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ABSTRACT

A major challenge in modern machine learning is theoretically understanding the
generalization properties of overparameterized models. Many existing tools rely
on uniform convergence (UC), a property that, when it holds, guarantees that the
test loss will be close to the training loss, uniformly over a class of candidate
models. Nagarajan & Kolter (2019b) show that in certain simple linear and neural-
network settings, any uniform convergence bound will be vacuous, leaving open
the question of how to prove generalization in settings where UC fails. Our main
contribution is proving novel generalization bounds in two such settings, one linear,
and one non-linear. We study the linear classification setting of Nagarajan & Kolter
(2019b), and a quadratic ground truth function learned via a two-layer neural
network in the non-linear regime. We prove a new type of margin bound showing
that above a certain signal-to-noise threshold, any near-max-margin classifier will
achieve almost no test loss in these two settings. Our results show that near-max-
margin is important: while any model that achieves at least a (1− ϵ)-fraction of
the max-margin generalizes well, a classifier achieving half of the max-margin
may fail terribly. Our analysis provides insight on why memorization can coexist
with generalization: we show that in this challenging regime where generalization
occurs but UC fails, near-max-margin classifiers contain both some generalizable
components and some overfitting components that memorize the data. The presence
of the overfitting components is enough to preclude UC, but the near-extremal
margin guarantees that sufficient generalizable components are present.

1 INTRODUCTION

A central challenge of machine learning theory is understanding the generalization of overparame-
terized models. While in many real-world settings deep networks achieve low test loss, their high
capacity makes theoretical analysis with classical tools difficult, or sometimes impossible (Zhang
et al., 2017; Nagarajan & Kolter, 2019b). Most classical theoretical tools are based on uniform
convergence (UC), a property that, when it holds, guarantees that the test loss will be close to the
training loss, uniformly over a class of candidate models. Many generalization bounds for neural
networks are built on this property, e.g. Neyshabur et al. (2015; 2017b; 2018); Harvey et al. (2017);
Golowich et al. (2018).

The seminal work of Nagarajan & Kolter (2019b) gives theoretical and empirical evidence that UC
cannot hold in natural overparameterized linear and neural network settings. The impossibility results
of Nagarajan and Kolter are strong: they rule out even UC on the smallest reasonable algorithm-
dependent family of models, that is, any possible models output by learning algorithm on typical
datasets. In particular, they prove that in an overparameterized linear classification problem, models
found by gradient descent will achieve small test loss, but any UC bound over these models will be
vacuous. In a two-layer neural network setting, Nagarajan & Kolter (2019b) empirically demonstrate
the same phenomenon for the 0/1 loss.

Many margin-based generalization bounds do not technically fit into the category of UC bounds
defined by Nagarajan and Kolter, but still may be intrinsically limited for similar reasons. Classical
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Figure 1: Thresholds for Uniform Convergence and Generalization.

margin-based generalization guarantees bounds (see eg. Shalev-Shwartz & Ben-David (2014);
Kakade et al. (2009)) and related margin bounds for neural networks (Wei & Ma, 2019a; 2020;
Bartlett et al., 2017; Golowich et al., 2018) scale inversely polynomially in the margin size, and are
typically proved via uniform convergence on a surrogate loss (eg. the hinge loss or ramp loss) that
upper bounds the 0/1 misclassification loss. Nagarajan and Kolter’s results show that any UC bound
on the ramp loss is vacuous in an overparameterized linear setting, suggesting (though not proving)
that classical margin bounds may not be useful. Muthukumar et al. (2021) shows empirically that
such margin bounds are vacuous in a broader linear settings. In light of this, it is very important to
develop theoretical tools to analyze generalization in settings where uniform convergence cannot
yield meaningful bounds.

In this paper we establish novel margin-based generalization bounds in regimes where UC provably
fails. These bounds guarantee generalization in the extremal case where the model has a near-
maximal margin, and thus we call them extremal margin bounds.Indeed, near max-margin solutions
are achievable by minimizing the logistic loss with weak ℓ2-regularization (Wei et al., 2019), and
minimizing the unregularized logistic loss with gradient descent converges to a stationary points of
the max-margin objective (Lyu & Li, 2019; Lyu et al., 2021). In linear settings, SGD converges to the
max-margin (Nacson et al., 2019).

Our results consider two settings, the linear setting of Nagarajan & Kolter (2019b), and a commonly
studied quadratic problem learned on by a two-layer neural network (Wei et al., 2019; Frei et al.,
2022b). In Theorems 3.1 and 3.2, we prove that above a certain signal-to-noise threshold κgen, near-
max-margin solutions will generalize. Below this threshold, max-margin solutions may not generalize
(Proposition 3.3). Below a second higher threshold, κuc, uniform convergence fails (Proposition 3.4).
In Figure 1 we illustrate these three regions; the main significance of our results is in the challenging
middle region between κgen and κuc where generalization occurs, but UC fails.

Additionally in this regime where UC fails, we show that classical margin bounds can only yield
loose guarantees, even for the max-margin solution (Proposition 3.5 and 3.6). We prove this by
showing the existence of models that achieve a large but non-near-max-margin (e.g., half the max-
margin), but do not generalize at all. This phase transition between good-margin and near-max-margin
cannot be captured by classical margin bounds where the generalization guarantee decays inversely
polynomially in the margin. Our extremal margin bounds are fundamentally different from classical
margin bounds and are not based on uniform convergence.

Prior works have also studied the challenging regime where uniform convergence does not work. In a
linear regression setting, Zhou et al. (2020) and Koehler et al. (2021) show that the test loss can be
uniformly bounded for all low-norm solutions that perfectly fit the data (this uses the data-dependent
interpolation condition to improve upon UC bounds); nevertheless, Yang et al. (2021) shows that
such bounds are still loose on the min-norm solution. Negrea et al. (2020) suggests an alternative
framework based on uniform convergence over a less complex family of surrogate models; they use
this technique to show generalization in a linear setting and in another high-dimensional problem
amenable to analysis. To our knowledge, our results are the first instance of theoretically proving
generalization in a neural network setting (that is not in the NTK regime) where UC provably fails.

We leverage near-max-margins in a unified way for both the linear and nonlinear settings, and we hope
that this approach will be useful more broadly in overparameterized settings. In the challenging regime
of generalization without UC, good learned models contain some generalizable signal components
and some overfitting components that memorize the data. Our main technique is to show that any
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near max-margin solution has to contain both signal components and overfitting components. The
overfitting component causes UC to fail, but fortunately, has a reduced influence on a random test
example, whereas the signal component has a similar influence on training and test examples.

1.1 ADDITIONAL RELATED WORK

A large body of work highlights challenges in using classical statistical theory to explain generalization
in deep learning. Experimental results (Zhang et al., 2017; Neyshabur et al., 2017a) point out that
despite being large in traditional capacity measures such as Rademacher complexities, deep networks
still generalize well, and new explanations are needed to understand this behavior. Belkin et al. (2018)
show that similar challenges hold in kernel methods. Beyond the work of Nagarajan & Kolter (2019b),
Bartlett & Long (2021) prove that in a linear interpolation setting, model-dependent generalization
bounds fail for the min-norm solution. Koren et al. (2022) show that SGD can exhibit a benign
underfitting phenomenon where the test loss is small but empirical loss is large.

One related body of work has focused on characterizing “benign overfitting”, where the model overfits
to noise in labels of the training data but still attains good test performance. Our setting differs from
benign overfitting because we study models that overfit prohibitively enough to preclude UC even
with clean data. For models that overfit to noise, (i) it still may be possible to for algorithm-dependent
notions of a UC bound to explain generalization on clean data, and (ii) if the overfitting is avoided with
regularization, UC bounds may also be possible. Most of the results in this area concern linear models:
Bartlett et al. (2020) analyze benign overfitting in regression problems by leveraging a closed form
expression for the min-norm solution. Muthukumar et al. (2021); Shamir (2022); Cao et al. (2021);
Wang & Thrampoulidis (2020); Chatterji & Long (2021) and Wang et al. (2021) study classification
settings. The setting of Chatterji & Long (2021) is particularly similar to ours since it considers
the max-margin solution under a Gaussians mixture. The works of Muthukumar et al. (2020) and
Shamir (2022) reveal that is often possible to have benign overfitting in classification, whereas in
regression for the same covariate distribution, the overfitting would imply poor generalization. Also
closely related to our work on linear classification is the work of Montanari et al. (2019), which
asymptotically characterizes the generalization of the max-margin solution as n, d → ∞. Benign
overfitting in neural networks has been shown in several simple settings. Frei et al. (2022a) analyzes
two-layer neural networks trained by gradient descent on linearly-separable data. Cao et al. (2022)
studies benign overfitting for a two-layer simplified convolutional network. Their techniques involve
decomposing the output of the network into a sum of two terms, one involving the signal feature, and
one involving the noise feature. Our techniques are very different because this decomposition is not
possible for a fully connected 2-layer neural network.

More broadly, a variety of new generalization bounds have been derived in hopes of explaining
generalization in deep learning. While none of these bounds have been explicitly proven to succeed
in regimes where UC fails, they leverage additional properties of the training data or the optimization
process and thus are not directly susceptible to the critiques of Nagarajan & Kolter (2019b). Among
these are works that leverage properties such as Lipschitzness of the model on the training data (Arora
et al., 2018; Nagarajan & Kolter, 2019a; Wei & Ma, 2019a;b), use algorithmic stability (Mou et al.,
2018; Li et al., 2019a; Chatterjee & Zielinski, 2022), or information-theoretic perspectives (Negrea
et al., 2019; Haghifam et al., 2021).

Finally, a body of work seeks to draw connections between optimization and generalization in deep
learning by studying implicit regularization effects of the optimization algorithm (see e.g. (Gunasekar
et al., 2017; Li et al., 2017; Gunasekar et al., 2018a;b; Woodworth et al., 2020; Damian et al., 2021;
HaoChen et al., 2020; Li et al., 2019b; Wei et al., 2020) and related references). Most relevent in this
literature is the aforementioned work connecting gradient descent and max-margin solutions.

2 PRELIMINARIES

Our work achieves results in two settings. The first is a linear setting previously studied by Nagarajan
& Kolter (2019b) where both the ground truth and the trained model are linear. In the second nonlinear
setting, studied before by Wei et al. (2019); Frei et al. (2022b), the ground truth is quadratic, and
the trained model is a two-layer neural network. In both settings, the data is drawn from a product
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distribution on features involved in the ground truth labeling function, and “junk” features orthogonal
to the signal. We formalize the two settings below.

Linear setting
▶ Data Distribution. Fix some ground truth unit vector direction µ ∈ Rd. Let x = z + ξ, where
z ∼ Uniform({µ,−µ}) and ξ is uniform on the sphere of radius

√
d− 1σ in d − 1 dimensions,

orthogonal to the direction µ. Let y = µTx, such that y = 1 with probability 1/2 and −1 with
probability 1/2. We denote this distribution of (x, y) on Rd × {−1, 1} by Dµ,σ,d.
▶ Model. We learn a model w ∈ Rd that predicts ŷ = sign(fw(x)) where fw(x) = wTx.

Setting for Two-Layer Neural Network Model with Quadratic “XOR” Ground Truth
▶ Data Distribution. Fix some orthogonal ground truth unit vector directions µ1 and µ2 in Rd.
Let x = z + ξ, where z ∼ Uniform({µ1,−µ1, µ2,−µ2}) and ξ is uniform on the sphere of
radius

√
d− 2σ in d − 2 dimensions, orthogonal to the directions µ1 and µ2. Let y = (µT

1 x)
2 −

(µT
2 x)

2 for some orthogonal ground truth directions µ1 and µ2 (see Figure 2(left)). We denote
this distribution of (x, y) on Rd × {−1, 1} by Dµ1,µ2,σ,d. We call this the XOR problem because
y = XOR

(
(µ1 + µ2)

Tx, (−µ1 + µ2)
Tx

)
. For instance, if µ1 = e1 and µ2 = e2, then y = x21 − x22.

As can be seen in Figure 2(left), this distribution is not linearly separable, and so one must use
nonlinear model to learn in this setting.

▶ Model. Fix a ∈ {−1, 1}m so that
∑

i ai = 0. The model is a two-layer neural network with m
hidden units and activation function ϕ, parameterized by W ∈ Rm×d. W (which will be learned)
represents the weights of the first layer and a (which is fixed) is the second layer weights. The model
predicts fW (x) =

∑m
i=1 aiϕ(w

T
i x), where wi ∈ Rd denotes the i’th column of W . We work with

activations ϕ of the form ϕ(z) = max(0, z)h for h ∈ [1, 2), and require that m is divisible by 41.

We define a problem class of distributions to be a set of data distributions. In this paper, we work
with the linear problem class Ωlinear

σ,d := {Dµ,σ,d : µ ∈ Rd, ∥µ∥ = 1}, and the quadratic problem
class ΩXOR

σ,d := {Dµ1,µ2,σ,d : µ1 ⊥ µ2 ∈ Rd, ∥µ1∥ = ∥µ2∥ = 1}. Here ∥ · ∥ denotes the ℓ2 norm.

We will sometimes abuse notation and say that x ∼ D instead of saying that (x, y) ∼ D.

Before proceeding, we make some comments on the parameter settings and compare to related work.

Large dimension assumption. In both the linear and non-linear settings, our focus is an overparame-
terized regime where the dimension d is at least a constant factor times larger than n, the number of
training samples. Such an assumption is mild relative to the assumptions made in related work, which
require d = ω(n) (see eg. (Cao et al., 2021; Wang & Thrampoulidis, 2020; Muthukumar et al., 2021;
Shamir, 2022; Chatterji & Long, 2021) on linear models; for neural networks, the closest related
works of Frei et al. (2022a) and Cao et al. (2022) assume that d ≥ n2 or stronger). When the dimen-

1The assumption that m is divisible by 4 is for convenience, and can be removed if m is large enough.
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sion is sufficiently large (in particular, at least ω(n)), with high probability, the max-margin solution
coincides with the min-norm regression solution (see Hsu et al. (2021)), meaning the max-margin
solution can be analyzed via a closed-form expression. Our work is fundamentally different from the
work on linear classification which operates in the d = ω(n) regime, because in our setting when
d = Θ(n), these two solutions do not coincide.

Assumption on Data Covariance. Many works on linear classification study more general data
models which allow arbitrary decay of the eigenvalues of the covariance matrix (eg. Muthukumar
et al. (2021); Wang & Thrampoulidis (2020); Cao et al. (2021)), or variance in the signal direction,
that is, xTµ ̸= y (eg. Shamir (2022)). We work with a simpler distribution, which is still challenging,
because it defies existing analyses built on UC or closed-form solutions.

2.1 BACKGROUND AND DEFINITIONS ON UNIFORM CONVERGENCE

In this subsection, we provide some definitions from Nagarajan & Kolter (2019b) on algorithm-
dependent UC bounds. We also provide some definitions and background on margin bounds.

For a loss function L : R × R → R, and a hypothesis h mapping from a domain X to R, we
define the test loss on a distribution D to be LD(h) := E(x,y)∼DL(h(x), y). For a set of examples
S = {(xi, yi)}i∈[n], we define LS(h) := Ei∈[n]L(h(xi), yi) to be the empirical loss.

Unless otherwise specified, we will use L to denote the 0/1 loss, which equals 1 if and only if the
signs of the two labels disagree, that is, L(y, y′) = 1(sign(y) ̸= sign(y′)).

Typically in machine learning one considers a global hypothesis class G that an algorithm may explore
(e.g., the set of all two-layer neural networks). A uniform convergence bound, defined below, may
hold over a smaller subset H of G, eg. the subset of networks with bounded norm.

Definition 2.1 (Uniform Convergence Bound). A uniform convergence bound with parameter ϵunif
for a distribution D, a set of hypotheses H, and loss L is a bound that guarantees that

Pr
S∼Dn

[sup
h∈H

|LD(h)− LS(h)| ≥ ϵunif ] ≤
1

4
. (2.1)

A uniform convergence bound can be customized to algorithms by choosing H to depend on the
implicit bias of an algorithm. For instance, if an algorithm A favors low-norm solutions, one could
choose H to be the set of all classifiers with bounded norm. Of course, if H is too small, it may not
be useful for proving generalization, because A will never output a solution in H. We formalize the
notion of choosing a useful algorithm-dependent set H as follows.

Definition 2.2 (Useful Hypothesis Class). A hypothesis class H is useful with respect to an algorithm
A and a distribution D if PrS∼Dn [A(S) ∈ H] ≥ 3

4 .

Remark 2.3. Our definition of a uniform convergence bound on a useful hypothesis class is essentially
equivalent to the definition of algorithm-dependent uniform convergence bound in Nagarajan &
Kolter (2019b). We introduce new terminology since we use it later in our results on margin bounds.

More generally, we can have generalization bounds that do not yield the same generalization guarantee
for all elements of H. Instead, their guarantee scales with some property of the hypothesis h and the
sample S. We call these data-dependent bounds. Such bounds are useful if the favorable property is
satisfied with high probability by the algorithm of interest.

One specific type of data-dependent bound depends on the margin achieved by the classifier on the
training sample. We recall the definition of a margin:

Definition 2.4 (Margin). The margin γ(h, S) of a classifier h on a sample S equals min(x,y)∈S yh(x).

In certain parameterized hypothesis classes it is useful to define a normalized margin. If fW is
h-homogeneous, that is, fcW (x) = chfW (x) for a positive scalar c, we define the normalized margin

γ̄(fW , S) :=
γ(fW , S)

∥W∥h
= γ(fW/∥W∥, S), (2.2)

where we define the norm ∥W∥ to equal
√

Ei∈[m][∥wi∥2], where wi is the i’th column of W .
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We will use γ∗(S) to denote the maximum normalized margin. When we are discussing the linear
problem, we let γ∗(S) be the max-margin over all vectors w ∈ Rd with norm 1, that is γ∗(S) :=
supw:∥w∥2≤1 γ(S, fw). In the XOR problem, we use γ∗(S) to denote the max-margin over all weight
matrices W ∈ Rm×d with norm 1, that is γ∗(S) := supW :∥W∥≤1 γ(S, fW ).

Most classical margin bounds prove that the generalization gap can be bounded by a term that scales
inversely linearly or quadratically in the margin (Koltchinskii & Panchenko, 2002; Kakade et al.,
2009). More generally, we will call margin bounds in which the generalization guarantee scales

with
(

1
γ(S,fW )

)p

for a constant p a polynomial margin bound. Such bounds usually rely on proving
uniform convergence for a continuous loss that upper bounds the 0/1 loss. As we will show in the
next section, such bounds are also intrinsically limited in regimes where UC fails on the 0/1 loss.

In contrast to this, in our work, we prove bounds for classifiers that achieve near-maximal margins.
Definition 2.5. A classifier h is a (1− ϵ)-max-margin solution for S if γ(h, S) ≥ (1− ϵ)γ∗(S).

We refer to a bound that holds for (1− ϵ)-max-margin solutions as a extremal margin bound.

3 MAIN RESULTS

In the following section, we state our main results for the linear and quadratic problems, and provide
intuition for our findings. As illustrated in Figure 1, and in more detail in Figure 2(right), our results
show different possibilities for a near max-margin solution depending on the size of κ := n

dσ2 , a
signal-to-noise parameter, where σ, d are as in Section 2. When κ is smaller than some threshold κgen
we are not guaranteed to have learning: even a near max-margin solution may not generalize. When
κ exceeds κgen by an absolute constant and when σ2 ≪ 1, our results show that any near max-margin
solution generalizes well. Finally, we show that if κ is smaller than a second threshold κuc, then
uniform convergence approaches will fail to guarantee generalization. All of our results additionally
include an overparameterization condition that d ≥ cn for a constant c, as is pictured in Fig 2(right).

The exact thresholds κgen and κuc depend on the problem class of interest, but in both the linear
setting and the nonlinear setting we study, we show that κuc > κgen. Thus we observe a regime where
uniform convergence fails, but generalization still occurs for near max-margin solutions.

For the linear problem, we define the universal constants

κlineargen := 0 and κlinearuc := 1. (3.1)

For the XOR problem with activation reluh, for h ∈ [1, 2), we define the constants

κXOR,h
gen := the solution to 2

1
h

√
2

κ
=

√
κ

4 + κ
+

√
16

κ (4 + κ)
and κXOR,h

uc := 4. (3.2)

The constants are pictured in Figure 2(right) as a function of h. Observe that for h ∈ (1, 2), we
have κXOR,h

gen < κXOR,h
uc , and κXOR,h

gen > 0. When h = 1 and the activation is relu, we have
κXOR,h

gen = κXOR,h
uc , and thus we do not expect to have a regime where uniform convergence fails,

but max-margin solutions generalize. We elaborate more intuitively on why h > 1 allows for
generalization without UC in Section A.

Our first theorem states that when κ > κgen, any near-max-margin solution generalizes.
Theorem 3.1 (Extremal-Margin Generalization for Linear Problem). Let δ > 0. There exist constants
ϵ = ϵ(δ) and c = c(δ) such that the following holds. For any n, d, σ and D ∈ Ωlinear

σ,d satisfying
κlineargen + δ ≤ κ ≤ 1

δ , and d
n ≥ c, then with probability 1− 3e−n over the randomness of a training

set S ∼ Dn, for any w ∈ Rd that is a (1− ϵ)-max-margin solution (as in Definition 2.5), we have
LD(fw) ≤ e−

n
36dσ4 + e−n/8.

Attentive readers may observe that since κlineargen = 0, Theorem 3.1 can guarantee asymptotic general-
ization for some sequences of parameters (ni, di, σi)i≥1 even when κi = ni

diσ2
i
= oi→∞(1), as long

as σ2
i decays fast enough. In Theorem C.4 in the appendix, we state a more detailed version of this

theorem which states the exact dependence of c and ϵ on δ, yielding precise results for κ = o(1).
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We prove a similar generalization result for XOR problem learned on two-layer neural networks.
Theorem 3.2 (Extremal-Margin Generalization for XOR on Neural Network). Let h ∈ (1, 2), and let
δ > 0. There exist constants ϵ = ϵ(δ) and c = c(δ) such that the following holds. For any n, d, σ and
D ∈ ΩXOR

σ,d satisfying κ = n
dσ2 ≥ κXOR,h

gen + δ and d
n ≥ c, then with probability 1− 3e−n/c over the

training set S ∼ Dn, for any two-layer neural network with activation function reluh and weight
matrix W that is a (1− ϵ)-max-margin solution (as in Definition 2.5), we have LD(fW ) ≤ e−

1
cσ2 .

This theorem guarantees meaningful results whenever σ is small enough. To see this, note that the
assumptions of the theorem require that d

n ∈
[
c, 1

σ2(κXOR,h
gen +δ)

]
. If σ is small enough (in terms of δ),

this interval is non-empty. Further, the generalization guarantee is good if σ is small enough (since
exp(−1/(cσ2)) tends to 0 as σ approaches 0). For instance consider a setting where d ≫ n, and
σ2 = n

d . Then our theorem guarantees that LD(fW ) ≪ 1.

Key intuitions for generalization theorems. We demonstrate the gist of the analysis for the
linear problems with some simplifications. It turns out that two special solutions merit particular
attention: (i) the good solution wg = µ that generalizes perfectly, and (ii) the bad overfitting
solution wb :≈ 1√

ndσ

∑
j yjξj that memorizes the “junk” dimension of the data, and satisfies

ξTi wb ≈ 1√
ndσ

yi|ξi|2 = yi

√
dσ2

n for all i. 2 We examine the margin of the two solutions and have

γ̄(wg, S) = 1 and γ̄(wb, S) ≈
√
dσ2

n
. (3.3)

At first glance, one might conclude that when γ̄(wg, S) < γ̄(wb, S), the max margin solution will be
wb, which does not generalize. However, our key observation is that any (near) max margin solution
w always contains a mixture of both wg and wb. When the wg component is small but non-trivial and
the wb component is large, the solution can simultaneously generalize but contain a large enough
overfitting component to preclude UC.

More concretely, suppose we consider the margin of a linear mixture w = αwg + βwb satisfying
α2 + β2 = 1 so that ∥w∥2 = 1. It is easy to see that the margin on the training set is

γ̄(w, S) = αγ̄(wg, S) + βγ̄(wb, S) (3.4)

Meanwhile, the margin on an test example x is only slightly affected by wb:

γ̄(w, x) ≈ αγ̄(wg, S)± βwT
b x ≈ αγ̄(wg, S)± βγ̄(wb, S)

√
n

d
. (3.5)

The effect wT
b x of the bad solution on the test sample is is smaller than γ̄(w, S) by a

√
n
d factor

because x is a high dimensional random vector, and thus mostly orthogonal to wb. Therefore, even if
the margin on the training set mostly stems from the bad overfitting solution, that is, αγ̄(wg, S) <

βγ̄(wb, S), the model may still generalize as long as αγ̄(wg, S) ≥ βγ̄(wb, S)
√

n
d .

The optimal α, β satisfying α2 + β2 = 1 that maximize the margin turns out to be proportional to the

original margin: α
β =

γ̄(wg,S)
γ̄(wb,S) , yielding a max-margin of

√
γ̄(wg, S)2 + γ̄(wb, S)2 ≈

√
dσ2+n

n .

Therefore, we have αγ̄(wg,S)
βγ̄(wb,S) =

γ̄(wg,S)2

γ̄(wb,S)2 . In other words, we should expect reasonable generalization

of near-max margin solutions as long as γ̄(wg,S)
γ̄(wb,S) > (nd )

1/4, which by eq. 3.3 occurs when n
dσ4 ≫ 1.

In Appendix A, we describe the challenges that arise when adapting these intuitions to nonlinear
setting, and our techniques for overcoming them.

Before proceeding to our lower bounds, observe that a typical margin bound for the linear setting

would yield |LD(w)− LS(w)| ≤ 2|x|√
nγ̄(S,w)

≈ 2
√
dσ
√

1+1/κ√
n

, which is at least 2 for κ ≤ κlinearuc = 1.

2More precisely, we will choose wb to be the rescaled min-norm vector satisfying ξTi wb = yi for all i. This
distinction is important in the case when d is only a constant factor larger than n, and the solution 1√

ndσ

∑
j yjξj

does not necessarily correctly classify the training data.
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We now proceed to present our lower bounds, which show when near max-margin solutions may not
always generalize, and when UC bounds and polynomial margin bounds are impossible.

If κ < κgen, it is possible that a near-max margin solution does not generalize at all. Since κgen = 0
in the linear setting, we only state this result for the XOR problem.
Proposition 3.3 (Region where Max-Margin Generalization not Guaranteed). Let h ∈ (1, 2), and let
ϵ > 0. There exists a constant c = c(ϵ) such that the following holds. For any n, d, σ and D ∈ ΩXOR

σ,d

satisfying κ ≤ κXOR,h
gen − ϵ and d

n ≥ c, with probability 1− 3e−n/c over S ∼ Dn, there exists some
W with ∥W∥ = 1 and γ(fW , S) ≥ (1− ϵ)γ∗(S) such that LD(fW ) = 1

2 .

Theorems 3.2 and Prop. 3.3 demonstrate that in the XOR problem, there is a threshold in κ above
which generalization occurs. If κ is above this threshold, we achieve generalization when σ2 ≪ 1.

The next proposition states that when κ < κuc, any algorithm-dependent uniform convergence bounds
will be vacuous, that is, its generalization guarantee will be arbitrarily close to 1. We state our results
for the linear and XOR neural network settings together; we state the more complicated XOR result
in full and then mention how the linear result differs.
Proposition 3.4 (UC Bounds are Vacuous). Fix any h ∈ (1, 2), and δ > 0. For any n, d, σ and
D ∈ ΩXOR

σ,d , if κXOR,h
gen + δ ≤ κ ≤ κXOR,h

uc − δ, there exist strictly positive constants ϵ = ϵ(δ) and
c = c(δ) such that the following holds. Let A be any algorithm that outputs a (1− ϵ)-max-margin
two-layer neural network fW for any S ∈ (Rd × {1,−1})n. Let H be any hypothesis class that is
useful for D (as in Definition 2.2). Suppose that ϵunif is a uniform convergence bound for D and H
that is, PrS∼Dn [suph∈H |LD(h)− LS(h)| ≥ ϵunif ] ≤ 1/4. Then if d

n ≥ c and n > c, we must have
ϵunif ≥ 1− δ.

A similar result holds for the linear problem with κlineargen + δ < κ < κlinearuc − δ and any D ∈ Ωlinear
σ,d .

In this case we achieve the guarantee that ϵunif ≥ 1− e−
n

36dσ2 − e−n/8.

Prop. 3.4 is proved using the same technique as in Nagarajan & Kolter (2019b): we show that with
high probability over S ∼ Dm, the hypothesis A(S) has good generalization, but on an “oppositite”
dataset ψ(S) with the junk components reversed, the empirical error of A(S) is close to 1. This large
gap between empirical error and generalization forces ϵunif-alg to be large.

Further extending this technique, we can also show the limitations of classical polynomial margin
bounds which achieve an bound that scales inversely polynomially with γ(h, S). We show that with
high probability over S ∼ Dm, the hypothesis A(ψ(S)) has a large margin on the set S (a constant
fraction times the max-margin), but poor generalization on D. Since any polynomial margin bound
cannot predict much better generalization for the max-margin solution than for a solution with a
constant-fraction of the max-margin, we conclude that any such margin bound is far from showing
good generalization for the max-margin solution.

One subtlety to this approach is that here (unlike in the work of Nagarajan & Kolter (2019b)), the
“opposite” data set ψ(S) is defined to be the data set with the signal features reversed. Thus we
can only show the limitations of polynomial margin bounds that are useful for both D and for its
“oppostite” distribution ψ(D), which has the opposite ground-truth vector(s), which is a slightly
stronger assumption than in the work of Nagarajan & Kolter (2019b). 3 Formally, if D = Dlinear

µ,σ ,
then we define ψ(D) := Dlinear

−µ,σ . If D = DXOR
µ1,µ2,σ , then ψ(D) := DXOR

µ2,µ1,σ .

The following results state that if κ < κuc, then certain types of margin bounds cannot yield better
than constant test loss on even the max-margin solution.
Proposition 3.5 (Polynomial Margin Bounds Fail for Linear Problem). Fix δ > 0. For any n, d, σ
and D ∈ Ωlinear

σ,d such that κlineargen + δ < κ < κlinearuc − δ and d
n ≥ c, the following holds. Let A be

any algorithm so that A(S) outputs a (1− ϵ)-max-margin solution fw for any S ∈ (Rd ×{1,−1})n.
3We believe considering such types of margin bounds is natural. Indeed, for most problems, the designer of

the generalization bound would not know in advance the ground truth distribution, but might know that the data
comes from some problem class, e.g., linearly separable distributions, or linearly separable distributions with a
sparse ground truth vector. In such cases, they would likely have to design a generalization bound that holds for
data coming from two distributions with opposite ground truths.

If we make this same stronger two-distribution assumption in Prop. 3.4, we can additionally rule out one-sided
UC bounds, which only upper bound LD − LS .
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Let H be any hypothesis class that is useful for A (as in Definition 2.2) on both Dlinear
µ,σ and Dlinear

−µ,σ .
Suppose that there exists an polynomial margin bound of integer degree p: that is, there is some G
that satisfies for D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[
sup
h∈H

LD̃(h)− LS(h) ≥
G

γ(h, S)p

]
≤ 1

4
.

Then with probability 1
2 − 3e−n over S ∼ Dn, the margin bound is weak even on the max-margin

solution, that is, G
γ∗(S)p ≥ max

(
1
c , 1− e−

κ
36σ2 − e−n/8 − 3κ

c

)p

, which is more than an absolute
constant.

This theorem says that no polynomial margin bound will be able to show that the test error of the
max-margin solution is less than an absolute constant. We know however from Theorem 3.1 that in
this same regime, the test error of the max-margin solution can be arbitrarily small for small enough
σ. Thus no polynomial margin bound can predict this behaviour.

The attentive reader again may notice that if κ→ 0 as n and d grow, but generalization occurs, any
such margin bound is vacuous, in that G

γ∗(S)p → 1. In Prop ??, we prove a more precise version,
yielding the exact dependence of c and ϵ on the gap between κ and the boundaries κlinearuc and κlineargen .

We achieve a similar result in the XOR setting.
Proposition 3.6 (Polynomial Margin Bounds Fail for XOR on Neural Network). Fix an integer
p ≥ 1, and any ϵ > 0. There exists c = c(p, ϵ) such that the following holds for any n, d, σ and
D ∈ ΩXOR

σ,d with κXOR,h
gen + ϵ < κ < κXOR,h

uc − ϵ, d
n ≥ c and n ≥ c. Let H be any hypothesis class

such that for D̃ ∈ {D, ψ(D)},
Pr

S∼D̃n
[all (1− ϵ)-max-margin two-layer neural networks fW for S lie in H] ≥ 3/4.

Suppose that there exists an polynomial margin bound of degree p: that is, there is some G that
satisfies for D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[
sup
h∈H

LD̃(h)− LS(h) ≥
G

γ(h, S)p

]
≤ 1

4
.

Then with probability 1
2 − 3e−n/c over S ∼ Dn, on the max-margin solution, the generalization

guarantee is no better than 1
c , that is, G

γ∗(S)p ≥ 1
c .

Remark 3.7. The polynomial margin impossibility results is slightly weaker for the XOR problem.
Namely, the hypothesis class H we consider is larger in the XOR problem: it must contain with
probability 3

4 any near max-margin solution, instead of just the one output by A.

The combination of our generalization results and our margin possibility results suggest a phase
transition in how the margin size affects generalization. If the margin is near-maximal, Theorems 3.1
and Prop. 3.2 show that we achieve generalization. Meanwhile, the proof of Props 3.5 and 3.6 suggest
that solutions achieving a constant factor of the maximum margin may not generalize.

The proofs of all of our results concerning the linear problem are given in Section C. The proofs for
the XOR problem are in Section D.

4 CONCLUSION

In the work, we give novel generalization bounds in settings where uniform convergence provably
fails. We use a unified approach of leveraging the extremal margin in both a linear classification setting
and a non-linear two-layer neural network setting. Our work provides insight on why memorization
can coexist with generalization.

Going beyond our results, it is important to find broader tools for understanding the regime near the
boundary of generalization and no generalization. We conclude with several concrete open directions
in this vein. One question is how to prove generalization without UC when d < n, but the model
itself (e.g. a neural network) is overparameterized, and thus can still overfit to the point of UC failing.
A second direction asks if we can prove similar results in the non-linear network setting for the
solution found by gradient descent, if this solution is not a near max-margin solution. Indeed, in a
non-convex landscape, it not guaranteed that that gradient descent will find the max-margin solution.
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