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Abstract

Thanks to the strong representation power of001
neural encoders, neural chart-based parsers002
have achieved highly competitive performance003
by using local features. Recently, it has been004
shown that non-local features in CRF struc-005
tures lead to improvements. In this paper, we006
investigate injecting non-local features into the007
training process of a local span-based parser,008
by predicting constituent n-gram non-local009
patterns and ensuring consistency between010
non-local patterns and local constituents. Re-011
sults show that our simple method gives bet-012
ter results than the self-attentive parser on both013
PTB and CTB. Besides, our method achieves014
state-of-the-art BERT-based performance on015
PTB (95.92 F1) and strong performance on016
CTB (92.31 F1). Our parser also achieve bet-017
ter or competitive performance in multilingual018
and zero-shot cross-domain settings compared019
with the baseline.020

1 Introduction021

Constituency parsing is a fundamental task in nat-022

ural language processing, which provides useful023

information for downstream tasks such as machine024

translation (Wang et al., 2018), natural language in-025

ference (Chen et al., 2017), text summarization (Xu026

and Durrett, 2019). Over the recent years, with027

advance in deep learning and pre-training, neu-028

ral chart-based constituency parsers (Stern et al.,029

2017a; Kitaev and Klein, 2018) have achieved030

highly competitive results on benchmarks like Penn031

Treebank (PTB) and Penn Chinese Treebank (CTB)032

by solely using local span prediction.033

The above methods take the contextualized rep-034

resentation (e.g., BERT) of a text span as input, and035

use a local classifier network to calculate the scores036

of the span being a syntactic constituent, together037

with its constituent label. For testing, output layer038

uses a non-parametric dynamic programming algo-039

rithm (e.g., CKY) to find the highest-scoring tree.040

Figure 1: An example of the non-local n-gram pat-
tern features: the 3-gram pattern (3, 11, {VBD NP PP})
is composed of two constituent nodes and one part-
of-speech node; the 2-gram pattern (7, 11, {NP PP}) is
composed of two constituent nodes.

Without explicitly modeling structure dependen- 041

cies between different constituents, the methods 042

give competitive results compared to non-local dis- 043

crete parsers (Stern et al., 2017a; Kitaev and Klein, 044

2018). One possible explanation for their strong 045

performance is that the powerful neural encoders 046

are capable of capturing implicit output correlation 047

of the tree structure (Stern et al., 2017a; Gaddy 048

et al., 2018; Teng and Zhang, 2018). 049

Recent work has shown that modeling non-local 050

output dependencies can benefit neural structured 051

prediction tasks, such as NER (Ma and Hovy, 052

2016), CCG supertagging (Cui and Zhang, 2019) 053

and dependency parsing (Zhang et al., 2020a). 054

Thus, an interesting research question is whether 055

injecting non-local tree structure features is also 056

beneficial to neural chart-based constituency pars- 057

ing. To this end, we introduce two auxiliary train- 058

ing objectives. The first is Pattern Prediction. As 059

shown in Figure 1, we define pattern as the n-gram 060

constituents sharing the same parent.1 We ask the 061

model to predict the pattern based on its span rep- 062

resentation, which directly injects the non-local 063

constituent tree structure to the encoder. 064

1 Patterns are mainly composed of n-gram constituents but also
include part-of-speech tags as auxiliary.
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To allow stronger interaction between non-local065

patterns and local constituents, we further pro-066

pose a Consistency loss, which regularizes the co-067

occurrence between constituents and patterns by068

collecting corpus-level statistics. In particular, we069

count whether the constituents can be a sub-tree of070

the pattern based on the training set. For instance,071

NP is legal to occur as a sub-tree of 3-gram pattern072

VBD NP PP, while S or ADJP cannot be contained073

within this pattern. The consistency loss can be con-074

sidered as injecting prior linguistic knowledge to075

our model, which forces the encoder to understand076

the grammar rules. Non-local dependencies among077

the constituents that share the same pattern are thus078

explicitly modeled. We denote our model as In-079

jecting Non-local Features for neural Chart-based080

parsers (NFC).081

We conduct experiments on both PTB and CTB.082

Equipped with BERT, NFC achieves 95.92 F1 on083

PTB test set, which is the best reported perfor-084

mance for BERT-based single-model parsers. For085

Chinese constituency parsing, NFC achieves highly086

competitive results (92.31 F1) on CTB, outperform-087

ing the baseline self-attentive parser (91.98 F1) and088

a 0-th order neural CRF parser (92.27 F1) (Zhang089

et al., 2020b). To further test the generalization090

ability, we annotate a multi-domain test set in En-091

glish, including dialogue, forum, law, literature092

and review domains. Experiments demonstrate093

that NFC is robust in zero-shot cross-domain set-094

tings. Finally, NFC also performs competitively095

with other languages using the SPMRL 2013/2014096

shared tasks, establishing the best reported results097

on three rich resource languages. We release our098

code and models at https://anonymous.099

2 Related Work100

Constituency Parsing. There are mainly two101

lines of approaches for constituency parsing.102

Transition-based methods process the input words103

sequentially and construct the output constituency104

tree incrementally by predicting a series of local105

transition actions (Zhang and Clark, 2009; Cross106

and Huang, 2016; Liu and Zhang, 2017). For107

these methods, the sequence of transition actions108

make traversal over a constituent tree. Although109

transition-based methods directly model partial tree110

structures, their local decision nature may lead111

to error propagation (Goldberg and Nivre, 2013)112

and worse performance compared with methods113

that model long-term dependencies (McDonald and114

Nivre, 2011; Zhang and Nivre, 2012). Similar to 115

transition-based methods, NFC also directly mod- 116

els partial tree structures. The difference is that 117

we inject tree structure information using two addi- 118

tional loss functions. Thus, our integration of non- 119

local constituent features is implicit in the encoder, 120

rather than explicit in the decoding process. While 121

the relative effectiveness is empirical, it could po- 122

tentially alleviate error propagation. 123

Chart-based methods score each span indepen- 124

dently and perform global search over all possible 125

trees to find the highest-score tree given a sentence. 126

Durrett and Klein (2015) represented nonlinear fea- 127

tures to a traditional CRF parser computed with a 128

feed-forward neural network. Stern et al. (2017b) 129

first used LSTM to represent span features. Kitaev 130

and Klein (2018) adopted a self-attentive encoder 131

instead of the LSTM encoder to boost parser perfor- 132

mance. Mrini et al. (2020) proposed label attention 133

layers to replace self-attention layers. Zhou and 134

Zhao (2019) integrated constituency and depen- 135

dency structures into head-driven phrase structure 136

grammar. Tian et al. (2020) used span attention 137

to produce span representation to replace the sub- 138

traction of the hidden states at the span boundaries. 139

Despite their success, above work mainly focuses 140

on how to better encode features over the input sen- 141

tence. In contrast, we take the encoder of Kitaev 142

and Klein (2018) intact, being the first to explore 143

new ways to introduce non-local training signal 144

into the local neural chart-based parsers. 145

Modeling Label Dependency. There is a line of 146

work focusing on modeling non-local output depen- 147

dencies. Zhang and Zhang (2010) used a Bayesian 148

network to encode the label dependency in multi- 149

label learning. For neural sequence labeling, Zhou 150

and Xu (2015) and Ma and Hovy (2016) built a 151

CRF layer on top of neural encoders to capture 152

label transition patterns. Pislar and Rei (2020) in- 153

troduced a sentence-level constraint to encourage 154

the model to generate coherent NER predictions. 155

Cui and Zhang (2019) investigated label attention 156

network to model the label dependency by produc- 157

ing label distribution in sequence labeling tasks. 158

Gui et al. (2020) proposed a two-stage label de- 159

coding framework based on Bayesian network to 160

model long-term label dependencies. For syntac- 161

tic parsing, Zhang et al. (2020b) demonstrated that 162

structured Tree CRF can boost parsing performance 163

over graph-based dependency parser. Our work is 164

in line with these in the sense that we consider 165
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non-local structure information for neural struc-166

ture prediction. To our knowledge, we are the first167

to inject sub-tree structure into neural chart-based168

encoders for constituency parsing.169

3 Baseline170

Our baseline is adopted from the parsing model of171

Kitaev and Klein (2018) and Kitaev et al. (2019).172

Given a sentence X = {x1, ..., xn}, its correspond-173

ing constituency parse tree T is composed by a set174

of labeled spans175

T = {(it, jt, lct )}|
|T |
t=1 (1)176

where it and jt represent the t-th constituent177

span’s fencepost positions and lct represents the178

constituent label. The model assigns a score s(T )179

to tree T , which can be decomposed as180

s(T ) =
∑

(i,j,l)∈T

s(i, j, lc) (2)181

Following Kitaev et al. (2019), we use BERT182

with a self-attentive encoder as the scoring function183

s(i, j, ·), and a chart decoder to perform a global-184

optimal search over all possible trees to find the185

highest-scoring tree given the sentence. In particu-186

lar, given an input sentence X = {x1, ..., xn}, a list187

of hidden representations Hn
1 = {h1,h2, . . . ,hn}188

is produced by the encoder, where hi is a hidden189

representation of the input token xi. Following pre-190

vious work, the representation of a span (i, j) is191

constructed by:192

vi,j = hj − hi (3)193

Finally, vi,j is fed into an MLP to produce real-194

valued scores s(i, j, ·) for all constituency labels:195

196

s(i, j, ·) = Wc
2RELU(Wc

1vi,j + bc
1) + bc

2 (4)197

where Wc
1, Wc

2, bc
1 and bc

2 are trainable parame-198

ters, Wc
2 ∈ R|H|×|Lc| can be considered as the con-199

stituency label embedding matrix (Cui and Zhang,200

2019), where each column in Wc
2 corresponds to201

the embedding of a particular constituent label. |H|202

represents the hidden dimension and |Lc| is the size203

of the constituency label set.204

Training. The model is trained to satisfy the205

margin-based constraints206

s(T ∗) ≥ s(T ) + ∆(T, T ∗) (5)207

Sequence Encoder

!! !" !# !$… … …

"",# = !# − !"

constituency score pattern score

%(', )) +̂",#Consistency matrix

-&'() -*+,

Span representation

--./

.! ." .# .$… … …

Figure 2: The three training objectives in NFC.

where T ∗ denotes the gold parse tree, and ∆ is 208

Hamming loss. The hinge loss can be written as 209

Lcons = max
(
0, max

T 6=T∗
[s(T ) + ∆(T, T ∗)]− s(T ∗)

)
(6) 210

During inference time, the most-optimal tree 211

T̂ = argmax
T

s(T ) (7) 212

is obtained using a CKY-like algorithm. 213

4 Additional Training Objectives 214

We propose two auxiliary training objectives to 215

inject non-local features into the encoder, which 216

rely only on the annotations in the constituency 217

treebank, but not external resources. 218

4.1 Instance-level Pattern Loss 219

We define n-gram constituents, which shares the 220

same parent node, as a pattern. We use a triplet 221

(ip, jp, lp) to denote a pattern span beginning from 222

the ip-th word and ending at jp-th word. lp is the 223

corresponding pattern label. Given a constituency 224

parse tree in Figure 1, (3, 11, {VBD NP PP}) is a 225

3-gram pattern. 226

Similar to Eq 4, an MLP is used for transforming 227

span representations to pattern prediction probabil- 228

ities: 229

p̂i,j = Softmax
(
Wp

2RELU(Wp
1vi,j + bp

1) + bp
2

)
(8) 230

where Wp
1 , Wp

2 , bp
1 and bp

2 are trainable param- 231

eters, Wp
2 ∈ R|H|×|Lp| can be considered as the 232

pattern label embedding matrix, where each col- 233

umn in Wp
2 corresponds to the embedding of a 234

particular pattern label. |Lp| represents the size of 235
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the pattern label set. For each instance, the cross-236

entropy loss between the predicted patterns and the237

gold patterns are calculated as238

Lpat = −
n∑

i=1

n∑
j=1

pi,j log p̂i,j (9)239

We use the span-level cross-entropy loss for pat-240

terns (Eq 9) instead of the margin loss in Eq 6,241

because our pattern-prediction objective aims to242

augment span representations via greedily classify-243

ing each pattern span, rather than to reconstruct the244

constituency parse tree through dynamic program-245

ming.246

4.2 Corpus-level Consistency Loss247

Constituency scores and pattern probabilities are248

produced based on a shared span representation;249

however, the two are subsequently separately pre-250

dicted. Therefore, although the span representa-251

tions contain both constituent and pattern infor-252

mation, the dependencies between constituent and253

pattern predictions are not explicitly modeled. Intu-254

itively, constituents are distributed non-uniformly255

in patterns, and such correlation can be obtained in256

the corpus-level statistic. We propose a consistency257

loss, which explicitly models the non-local depen-258

dencies among constituents that belong to the same259

pattern.260

This loss can be understood first at the instance261

level. In particular, if a constituent span (it, jt, l
c
t )262

is a subtree of a pattern span (it′ , jt′ , l
p
t′), i.e. it >=263

it′ and jt <= jt′ , where lct = Lc[a] (the a-th con-264

stituent label in Lc) and lpt′ = Lp[b] (the b-th pattern265

label in Lp), we define Lc[a] and Lp[b] to be con-266

sistent (denoted as ya,b = 1). Otherwise we con-267

sider it to be non-consistent (denoted as ya,b = 0).268

This yields a consistency matrix Y ∈ R|Lc|×|Lp|269

for each instance. The gold consistency matrix Y270

provides information regarding non-local depen-271

dencies among constituents and patterns.272

An intuitive method to predict the consistency273

matrix Y is to make use of the constituency label274

embedding matrix Wp
2 , the pattern label embed-275

ding matrix Wc
2 and the span representations V:276

277

Ŷ = Sigmoid
(
(Wc

2U1V)(VTU2W
p
2
T

)
)

(10)278

where U1,U2 ∈ R|H|×|H| are trainable parame-279

ters.280

Eq 10 can be predicted on the instance-level 281

for ensuring consistency between patterns and con- 282

stituent. However, this naive method is difficult for 283

training, and computationally infeasible, because 284

the span representation matrix V ∈ R|H|×n2
is 285

composed of n2 span representations vi,j ∈ R|H| 286

and the asymptotic complexity is: 287

O
(

(|Lp|+ |Lc|)(|H|2 + n2|H|) + |Lp||Lc|n2
)

(11) 288

for a single training instance. We instead use a 289

corpus-level constraint on the non-local dependen- 290

cies among constituents and patterns. In this way, 291

Eq 10 is reduced to be independent of individual 292

span representations: 293

Ŷ = Sigmoid
(
Wc

2UWp
2
T) (12) 294

where U ∈ R|H|×|H| is trainable. 295

This trick decreases the asymptotic complexity 296

to O(|Lc||H|2 + |Lp||Lc||H|). The cross-entropy 297

loss between the predicted consistency matrix and 298

gold consistency labels is used to optimize the 299

model: 300

Lreg = −
|Lc|∑
a=1

|Lp|∑
b=1

ya,b log ŷa,b (13) 301

The corpus-level constraint can be considered 302

as a prior linguistic knowledge statistic from the 303

treebank, which forces the encoder to understand 304

the grammar rules. 305

4.3 Training 306

Given a constituency treebank, we minimize the 307

sum of the three objectives to optimize the parser: 308

L = Lcons + Lpat + Lreg (14) 309

4.4 Computational Cost 310

The number of training parameters increased by 311

NFC is Wp
1 ∈ R|H|×|H|, Wp

2 ∈ R|H|×|Lp| , bp
1 ∈ 312

R|H| and bp
2 ∈ R|Lp| in Eq 8 and U ∈ R|H|×|H| 313

in Eq 12. Taking training model on PTB as an 314

example, NFC adds less than 0.7M parameters 315

to 342M parameters baseline model (Kitaev and 316

Klein, 2018) based on BERT-large-uncased dur- 317

ing training. NFC is identical to our baseline self- 318

attentive parser (Kitaev and Klein, 2018) during 319

inference. 320

5 Experiments 321

We empirically compare NFC with the baseline 322

parser in different settings, including in-domain, 323

cross-domain and multilingual benchmarks. 324
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Data Lang / Domain # Train # Dev # Test
PTB English 39,832 1,700 2,416
CTB Chinese 17,544 352 348

SPMRL French 14,759 1,235 2,541
SPMRL German 40,472 5,000 5,000
SPMRL Korean 23,010 2,066 2,287
SPMRL Basque 7,577 948 946
SPMRL Polish 6,578 821 822
SPMRL Hungarian 8,146 1,051 1,009
MCTB Dialogue - - 1,000
MCTB Forum - - 1,000
MCTB Law - - 1,000
MCTB Literature - - 1,000
MCTB Review - - 1,000

Table 1: Dataset statistics. # - number of sentences.

PTB CTB
w/o pattern 95.65 94.11

2-gram 95.67 94.29
3-gram 95.77 94.14
4-gram 95.70 93.91

2-gram & 3-gram 95.68 94.16
3-gram & 4-gram 95.71 93.97

Table 2: F1 score on the development set of PTB and
CTB using different n-gram pattern features with con-
sistency loss. w/o pattern indicates the baseline parser.

5.1 Dataset325

Table 1 shows the detailed statistic of our datasets.326

We conduct experiments on both English and Chi-327

nese, using the Penn Treebank (Marcus et al., 1993)328

as our English dataset, with standard splits of sec-329

tion 02-21 for training, section 22 for development330

and section 23 for testing. For Chinese, we split331

the Penn Chinese Treebank (CTB) 5.1 (Xue et al.,332

2005), taking articles 001-270 and 440-1151 as333

training set, articles 301-325 as development set334

and articles 271-300 as test set.335

In the multilingual settings, we select three rich336

resource language from the SPMRL 2013-2014337

shared task (Seddah et al., 2013): French, German338

and Korean, which include at least 10,000 training339

instances, and three low-resource language: Hun-340

garian, Basque and Polish.341

Cross-domain Dataset. To test the robustness of342

our methods across difference domains, we further343

annotate five test set in dialogue, forum, law, litera-344

ture and review domains. For the dialogue domain,345

we randomly sample dialogue utterances from Wiz-346

ard of Wikipedia (Dinan et al., 2019), which is a347

chit-chat dialogue benchmark produced by humans.348

For the forum domain, we use users’ communi-349

cation records from Reddit, crawled and released350

by Völske et al. (2017). For the law domain, we351

sample text from European Court of Human Rights352

Database (Stiansen and Voeten, 2019), which in- 353

cludes detailing judicial decision patterns. For the 354

literature domain, we download literary fictions 355

from Project Gutenberg2. For the review domain, 356

we use plain text across a variety of product genres, 357

released by SNAP Amazon Review Dataset (He 358

and McAuley, 2016). After obtaining the plain 359

text, we ask linguistic experts to annotate con- 360

stituency parse tree by strictly following the PTB 361

guideline. We name our dataset as Multi-domain 362

Constituency Treebank (MCTB). More details of 363

the dataset will be documented separately. 364

5.2 Development Experiments 365

The sizes of non-local n-gram windows may have 366

an essential influence on parser performance. Intu- 367

itively, larger n-gram window sizes allow capturing 368

more global information. We perform development 369

experiments to decide the window size of non-local 370

pattern features for both PTB and CTB. As shown 371

in Table 2, 3-gram pattern features give the best 372

performance for PTB while 2-gram works best for 373

CTB. We thus choose the settings with the best 374

development performance for our experiments. We 375

conduct multilingual experiments following the set- 376

ting for PTB. 377

5.3 Setup 378

Our code is based on the open-sourced code 379

of Kitaev and Klein (2018)3. The training pro- 380

cess gets terminated if no improvement on de- 381

velopment F1 is obtained in the last 60 epochs. 382

We evaluate the models which have the best F1 383

on the development set. For fair comparison, 384

all reported results and baselines are augmented 385

with BERT. We adopt BERT-large-uncased 386

for English, BERT-base for Chinese and 387

BERT-multi-lingual-uncased for other 388

languages. Most of our hyper-parameters are 389

adopted from Kitaev and Klein (2018) and Fried 390

et al. (2019). For scales of the two additional losses, 391

we set the scale of pattern loss to 1.0 and the scale 392

of consistency loss to 5.0 for all experiments. 393

To reduce the model size, we filter out those non- 394

local pattern features that appear less than 5 times 395

in the PTB training set and those that account for 396

less than 0.5% of all pattern occurrences in the CTB 397

training set. The out-of-vocabulary patterns are 398

set as < UNK >. This results in moderate pattern 399

2 https://www.gutenberg.org/
3 Available at https://github.com/nikitakit/
self-attentive-parser.
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Model LR LP F1
Liu and Zhang (2017) � - - 95.71
Kitaev and Klein (2018) 95.46 95.73 95.59
Zhou and Zhao (2019) 95.51 95.93 95.72
Zhou and Zhao (2019) * 95.70 95.98 95.84
Zhang et al. (2020b) 95.53 95.85 95.69
Nguyen et al. (2020) - - 95.48
Tian et al. (2020) 95.58 96.11 95.85

This work
Kitaev and Klein (2018) † 95.56 95.89 95.72
NFC w/o Lreg 95.49 96.07 95.78
NFC 95.70 96.14 95.92

Table 3: Performance (w/ BERT) on the test set of
PTB. † indicates our reproduced results, which is also
the baseline that our method is built upon. * indicates
training with extra supervision from dependency pars-
ing data. � indicates that the results are reported by the
re-implementation of Fried et al. (2019).

Model LR LP F1
Liu and Zhang (2017) � - - 91.81
Kitaev and Klein (2018) 91.55 91.96 91.75
Zhang et al. (2020b) 92.04 92.51 92.27
Zhou and Zhao (2019) 91.14 93.09 92.10
Tian et al. (2020) 92.14 92.25 92.20

This work
Kitaev and Klein (2018) † 91.80 92.23 91.98
NFC w/o Lreg 91.87 92.40 92.13
NFC 92.17 92.45 92.31

w/ External Dependency Supervision
Zhou and Zhao (2019) * 92.03 92.33 92.18
Mrini et al. (2020)* 91.85 93.45 92.64

Table 4: Constituency parsing performance (w/ BERT)
on the test set of CTB 5.1. The symbols (†, * and �) are
explained in Table 3.

vocabulary sizes of 841 for PTB and 514 for CTB.400

For evaluation on PTB, CTB and cross-domain401

dataset, we use the EVALB script for evaluation.402

For the SPMRL datasets, we follow the same setup403

in EVALB as Kitaev and Klein (2018).404

5.4 In-domain Experiments405

We report the performance of our method on the406

test sets of PTB and CTB in Table 3 and 4, respec-407

tively. Compared with the baseline parser (Kitaev408

and Klein, 2018), our method obtains an absolute409

improvement of 0.20% F1 on PTB (p<0.01) and410

0.33% F1 on CTB (p<0.01), which verifies the411

effectiveness of injecting non-local features into412

neural local span-based constituency parsers. Note413

that the proposed method adds less than 0.7M pa-414

rameters to the 342M parameter baseline model415

using BERT-large.416

The parser trained with both the pattern loss417

(Section 4.1) and consistency loss (Section 4.2)418

outperforms the one trained only with pattern loss 419

by 0.14% F1 (p<0.01). This suggests that the con- 420

straints between constituents and non-local pattern 421

features are crucial for injecting non-local features 422

into local span-based parsers. One possible expla- 423

nation for the improvement is that the constraints 424

may bridge the gap between local and non-local 425

supervision signals, since these two are originally 426

separately predicted while merely sharing the same 427

encoder in the training phase. 428

We further compare our method with the re- 429

cent state-of-the-art parsers on PTB and CTB. Liu 430

and Zhang (2017) propose an in-order transition- 431

based constituency parser. Kitaev and Klein (2018) 432

use self-attentive layers instead of LSTM layers 433

to boost performance. Zhou and Zhao (2019) 434

jointly optimize constituency parsing and depen- 435

dency parsing objectives using head-driven phrase 436

structure grammar. Mrini et al. (2020) extend Zhou 437

and Zhao (2019) by introducing label attention lay- 438

ers. Zhang et al. (2020b) integrate a CRF layer to 439

a chart-based parser for structural training (with- 440

out non-local features). Tian et al. (2020) use span 441

attention for better span representation. 442

Compared with these methods, the proposed 443

method achieves an F1 of 95.92%, which exceeds 444

previous best numbers for BERT-based single- 445

model parsers on the PTB test set. We further 446

compare experiments for five runs, and find that 447

NFC significantly outperforms Kitaev and Klein 448

(2018) (p<0.01). The test score of 92.31% F1 on 449

CTB significantly outperforms the result (91.98% 450

F1) of the baseline (p<0.01). Compared with the 451

CRF parser of Zhang et al. (2020b), our method 452

gives better scores without global normalization in 453

training. This shows the effectiveness of integrat- 454

ing non-local information during training using our 455

simple regularization. The result is highly competi- 456

tive with the current best result (Mrini et al., 2020), 457

which is obtained by using external dependency 458

parsing data. 459

5.5 Cross-domain Experiments 460

We compare the generalization of our methods with 461

baselines in Table 5. In particular, all the parsers 462

are trained on PTB training and validated on PTB 463

development, and are tested on cross-domain test 464

in the zero-shot setting. As shown in the table, our 465

model achieves 5 best-reported results among 6 466

cross-domain test sets with an averaged F1 score 467

of 87.03%, outperforming our baseline parser by 468
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Model In-domain Cross-domain
PTB Bio Dialogue Forum Law Literature Review Avg

Liu and Zhang (2017) 95.65 86.33 79.89 83.02 90.66 84.68 78.83 83.90
Zhou and Zhao (2019) 95.84 86.14 81.34 82.73 89.86 84.95 79.65 84.11
Kitaev and Klein (2018) 95.72 86.61 82.53 84.59 92.37 87.56 80.64 85.72
NFC 95.92 86.43 84.10 86.08 92.64 90.65 82.30 87.03

Table 5: Constituency parsing results with BERT (F1 scores) on the cross-domain test set.

Model Rich resource Low Resource AvgFrench German Korean Avg Hungarian Basque Polish Avg
Kitaev and Klein (2018) 87.42 90.20 88.80 88.81 94.90 91.63 96.36 94.30 91.55

Nguyen et al. (2020) 86.69 90.28 88.71 88.56 94.24 92.02 96.14 94.13 91.34
Kitaev and Klein (2018) † 87.38 90.25 88.91 88.85 94.56 91.66 96.14 94.12 91.48

NFC 87.51 90.43 89.07 89.00 94.95 91.73 96.33 94.34 91.67

Table 6: Multilingual Experiment results on SPMRL test-sets. † indicates our reproduced baselines.

Figure 3: Pearson correlation of n-gram pattern distri-
bution between PTB training set and different test set.

1.31% points. This shows that structure informa-469

tion is useful for improving cross-domain perfor-470

mance, which is consistent with findings from pre-471

vious work (Fried et al., 2019).472

To better understand the benefit of pattern fea-473

tures, we calculate Pearson correlation of n-gram474

pattern distributions between the PTB training set475

and various test sets in Figure 3. First, we find that476

the correlation between the PTB training set and477

the PTB test set is close to 1.0, which verifies the478

effectiveness of the corpus-level pattern knowledge479

during inference. Second, the 3-gram pattern corre-480

lation of all domains exceeds 0.75, demonstrating481

that n-gram pattern knowledge is robust across do-482

mains, which supports the strong performance of483

NFC in the zero-shot cross-domain setting. Third,484

pattern correlation decreases significantly as n in-485

creases, which suggests that transferable non-local486

information is limited to a certain window size of487

n-gram constituents.488

(a) F1 scores measured by 3-gram pattern.

(b) F1 scores measured by 2-gram pattern.

Figure 4: Pattern-level F1 on different English datasets.
Noted that we train NFC based on 3-gram pattern in
English. There is no direct supervision signal for 2-
gram pattern.

5.6 Multilingual Experiments 489

We compare NFC with Kitaev and Klein (2018) 490

and Nguyen et al. (2020) on SPMRL. The results 491

are shown in Table 6. Nguyen et al. (2020) use 492

pointer network to predict a sequence of pointing 493

decisions for constituency parsing. As can be seen, 494

Nguyen et al. (2020) do not show obvious advan- 495

7



Figure 5: F1 scores versus minimum constituent span
length on PTB test set. Note that constituent spans
shorter than 30 accounts for approximately 98.5% of
all for the PTB test set.

tages over Kitaev and Klein (2018). NFC outper-496

forms these two methods on three rich resource497

languages. For example, NFC achieves 89.07% F1498

on Korean, outperforming Kitaev and Klein (2018)499

by 0.27% points, suggesting that NFC is generally500

effective across languages. However, NFC does501

not give better results compared with Kitaev and502

Klein (2018) on low-resource languages. One pos-503

sible explanation is that it is difficult to obtain prior504

linguistic knowledge from corpus-level statistics505

by using a relatively small number of instances.506

6 Analysis507

6.1 n-gram Pattern Level Performance508

Figure 4 shows the pattern-level F1 before and509

after introducing the two auxiliary training objec-510

tives. In particular, we calculate the pattern-level511

F1 by calculating the F1 score for pattern predic-512

tion. Although our baseline parser with BERT513

achieves 95.76% F1 scores on PTB, the pattern-514

level F1 is 80.28% measured by 3-gram. When515

testing on the dialogue domain, the result is re-516

duced to only 53.15% F1, which indicates that517

even a strong neural encoder still has difficulties518

capturing constituent dependency from the input519

sequence alone. After introducing the pattern and520

consistency losses, NFC significantly outperforms521

the baseline parser measured by 3-gram pattern522

F1. Though there is no direct supervision signal523

for 2-gram pattern, NFC also gives better results524

on pattern F1 of 2-gram, which are subsumed by525

3-gram patterns. This suggests that NFC can effec-526

tively represent sub-tree structures.527

6.2 F1 against Span Size528

We compare the performance of the baseline and529

our method on constituent spans with different530

Figure 6: Exact matching (EM) score across different
domains. EM indicates the percentage of sentences
whose predicted trees are entirely correct.

lengths. Figure 5 shows the trends of F1 scores 531

on the PTB test set as the minimum constituent 532

span length increases. Our method shows a minor 533

improvement at the beginning, but the gap becomes 534

more evident when the minimum span length in- 535

creases, demonstrating its advantage in capturing 536

more sophisticated constituency label dependency. 537

6.3 Exact Match 538

Exact match score represents the percentage of 539

sentences whose predicted trees are entirely the 540

same as the golden trees. Producing exact matched 541

trees could improve user experiences in practical 542

scenarios and benefit downstream applications on 543

other tasks (Petrov and Klein, 2007; Kummerfeld 544

et al., 2012). We compare exact match scores of 545

NFC with that of the baseline parser. As shown 546

in Figure 6, NFC achieves large improvements in 547

exact match score for all domains. For instance, 548

NFC gets 43.65% exact match score in the litera- 549

ture domain, outperforming the baseline by 25.42% 550

points. We assume that this results from the fact 551

that NFC successfully ensure the output tree struc- 552

ture by modeling non-local correlation. 553

7 Conclusion 554

We investigated graph-based constituency parsing 555

with non-local features – both in the sense that fea- 556

tures are not restricted to one constituent, and in 557

the sense that they are not restricted to each train- 558

ing instance. Experimental results verify the effec- 559

tiveness of injecting non-local features to neural 560

chart-based constituency parsing. Equipped with 561

pre-trained BERT, our method achieves 95.92% 562

F1 on PTB and 92.31% F1 on CTB. We further 563

demonstrated that the proposed method gives better 564

or competitive results in multilingual and zero-shot 565

cross-domain settings. 566

8



References567

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui568
Jiang, and Diana Inkpen. 2017. Enhanced LSTM569
for natural language inference. In Proceedings of570
the 55th Annual Meeting of the Association for Com-571
putational Linguistics (Volume 1: Long Papers),572
pages 1657–1668, Vancouver, Canada. Association573
for Computational Linguistics.574

James Cross and Liang Huang. 2016. Span-based con-575
stituency parsing with a structure-label system and576
provably optimal dynamic oracles. In Proceedings577
of the 2016 Conference on Empirical Methods in578
Natural Language Processing, pages 1–11, Austin,579
Texas. Association for Computational Linguistics.580

Leyang Cui and Yue Zhang. 2019. Hierarchically-581
refined label attention network for sequence labeling.582
In Proceedings of the 2019 Conference on Empirical583
Methods in Natural Language Processing and the584
9th International Joint Conference on Natural Lan-585
guage Processing (EMNLP-IJCNLP), pages 4115–586
4128, Hong Kong, China. Association for Computa-587
tional Linguistics.588

Emily Dinan, Stephen Roller, Kurt Shuster, Angela589
Fan, Michael Auli, and Jason Weston. 2019. Wizard590
of wikipedia: Knowledge-powered conversational591
agents. In International Conference on Learning592
Representations.593

Greg Durrett and Dan Klein. 2015. Neural CRF pars-594
ing. In Proceedings of the 53rd Annual Meet-595
ing of the Association for Computational Linguis-596
tics and the 7th International Joint Conference on597
Natural Language Processing (Volume 1: Long Pa-598
pers), pages 302–312, Beijing, China. Association599
for Computational Linguistics.600

Daniel Fried, Nikita Kitaev, and Dan Klein. 2019.601
Cross-domain generalization of neural constituency602
parsers. In Proceedings of the 57th Annual Meet-603
ing of the Association for Computational Linguis-604
tics, pages 323–330, Florence, Italy. Association for605
Computational Linguistics.606

David Gaddy, Mitchell Stern, and Dan Klein. 2018.607
What’s going on in neural constituency parsers? an608
analysis. In Proceedings of the 2018 Conference of609
the North American Chapter of the Association for610
Computational Linguistics: Human Language Tech-611
nologies, Volume 1 (Long Papers), pages 999–1010,612
New Orleans, Louisiana. Association for Computa-613
tional Linguistics.614

Yoav Goldberg and Joakim Nivre. 2013. Training de-615
terministic parsers with non-deterministic oracles.616
Transactions of the Association for Computational617
Linguistics, 1:403–414.618

Tao Gui, Jiacheng Ye, Qi Zhang, Zhengyan Li, Zichu619
Fei, Yeyun Gong, and Xuanjing Huang. 2020.620
Uncertainty-aware label refinement for sequence la-621
beling. In Proceedings of the 2020 Conference on622

Empirical Methods in Natural Language Process- 623
ing (EMNLP), pages 2316–2326, Online. Associa- 624
tion for Computational Linguistics. 625

Ruining He and Julian McAuley. 2016. Ups and downs: 626
Modeling the visual evolution of fashion trends with 627
one-class collaborative filtering. In Proceedings of 628
the 25th International Conference on World Wide 629
Web, WWW ’16, pages 507–517, Republic and 630
Canton of Geneva, Switzerland. International World 631
Wide Web Conferences Steering Committee. 632

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi- 633
lingual constituency parsing with self-attention and 634
pre-training. In Proceedings of the 57th Annual 635
Meeting of the Association for Computational Lin- 636
guistics, pages 3499–3505, Florence, Italy. Associa- 637
tion for Computational Linguistics. 638

Nikita Kitaev and Dan Klein. 2018. Constituency pars- 639
ing with a self-attentive encoder. In Proceedings 640
of the 56th Annual Meeting of the Association for 641
Computational Linguistics (Volume 1: Long Papers), 642
pages 2676–2686, Melbourne, Australia. Associa- 643
tion for Computational Linguistics. 644

Jonathan K. Kummerfeld, David Hall, James R. Cur- 645
ran, and Dan Klein. 2012. Parser showdown at the 646
Wall Street corral: An empirical investigation of er- 647
ror types in parser output. In Proceedings of the 648
2012 Joint Conference on Empirical Methods in Nat- 649
ural Language Processing and Computational Natu- 650
ral Language Learning, pages 1048–1059, Jeju Is- 651
land, Korea. Association for Computational Linguis- 652
tics. 653

Jiangming Liu and Yue Zhang. 2017. In-order 654
transition-based constituent parsing. Transactions 655
of the Association for Computational Linguistics, 656
5:413–424. 657

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end 658
sequence labeling via bi-directional lstm-cnns-crf. 659
CoRR, abs/1603.01354. 660

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 661
Marcinkiewicz. 1993. Building a large annotated 662
corpus of English: The Penn Treebank. Computa- 663
tional Linguistics, 19(2):313–330. 664

Ryan McDonald and Joakim Nivre. 2011. Analyzing 665
and integrating dependency parsers. Computational 666
Linguistics, 37(1):197–230. 667

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran, 668
Trung Bui, Walter Chang, and Ndapa Nakashole. 669
2020. Rethinking self-attention: Towards inter- 670
pretability in neural parsing. In Findings of the As- 671
sociation for Computational Linguistics: EMNLP 672
2020, pages 731–742, Online. Association for Com- 673
putational Linguistics. 674

Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq Joty, 675
and Xiaoli Li. 2020. Efficient constituency pars- 676
ing by pointing. In Proceedings of the 58th Annual 677

9

https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D19-1422
https://doi.org/10.18653/v1/D19-1422
https://doi.org/10.18653/v1/D19-1422
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.18653/v1/P19-1031
https://doi.org/10.18653/v1/P19-1031
https://doi.org/10.18653/v1/P19-1031
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.18653/v1/2020.emnlp-main.181
https://doi.org/10.18653/v1/2020.emnlp-main.181
https://doi.org/10.18653/v1/2020.emnlp-main.181
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://aclanthology.org/D12-1096
https://aclanthology.org/D12-1096
https://aclanthology.org/D12-1096
https://aclanthology.org/D12-1096
https://aclanthology.org/D12-1096
https://doi.org/10.1162/tacl_a_00070
https://doi.org/10.1162/tacl_a_00070
https://doi.org/10.1162/tacl_a_00070
http://arxiv.org/abs/1603.01354
http://arxiv.org/abs/1603.01354
http://arxiv.org/abs/1603.01354
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.acl-main.301
https://doi.org/10.18653/v1/2020.acl-main.301
https://doi.org/10.18653/v1/2020.acl-main.301


Meeting of the Association for Computational Lin-678
guistics, pages 3284–3294, Online. Association for679
Computational Linguistics.680

Slav Petrov and Dan Klein. 2007. Improved inference681
for unlexicalized parsing. In Human Language Tech-682
nologies 2007: The Conference of the North Amer-683
ican Chapter of the Association for Computational684
Linguistics; Proceedings of the Main Conference,685
pages 404–411, Rochester, New York. Association686
for Computational Linguistics.687

Miruna Pislar and Marek Rei. 2020. Seeing both688
the forest and the trees: Multi-head attention for689
joint classification on different compositional lev-690
els. In Proceedings of the 28th International Con-691
ference on Computational Linguistics, pages 3761–692
3775, Barcelona, Spain (Online). International Com-693
mittee on Computational Linguistics.694

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie695
Candito, Jinho D. Choi, Richárd Farkas, Jen-696
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-697
letebeitia, Yoav Goldberg, Spence Green, Nizar698
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim699
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang700
Seeker, Yannick Versley, Veronika Vincze, Marcin701
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