrices with orthogonal rows or columns (depending on their dimension), while the skip
submatrix is Ul

skip = Ml − αUl
2Ul

1.

The Type B residual block poses the additional challenge that we cannot adjust the skip connections
initially because they are defined by the identity and not trainable. Thus, we have to adapt the
residual connections instead to compensate for the added input signal. To be able to distinguish the
positive and the negative part of the input signal after the two convolutional layers, we have to pass
it through the first ReLU without transformation and thus define Wl

1 as identity mapping.

Definition 2.9 (RISOTTO for Type B residual blocks). For a residual block of the form xl+1 =
ϕ(α ∗ f l(xl) + xl) where f l(xl) = Wl

2 ∗ ϕ(Wl
1 ∗ xl), RISOTTO initializes the weight Wl

1 as
wl

1,ijk′
1k

′
2
= 1 if i = j, k′1 = ⌊k1/2⌋, k′2 = ⌊k2/2⌋ and wl

1,ijk′
1k

′
2
= 0 otherwise. Wl

2 has looks-

linear structure (according to Def. 2.7) with respect to a submatrix Ul
2 = Ml − (1/α)I, where

Ml ∈ RNl+1/2×Nl/2 is a random matrix with orthogonal columns or rows, respectively.

Note that particularly the type B initialization consists of a considerable amount of zero entries. To
induce higher symmetry breaking and promote feature diversity Blumenfeld et al. (2020), we also
study a noisy variant, N-RISOTTO, in which we add a small amount of noise ϵΣ to our RISOTTO
parameters, where ϵ = 10−4 and Σ follows the He Normal distribution (He et al., 2015).

As we prove in the appendix, residual blocks initialized with RISOTTO preserve the norm of the input
and cosine similarity of signals corresponding to different inputs not only on average but exactly, as
exemplified by Fig. 2c (b). This addresses the drawbacks of initialization schemes that are based on
independent weight entries, as discussed in the last section.

Theorem 2.10 (RISOTTO preserves signal norm and similarity). A residual block that is ini-
tialized with RISOTTO maps input activations xl to output activations xl+1 so that the norm
||xl+1||2 = ||xl||2 stays equal. The scalar product between activations corresponding to two inputs
x and x̃ are preserved in the sense that ⟨x̂l+1

+ − x̂l+1
− , ˜̂xl+1

+ − ˜̂xl+1
− ⟩ = ⟨x̂l

+ − x̂l
−,

˜̂xl
+ − ˜̂xl

−⟩.

The full proof is presented Appendix A.3. It is straight forward, as the residual block is defined as
orthogonal linear transform, which maintains distances of the sum of the separated positive and neg-
ative part of a signal. Like the residual block, the input-output Jacobian also is formed of orthogonal
submatrices. It follows that RISOTTO induces perfect dynamical isometry for finite width and depth.

Theorem 2.11 (RISOTTO achieves exact dynamical isometry for residual blocks). A residual
block whose weights are initialized with RISOTTO achieves exact dynamical isometry so that the
singular values λ ∈ σ(J) of the input-output Jacobian J ∈ RNl+1×kl+1×Nl×kl fulfill λ ∈ {−1, 1}.

The detailed proof is given in Appendix A.2. Since the weights are initialized so that the residual
block acts as an orthogonal transform, also the input-output Jacobian is an isometry, which has
the required spectral properties. Drawing on the well established theory of dynamical isometry
(Chen et al., 2018; Saxe et al., 2013; Mishkin & Matas, 2015; Poole et al., 2016; Pennington et al.,
2017), we therefore expect RISOTTO to enable fast and stable training of very deep ResNets, as we
demonstrate next in experiments.
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3 EXPERIMENTS

In all our experiments, we use two kinds of ResNets consisting of residual blocks of Type B or Type
C, as defined in Section 2.1 and visualized in Fig. 2a. ResNet (B) contain Type B residual blocks if
the input and output dimension of the block is equal and a Type B block otherwise, but a ResNet (C)
has Type C residual blocks throughout. All implementation details and our hyperparameter tuning
approach are described in Appendix A.4. We use a learnable scalar α that is initialized as α = 1
to balance skip and residual connections (see Fig. 2c (c)). Results for all cases are reported on
the benchmark datasets CIFAR10, CIFAR100 (Krizhevsky et al., 2014), and Tiny ImageNet (Le &
Yang, 2015). Additional key experiments on ImageNet are presented in Appendix A.9 that are in
line with our findings on Tiny ImageNet.

Our main objective is to highlight three advantageous properties of our proposed initialization
RISOTTO: (a) It enables stable and fast training of deep ResNets without any normalization methods
and outperforms state-of-the-art schemes designed for this purpose (see Table 1 and Fig. 4 (center)).
(b) Unnormalized it can compete with NF ResNets, an alternative normalization approach to BN,
(see Fig. 4 (right) and Fig. 9). (c) It can outperform alternative initialization methods in combination
with Batch Normalization (BN) (see Table 2 and Fig. 4 (left)). We hypothesize that this is enabled
by the balance between skip and residual connections that is unique to RISOTTO.

RISOTTO without BN We start our empirical investigation by evaluating the performance of
ResNets without any normalization layers. We compare our initialization scheme RISOTTO to the
state-of-the-art baselines Fixup (Zhang et al., 2018) and SkipInit (De & Smith, 2020). Both these
methods have been proposed as substitutes for BN and are designed to achieve the benefits of BN
by scaling down weights with depth (Fixup) and biasing signal flow towards the skip connection
(Fixup and SkipInit). Fixup has so far achieved the best performance for training ResNets without
any form of normalization. We observe that as shown in Table 1, RISOTTO is able to outperform
both Fixup and SkipInit. Moreover, we also observed in our experiments that Fixup and SkipInit
are both susceptible to bad random seeds and can lead to many failed training runs. The unstable
gradients at the beginning due to zero initialization of the last residual layer might be responsible for
this phenomenon. RISOTTO produces stable results. With ResNet (C), it also achieves the overall
highest accuracy for all three datasets. We have also evaluated N-Rissoto for ResNet50 (B) on Im-
ageNet comparing with Fixup as shown in Fig. 10 in Appendix A.9. These results verify that a well
balanced orthogonal initialization for residual blocks enables better training for different datasets
and models of varying sizes.

Dataset ResNet RISOTTO (ours) Fixup SkipInit

CIFAR10 18 (C) 93.71± 0.11 92.05± 0.11 10.0± 0.03
18 (B) 92.1± 0.52 93.36± 0.15 92.57± 0.21

CIFAR100 50 (C) 60.63± 0.28 58.25± 1.64 1± 0
50 (B) 56.17± 0.39 59.26± 0.69 42.40± 0.67

Tiny ImageNet 50 (C) 49.51± 0.06 48.07± 0.46 26.42± 9.7
50 (B) 47.02± 0.37 47.89± 0.45 31.57± 8.6

Table 1: RISOTTO as a substitute for Batch Normalization The mean test accuracy over 3 runs and
0.95 standard confidence intervals are reported to compare RISOTTO, Fixup, and SkipInit without
using BN. RISOTTO is able to achieve the overall best results for each of the benchmark datasets.

RISOTTO learns faster for deep ResNets. Fig. 4 (center) for ResNet B consisting of 300 layers and
Fig. 8b for ResNet101 on CIFAR100 demonstrate RISOTTO’s ability to train deep networks without
BN. While RISOTTO achieves a higher final performance for 300 layers and similar one as Fixup for
101 layers, RISOTTO trains faster in comparison. Also in combination with BN, RISOTTO can train
faster, as Fig. 10 shows for ResNet50 (B) on ImageNet.

Comparison with Normalization Free ResNets NF ResNets (Brock et al., 2021a) that use weight
standardization have been shown to outperform BN when used in combination with adaptive gradi-
ent clipping. We find that RISOTTO is able to outperform NF ResNets on Tiny ImageNet with He
initialization He et al. (2016) as shown in Fig. 4 (right). Further experiments are reported in Fig. 9.
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RISOTTO in combination with BN Despite its drawbacks, BN remains a popular method and is
implemented per default, as it often leads to the best overall generalization performance for ResNets.
Normalization free initialization schemes have been unable to compete with BN, even though Fixup
has come close. Whether the performance of batch normalized networks can still be improved is
therefore still a relevant question. Table 2 compares RISOTTO with the two variants of He ini-
tialization for normally distributed and uniformly distributed weights (He et al., 2016). We find
that RISOTTO arrives at marginally lower performance on CIFAR10 but outperforms the standard
methods on both CIFAR100 and Tiny ImageNet. On ImageNet, a single N-Risotto training run for
ResNet50 (B) with BN obtains 65.67 test accuracy and He Uniform initialization 58.41 (see Figure
10 in Appendix A.9). These results and Table 1 showcase the versatility of RISOTTO, as it enables
training without BN and can even improve training with BN (see also Fig. 4 (left)).

Dataset ResNet RISOTTO (ours) He Normal He Uniform

CIFAR10 18 (C) 95.29± 0.14 95.38± 0.15 95.32± 0.07
18 (B) 94.93± 0.07 94.99± 0.12 94.82± 0.03

CIFAR100 50 (C) 73.11± 0.70 76.17± 0.25 76.21± 0.28
50 (B) 78.45± 0.08 77.40± 0.25 76.7± 0.8

Tiny ImageNet 50 (C) 59.47± 0.02 50.12± 0.98 53.91± 0.59
50 (B) 58.73± 0.29 52.21± 2 55.05± 0.6

Table 2: RISOTTO with Batch Normalization The mean test accuracy over 3 runs and 0.95 stan-
dard confidence intervals are reported to compare different initialization in combination with BN.
RISOTTO outperforms the baseline methods with BN on CIFAR100 and Tiny ImageNet.

Can we reduce the number of BN layers? Considering the importance of BN on performance and
how other methods struggle to compete with it, we note that reducing the number of BN layers in a
network can still render similar benefits at reduced computational and memory costs. Often a single
BN layer is sufficient and with Risotto, we are flexible in choosing its position. Fig. 4 (right) reports
results for BN after the last layer, which usually achieves the best performance. Additional figures
in the appendix (Fig. 5-7) explore optional BN layer placements in more detail.
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Tiny Img: BN after last layer

Risotto (ours)
He Uniform
He Normal

0 100
Epochs

20

40
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Tiny Imagenet

Risotto (ours)
NF ResNet (He Normal)
NF ResNet (He Uniform)

Figure 4: (left) A single BN layer is placed after the last residual block of a ResNet50 (C) on Tiny
Imagenet. (center) A 300 layer ResNet (B) with RISOTTO versus Fixup. (right) RISOTTO versus NF
ResNets (C) on Tiny Imagenet.

4 CONCLUSIONS

We have introduced a new initialization method for residual networks with ReLU activations,
RISOTTO. It enables residual networks of any depth and width to achieve exact dynamical isome-
try at initialization. Furthermore, it can balance the signal contribution from the residual and skip
branches instead of suppressing the residual branch initially. This does not only lead to higher fea-
ture diversity but also promotes stable and faster training. In practice that is highly effective, as we
demonstrate for multiple standard benchmark datasets. We show that RISOTTO competes with and
often outperforms Batch Normalization free methods and even improves the performance of ResNets
that are trained with Batch Normalization. While we have focused our exposition on ResNets with
ReLU activation functions, in future, RISOTTO could also be transferred to transformer architectures
similarly to the approach by Bachlechner et al. (2021). In addition, the integration into the ISONet
(Qi et al., 2020) framework could potentially lead to further improvements.
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A APPENDIX

A.1 SIGNAL PROPAGATION

Recall our definition of a residual block in Equation (1):

z0 := W0x, xl = ϕ(zl−1), zl := αlf
l(xl) + βlh

l(xl), zout := WoutP (xL) (5)

for 1 ≤ l ≤ L with f l(xl) = Wl
2ϕ(W

l
1x

l), hl(xl) = Wl
skipx

l, where the biases have been set to
zero. In the following theoretical derivations we focus on fully-connected networks for simplicity
so that Wl

2 ∈ RNl+1×Nml , Wl
1 ∈ RNml

×Nl , and Wl
skip ∈ RNl+1×Nl . The general principle could

also be transferred to convolutional layers similarly to the mean field analysis by Xiao et al. (2018).

A common choice for the initialization of the parameters is defined as follows.

Definition A.1 (Normal ResNet Initialization for fullly-connected residual blocks). Let a neural
network consist of fully-connected residual blocks as defined by Equ. (5). All biases are initialized
as 0 and all weight matrix entries are independently normally distributed with wl

ij,2 ∼ N
(
0, σ2

l,2

)
,

wl
ij,1 ∼ N

(
0, σ2

l,1

)
, and wl

ij,skip ∼ N
(
0, σ2

l,skip

)
. Then the Normal ResNet Initialization is defined

by the choice σl,1 =
√

2
Nml

, σl,2 =
√

2
Nl+1

, σl,skip =
√

2
Nl+1

, and αl, βl ≥ 0 that fulfill

α2
l + β2

l = 1.

Our objective is to analyze the distribution of the signals xl+1 and x̃l+1, which correspond to the
random neuron state of an initial neural network that is evaluated in input x0 or x̃0, respectively.
More precisely, we derive the average squared signal norm and the covariance of two signals that
are evaluated in different inputs.

We start with the squared signal norm and, for convenience, restate Theorem 2.10 before the proof.

Theorem A.2 (Theorem 2.10 in main manuscript). Let a neural network consist of residual blocks
as defined by Equ. (1) or Equ. (5) that start with a fully-connected layer at the beginning W0, which
contains N1 output channels. Assume that all biases are initialized as 0 and that all weight matrix
entries are independently normally distributed with wl

ij,2 ∼ N
(
0, σ2

l,2

)
, wl

ij,1 ∼ N
(
0, σ2

l,1

)
, and

wl
ij,skip ∼ N

(
0, σ2

l,skip

)
. Then the expected squared norm of the output after one fully-connected

layer and L residual blocks applied to input x is given by

E
(∥∥xL

∥∥2) =
N1

2
σ2
0

L−1∏
l=1

Nl+1

2

(
α2
l σ

2
l,2σ

2
l,1

Nml

2
+ β2

l σ
2
l,skip

)
∥x∥2 .

Proof. First, we study how the signal is transformed by a single layer before we deduce successively
the final output signal. To do so, we assume that the signal of the previous layer is given. This
means we condition the expectation on the parameters of the previous layers and thus xl and x̃l.
For notational convenience, we define El(z) = E

(
z | xl, x̃l

)
and skip the index l in the following

derivations. We write: x = xl+1, x = xl, z = zl, f(x) = f l(x) = Wl
2ϕ(W

l
1x), h(x) =

hl(x) = Wl
skipx, α = αl, β = βl. Given all parameters from the previous layers, we deduce

E
(
∥x∥2 | x

)
=

Nl+1∑
i=1

E
(
(xi)

2
)
= Nl+1E

(
(x1)

2
)
=

Nl+1

2
El (z1)

2 (6)

The first equality follows from the fact that all random parameters are independent and the signal
components are identically distributed. The third equality holds because the distribution of each
signal component is symmetric around zero so that the ReLU projects half of the signal away but
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the contribution to the average of the squared signal is just cut in half. We continue with

El (z1)
2
= El

α

Nml∑
i=1

w2,1iϕ

 Nl∑
j=1

w1,ijxj

+ β

Nl∑
k=1

wskip,1kxk

2

(7)

= α2

Nml∑
i=1

El

(
w2

2,ij

)
El


∥∥∥∥∥∥ϕ
 Nl∑

j=1

w1,ijxj

∥∥∥∥∥∥
2
+ β2

Nl∑
k=1

El

(
w2

skip,1k

)
x2
k (8)

= α2σ2
l,2Nml

El


∥∥∥∥∥∥ϕ
 Nl∑

j=1

w1,1jxj

∥∥∥∥∥∥
2
+ β2σ2

l,skip ∥x∥
2 (9)

= α2σ2
l,2Nml

1

2
El

 Nl∑
j=1

w1,1jxj

2

+ β2σ2
l,skip ∥x∥

2 (10)

=

(
α2σ2

l,2σ
2
l,1Nml

1

2
+ β2σ2

l,skipNl+1

)
∥x∥2 , (11)

as all weight entries are independent and the expectation is a linear operation. To obtain Equa-
tion (10), we just repeated the same argument as for Equation 6 to take care of the ReLU. Afterwards,
we used again the independence of the weights w1,1j .

From repeated evaluation of Equations (6) and (11), we obtain

E
(∥∥xL

∥∥2) =
N1

2
σ2
0

L−1∏
l=1

Nl+1

2

(
α2σ2

l,2σ
2
l,1Nml

1

2
+ β2σ2

l,skip

)
∥x∥2 (12)

for x = x0.

To make sure that the signal norm neither explodes or vanishes for very deep networks, we would
need to choose the weight variances so that N1

2 σ2
0

∏L
l=1

Nl+1

2

(
α2σ2

l,2σ
2
l,1Nml

1
2 + β2σ2

l,skip

)
≈ 1.

In the common normal ResNet initialization, this is actually achieved, since σl,1 =
√

2/Nml
, σl,2 =

σl,skip =
√
2/Nl+1, σ0 =

√
2/N1, and α2 + β2 = 1 even preserve the average norm in every layer.

How does this choice affect whether signals for different inputs are distinguishable? To answer this
question, we analyze the covariance of the neuron state for two different inputs. We begin again
with analyzing the transformation of a single layer and condition on all parameters of the previous
layers. To obtain a lower bound on the covariance, the following Lemma will be helpful. It has been
derived by Burkholz & Dubatovka (2019) for Theorem 5.
Lemma A.3. Assume that two random variables z1 and z2 are jointly normally distributed as z ∼
N (0, V ) with covariance matrix V . Then, the covariance of the ReLU transformed variables x1 =
ϕ(z1) and x2 = ϕ(z2) is

E (x1x2) =
√
v11v22

(
g(ρ)ρ+

√
1− ρ2

2π

)
(13)

≥
√
v11v22

(
1

4
(ρ+ 1)− c̃

)
=

1

4
v12 + c

√
v11v22, (14)

where ρ = v11v22/v12 and g(ρ) is defined as g(ρ) = 1√
2π

∫∞
0

Φ

(
ρ√
1−ρ2

u

)
exp

(
− 1

2u
2
)
du for

|ρ| ≠ 1 and g(−1) = 0, g(1) = 0.5. The constant fulfills 0.24 ≤ c ≤ 0.25.

In the following, we assume that all weight parameters are normally distributed so that we can
use the above lemma. However, other parameter distributions in large networks would also lead to
similar results, as the central limit theorem implies that the relevant quantities are approximately
normally distributed.
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We study the covariance of the signals xl+1 = x and x̃l+1 = x̃, which correspond to the random
neuron state of an initial neural network that is evaluated in input x0 or x̃0, respectively.

Theorem A.4 (Theorem 2.5 in main manuscript). Let a fully-connected residual block be given as
defined by Equ. (1) or Equ. (5). Assume that all biases are initialized as 0 and that all weight matrix
entries are independently normally distributed with wl

ij,2 ∼ N
(
0, σ2

l,2

)
, wl

ij,1 ∼ N
(
0, σ2

l,1

)
, and

wl
ij,skip ∼ N

(
0, σ2

l,skip

)
. Let xl+1 denote the neuron states of Layer l + 1 for input x and x̃l+1 the

same neurons but for input x̃. Then their covariance given all parameters of the previous layers is
given as El

(
⟨xl+1, x̃l+1⟩

)

≥ 1

4

Nl+1

2

(
α2
l σ

2
l,2σ

2
l,1

Nml

2
+ 2β2

l σ
2
l,skip

)
⟨xl, x̃l⟩+ c

4
α2
lNl+1σ

2
l,2σ

2
l,1Nml

∥∥xl
∥∥∥∥x̃l

∥∥ (15)

+ EWl
1

(√(
α2
l σ

2
l,2

∥∥ϕ(Wl
1x

l)
∥∥2 + β2

l σ
2
l,skip ∥xl∥2

)(
α2
l σ

2
l,2

∥∥ϕ(Wl
1x̃

l)
∥∥2 + β2

l σ
2
l,skip ∥x̃l∥2

))
,

where the expectation El is taken with respect to the initial parameters Wl
2, W̃l

1, and Wl
skip.

Proof. Let us assume again that all parameters of the previous layers are given in addition to the
parameters of the first residual layer W1 and use our notation from the proof of Theorem 2.10.

Based on similar arguments that we used for the derivation of average squared signal norm, we
observe that z = zl and z̃ = z̃l are jointly normally distributed. In particular, the components
zi are identically distributed for the same input. The same component zi and z̃i for different in-
puts has covariance matrix V with entries v11 = α2σ2

l,2 ∥ϕ(W1x)∥2 + β2σ2
l,skip ∥x∥

2, v22 =

α2σ2
l,2 ∥ϕ(W1x̃)∥2 + β2σ2

l,skip ∥x̃∥
2, and v12 = α2σ2

l,2⟨ϕ(W1x), ϕ(W1x̃)⟩+ β2σ2
l,skip⟨x, x̃⟩.

El (⟨x, x̃⟩) = EW1
El (⟨x, x̃⟩ | W1) =

Nl+1∑
i=1

EW1
El (ϕ(zi)ϕ(z̃i) | W1) (16)

≥ Nl+1EW1

(
1

4
v12 + c

√
v11v22

)
= Nl+1EW1

(
1

4
v12 + c

√
v11v22

)
(17)

where we applied Lemma A.3 to obtain the inequality and used the fact that the entries of the
variance matrix are identically distributed for different (i) with respect to W1.

We can compute the first term EW1
v12 by using Lemma A.3 again, as W1x and W1x̃ are jointly

normally distributed given x and x̃. The associated covariance matrix S for one component corre-
sponding to two different inputs has entries s11 = σ2

l,1 ∥x∥
2, s22 = σ2

l,1 ∥x̃∥
2, and s12 = σ2

l,1⟨x, x̃⟩.
Lemma A.3 gives us therefore

EW1
(v12) = EW1

(
α2σ2

l,2⟨ϕ(W1x), ϕ(W1x̃)⟩+ β2σ2
l,skip⟨x, x̃⟩

)
(18)

≥ α2σ2
l,2Nml

(
1

4
σ2
l,1⟨x, x̃⟩+ cσ2

l,1 ∥x∥ ∥x̃∥
)
+ β2σ2

l,skip⟨x, x̃⟩. (19)
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Determining the second part of Equation (17) is more involved:

EW1
(
√
v11v22)

= EW1

(√(
α2σ2

l,2 ∥ϕ(W1x)∥2 + β2σ2
l,skip ∥x∥

2
)(

α2σ2
l,2 ∥ϕ(W1x̃)∥2 + β2σ2

l,skip ∥x̃∥
2
))

(20)

= β2σ2
l,skip ∥x∥ ∥x̃∥EW1

√√√√(γ ∥∥∥∥ϕ(W1
x

∥x∥

)∥∥∥∥2 + 1

)(
γ

∥∥∥∥ϕ(W1
x̃

∥x̃∥

)∥∥∥∥2 + 1

)
(21)

≥ β2σ2
l,skip ∥x∥ ∥x̃∥EW1

√√√√(γ ∥∥∥∥ϕ(W1
x

∥x∥

)∥∥∥∥2 + 1

)(
γ

∥∥∥∥ϕ(−W1
x

∥x∥

)∥∥∥∥2 + 1

)
(22)

≥ β2σ2
l,skip ∥x∥ ∥x̃∥EW1

√√√√√
γ

M∑
j=1

w2
1,j1 + 1


√√√√√
γ

Nml∑
j=M+1

w2
1,j1 + 1

 (23)

= β2σ2
l,skip ∥x∥ ∥x̃∥EMEY

[√√√√√
γσ2

l,1

Nml

2

 2

Nml

M∑
j=1

y2j

+ 1



×

√√√√√
γσ2

l,1

Nml

2

 2

Nml

Nml∑
j=M+1

y2j

+ 1

]

≈ β2σ2
l,skip ∥x∥ ∥x̃∥

(
γσ2

l,1

Nml

2
+ 1

)
= ∥x∥ ∥x̃∥

(
α2σ2

l,2σ
2
l,1

Nml

2
+ β2σ2

l,skip

)
(24)

In Equation (22), we have used the fact that EW1

(√
v11v22

)
is monotonically increasing in the

covariance s12. Thus, the minimum is attained for perfectly negative associations between x and
x̃ and thus x̃ = −x. To simplify the derivation, we further study the case x = (1, 0, 0, 0, ...)T .
It follows that either ϕ(w1,j1) or ϕ(−w1,j1) is positive while the other one is zero. To ease the
notation, by reindexing, we can assume that the first M components fulfill ϕ(w1,j1) > 0, while the
remaining Nml

−M components fulfill the opposite. Note that because w1,j1 is distributed symmet-
rically around zero, M ∼ Bin(Nml

, 0.5) is a binomially distributed random variable with success
probability 0.5. Thus, EM = Nml

/2. To make the dependence on Nml
of the different variables

more obvious, we have replaced the random variables w1,j1 that are normally distributed with stan-
dard deviation σ1 by standard normally distributed random variables yj with standard deviation 1.
This makes the use of the law of large numbers in the last equation more apparent. Note that this
approximation is only accurate for large Nml

>> 1, which is usually fulfilled in practice.

Finally, combining Equations (17), (19), and (20), we receive

El (⟨x, x̃⟩) ≥
1

16
α2Nl+1σ

2
l,2σ

2
l,1Nml

⟨x, x̃⟩+ c

4
α2Nl+1σ

2
l,2σ

2
l,1Nml

∥x∥ ∥x̃∥+ 1

4
β2Nl+1σ

2
l,skip⟨x, x̃⟩

+ EW1

(√(
α2σ2

l,2 ∥ϕ(W1x)∥2 + β2σ2
l,skip ∥x∥

2
)(

α2σ2
l,2 ∥ϕ(W1x̃)∥2 + β2σ2

l,skip ∥x̃∥
2
))

(25)

≈ Nl+1

2

(
α2

4

σ2
l,1Nml

2
σ2
l,2 +

β2

2
σ2
l,skip

)
⟨x, x̃⟩

+ c
Nl+1

2

(
α2

σ2
l,1Nml

2
σ2
l,2 +

(
2α2σ2

l,2σ
2
l,1

Nml

2
+ 2β2σ2

l,skip

))
∥x∥ ∥x̃∥ (26)
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To understand the problem that these derivations imply, we next choose the weight parameters so
that the squared norm signal is preserved from one layer to the next and, for simplicity, study the
case in which ∥x∥ = ∥x̃∥ = 1. Then we have

El (⟨x, x̃⟩) ≥
1 + β2

4
⟨x, x̃⟩+ c(α2 + 2) ≈ 1 + β2

4
⟨x, x̃⟩+ α2

4
+

1

2
. (27)

Thus, the similarity of signals corresponding to different inputs increases always by at least a
constant amount on average. Repeating the above bound layerwise, at Layer L we receive for
γ1 = 1+β2

4 ≤ 1
2 and γ2 = c(α2 + 2):

E
(
⟨xL, x̃L⟩

)
≥ γL

1 ⟨x, x̃⟩+ γ2

L−1∑
k=0

γk
1 =

γ2
1− γ1

(
1− γL

1

)
. (28)

According to our bound, output signals of very deep networks become more similar with increasing
depth until they are almost indistinguishable. This phenomenon poses a great challenge for the
trainability of deep resdidual neural networks with standard initialization schemes. Note that the
case without skip-connections is also covered by the choice α = 1 and β = 0. Interestingly,
nonzero skip-connections (β > 0) fight the increasing signal similarity by giving more weight
to the original signal similarity (increased γ1) while decreasing the constant contribution of γ2.
This enables training of deeper models but cannot solve the general problem that increasingly deep
models become worse in distinguishing different inputs initially. Even the best case scenario of
α = 0 and β = 1 leads eventually to forgetting of the original input association, since γ1 = 0.5 < 1.
With γ2 ≈ 0.5, the overall signal similarity E

(
⟨xL, x̃L⟩

)
converges to 1 for L → ∞ irrespective of

the input similarity. Thus, every input signal is essentially mapped to the same vector for very deep
networks, which explains the following insight.

Insight A.5 (Insight 2.6 in main paper). Let a fully-connected ResNet be given whose parameters
are drawn according to Definition A.1. It follows from Theorem 2.5 that the outputs corresponding
to different inputs become more difficult to distinguish for increasing depth L. In the mean field limit
Nml

→ ∞, the covariance of the signals is lower bounded by

E
(
⟨xL, x̃L⟩

)
≥ γL

1 ⟨x, x̃⟩+ γ2

L−1∑
k=0

γk
1 = γL

1 ⟨x, x̃⟩+
γ2

1− γ1

(
1− γL

1

)
(29)

for γ1 = 1+β2

4 ≤ 1
2 and γ2 = c(α2 + 2) and El−1∥xl∥∥x̃l∥ ≈ 1.

However, our orthogonal initialization scheme Risotto does not suffer from increasing similarity of
outputs corresponding to different inputs.

A.2 DYNAMICAL ISOMETRY INDUCED BY RISOTTO

Theorem A.6 (Theorem 2.11 in the main paper). A residual block (of type B or type C) whose
weights are initialized with RISOTTO achieves exact dynamical isometry so that the singular values
λ ∈ σ(J) of the input-output Jacobian J ∈ RNl+1×kl+1×Nl×kl fulfill λ ∈ {−1, 1}.

Proof. Consider a single element of the output activation of a type C residual block at layer l. At
initialization, an output activation component at layer l is

xl+1
ik = α

∑
n∈Nml

wl
ink1/2k2/2,2

∑
m∈Nl

ϕ(wl
nmk1/2k2/2,1

xl
mk) +

∑
n∈Nl

wl
in,skipx

l
nk (30)

since RISOTTO initializes only the central elements of every 2-D filter to nonzero values and all
the other values are zero which reduces the convolution to a simple summation. For the subsequent
calculations we ignore the filter dimension indices in the weights. Now the positive part of the output
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xl+1
ik where i ∈ [0, Nl+1/2] is given by

xl+1
ik = α

∑
n∈Nml

wl
in,2

∑
j∈Nl

ϕ(wl
nj,1x

l
jk) +

∑
n∈Nl

wl
in,skipx

l
nk (31)

= α
∑

n∈Nml
/2

ul
in,2

∑
j∈Nl/2

ϕ(ul
nj,1x

l
jk)− ϕ(−ul

nj,1x
l
jk) +

∑
n∈Nl

wl
in,skipx

l
nk (32)

= α
∑

n∈Nml
/2

∑
j∈Nl/2

ul
in,2u

l
nj,1x

l
jk +

∑
n∈Nl/2

ml
in − α

∑
n∈Nml

/2

ul
in,2u

l
nj,1

xl
nk (33)

=
∑

n∈Nl/2

ml
inx

l
nk (34)

Taking the derivative of the output xl+1
ik wrt an input element xl

nk.

∂xl+1
ik

∂xl
nk

= ml
in (35)

We can now obtain the input output Jacobian for i ∈ [0, Nl+1/2] and j ∈ [0, Nl/2] as

[J ]lik′
l+1jk

′
l
=

{
ml

ij if k′l+1 = k′l
0 otherwise (36)

And since Ml is orthogonal, the singular values of J l are one across the dimensions i, j. Due to the
looks linear form of the input at the weights the complete Jacobian also takes the looks linear form
as

[J ]lik′
l+1jk

′
l
=



ml
ij if k′l+1 = k′l, i ∈ [0, Nl+1/2], j ∈ [0, Nl/2]

−ml
ij if k′l+1 = k′l, i ∈ [Nl+1/2, Nl+1], j ∈ [0, Nl/2]

−ml
ij if k′l+1 = k′l, i ∈ [0, Nl+1/2], j ∈ [Nl/2, Nl]

ml
ij if k′l+1 = k′l, i ∈ [Nl+1/2, Nl+1], j ∈ [Nl/2, Nl]

0 otherwise

(37)

The same argument follows for type B residual blocks. Hence, since Ml is an orthogonal matrix,
the singular values of the input output Jacobian of the residual blocks initialized with RISOTTO are
exactly {1,−1} for all depths and width and not just in the infinite width limit.

A.3 SIGNAL PROPAGATION WITH RISOTTO

Now we closely analyze how RISOTTO transforms the input signal for residual blocks when initial-
ized using Definitions 2.9 and 2.8. RISOTTO creates effectively an orthogonal mapping that induces
DI. Note that our analysis of convolutional tensors is simplified to evaluating matrix operations since
the Delta Orthogonal initialization simplifies a convolution to an effective matrix multiplication in
the channel dimension of the input. Specifically, we can track the changes in the submatrices used in
the initialization of a residual block with RISOTTO and observe the output activation. We start with
a Type B residual block evaluated at input xl =

[
x̂l
+; x̂

l
−
]

at Layer l and set α = 1. The residual
and skip branches at Layer l are then

f l(xl) = Wl
2 ∗ ϕ(Wl

1 ∗ xl) = Wl
2 ∗ xl =

[
Ml − (1/α)I −Ml

−Ml Ml − (1/α)I

] [
x̂l
+

x̂l
−

]
=

[
Mlx̂l

+ − Mlx̂l
− − (1/α)x̂l

+

−Mlx̂l
+ + Mlx̂l

− − (1/α)x̂l
−

]
.
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Adding the skip branch to the residual branch gives

αf l(xl) + xl = α

[
Mlx̂l

+ − Mlx̂l
− − (1/α)x̂l

+

−Mlx̂l
+ + Mlx̂l

− − (1/α)x̂l
−

]
+

[
x̂l
+

x̂l
−

]
= α

[
Mlx̂l

+ − Mlx̂l
−

−Mlx̂l
+ + Mlx̂l

−

]
ϕ(αf l(xl) + xl) = αϕ

([
Mlx̂l

+ − Mlx̂l
−

−Mlx̂l
+ + Mlx̂l

−

])
= α

[
x̂l+1
+

x̂l+1
−

]
.

The submatrices of the output of the residual block Ul
2x̂

l
+ and Ul

2x̂
l
− preserve the norm of the input

signal as long as we set α = 1, since Ul
2 is an orthogonal matrix fulfilling

∥∥Ul
2

∥∥2 = 1. If α takes

a value other than 1 or -1, the orthogonal matrix Vl has to be scaled such that
∥∥Ul

2

∥∥2 = 1/α. For
all are experiments with type B residual blocks, however, we observe best results with α = 1. Next
we repeat the same computation for type C residual blocks. Note that the type C residual block can
achieve an exactly orthogonal transform of the input with RISOTTO for any value of α. The signal
propagates through a residual block of type C initialized with RISOTTO and input xl =

[
x̂l
+; x̂

l
−
]

and weights

Wl
1 =

[
Ul

1 −Ul
1

−Ul
1 Ul

1

]
;Wl

2 =

[
Ul

2 −Ul
2

−Ul
2 Ul

2

]
Wl

skip =

[
Ml − αUl

2Ul
1 −Ml + αUl

2Ul
1

−Ml + αUl
2Ul

1 Ml − αUl
2Ul

1

]
at Layer l as

αf l(xl) + hl(xl) = αWl
2ϕ(W

l
1x) + Wl

skipx

= α

[
Ul

2ϕ
(
Ul

1x̂
l
+ − Ul

1x̂
l
+

)
− Ul

2ϕ
(
−Ul

1x̂
l
+ + Ul

1x̂
l
+

)
−Ul

2ϕ
(
Ul

1x̂
l
+ − Ul

1x̂
l
+

)
+ Ul

2ϕ
(
−Ul

1x̂
l
+ + Ul

1x̂
l
+

) ]
+

[
ϕ
(
(Ml − αUl

2Ul
1)x̂

l
+ + (−Ml + αUl

2Ul
1)x̂

l
−
)

ϕ
(
((−Ml + αUl

2Ul
1))

lx̂l
+ − (Ml − αUl

2Ul
1)x̂

l
−
) ]

=

[
Mlx̂l

+ − Mlx̂l
−

−Mlx̂l
+ + Mlx̂l

−

]
xl+1 = ϕ(αf l(xl) + hl(xl)) =

[
x̂l+1
+

x̂l+1
−

]
.

We conclude that for type C residual blocks the output is of looks-linear form and has the same norm
as the input because of the orthogonal submatrices and the looks-linear structure.

We now use the above formulations to prove that RISOTTO preserves the squared signal norm and
similarities between inputs for residual blocks, the key property that allows stable training.
Theorem A.7 (RISOTTO preserves signal norm and similarity). A residual block that is ini-
tialized with RISOTTO maps input activations xl to output activations xl+1 so that the norm
||xl+1||2 = ||xl||2 stays equal. The scalar product between activations corresponding to two inputs
x and x̃ are preserved in the sense that ⟨x̂l+1

+ − x̂l+1
− , ˜̂xl+1

+ − ˜̂xl+1
− ⟩ = ⟨x̂l

+ − x̂l
−,

˜̂xl
+ − ˜̂xl

−⟩.

Proof. We first prove that the squared signal norms are preserved for both types of residual blocks
followed by the same for similarity between inputs. Consider a type C residual block. The preac-
tivation of the previous layer of looks linear form zl−1 =

[
z̃l−1;−z̃l−1

]
. The preactivation of the

current layer is then given as the signal passes through the residual block as
zl = αf l(ϕ(zl−1)) + hl(ϕ(zl−1)) (38)

= α

[
Ul

2ϕ
(
Ul

1x̂
l
+ − Ul

1x̂
l
+

)
− Ul

2ϕ
(
−Ul

1x̂
l
+ + Ul

1x̂
l
+

)
−Ul

2ϕ
(
Ul

1x̂
l
+ − Ul

1x̂
l
+

)
+ Ul

2ϕ
(
−Ul

1x̂
l
+ + Ul

1x̂
l
+

) ] (39)

+

[
ϕ
(
(Ml − αUl

2Ul
1)x̂

l
+ + (−Ml + αUl

2Ul
1)x̂

l
−
)

ϕ
(
((−Ml + αUl

2Ul
1))

lx̂l
+ − (Ml − αUl

2Ul
1)x̂

l
−
) ]

=

[
Mlx̂l

+ − Mlx̂l
−

−Mlx̂l
+ + Mlx̂l

−

]
(40)

=

[
Mlϕ(ẑl−1)− Mlϕ(−ẑl−1)
−Mlϕ(ẑl−1) + Mlϕ(−ẑl−1)

]
(41)
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Then the squared norm is given by∥∥zl
∥∥2 =

∥∥Mlϕ(ẑl−1)− Mlϕ(−ẑl−1)
∥∥2 + ∥∥−Mlϕ(ẑl−1) + Mlϕ(−ẑl−1)

∥∥2 (42)

= 2
∥∥Mlϕ(ẑl−1)

∥∥2 + 2
∥∥Mlϕ(−ẑl−1)

∥∥2 (43)

= 2
(∥∥ϕ(ẑl−1)

∥∥2 + ∥∥ϕ(−ẑl−1)
∥∥2) (44)

= 2
∥∥ẑl−1

∥∥2 (45)

=
∥∥zl−1

∥∥2 . (46)

We have used the fact the Ml is an orthogonal matrix such that
∥∥Mlx

∥∥ = ∥x∥ and the identity for
ReLU activations by which z = ϕ(z)− ϕ(−z). Since xl+1 = ϕ(zl), we have

xl+1 = ϕ(zl) =

[
ϕ(ẑl)
ϕ(−ẑl)

]
. (47)

Taking the squared norm of the output then gives∥∥xl+1
∥∥2 =

∥∥ϕ(ẑl)
∥∥2 + ∥∥ϕ(−ẑl)

∥∥2 =
∥∥ẑl
∥∥2 . (48)

The second equality results from squaring the ReLU identity as the term ⟨ϕ(ẑl), ϕ(−ẑl)⟩ = 0.
Combining Eqns. 46 and 48, we obtain ∥∥xl+1

∥∥2 =
∥∥xl
∥∥2 . (49)

In fact, the norm preservation is a special case of the preservation of the scalar product, which we
prove next.

Consider two independent inputs x and x̃, their corresponding input activations at Layer l are xl

and x̃l. We show that as a result of RISOTTO the correlation between the preactivations is preserved
which in turn means that the similarity between activations of the looks linear form is preserved as
⟨x̂l+1

+ − x̂l+1
− , ˜̂xl+1

+ − ˜̂xl+1
− ⟩

=
[
ϕ(ẑl)− ϕ(−ẑl)

]T [
ϕ(˜̂zl)− ϕ(−˜̂zl)

]
(50)

=
[
ϕ
(
Mlϕ(ẑl−1)− Mlϕ(−ẑl−1)

)
− ϕ

(
−Mlϕ(ẑl−1) + Mlϕ(−ẑl−1)

)]T
×
[
ϕ
(

Mlϕ(˜̂zl−1)− Mlϕ(−˜̂zl−1)
)
− ϕ

(
−Mlϕ(˜̂zl−1) + Mlϕ(−˜̂zl−1)

)]
(51)

=
[(
ϕ(Mlϕ(ẑl−1))− ϕ(−Mlϕ(ẑl−1))

)
−
(
ϕ(Mlϕ(−ẑl−1))− ϕ(−Mlϕ(−ẑl−1))

)]T
×
[(

ϕ(Mlϕ(˜̂zl−1))− ϕ(−Mlϕ(˜̂zl−1))
)
−
(
ϕ(Mlϕ(−˜̂zl−1))− ϕ(−Mlϕ(−˜̂zl−1))

)]
(52)

=
[
Ml
(
ϕ(ẑl−1)− ϕ(−ẑl−1)

)]T [
Ml
(
ϕ(˜̂zl−1)− ϕ(−˜̂zl−1)

)]
(53)

=
[
ϕ(ẑl−1)− ϕ(−ẑl−1)

]T [
ϕ(˜̂zl−1)− ϕ(−˜̂zl−1)

]
(54)

= ⟨x̂l
+ − x̂l

−,
˜̂xl
+ − ˜̂xl

−⟩ (55)

The above derivations follow from the looks -linear structure of the weights and the input as well as
the orthogonality of matrix Ml. The same proof strategy for both norm preservation and similarity
can be followed for type B residual blocks using the signal propagation A.3. This concludes the
proof.

A.4 EXPERIMENTAL SETUP AND DETAILS

In all our experiments we use Stochastic Gradient Descent (SGD) with momentum 0.9 and weight
0.0005. We use 4 NVIDIA A100 GPUs to train all our models. All experiments are repeated for
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3 runs and we report the mean and 0.95 confidence intervals. In experiments with ResNet101, we
used a learning rate of 0.005 for all initialization schemes including ours.

We performed the following hyperparameter tuning for each initialization scheme + model + dataset
that we compare and report. For every experiment we use the best performing learning rate between
0.1, 0.01, 0.05, 0.001 with either cosine annealing or step scheduling (whichever performs better),
while keeping the batch size fixed to 256. To do so, we randomly split the training set into a training
(90%) and a validation (10%) set and used the LR that performed best on the validation set to
evaluate the trained model on the test set. We report the accuracies obtained on the test set.

Placing a single BN layer In order to identify the best position to place a single BN layer in a
ResNet, we experiments with 3 different positions. (i) First layer: The BN was placed right after the
first convolution layer before the residual blocks. (ii) BN in the middle: The BN layer was placed
after half of the residual blocks in the network. (iii) BN after last res block: In this case BN was
placed before the pooling operation right after the last residual block.

Correlation comparison in Figure 2b In order to compare the correlation between inputs for
different initialization schemes we use a vanilla Residual Network with five residual blocks, each
consisting of the same number of channels (32) and a kernel size of (3, 3) followed by n average
pooling and a linear layer. The figure shows the correlation between two random samples of CI-
FAR10 averaged over 50 runs.

Tiny Imagenet Note that we use the validation set provided by the creators of Tiny Imagenet (Le
& Yang, 2015) as a test set to measure the generalization performance of our trained models.

without BN with BN

Type Param RISOTTO (ours) Fixup SkipInit RISOTTO (ours) He Uniform He Normal

C

LR 0.1 0.01 0.01 0.1 0.1 0.1
BS 256 256 256 256 256 256

Schedule cosine cosine cosine cosine cosine cosine
Epochs 150 150 150 150 150 150

B

LR 0.1 0.05 0.05 0.1 0.1 0.1
BS 256 256 256 256 256 256

Schedule cosine cosine cosine cosine cosine cosine
Epochs 150 150 150 150 150 150

Table 3: Implementation details for ResNet18 on CIFAR10

without BN with BN

Type Param RISOTTO (ours) Fixup SkipInit RISOTTO (ours) He Uniform He Normal

C

LR 0.01 0.01 0.001∗ 0.1 0.1 0.1
BS 256 256 256 256 256 256

Schedule cosine cosine cosine cosine cosine cosine
Epochs 150 150 150 150 150 150

B

LR 0.01 0.01 0.01 0.1 0.1 0.1
BS 256 256 256 256 256 256

Schedule cosine cosine cosine cosine cosine cosine
Epochs 150 150 150 150 150 150

Table 4: Implementation details for ResNet50 on CIFAR100. ∗ denotes that SkipInit failed to train
even at a very low learning rate for multiple runs as reported in Table 1 in the main paper.
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without BN with BN

Type Param RISOTTO (ours) Fixup SkipInit RISOTTO (ours) He Uniform He Normal

C

LR 0.01 0.01 0.001 0.01 0.01 0.01
BS 256 256 256 256 256 256

Schedule cosine cosine cosine step (30, 0.1) step (30, 0.1) step (30, 0.1)
Epochs 150 150 150 150 150 150

B

LR 0.01 0.01 0.01 0.01 0.01 0.01
BS 256 256 256 256 256 256

Schedule cosine cosine cosine cosine cosine cosine
Epochs 150 150 150 150 150 150

Table 5: Implementation details for ResNet50 on Tiny Imagenet. Arguments for step denote that
learning rate was reduced by a factor of 0.1 every 30 epochs.

A.5 ADDITIONAL EXPERIMENTS FOR BN LAYER PLACEMENT ON CIFAR100

Considering the importance of BN on performance and how other methods struggle to compete with
it, we empirically explore if reducing the number of BN layers in a network would still render similar
benefits at reduced computational and memory costs. We observe that in such a case, the position
of the single BN layer in the network plays a crucial role. Figure 5 shows that RISOTTO enables
training in all cases while other initializations fail if the single BN layer is not placed after the last
convolutional layer to normalize all features. First we need to determine the best position to place
the BN layer in the network. We report experiments in Figure 5 that placing the BN after the last
convolutional layer, before the last linear layer achieves best results. In Figure 7 we show results
for Tiny Imagenet with a single BN after the last residual layer where too RISOTTO outperforms the
standard. BN after the last residual layer controls the norms of the logits and potentially stablizes the
gradients leading to better performance. Conversely, BN right after the first layer does not enable
larger learning rates or better generalization. In Figure 7, we show that even after optimal placement
of the single BN layer, RISOTTO leads to the overall best results on Tiny ImageNet at reduced
computational costs.
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Figure 5: Comparing different positions of placing a single BN layer on a ResNet 18 (C) for CI-
FAR10. In each of the cases, RISOTTO allows stable training and converges to competetive accura-
cies, while standard methods fail in some cases.

A.6 TRAINING VERY DEEP NETWORKS WITH RISOTTO

We train a Residual Network with 300 layers (and no BN) initialized with Risotto and show that
with Risotto, such a deep network is able to train faster compared to Fixup (see Figure 8).

A.7 COMPARISON WITH NORMALIZATION FREE RESNETS

Comparison with Normalization Free ResNets NF ResNets (Brock et al., 2021a) that use scaled
weight standardization and have been shown to compete with BN. We find that RISOTTO is able to
match or outperform NF ResNets with He initialization He et al. (2016) as shown in Fig. 9. While
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Figure 6: Comparing different positions of placing a single BN layer on CIFAR100 for a ResNet50
(C). In each case, RISOTTO allows stable training and converges to competitive test accuracies, while
standard methods fail in some cases. Standard methods are more unstable in this case compared to
CIFAR10 and only He Normal is competetive when BN is placed in the last layer.
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Figure 7: (a) Using only one layer of BN after the last residual block in a ResNet 50 (C) on Tiny
ImageNet. RISOTTO still achieves accuracy competitive to BN in every layer and performs better
than Normal He initialization, while He Uniform initialization fails completely. (b) A Residual
Network (type B) with 300 layers, which is a deeper version of a ResNet101 with Bottleneck blocks
arranged as [3 ∗ 3, 3 ∗ 4, 3 ∗ 23, 3 ∗ 3], is trained with Risotto and Fixup (both with a LR = 0.01) and
cosine annealing for 150 epochs on CIFAR100. The rest of the hyperparameters are as in Table 4.
We observe that Risotto enable faster training and better generalization.
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Figure 8: (a) Similar to Figure 8b, we compare Risotto without BN against Fixup on a ResNet101.
Here we use an LR = 0.01 for both methods. (b) ResNet101 (C) on CIFAR100. Training with
RISOTTO achieves faster a good performance.

NF ResNets usually require careful hyperparameter tuning for gradient clipping, we observe that
they train well with vanilla SGD on smaller datasets.

A.8 RESULTS ON IMAGENET

We also report experiments on the large scale ImageNet dataset. Due to limited computational
resources, we are only able to report a single run on ResNet50 (B), but our results are in line with our
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Figure 9: Comparing NF ResNets to RISOTTO on all three datasets with a ResNet (C) (18 for
CIFAR10 and 50 for the others). While RISOTTO performs similar to He Normal on CIFAR100, it
is able to outperform both He Uniform and He Normal on Tiny ImageNet and CIFAR10.

findings on Tiny ImageNet. When we use our initialization for ImageNet in which we add a small
amount of noise ϵΣ to our RISOTTO parameters, where ϵ = 10−4 and Σ follows the He Normal
distribution (He et al., 2015) for the corresponding Kaiming Normal initialization. Adding this
random noise enables symmetry breaking (Blumenfeld et al., 2020) and supports training according
to our empirical observations. Results are reported in Figure 10.

(a) (b)

Figure 10: (a) We train a ResNet50 (B) with BN and compare Risotto (ours) with the standard Kaim-
ing Normal initialization scheme. We train both the models with LR = 0.01 and cosine annealing.
We observe that with our initialization scheme we are able to train faster on ImageNet and even
achieve better accuracy than Kaiming Normal. (b) Similarly, we compare Risotto (ours) with Fixup
on a ResNet50 (B) without BN. Both are trained with LR = 0.01. Risotto tracks Fixup closely.

Remark: We would like to note that because our results on ImageNet are from a single run, they
are inherently susceptible to variance between runs. Nonetheless, we have comprehensively shown
the effectiveness of RISOTTO on multiple datasets.

A.9 RESULTS ON PREACTIVATION RESNETS

In addition to the ResNet models we have considered so far in the paper, there is another set of mod-
els in Residual Networks that may be used for certain problems. Preactivation ResNets (He et al.,
2015) apply the ReLU nonlinearlity before the weight within a residual block. Our initialization
scheme, Risotto, can be easily transfered to Preactivation ResNets in order to achieve dynamical
isometry. We report experiments on CIFAR10 for Preactivation ResNets in Figure 11.

A.10 ADDITIONAL EXPERIMENTS WITH RESNET (B) FOR RISOTTO

We provide additional experiments showing the effectiveness of Risotto for ResNet(B) architectures
in Figure 12.
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Figure 11: We train a Preactivation ResNet18 (C) with BN initialized with Risotto (ours) and com-
pare with the standard Kaiming Normal and Kaiming Uniform initialization schemes. We train both
the models with LR = 0.1 and cosine annealing. Risotto is able to enable dynamical isometry and
achieve competetive generalization. Similarly we also report results withour BN comparing Risotto
with Fixup, where Risotto is able to outperform Fixup.

(a) (b)

Figure 12: (a) NF-ResNet18 (B) compared with ResNet 18 (B) initialized with Risotto (ours) and
without any Batch Normalization. (b) Using a single layer of BN after the last residual block in a
ResNet18 (B) on CIFAR10.

A.11 TRAINING A 2000 LAYER RESIDUAL NETWORK

To show that Risotto enables training very deep networks due to initial dynamical isometry, we train
a very deep residual network with Risotto. We use a Residual Network with Bottleneck residual
blocks (Type C) arranged in the form [20∗3, 20∗4, 20∗23, 20∗3] with channels [64, 128, 256, 512]
respectively. We use a learning rate of 5e− 4 and add noise during initialization similar to A.9. We
see that initializing with Risotto enable training even a very deep network. While Risotto enables
training such a deep network, we would like to remark that training such a deep network to con-
vergence and a competetive performance would require additional methods like gradient clipping to
ensure gradients do not vanish or explode during training.

Figure 13: Risotto enables training a 2000 layer network on CIFAR100.
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A.12 RISOTTO WITH NOISE: N-RISOTTO

We also report results of RISOTTO initialized with additional noise. The model is initialized with
RISOTTO in which we add a small amount of noise ϵΣ to our RISOTTO parameters, where ϵ =
10−4 and Σ follows the He Normal distribution (He et al., 2015) For the CIFAR10/100 experiments
with N-RISOTTO we use a learning rate of 0.05 with cosine annealing, except for CIFAR100 with
ResNet50 (B) where we are able to use a higher learning rate of 0.1. For Tiny ImageNet we use a
learning rate of 0.01 with cosine annealing.

Dataset ResNet RISOTTO + noise (ours) with BN RISOTTO + noise (ours) without BN

CIFAR10 18 (C) 94.88 91.88
18 (B) 95.06 91.57

CIFAR100 50 (C) 73.22 60.29
50 (B) 77.74 64.46

Tiny ImageNet 50 (C) 58.82 49.66
50 (B) 59.26 47.09

Table 6: N-RISOTTO We initialize networks with RISOTTO and add a small amount of noise to
enable ’breaking the symmetry’ (Blumenfeld et al., 2020).
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