
Under review as a conference paper at ICLR 2023

CCIL: CONTEXT-CONDITIONED IMITATION LEARNING
FOR URBAN DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation learning is a promising solution to the challenging autonomous urban
driving task as experienced human drivers can effortlessly tackle highly complex
driving scenarios. Behavior cloning is the most widely applied imitation learn-
ing approach in autonomous driving due to its exemption from potentially risky
online interactions, but it suffers from the covariate shift issue. To mitigate this
problem, we propose a context-conditioned imitation learning approach that learns
a policy to map the context state into the ego vehicle’s state instead of the typical
formulation from both ego and context state to the ego action. Besides, to make
full use of the spatial and temporal relations in the context to infer the ego future
states, we design a novel policy network based on the Transformer, whose atten-
tion mechanism has demonstrated excellent performance in capturing relations.
Finally, during evaluation, a linear quadratic controller is employed to produce
smooth planning based on the predicted states from the policy network. Experi-
ments on the real-world large-scale Lyft and nuPlan datasets demonstrate that our
method can surpass the state-of-the-art method significantly.

1 INTRODUCTION

Planning a safe, comfortable, and efficient trajectory in a complex urban environment for a self-
driving vehicle (SDV) is an important and challenging task in autonomous driving (Yurtsever et al.,
2020). Unlike highway driving (Henaff et al., 2019), urban driving requires handling more varied
road geometry such as roundabouts and intersections while interacting with traffic lights, pedes-
trians, and other vehicles. Classic manually-designed rule-based approaches (Fan et al., 2018)
have achieved some success in industry but demand tedious human engineering to struggle with
diverse real-world cases. Meanwhile, the rapid development of deep learning techniques motivates
researchers (Bojarski et al., 2016; Pan et al., 2020) to employ a deep neural network to model the
complicated driving policy. To learn such a policy, imitation learning (IL) from human drivers’
demonstrations is a promising solution as experienced drivers can tackle even extremely challeng-
ing situations, and their driving data can be collected at scale.

The simplest IL algorithm is the behavior cloning (BC) method, which has wide applications in
autonomous driving (Pomerleau, 1988; Bojarski et al., 2016; Codevilla et al., 2018b) due to its
exemption from potentially dangerous online interactions. It learns a policy in a supervised fashion
by minimizing the difference between the learner’s action and the expert’s action in the expert state
distribution. However, the BC method suffers from the covariate shift issue (Ross et al., 2011), i.e.
the state induced by the learner’s policy cumulatively deviates from the expert’s distribution.

To overcome the covariate shift obstacle, existing methods such as DAgger (Ross et al., 2011)
and DART (Laskey et al., 2017) query supervisor corrections at the learner’s states or perturbed
expert’s states. Since human supervision is hard to collect, recent works like GAIL (Ho & Ermon,
2016) seek to provide feedback from a neural network-based discriminator to recover from out-of-
distribution states generated by the learner’s policy. However, these data augmentation methods need
either expert supervision or rolling out their policy in the real world or a realistic simulator, which
are impractical in autonomous driving. Instead, some researchers attempt to constrain the learned
policy formulation to ensure its robustness to the policy error by incorporating control theoretic prior
knowledge. For example, Palan et al. (2020); Havens & Hu (2021) pose Kalman or linear matrix
inequality constraints on the learned linear policy to guarantee its closed-loop stability in a linear
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time-invariant (LTI) system. Yin et al. (2021) relaxes the linear policy formulation into a simple
feed-forward neural network representation and East (2022) extends the method in Havens & Hu
(2021) to polynomial policy and dynamical system. However, the urban driving task is too complex
to be handled by these naive policy formulations.

To learn a stable and general urban driving policy by imitating only the offline human demonstra-
tions, we propose a context-conditioned imitation learning (CCIL) method, where a policy network
is learned to predict the SDV’s future states using only its observed context, different from classic
policy taking both ego state and context as input to generate its action (Codevilla et al., 2019; Bansal
et al., 2019). The motivation is that the ego state can be easily influenced by the policy’s error, thus
leading to the catastrophic distribution shift. On the contrary, the static context elements such as
lanes or crosswalks will not be influenced by the SDV and the dynamic context element like human
drivers will try to recover from its perturbation. Thus, based on the stability assumption of the traf-
fic system, we can prove theoretically that our policy formulation can achieve closed-loop stability,
thus addressing the distribution shift issue. In practice, as it becomes challenging to accurately plan
a trajectory for a SDV without its historical trajectory, we construct our policy network based on
Transformer (Vaswani et al., 2017) to exploit spatial and temporal relation information in highly
interactive and constrained urban driving scenarios. Furthermore, during evaluation, we employ a
linear-quadratic regulator (LQR) (Åström & Murray, 2021) to yield a smooth action based on the
SDV’s current and predicted states.

The main contributions of this paper can be summarized as follows:

1. To address the covariate shift issue in offline imitation learning, we propose a novel context-
conditioned imitation learning method, where a policy is learned to output the ego state using only
its context as input. A robustness assurance is provided for our policy formulation based on an
assumption of the context’s stability.

2. To apply our method to urban driving, we remove the explicit ego state information input and
propose a new ego-perturbed goal-oriented coordinate system to reduce the implicit ego information
in the coordinate system. Besides, we design a Transformer-based planning network to make full
use of the spatial and temporal information in the context.

3. To verify the effectiveness of our approach, we benchmark the real-world large-scale urban
driving Lyft (Houston et al., 2020) and nuPlan (Caesar et al., 2021) datasets with state-of-the-art
performance. The video and code can be found at https://sites.google.com/view/
contextconditionedil.

2 RELATED WORK

2.1 IMITATION LEARNING FOR AUTONOMOUS DRIVING

The objective of applying IL in autonomous driving is to learn driving behavior mimicking hu-
man drivers. The most straightforward solution is BC which minimizes the difference between the
learner’s and the expert’s action on the expert state without demanding extra manually labeled data
and online interaction. Early BC applications in autonomous driving such as ALVINN (Pomerleau,
1988) and PilotNet (Bojarski et al., 2016) learn an end-to-end policy that directly maps sensor inputs
to vehicle control commands using a large amount of human driving experience. Recently, Chauf-
feurNet (Bansal et al., 2019) provides intermediate planning using perception results to improve
generalization and transparency. However, the BC approach typically leads to the covariate shift
between the training distribution and deploying distribution, as minor errors in the policy can lead
to deviating from the expert state and then larger errors.

IL methods to address the distribution shift challenge can be categorized into online methods and
offline model-free and model-based methods. Online methods try to directly match the expert state-
action distribution instead of matching the expert state conditioned action distribution like BC. For
instance, the method in Zhang & Cho (2017) based on DAgger (Ross et al., 2011) queries supervisor
actions at the state the learner visits and then adds the new data into the dataset, thus adjusting the
expert state distribution to match the learner’s state distribution. To get rid of the requirement of in-
teractive expert, several methods like Wang et al. (2021) based on adversarial imitation learning (Ho
& Ermon, 2016) utilize a discriminator to measure the difference between learner and expert’s state-
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action distribution and then compute the reward in reinforcement learning. By raising the policy’s
accumulated reward, the policy’s state distribution will get close to the expert distribution. How-
ever, the reinforcement loop needs online interaction with the environment to generate the policy’s
state distribution, which is hard to deploy in safe-critical tasks like autonomous driving. On the
contrary, our method matches ego state distribution conditioned on context, which can be learned by
supervised learning without interaction with the environment or access to expert supervision.

The most popular model-free IL methods are based on DART (Laskey et al., 2017) which avoids
the compounding error by providing synthetic examples of how to recover from the deviated state.
In Codevilla et al. (2018b), they inject temporally correlated noise into the trajectory to simulate
gradual drift away from the desired trajectory. Alternatively, ChauffeurNet (Bansal et al., 2019) adds
a uniform perturbation to the current SDV state and fits a new smooth trajectory that brings the SDV
back to the original target location. However, these rule-based trajectory augmentation methods
are hard to cover the real motion distribution induced by the learner’s policy and the policy is very
likely to learn a propensity for perturbed driving. Our method also applies perturbation to the SDV’s
current position but its role is to blur the ego position information instead of data augmentation.
Therefore, our method does not have the trajectory smoothing process during training. Our method
is also model-free but we seek to endow the policy with robustness properties by constraining its
formulation without resorting to recovery examples.

Model-based IL methods address the distribution shift by minimizing the difference between a
trajectory rolling out in a differentiable learned or data-driven model with the expert trajectory.
PPUU (Amos et al., 2018) first learn a dynamics model based on variational autoencoder (Kingma
& Welling, 2013) from data and then train the policy network to output actions that lead to a sim-
ilar trajectory as the expert trajectory. Since the dynamics model is differentiable, the actions can
receive gradients from multiple time steps ahead which can penalize actions that will lead to large
diverges in the future even if the instantaneous divergence is small. Instead of learning a model,
UrbanDriver (Scheel et al., 2022) constructs a differentiable data-driven model using recorded per-
ception data and High Definition (HD) maps, where new observations are calculated by a coordinate
transformation based on the pose of controlled SDV and collected data. However, the performance
of the model-based approach is limited by the model’s accuracy.

2.2 IMITATION LEARNING WITH ROBUSTNESS

IL is different from supervised learning by deploying the policy under dynamics, whose robustness
is considered to be the learned policy’s ability to recover from policy errors. Some researchers have
attempted to learn a policy with a stability guarantee using control-theoretic methods by constraining
policy and system dynamics. Taylor Series IL (Pfrommer et al., 2022) proves that the trajectory
induced by the learner and expert will be close if their derivative difference at expert states is small
but computing the high-order derivatives of the expert policy are difficult without sufficient data.
Others learn a robust linear (Palan et al., 2020; Havens & Hu, 2021) or simple feed-forward neural
network (Yin et al., 2021) control policy for a linear dynamical system by posing constraints on the
policy. Even though the authors in East (2022) extend the robustness guarantee to the polynomial
system and policy, obtaining guarantees on close-loop stability for the nonlinear autonomous driving
system remains a challenge. Recently, the CMILe method (Tu et al., 2022) is capable of training
nonlinear policies with the same safety guarantees as the expert but requires online expert access as
DAgger. However, our method only constrains our policy in the formulation of receiving context
state and producing ego state, whose stability is guaranteed under a mild input-to-state stability
assumption on the environment dynamics.

3 THEORETICAL ANALYSIS

We first introduce the notations and definitions used in this paper. For any vector x ∈ Rn, ∥x∥p
stands for its Lp norm and ∥x∥ for L2 norm. For any square matrix A ∈ Rn×n, ∥A∥ denotes
its induced L2 norm and ρ(A) is its spectral radius (the maximum of the absolute values of its
eigenvalues). For every induced matrix norm, we have ρ(A) ⩽ ∥A∥.
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Definition 1 (Comparison Functions) A function γ : R⩾0 → R⩾0 is class K if it is continuous,
strictly increasing and satisfies γ(0) = 0. A function β(x, t) : R⩾0 × R⩾0 → R⩾0 is class KL if it
is continuous, β(·, t) is class K for each t and β(x, ·) is decreasing for each x.

Definition 2 (input-to-state stability (ISS) (Sontag, 2008)) A discrete-time system xt+1 =
f(xt,ut),x0 = ξ is input-to-state stable if there exists a class KL function β and a class K function
γ such that, for each bounded input u and initial condition ξ and t ∈ Z+, it holds that:

∥xt(ξ,u)∥ ⩽ β(∥ξ∥, t) + γ(∥u∥∞), (1)

where ∥u∥∞ = supt∈Z+
(ut) is the sup norm of the input. If a system satisfies the ISS property, the

distance between any two trajectories must eventually be bounded by its input signal and indepen-
dent of initial conditions.

We consider performing imitation learning in a nonlinear discrete-time system:

xt+1 = f(xt,ut), (2)

where xt ∈ Rn is the system state at time t ∈ N and ut ∈ Ru is the control input. For an
autonomous driving system, its state can be separated into two parts xt = (st, ct): an SDV state
st ∈ Rm controlled by the control input u and context state ct ∈ Rn−m which is influenced by the
SDV state. By viewing the policy error as a disturbance to the system, we apply linearization to the
nonlinear system at the expert’s state x∗ to obtain the following linear subsystem:

ct+1 = Act +Bst, (3)

with solution:

ct+1 = At+1c0 +

t∑
j=0

At−jBsj . (4)

Here with abuse of notation, we use the same symbol ct, st for the context deviation ct − c∗t and
SDV state deviation st − s∗t .

Because the real-world traffic system without the SDV state deviation ct+1 = Act is stable, we
have ρ(A) < 1. For such a Schur matrix, there are constants c > 0 and 0 ⩽ σ < 1 such that
∥At∥ ⩽ cσt (Jiang & Wang, 2001). Besides, the context in traffic systems generally includes static
map elements that are not influenced by SDV vehicles and intelligent human drivers who can quickly
recover from the other vehicle’s perturbation. It is natural to assume the subsystem in equation 3
to be input-to-state stable (ISS) with β(r, t) < σt−1r and γ(r) ⩽ ϵr, where ϵ ⩾ 0. Combining
equation 1 and equation 4, we have:

β(r, t) = cσtr < σt−1r, γ(r) =
∞∑
j=0

cσt∥B∥r =
c∥B∥
1− σ

r ⩽ ϵr, (5)

which implies that c < 1
σ , and ∥B∥ ⩽ ϵ(1−σ)

c .

Next, we study how the policy in our formulation can be stable under this ISS system. We learn
a context state feedback control st = ut = fθ(ct) which directly maps the context state to the
SDV state. For simplicity, we consider a linear policy ut = Kct. Then, the linear subsystem
in equation 3 can be simplified as ct+1 = (A+BK)ct whose stable condition is ρ(A+BK) < 1.
Thus, we have if ∥K∥ < c(1−cσ)

ϵ(1−σ) , then

ρ(A+BK) ⩽ ∥A+BK∥ ⩽ ∥A∥+ ∥B∥∥K∥ ⩽ cσ +
ϵ(1− σ)

c
∥K∥ < 1. (6)

This result shows that the stability of closed-loop autonomous driving can be guaranteed as long as
the context system is stable enough and the norm of our policy is sufficiently small. In practice, we
will add a L2 norm regularization into the training loss of our neural network policy to internalize
this stability prior.

Finally, we show how the naive BC policy formulation which takes both the SDV state and context
state and generates the displacement from the current state can fail with even a fixed context ct = 0.
We consider a linear policy: ut = Kbcst and update the state st+1 = st + ut. Then, the dynamics
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is st+1 = (I +Kbc)st. Because ∥I∥ = 1, we cannot obtain the stable condition ρ(I +Kbc) < 1
by limiting the ∥Kbc∥ as our policy formulation. Thus, the system’s stability cannot be guaranteed.

This simple analysis supports our choice to overlook the SDV history and current state in the learn-
ing to avoid causal confounding and distribution shift. Its advantage will also be validated in our
experiments showing that this can significantly decrease the off-road rate.

4 METHOD

As shown in Figure 1, we apply our context-conditioned imitation learning method to learn a policy
for urban driving. The policy network consists of a spatial encoder and a temporal encoder. The
policy network is trained to minimize the L1 distance between its predictions and the ground truth
trajectories. During the evaluation, we employ a LQR controller to generate smooth planning based
on the predicted trajectory from the policy network.

Figure 1: Overview of our approach

4.1 INPUT REPRESENTATION

Following Bansal et al. (2019), the intermediate representations such as oriented bounding boxes
from a perception system and road networks from HD maps rather than raw sensor data (such as
camera images or lidar points clouds) are harnessed to improve generalization and interpretability.
In detail, there are two types of inputs to the policy network: map context and traffic participants.
For the map context, we consider two types of map elements, which are crosswalks and lanes. Each
map element is presented in a polyline which is a sequence of vectors with different associated
features as Gao et al. (2020). The features of crosswalk vectors are their initial and terminal point’s
position and sequence orders, and lane vectors have additional features such as their traffic light state
and lane width. For the traffic participants, we divide them into ego vehicle and other agents. For
the ego vehicle, as discussed above, we should overlook the features which can be influenced by the
learned policy to overcome the distribution shift obstacle. Therefore, we only input its mission goal
position while removing its history. For each other agent, its features are composed of its type (e.g.
car, bicycle, and cyclist), sizes, centroids, and orientations of bounding boxes at several past time
steps.

Even though there is no explicit SDV state in the network input, the observations are typically
translated to the SDV coordinate system using its rear axle’s midpoint as origin and orientation
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as x-axis direction in previous works (Bojarski et al., 2016; Scheel et al., 2022). This implicit
incorporation of the SDV state can still cause a distribution shift of inputs. To reduce the implicit
influence and ensure local observability, we adopt an ego-perturbed goal-oriented coordinate system
whose origin is the SDV position adding a zero mean Gaussian perturbation, and x-axis direction
is toward its goal position. Note that the perturbation is only required during training and the goal
position can be replaced with any point that is not influenced by the driving policy.

4.2 POLICY NETWORK

The policy network is designed to directly plan a trajectory for the SDV using only its context.
Since it is more challenging to plan without the historical trajectory, we need to make full use of the
spatial-temporal interactions between the SDV and context to infer its future states. Thus, we first
embed the observation at each time step into an observation feature by a spatial encoder, and then the
observation features in current and previous time steps are embedded to generate the predictions by
a temporal encoder. We construct our policy network based on the Transformer whose multi-head
attention mechanism has demonstrated excellent performance in capturing relations.

Spatial Encoder: To capture the spatial relations between vectors of the same polyline such as a
lane or crosswalk, we employ a local Transformer encoder as the vector-vector interaction encoder.
Subsequently, we aggregate the features of vectors belonging to the same polyline by max-pooling
to obtain polyline-level features. To obtain the agent and goal features, two multi-layer percep-
tions (MLP) are applied. To model the high-order interactions between the goal, agents, and map
elements, we utilize a global Transformer encoder whose goal embedding is output as observation
features.

Temporal Encoder: To take the temporal information and interaction into account, a Transformer
encoder with a causal self-attention mask is employed to embed H historical observation features
with a step interval I . Then, each hidden state of the Transformer is decoded by a full-connected
linear layer to generate a prediction of the SDV future state at future T time steps. For simplicity,
we represent the SDV state with its rear axle’s midpoint coordinate and orientation.

4.3 TRAINING PROCESS

We leverage supervised learning like BC to train the policy network by minimizing the L1 distance
between the predictions and ground truth trajectories, as L1 is more correlated to driving perfor-
mance compared with the mean square error (Codevilla et al., 2018a). To help the network converge
and generalize, we additionally introduce an auxiliary task of minimizing the L1 error at all previ-
ous time steps and apply a squared L2 norm regularization to the network parameters θ inspired by
equation 6. The final loss is:

L =

T∑
t=1

(
∥st − ŝt0∥1 + µ

H−1∑
h=1

∥st−hI − ŝthI∥1

)
+

λ

2
∥θ∥2, (7)

where st is the ground-truth SDV state at time step t and ŝthI is the state prediction at the historical
time step hI for its future t time step. µ is an auxiliary hyperparameter and λ is a regularization
factor.

4.4 EVALUATION PROCESS

Even though the prediction without SDV state input is more stable, it has difficulty ensuring the
smoothness of the predicted trajectory from the current state. Prior works such as Vitelli et al.
(2022); Amos et al. (2018) usually add a differentiable kinematic layer into the policy network to
generate physically feasible planning. However, the differentiable kinematic layer will bring in
the current SDV state which is undesirable for learning a policy. Therefore, we choose to obtain a
smooth trajectory during evaluation by a linear-quadratic regulator (LQR) (Åström & Murray, 2021)
which can efficiently minimize the total commutative quadratic cost of a linear dynamic system. We
consider a finite-horizon, discrete-time linear system whose dynamics is described by:[

pt+1

ṗt+1

p̈t+1

]
=

 I D D2

0 I D
0 0 I

[ pt

ṗt

p̈t

]
+

 D2

D
I

ut, (8)
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where D is a diagonal matrix with the time interval of each step as diagonal entries, ṗ =
(vt, wt), p̈t = (at, αt), ut = (up

t , u
α
t ) denote the positional and angular velocity, acceleration,

and control respectively, subject to a quadratic cost function:

J =

T∑
t=1

(
∥pt − ŝ0,t∥22 + www

2
t + wa∥at∥22 + wαα

2
t + wu||up

t ||22
)
, (9)

where pt is regarded as the planning trajectory and the predicted states ŝ0,t at the current step from
the policy network are regarded as target poses; ww, wa, wα and wu are the weights to balance the
positional accuracy and the smoothness of the planned trajectory. At the end of the optimization, the
LQR will output a smooth trajectory for the SDV to follow.

5 EXPERIMENTS

5.1 DATASET

To benchmark our method’s performance, we conduct experiments on two real-world large-scale
datasets: Lyft Level 5 Prediction Dataset (Houston et al., 2020): contains about 1000h urban
driving demonstrations in Palo Alto, which have been separated into independent scenes of nearly
25s at 10Hz. We train our network on the provided 100h (16265 scenes) subset as Scheel et al.
(2022) and test with all 16220 validation scenes. nuPlan Dataset (Caesar et al., 2021) provides
an urban driving dataset with 1312h of human driving data from 4 cities (Boston, Pittsburgh, Las
Vegas, and Singapore). Due to the huge difference in traffic rules and patterns in different cities,
we extract driving data in Las Vegas as Phan-Minh et al. (2022). Then, we separate the data into
independent scenes of 25s at 10Hz like Lyft and filter out the scene without a mission goal. After
filtering, we obtain 63181 training, 4774 validation, and 6386 testing scenes. More details about the
data prepossessing and corresponding model details are presented in the appendix.

5.2 CLOSED-LOOP EVALUATION

To evaluate the closed-loop performance of our method, we use a log-replay simulator as prior
work (Scheel et al., 2022; Huang et al., 2022). At each step in the log-replay simulator, the SDV
vehicle updates its state according to the planned trajectory, while the other agents are assumed to
follow their recorded trajectories in the dataset. For both datasets, we evaluate our method for 25s
at 10Hz with the following metrics:

Collision Rate: If the SDV collides with the other agents at any time step in a scene, the scene is
deemed as a collision scene. The collision rate is the ratio of the collision scenes in all scenes.

Off-road Rate: In nuPlan, we use the official drivable area compliance metric, i.e. the distance of a
corner of SDV’s bounding box from the drivable area is more than 0.3m. But in Lyft, without access
to the drivable area, if the SDV deviates laterally from the human driver’s ground truth more than
2m like in a scene, the scene will be deemed off-road as Scheel et al. (2022).

Discomfort: we count the rate of the absolute value of the acceleration more than 3 m/s2 over time
steps to quantify the comfort and feasibility of the planned trajectory.

L2: we use the average L2 position errors between the roll-out trajectory and the human driver’s
ground truth to quantify the human driving similarity.

5.3 PERFORMANCE EVALUATION

On the Lyft dataset, we compare our methods against three state-of-the-art methods to demonstrate
the advantage of the proposed framework:

Raster-perturb: an official BC planning baseline (Houston et al., 2020), which based on ResNet50
receives a Bird-Eye-View (BEV) representation of the scene surrounding the SDV and produces
a trajectory of position and yaw displacements. To augment data, a perturbation is applied to the
current SDV position, and then a new kinematically feasible trajectory to reach the original endpoint
is generated as ChauffeurNet.
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Table 1: Comparison with baselines of 25s closed-loop performance on Lyft and nuPlan dataset.
There are no variances in Raster-perturb, BC-perturb, and UrbanDriver because we evaluate the
deterministic pre-trained models in a deterministic simulator.

Model Num params Collision(%) Off-road(%) Discomfort(%) L2(m)

Raster-perturb 23.6M 15.48 5.06 4.00 5.90
BC-perturb 1.8M 9.38 6.77 39.10 4.77
UrbanDriver 1.8M 13.28 7.27 39.41 5.74
TD3+BC 2.8M 22.53±1.76 15.21±0.97 4.86±0.47 6.34±0.41
Vector-Chauffeur 1.5M 10.12±0.23 3.40±0.32 5.42±0.44 5.03±0.43
CCIL (ours) 1.5M 3.32±0.15 0.62±0.13 4.33±0.22 1.23 ± 0.08

Raster 23.6M 62.45±3.45 32.15±1.95 21.50±3.19 22.71±2.20
LaneGCN-perturb 2.0M 60.63±2.34 34.25±1.65 17.26±1.80 21.21±1.81
TD3+BC 2.8M 39.12±2.21 18.59±1.04 10.56±0.95 15.04±1.62
Vector-Chauffeur 1.5M 24.12±1.37 10.11±0.62 12.53±1.17 6.12±0.87
CCIL (ours) 1.5M 6.91±0.11 3.08±0.11 1.16±0.05 3.68±0.04

BC-perturb: a BC model provided by Scheel et al. (2022) with the same trajectory perturbation and
output as Raster-perturb but its inputs are presented in vector formulation, which are processed by
a VectorNet (Gao et al., 2020) and Transformer.

UrbanDriver: an offline policy gradient method proposed by Scheel et al. (2022) to imitate the ex-
pert’s policy exploiting a differentiable data-driven simulator with the same data and model structure
as BC-perturb.

On the nuPlan dataset, we compare our methods against two official baselines learned by BC due to
a lack of other prior works:

Raster: a raster-based model that uses the ResNet-50 backbone to encode SDV, agent, and map
information as raster layers to plan the SDV’s trajectory.

LaneGCN-perturb: a vector-based model that uses a series of MLPs to encode SDV and agent
signals and one LaneGCN (Liang et al., 2020) to encode vector-map elements and a fusion network
to capture lane and agent intra/inter-interactions through attention layers. To augment data, the SDV
trajectories are perturbed and other agents are randomly dropped out.

In addition to these models provided by prior works, we also learn our model by a representative
method in behavior cloning and offline reinforcement learning on both datasets:

TD3+BC (Fujimoto & Gu, 2021): it adds behavior cloning term to the policy updating of Twin
Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) for implicit policy con-
straint. We construct the offline RL dataset by applying the trajectory perturbation augmentation
and consider the collision and comfort for the reward design.

Vector-Chauffeur: our model learned using the same data augmentation method as ChauffeurNet
including trajectory perturbation and ego past motion dropout. And we represent the data in the
same coordinate system which uses the ego location as the origin and its heading perturbed by a
uniform noise as the orientation.

The performance is shown in Table 1. It demonstrates that our method can outperform previous
work significantly on both datasets. The collision rate on the nuPlan dataset is higher than the Lyft
dataset because nuPlan’s scenarios are more complex with more road agents.

5.4 ABLATION STUDY

The following ablation experiments on the Lyft dataset are used to expose the significance of differ-
ent components of our model, whose results are shown in Table 2:
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Table 2: Ablation experiments on 25s closed-loop performance on Lyft dataset

Model Perturb Ego Collision(%) Off-road(%) Discomfort(%) L2(m)

w explicit ego ✓ ✓ 20.29±0.88 19.18±2.98 0.57±0.15 5.50±0.55
w ego dropout ✓ ✓ 14.05±1.53 5.02±0.88 0.63±0.20 4.15±0.47

w ego coordinate ✓ 11.31±1.44 9.79±1.34 0.95±0.05 3.87±0.11
std=0 7.08±0.35 2.86±0.25 0.89±0.10 3.46±0.34
std=1 ✓ 3.39±0.17 1.00±0.16 1.99±0.15 2.10±0.05
std=2 (ours) ✓ 3.32±0.15 0.62±0.13 4.33±0.22 1.23±0.08
std=3 ✓ 3.42±0.12 0.49±0.10 7.35±0.26 0.91±0.04

w/o causal Trans ✓ 4.28±0.25 1.43±0.25 6.53±0.26 1.63±0.10
w/o LQR ✓ 3.81±0.14 2.07±0.12 89.05±0.35 1.02±0.02

w/o regularization ✓ 4.07±0.16 1.05±0.14 4.96±0.30 1.23±0.09
w/o auxiliary ✓ 4.56±0.29 1.02±0.06 3.23±0.31 1.92±0.07

Network input: We first study the importance of removing explicit ego information from the net-
work input. We consider two ways to bring the explicit ego input back. The first one is to directly
input ego past positions and then process it similarly to the goal position. The other one is to addi-
tionally introduce a dropout of 50% at the ego input during training as Bansal et al. (2019). We can
observe that in both explicit ego information input ways, there is a steep drop in the collision and
off-road rate and L2 distance due to the covariate shift issue.

Coordinate system: To analyze the impact of the implicit ego information in the coordinate system,
we first consider replacing our ego-perturbed goal-oriented coordinate system with the ego-centric
coordinate system in ChauffeurNet using orientation uniformly around the heading. We observe
that the ChauffeurNet coordinate system leads to inferior closed-loop performance. In our coordi-
nate system, we add a Gaussian noise with zero mean to the ego current position to obtain the origin.
Thus, we can increase the Gaussian noise’s standard deviation to diminish the implicit ego informa-
tion. We can observe that with the increasing of the standard deviation, the discomfort increases but
the off-road rate and closed-loop L2 decreases, which implies that the implicit ego information may
improve the instantaneous prediction accuracy but deteriorate the closed-loop performance.

Architecture: To demonstrate the importance of the temporal information and the effectiveness of
the causal Transformer in capturing the temporal interactions, we replace it with a MLP. We find
that the causal Transformer can achieve better performance. Besides, to show the importance of the
LQR module in enhancing comfort, we ablate it. Removing the LQR mechanism leads to a huge
drop in comfort.

Loss: To demonstrate the effectiveness of the additional term, we remove the auxiliary and regular-
ization loss term separately. The result in Table 2 shows that they are both beneficial to improving
performance.

6 CONCLUSION

We have proposed a new offline imitation learning method to mitigate the distribution shift of behav-
ior cloning, where we learn a neural network to predict the SDV’s future positions and orientations
without SDV information by making full use of its constraints from and interaction with the context.
Firstly, we analyze theoretically the stability of our policy formulation. In addition to removing
the explicit SDV information input to the network, we present a new SDV-perturbed goal-oriented
coordinate system for representing represent the observation input to remove the implicit SDV in-
formation and ensure local observability. We design a Transformer-based network to make full use
of the history information to handle the more challenging learning task. Finally, we demonstrate
the effectiveness of our approach in two real-world large-scale datasets with state-of-the-art perfor-
mance.
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Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the limitations of
behavior cloning for autonomous driving. In CVPR, pp. 9329–9338, 2019.

Sebastian East. Imitation learning of stabilizing policies for nonlinear systems. European Journal
of Control, pp. 100678, 2022.

Haoyang Fan, Fan Zhu, Changchun Liu, Liangliang Zhang, Li Zhuang, Dong Li, Weicheng Zhu,
Jiangtao Hu, Hongye Li, and Qi Kong. Baidu apollo em motion planner. arXiv preprint
arXiv:1807.08048, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1587–1596. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/fujimoto18a.html.

Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia
Schmid. Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In
CVPR, pp. 11525–11533, 2020.

Aaron Havens and Bin Hu. On imitation learning of linear control policies: Enforcing stability and
robustness constraints via lmi conditions. In ACC, pp. 882–887, 2021.

Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy learning with uncer-
tainty regularization for driving in dense traffic. In ICLR, 2019.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. NeurIPS, 29, 2016.

John Houston, Guido Zuidhof, Luca Bergamini, Yawei Ye, Long Chen, Ashesh Jain, Sammy Omari,
Vladimir Iglovikov, and Peter Ondruska. One thousand and one hours: Self-driving motion pre-
diction dataset. In CoRL, 2020.

Zhiyu Huang, Haochen Liu, Jingda Wu, and Chen Lv. Differentiable integrated motion pre-
diction and planning with learnable cost function for autonomous driving. arXiv preprint
arXiv:2207.10422, 2022.

10

https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html


Under review as a conference paper at ICLR 2023

Zhong-Ping Jiang and Yuan Wang. Input-to-state stability for discrete-time nonlinear systems. Au-
tomatica, 37(6):857–869, 2001.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection
for robust imitation learning. In CoRL, pp. 143–156. PMLR, 2017.

Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun. Learning
lane graph representations for motion forecasting. In ECCV, pp. 541–556, 2020.

Malayandi Palan, Shane Barratt, Alex McCauley, Dorsa Sadigh, Vikas Sindhwani, and Stephen
Boyd. Fitting a linear control policy to demonstrations with a kalman constraint. In Learning for
Dynamics and Control, pp. 374–383. PMLR, 2020.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A Theodorou,
and Byron Boots. Imitation learning for agile autonomous driving. The International Journal of
Robotics Research, 39(2-3):286–302, 2020.

Daniel Pfrommer, Thomas TCK Zhang, Stephen Tu, and Nikolai Matni. Tasil: Taylor series imita-
tion learning. arXiv preprint arXiv:2205.14812, 2022.

Tung Phan-Minh, Forbes Howington, Ting-Sheng Chu, Sang Uk Lee, Momchil S Tomov, Nanxiang
Li, Caglayan Dicle, Samuel Findler, Francisco Suarez-Ruiz, Robert Beaudoin, et al. Driving in
real life with inverse reinforcement learning. arXiv preprint arXiv:2206.03004, 2022.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. NeurIPS, 1, 1988.
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A MAP PREPOSSESSING

In Lyft, there are only two types of map elements: lane and crosswalk. In nuPlan, the map elements
consist of a lane, lane connector, intersection, stop line, crosswalk, walkway, and car park. We
categorize them into polyline elements including lanes and lane connectors, and polygon elements
including stop lines, crosswalks, intersections, walkways, and car parks.

For each polyline element, it is approximated by a sequence of vectors with an interval of 3 meters.
For both datasets, we prepossess the polyline map into a graph to take advantage of the topological
information. We connect each vector with its nearest left, right, and next vector if exists. The
nearest left or right vector means the nearest vector of its reachable left or right polyline. And
the distance between vectors is represented by the Euclidean distance between their starting points.
After building the vector graph, we can compute the travel distance between any two vectors using
Dijkstra’s algorithm. For both datasets, the polyline vector has shared features including coordinates
of starting and ending point, distance to left and right vectors, distance to the mission goal, traffic
light states (red or green), and the sequence order. However, lane vectors in Lyft have a lane width
feature because the vectors approximate computed middle lines of lanes, while the lane or lane
connector vectors in nuPlan have a lane left and width feature because the vectors approximate an
annotated baseline. In addition, the polyline vectors in nuPlan have an additional speed limit and
type features.

For each polygon element, we approximate it also with a sequence of vectors. In the Lyft dataset, the
crosswalk vectors are directly constructed by connecting the original sequential annotation coordi-
nates. But we approximate each polygon with fixed 20 vectors because the annotation point number
is too large for elements like intersection. For both datasets, each polygon vector has features in-
cluding coordinates of starting and ending points, and its order sequence, while vectors in nuPlan
have additional type features.

The inputs to our neural network are composed of two types of map elements: polyline and polygon,
and two types of agent elements: other agents and ego goal. The missing inputs are padded with
zeros and masked out when calculating the attention. The origin is the perturbed SDV position.

Polyline: 30 topologically nearest polylines with vectors whose starting points are within 35m from
the origin. The topological distance between the origin and a polyline is the minimum of topological
distances between the origin and its vectors.

Polygons: 20 polygons whose boundaries are within 35m from the origin. If there are more than
20 polygons, they are selected according to the importance of their types: stop line, crosswalk,
intersection, walkway, and car park.

Agents: the nearest 30 agents whose oriented boxes’ centroids are within 50m from the origin. The
agent features in Lyft include its centroid coordinates, yaws, shapes, types, and relative times in the
past 2 and current steps. The nuPlan agents additionally have velocity features as they are provided.

Goal: the x, y coordinates of the SDV’s mission goal of a scene. In Lyft, the mission goal is not
provided, so we regard the ending point of the lane where the SDV locates at the last time step of
the scene as the mission goal. In nuPlan, we directly take the provided mission goal at the last time
step of the scene as the scene mission goal.

B MODEL

For both datasets. the same model architecture is used, whose hyper-parameters are listed in Table 3.

C TRAINING

Our model is trained using the Adam optimizer with a learning rate of 0.0005, 10000 steps linear
warm-up, β = (0.9, 0.999), and batch size 128. We stop training after 30 epochs and select the
model with smallest validation collision rate for evaluation. We train all models except the pre-
trained model in Lyft dataset independently for 3 times and then report the mean and std of their
performances.
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Table 3: Hyper-parameters for both datasets

Hyper-parameter Value

Future steps T 15
All Transformers dropout 0.1
All Transformers head number 8
All Transformers hidden size 128
Local Transformer layer number 3
Global Transformer layer number 6
Causal Transformer layer number 3
Causal Transformer length H 15
Causal Transformer interval I 2
Auxiliary weight µ 0.3
Regularization weight λ 0.0001
LQR angular velocity weight ww 0.1
LQR acceleration weight wa 0.1
LQR angular acceleration weight wα 0.1
LQR jerk weight wu 0.1

D EVALUATION

For Lyft baselines, we directly evaluate the pretrained model provided by the Lyft
dataset and UrbanDriver. The Raster-perturb are model trained on train.zarr for 2
epochs at https://github.com/woven-planet/l5kit/blob/master/examples/
planning/train.ipynb. The BC-perturb and UrbanDriver are from Open Loop and Urban
Driver in https://github.com/woven-planet/l5kit/blob/master/examples/
urban_driver/train.ipynb.

We evaluate all Lyft models from the second time step to compute current velocity using position
information as input to the LQR with zero assumed initial acceleration.

For nuPlan baselines, we train the official models by ourselves using provided hyper-parameters and
evaluate from the first time step because the velocity and acceleration information is provided.

E RUNTIME

We conduct runtime experiments using a single Nvidia GeForce GTX 1080 GPU and an Intel i7-
8700@3.2GHz CPU on Lyft dataset. We measure the runtime of each method its mean and std over
all time-steps in an evaluation. The runtime results shown in Table 4 consider all components in each
model including data-prepossessing, model inference and control. We observe that our architecture
can achieve higher data processing efficiency and medium model inference efficiency compared with
other methods. Our method takes longer total execution time due to the extra LQR control module
which does not exist in prior works because they only focus on optimizing positional accuracy but
not comfort. However, our approach can still be executed in real-time on this hardware.

Table 4: Averaged runtime per frame of individual components for each method

Model Data process (ms) Model inference (ms) Control (ms) Total (ms)

Raster-perturb 6.03±0.61 4.62±0.16 - 10.65±0.64
BC-perturb 6.69±0.72 6.78±5.26 - 13.47±5.65
UrbanDriver 6.33±1.41 12.78±8.80 - 19.11±9.23
CCIL 4.92±0.63 6.74±0.34 11.09±0.27 22.75±1.07
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F TOY EXPERIMENT

We design a toy experiment to vividly show our method’s ability to reduce compounding error. In
the experiment, we use synthetic data from a very ideal and simplified scenario where a SDV moves
under ring road network with fixed 1 m/s at 1Hz, as shown in Figure 2. During training, the radius
of the ring is a variable with a range from 10m to 100m and the circular lane are represented as a
series of fixed lane points with same interval of nearly 1m.

Figure 2: Ring road

We compare our CCIL methods with several baseline methods introduced above including BC, BC-
perturb, UrbanDriver. The inputs of these baseline methods are composed of two parts: SDV state
(its position and orientation in the past 10 time step) and context (nearest 10 lane points) in the ego
coordinate system, while our methods only takes the context in the past 10 time step as inputs in
the ego-perturbed center-oriented coordinate system. The ego-perturbed origin-oriented coordinate
system means using the SDV position added a zero-mean one-std Gaussian perturbation as the origin
and orientation to the center of the circular road as the x-axis direction. The trajectory perturbation
is applied to augment the data in the BC-perturb method. For outputs, the BC and CCIL method
generate the relative position and yaw at the next time step and the BC-perturb method produces the
next 10 time steps. In the UrbanDriver method, we unroll the policy for 32 time steps.

In each methods, we employ a two-layer MLP with hidden size of 128 as a policy network. We
train the neural networks using Adam optimizer of with a learning rate of 0.0001 with random
initial weights for 100 times. We stop training after 10000 steps and then unroll the policy from
one random starting point on the circle of radius 50m for 100 time steps. The 100 closed-loop
trajectories for each method are depicted in Figure 3. We can observe that some trajectories in the
baseline methods deviate from the road due to the covariate shift issue but the trajectories in our
method keep following the route.
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Figure 3: Closed-loop trajectories of each model trained on the toy dataset.
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