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Abstract

Contrastive Language-Image Pretraining (CLIP) performs zero-shot image classifi-
cation by mapping images and textual class representation into a shared embedding
space, then retrieving the class closest to the image. This work provides a new
approach for interpreting CLIP models for image classification from the lens of
mutual knowledge between the two modalities. Specifically, we ask: what concepts
do both vision and language CLIP encoders learn in common that influence the
joint embedding space, causing points to be closer or further apart? We answer
this question via an approach of textual concept-based explanations, showing their
effectiveness, and perform an analysis encompassing a pool of 13 CLIP models
varying in architecture, size and pretraining datasets. We explore those different
aspects in relation to mutual knowledge, and analyze zero-shot predictions. Our
approach demonstrates an effective and human-friendly way of understanding
zero-shot classification decisions with CLIP. 1

1 Introduction

Contrastive Language-Image Pretraining (CLIP) [44] has catalyzed a paradigm shift in zero-shot and
few-shot learning methodologies for image classification [61, 54, 31, 36, 66, 57]. CLIP consists of a
vision and language encoder, both which are trained to map positive image-text pairs close together
in embedding space, while pushing away negative ones. In the context of information theory, the
channel which connects two information sources is referred to as the information channel [10], and
its reliability and effectiveness is often studied through Mutual Information (MI) analysis between the
two sources [53]. The training dynamics of contrastive models inherently involve a significant degree
of shared knowledge between the vision and language sources, as both models must map similar
points close in the embedding space. This suggests the existence of a vision-language information
channel (Figure 1a) wherein the shared knowledge between the two modalities is stored.

Inspired by this, we aim to interpret this channel and measure the relationship and mutual knowledge
between the image and text encoders of CLIP, for a given zero-shot prediction. We therefore pose the
following question: What concepts did the vision and language encoders learn in common, such that
the image-text points are closer or further apart in the joint space?

The two sources of information—the vision encoder and the text encoder—differ in modality: the
vision encoder provides interpretation as visual regions, while the text encoder can only provide
interpretation as text. To understand the commonalities in what both encoders learn, we must establish
a shared medium for their interpretations. As a result, applying existing attribution techniques
[51, 60, 45, 2] does not suffice. Moreover, the information channel is composed of discrete units of
information (i.e., bits), however these attribution techniques provide general, high-level interpretations

1https://github.com/fawazsammani/clip-interpret-mutual-knowledge
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Figure 1: CLIP maps visual and textual inputs into a joint embedding space, with an information
channel expressed in terms of the Mutual Information (MI) between them (a). We interpret the visual
features from the vision encoder with multimodal concepts (b) which represent object parts and their
corresponding textual description. From the language encoder, we identify points (shown in grey)
around the zero-shot prediction (shown in green) as textual descriptions of the predicted class (c). By
considering the textual descriptors corresponding to the visual concepts, and the textual descriptors
of the language encoder for the predicted class, the two encoders establish a common space of textual
concepts allowing us to identify mutual concepts and analyze their shared knowledge (d).

(e.g., attributing the main object in the scene). They do not break-down the entangled attribution into
their internal components. For instance, when applied to images of different dog breeds, attribution
techniques might highlight the entire dog, indicating that the model is focusing on the correct object.
However, they do not reveal what exactly in the main object influenced the model’s decision. Which
specific features of the dog were important? Is it the shape of the nose, the ears, the body, the head
or the snout? ImageNet [30], for example, is a coarse-grained dataset, requiring models to learn
distinctive concepts of an object to make decisions, but current explainability techniques do not reflect
this. Therefore, we argue that distinctive fine-grained concepts are more beneficial for representing
the discrete units in a channel, while also facilitating the calculation of mutual information between
the two sources efficiently.

To address this question, we interpret the outcome of the visual and textual encoder as discrete
random variables and use the MI to quantify the amount of information obtained about one random
variable (visual data) through the other random variable (textual data). Drawing from this inspiration,
we strive towards an interpretation and analysis approach of textual concepts; short descriptions
in natural language (e.g., "a long snout", "feathered ears"). In addition to being human-friendly
interpretable, understood even to layman users, each textual concept can be mapped to an integer in a
dictionary of predefined concepts (e.g., "a long snout" → 0, "feathered ears" → 1). Since integers are
discrete, they can represent the information units of the channel, while also facilitating the calculation
of MI in the discrete space directly, which is fast, efficient, and reliable. This approach also eliminates
the need for MI approximations typically required in the continuous space.

In order to achieve this, we need the two CLIP encoders to output random variables in the same
space (that is, the space of textual concepts). In the vision encoder, we first refer to visual concepts
as object parts grounded in the image and directly extracted from the visual features (Figure 1b,
top). Those are discrete visual units that are not in the textual domain, however each of them can
be described via a textual concept. Therefore, we refer to textual concepts in the vision encoder
as textual descriptions of those visual concepts. As a result, multimodal concepts in the vision
encoder are corresponding pairs of visual-textual semantics describing discriminative parts of an
object (Figure 1b). Depending on the dataset, an object can also refer to the main scene (e.g., lake
or ocean in Places365 dataset [65]). Notably, our approach does not involve training any model to
generate those multimodal concepts. The textual component of these multimodal concepts at the

2



vision encoder are now expressive of the visual concepts in the text domain. Once the mapping of
visual concepts to textual concepts is achieved, we proceed with extracting textual concepts from
the language encoder. This can be achieved by identifying points around the zero-shot prediction
(Figure 1c). Given the output embedding of the predicted class (green point) from the language
encoder, we identify related textual concepts (grey points) around that prediction. These directly
serve as textual concepts explaining the prediction. The two encoders of CLIP now share a common
medium of textual concepts, and we can establish the mutual concepts of both the vision and language
encoders (Figure 1d). By observing Figure 1d, we see that the snout and its physical features (e.g.,
wrinkled, long, pointy) are expressive of what the vision and language encoders learn in common,
which influence the prediction of a "bluetick coonhound" in the joint space.

Our work contributes as follows: 1) it introduces a user-friendly approach to interpreting CLIP’s
visual features through multimodal concepts, and we demonstrate the effectiveness of those concepts
by surpassing other baselines and achieving gains of up to 3.75% in zero-shot accuracy. 2) it enables
us to visualize what CLIP models learn in common when making zero-shot predictions, and how the
two encoders influence each other, and 3) it allows us to explore relationships between various model
aspects (model size, pretraining data, and accuracy) and its shared knowledge, and inspect the degree
of correlation between the CLIP vision and text encoders.

2 Related Work

Multimodal Explanations: So far, post-hoc multimodal explanations have been limited to the context
of Natural Language Explanations (NLE) [41, 24, 48]. NLEs are annotated textual explanations for
the output prediction for a variety of vision and vision-language tasks, where models are explicitly
trained to generate such explanations. The visual explanation counterpart is typically obtained by
visualizing the attention weights of the prediction. However, there are two significant issues in
NLEs. Firstly, we argue that any interpretability technique based on training is not faithful to the
model being interpreted, and falls more towards the task of image captioning where the caption is
the explanation. Explanations should not reflect what humans desire, but rather reflect the model’s
own reasoning. Training these models also involves learning biases and statistical correlations, akin
to the challenges faced by any machine learning model. A recent work [47] showed that trained
textual explanation models are highly susceptible to the shortcut bias learning problem, rendering
the explanation ineffective despite achieving state-of-the-art results on Natural Language Generation
metrics. Secondly, both the visual and textual explanations generated by NLEs are general, high-level
and entangled (e.g., highlighting the main object in the scene). On the other hand, our multimodal
explanations tackle both issues outlined in NLE. They are (i) training-free and (ii) offer distinctive,
fine-grained concepts. Another line of work [36, 43] extracts descriptors from a large language
model and uses them as additional information when building class embedding weights of CLIP.
The set of descriptors with the highest similarity with respect to the global image are considered
as an explanation for the prediction. While those textual concepts are fine-grained, the explanation
generated is single-modal. Different from [36], our concept-based explanations are multi-modal
fine-grained explanations, composed of visual-textual concepts which are directly grounded in the
image. Finally, [64] analyzes primitive concepts in vision-language contrastive models. We discuss
this work in Section J in the appendix since it is less-relevant to our study.

Joint Embedding Space of Contrastive Models: A few works investigate the vision-language
modality gap in the joint feature space. [18] suggests that this gap stems from inherent differences
between the two data modalities. Conversely, [32] discovered that there exists a gap that causes the
image and text embeddings to be placed in two distinct regions in the joint space without any overlap.
In contrast to [18], they attribute this gap to the inductive bias of neural network architectures, such
that embeddings of two randomly initialized models are inherently separated within the joint space,
and the contrastive learning objective maintains this separation. Different from the aforementioned
works, our study does not investigate the gap. Instead, we assume the gap is fundamentally present,
and analyze the strength of the shared knowledge within the two models, which influence this gap.

3 Method

Consider the problem of image classification, where the aim is to classify an image into a set of
categories Y . For ImageNet [30], |Y| = 1,000. CLIP [66] formulates image classification as a retrieval
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Figure 2: A high-level overview of our method for deriving visual concepts at the vision encoder
(a), querying each visual concept individually from a textual bank to describe the visual concept in
natural text (b), and then deriving textual concepts at the language encoder (c). The outputs of (b)
and (c) share a common space of fine-grained textual concepts such that mutual information can be
better calculated.

task by using the textual class names of Y denoted as Yt, converting them into fixed natural text
prompts (e.g., an image of a {class}), and encoding them with the language encoder of CLIP. The
image is then encoded with the visual encoder of CLIP. The nearest category y ∈ Y to the image
in the shared embedding space is then selected as the predicted class. In this context, the language
encoder of CLIP can be seen as an encoder which encodes the weights of an image classifier.

Notation: We consider an image I ∈ RH×W×3, a CLIP model ϕ composed of a Vision Transformer
(ViT) encoder ϕv and a language encoder ϕl , and a set of features f = ϕv(I) ∈ RN×C extracted
using ϕv, where N = H/P ×W/P , with P being the patch size of ϕv and C being the feature
dimension size. ϕv and ϕl are each followed by separate projection layers ψ ∈ RC×c which
are fed with the [CLS] vector of the feature representation. For ease of notation, we represent
the similarity score in the unified embedding space between an image-text input pair (i, j) by
s(i, j) = (ψv ◦ϕv(i)) · (ψl ◦ϕl(j))T . Similarly, we define sl(j1, j2) as the similarity in the language
embedding space between two text inputs (j1, j2) by replacing ψv , ϕv with ψl, ϕl, respectively.

We utilize a Large Language Model (LLM) to generate descriptors2 for all classes of a dataset we
analyze. These descriptors are then combined into a unified set D which contains all class-agnostic
textual descriptors (i.e., the class name does not appear in the descriptor), and its cardinality (the
number of descriptors it contains) is D, that is, D = |D|. For the ImageNet dataset, D = 4,229 after
discarding repetitive descriptors across the entire pool. Concepts in D are now applicable to any
object and are not restricted to the class they were extracted from. For example, the textual descriptor
“can be hung from a tree” is extracted from the class “swing” in ImageNet, but can now be applied to
many other classes (e.g., monkey, siamang). The prompt and LLM we used, along with a detailed
ablation study on various prompts and LLMs as well as the relevance and diversity of the generated
descriptors, are presented in Section A.4 of the appendix.

Measuring the relationship and mutual knowledge between the image and text encoders for a given
prediction is not straight-forward, as the two encoders differ in modality. Concepts in the language
encoder can only be described via text, and concepts in the vision encoder can natively be described
by image regions. Therefore, we need to map both concept modalities into a common space in order
to quantify the mutual knowledge between the two encoders. A high-level overview of our method
is shown in Figure 2. Given a set of images, we extract their visual features and perform spectral
graph clustering on those features to obtain the most prominent image patches. We derive post-hoc
grounded visual concepts representing object parts by applying Principal Component Analysis (PCA)
or K-means clustering solely on the identified prominent patches (this is shown in Figure 2a). We
encode the textual descriptors D with the CLIP language encoder, and query each visual concept
region (encoded with the CLIP visual encoder) from the set of descriptors D. In this way, we associate
each visual concept with a textual concept describing it in natural text, producing Dv ⊆ D (Figure
2b). In the final stage, the zero-shot predicted class and the set of descriptors D are encoded with
the CLIP language encoder, and the most similar descriptors close to the zero-shot prediction in the
language embedding space are retrieved, producing Dŷ ⊆ D (Figure 2c). Now, the two encoders
share a common space of textual concepts, and the MI can be calculated efficiently in the discrete

2we will use the terms "descriptors" and "textual concepts" interchangeably
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space using a probability-based approach by mapping each textual concept to a corresponding integer.
The MI between Dv and Dŷ is defined as:

I(Dv;Dŷ) = H(Dv) +H(Dŷ)−H(Dv,Dŷ), (1)
where H represents the entropy and H(., .) represents the joint entropy which we compute through a
simple contingency table. We provide the derivation for this formulation in Section B of the Appendix.
In the next subsections, we describe each of the aformentioned steps shown in Figure 2. Finally, we
elaborate on the formulation of mutual information dynamics in Section 3.3.

3.1 Multi-modal Concepts in the Visual Encoder

Visual-based Concepts: We first identify and separate the prominent patches in f from those that are
non-relevant. Drawing inspiration from prior works on unsupervised object localization [35, 55, 6],
we propose to decompose the feature space f into two groups, identifying the most prominent
group as the focal point of the model. Specifically, we first construct an affinity matrix Af from
the patchwise feature correlations of f : Af = ffT ∈ RN×N , where Af serves as a spectral graph
representing rich semantic information within the features. Each node in this graph corresponds to an
image patch. We then apply eigendecomposition on Af and extract the second largest (non-zero)
eigenvector ef ∈ RN , known as the Fiedler eigenvector. The sign of each element in ef represents a
binary segmentation mask, dividing the graph nodes into two groups with minimal connectivity. We
consider the subset of patches fp corresponding to a positive sign in ef as the most prominent and
obtain an importance map. This decomposition technique is simple, fast and only requires features
without needing gradients. We adopt Conditional Random Fields (CRF) [28] as an interpolation
technique to interpolate the patch-based importance map to the resolution of the image. This approach
provides better visual results than other interpolation techniques, while also preserving the underlying
importance map (see experimental proof in Section A.3 of the Appendix). Finally, we note that f
can be the tokens or keys of the last attention layer of the transformer. We ablate and analyze both in
Section A.1 of the Appendix, and explore using PCA as an alternative decomposition technique.

Next, our aim is to derive visual concepts (i.e., object parts) from the high-level prominent patches
extracted in the previous step. We draw upon the methodologies from [40, 1, 9] and apply either
PCA or K-means clustering solely on the identified prominent image patches fp across B images. In
Section 4, we report results using each of these techniques. This process dissects the prominent image
patches into a set of distinct components or clusters L of length L, which express visual concepts.
The visual concepts are unique, i.e., a patch can only be assigned to a single concept. An overview of
this process is shown in Figure 2a.

Describing Visual Concepts with Textual Descriptions: We seek to link each visual concept
identified in the previous step, to a textual descriptor. Initially, we encode each visual concept using
the CLIP visual encoder by applying the visual prompt engineering approach proposed in [54]. This
approach involves drawing a red circle around the region of interest or blurring the area outside
it, in order to direct the vision encoder’s attention to that specific region, ensuring it encodes that
area rather than the entire image. This approach has achieved strong zero-shot performance across
diverse localization tasks, greatly surpassing cropping-based approaches [59]. A subsequent work
[63] verifies the effectiveness of this approach (see more details in Section F of the Appendix).
We apply this technique to all the detected visual concepts in the image to yield a set of prompted
images Ip =

{
Ip1 . . . IpL

}
, where L is the number of visual concepts. Next, we encode the textual

descriptors D with the CLIP language encoder. Given that CLIP maps images and textual inputs
close together in the embedding space, we find the associated top-k textual descriptors for a given
visual concept by simply computing the similarity between the embedding of Ijp and all textual
descriptors D: s(Ipj ,Di), where j ranges over the L visual concepts, and i ranges over the top-k
textual descriptors3. This results in an assignment matrix Ĉ ∈ RL×D. However, we observed
that, with this approach, numerous visual concepts get mapped to the same descriptor, suggesting a
distribution with low entropy. To address this, we enhance the alignment of the two distributions by
treating −Ĉ as a cost matrix and transforming it into a permutation matrix Π via Optimal Transport:

Π̂(L,D) = argmax
Π∈RL×D

∑
l∈L,d∈D

Πld exp
(
τ Ĉld

)
(2)

3we select the descriptors with scores more than 0.02 points above the 50-th percentile of values
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where τ is a temperature parameter. We solve this optimization problem efficiently with the Sinkhorn-
Knopp algorithm [56]. The top textual descriptor from each column of Π is then selected as the
descriptor for the respective visual concept represented by each row of Π. We denote the textual
concepts produced by this stage as Dv . In Section A.2 of the Appendix, we perform ablation studies
on Optimal Transport and demonstrate that it achieves diversity among the different visual concepts.

3.2 Textual Concepts in the Language Encoder

Given the zero-shot prediction of CLIP denoted as ŷ with ŷt being a textual representation of the
prediction, we can represent ŷ as the center of a cluster in the joint space (green point in Figure 1c),
with other points in that cluster (grey points) being textual concepts directly explaining the prediction
ŷ. We use the same set of textual descriptors D (described in Section 3) to identify those concepts.
We extract those textual concepts by computing the similarity between the language embeddings of
the predicted class and the language embeddings of all descriptors D, via: sl(ŷt,D). We select the
top-u descriptors with the highest similarity score as those textual concepts and denote them by Dŷ .

3.3 Mutual Information Dynamics

A simple calculation of the MI between the vision and language concepts as in Eq. (1), fails to
account for the contribution of each individual information unit (i.e., concept) to the overall MI. We
define that two sources have a strong shared knowledge when a source retains knowledge about the
other, despite removing important information units from it. To realize this, we first organize the
textual concepts of the vision encoder Dv in descending order based on their importance to the image,
and sequentially ablate them, removing one at each step and calculating the MI (Eq. (1)) between
them and Dŷ after each removal step. This process generates a curve. We report the Area under the
Curve (AUC) to represent the MI dynamics. The strength of the shared information can be identified
by how fast the MI in a curve drops. A higher AUC indicates gradual or late drops of MI in the curve,
and thus stronger shared knowledge. A lower AUC indicates sharp or early drops of MI as concepts
are removed, and thus weaker shared knowledge. We note that knowledge-retaining is not attributed
to redundant information units since all concepts in D are unique.

Finally, it is worth noting that the MI dynamics also serve as an evaluation strategy for the identified
mutual concepts. By assuming that stronger shared knowledge is associated with higher zero-shot
accuracy, we would expect a positive correlation between the AUC and zero-shot accuracy.

4 Experiments and Analysis

Evaluation of Multimodal Concepts: Since the multimodal concepts serve as inputs for MI analysis,
we begin by evaluating these concepts to demonstrate their effectiveness and reliability. We formulate
3 baselines that adapt existing literature of single-modality concept-based explanations, to their
multimodal case. MM-CBM is a formulation of Label-Free Concept Bottleneck Models [39] to the
case of Multimodal Concept Bottlenecks. MM-ProtoSim is a formulation of the prototype-based
ProtoSim [38] adapted to the multimodal case. We compare the performance of these baselines in
Table 5 of the Appendix. The last baseline is denoted as “Feature Maps” and is a formulation of
Neuron Annotation works [19, 11] to suit our case. Feature Maps identifies spatial feature activation
maps as concepts. All baselines require training to generate textual concepts, and we train them
on the full ImageNet training set. All baselines as well as our multimodal concepts are evaluated
with 4 evaluation metrics common in the literature of XAI, namely, Insertion (higher is better) and
Deletion (lower is better) [42], Accuracy Drop (low is better) and Accuracy Increase (higher is
better) [7]. We provide a description of the baselines with qualitative example in Section D of the
Appendix, and of the evaluation metrics in Section E of the Appendix. As seen in Table 1, our
concept-based multimodal explanations outperforms all baselines except on the Insertion Metric,
where the MM-CBM baseline wins. Although not within the scope of our work, Table 5 of the
Appendix also shows that our MM-ProtoSim baseline achieves state-of-the-art results on concept
bottleneck models, on the challenging ImageNet dataset in which many other works fail to scale
to. We also show that it not only maintains standard accuracy, but significantly improves it, another
phenomenon in which many previous works including LF-CBM fail to achieve. This shows the
effectiveness of considering multimodal concepts for modeling discriminative tasks.
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Table 1: Evaluation scores of our multimodal explanations compared to the baselines established. All
use the same features, model and textual concept bank for fair comparison.

Explanation Requires Training Delet.↓ Insert.↑ AccDrop↓ AccInc↑
MM-CBM Yes 3.147 3.385 2.634 1.013
MM-ProtoSim Yes 3.149 3.358 2.665 0.943
Feature Maps Yes 2.921 3.114 2.283 1.233
Ours (PCA) No 2.460 3.168 1.582 1.849
Ours (K-means) No 2.422 3.122 1.555 1.781

Table 2: Effectiveness and Relevancy of our multimodal concepts in boosting zero-shot accuracy of
both ResNet and ViT CLIP models on the ImageNet validation set compared to baselines [36, 43].

ResNets Base Ours ∆ ViTs Base Ours ∆

RN50 59.54 61.85 +2.31 ViT-B/16 67.93 70.28 +2.35
RN50x4 64.36 67.93 +3.57 ViT-B/32 63.28 65.58 +2.30
RN50x16 68.47 72.22 +3.75 ViT-L/14 74.69 76.74 +2.05
RN101 60.68 64.14 +3.46 ViT-L/14@336px 75.49 77.64 +2.15

Next, we show how our multimodal explanations are an effective application of CLIP prompt
engineering for image classification with descriptions [36, 43], achieving gains in zero-shot accuracy
of up to 3.75%. Another purpose of this experiment is to show that the multimodal concepts and
descriptors identified, are a reliable source of input for mutual information analysis. We start by
identifying the two most similar classes to the zero-shot prediction in the CLIP language embedding
space. We then take the validation images from both of these classes, and extract multi-modal
explanations using our approach. We then take the textual component of the multi-modal explanations
as additional descriptors ∈ D and re-evaluate the zero-shot classification of CLIP 4. If the detected
open-set concepts are relevant to the prediction, we should expect an improvement in zero-shot
classification accuracy. As shown in Table 2, this application shows significant gains in zero-shot
accuracy for all CLIP models relative to the baselines [36, 43]. This demonstrates the effectiveness
and relevance of the detected concepts to the CLIP model. More details about this experiment can be
found in Section K of the Appendix.

Models and Datasets: Our MI analysis considers a wide range of CLIP models varying in architec-
ture, size and pretraining datasets, evaluated on the full ImageNet validation split [30]. We consider
the original CLIP ViT models [44]: ViT-B/16 and ViT-B/32 are base models of patch size 16 and 32,
respectively; ViT-L/14 and ViT-L/14@336 are large models of patch size 14, where the later (denoted
as ViT-L/14↑) is finetuned with an image size of 336×336. The aforementioned models are trained
on the WIT 400M dataset [44]. We also consider additional models from OpenCLIP [22, 8] trained
on DataComp [16] of 1B images and Data Filtering Network (DFN) [14] of 2B images. Both of these
datasets use filtering strategies to curate clean, higher-quality data. We refer to these models with
an additional suffix: -dcp and -dfn. Ultimately, we can analyze how model (and patch) size and
pretraining datasets affect the information channel. We also consider the CNN-based ResNet (RN)
CLIP models trained on WIT 400M: RN-50, RN-101, RN-50×4 and RN-50×16. The RN models
with (×r) denote width scaling r. We also consider two CLIP ConvNeXt-Base models [33] from
OpenCLIP, trained on LAION-400M [50] (ConvNeXt-B1), and on an aesthetic subset of LAION-5B
[49] (ConvNeXt-B2). In total, our analysis comprises 13 CLIP models.

Quantitative Analysis: We start by examining the MI and its dynamics across models. In Table 3,
we report the MI (applying Eq. 1) and AUC (as described in Section 3.3) for all CLIP models we
analyze. Additionally, we include the dataset size used for training each model and its respective
zero-shot classification accuracy on the ImageNet validation set [30]. We report these metrics for
both PCA and K-means, which consistently show correlation. We sort the models based on their
top-1 zero-shot accuracy. We remind readers that we define stronger shared knowledge based on
higher AUC rather than higher MI. In Figure 5 (detailed further), we provide examples of classes that
support this claim and contribute to this phenomenon. Our first observation is that AUC aligns well

4We find that some classes are overly discriminative, in which multimodal explanations of their neighboring
classes introduce noise. For those classes, we simply do not introduce any additional descriptors to them.
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Table 3: MI and AUC scores for different model families using PCA and K-means evaluated on the
full ImageNet validation split, along with the pretraining data and Top-1 accuracy.

Model Family Model Data Size Top-1 (%) MI AUC
PCA K-means PCA K-means

ViTs ViT-B/32 400M 61.66 7.40 7.26 3.61 3.39
ViT-B/16 400M 67.70 7.50 7.44 3.62 3.53

ViT-B/32-dcp 1B 68.88 7.79 7.65 3.93 3.70
ViT-B/16-dcp 1B 73.37 7.68 7.58 3.99 3.81

ViT-L/14 400M 74.77 7.94 7.89 4.47 4.37
ViT-L/14↑ 400M 76.23 7.96 7.93 4.51 4.44

ViT-B/16-dfn 2B 76.24 8.19 8.11 4.62 4.46
ResNets RN-50 400M 58.42 7.14 7.20 3.23 3.32

RN-101 400M 60.90 7.43 7.53 3.49 3.60
RN-50×4 400M 65.28 7.53 7.58 3.84 3.90

RN-50×16 400M 70.04 7.51 7.63 3.85 4.03
ConvNeXTs CNeXt-B1 400M 65.36 6.47 6.66 2.54 2.80

CNeXt-B2 13B 71.22 7.16 7.56 3.19 3.74

with accuracy, with ViT-B/16-dfn ranking top. Our second observation is that CLIP ViT models are
characterized with stronger shared knowledge than CLIP CNNs (ResNets and ConvNeXts). This
supports the premise that pretraining transformer models, which lack inductive biases, perform better
when trained on larger datasets [12].

To further understand the effect of model size and pretraining datasets on MI dynamics, we divide the
models into two families. We first fix the pretraining data and vary the model and patch size. For this
analysis, we use ViT-B/16, ViT-B/32, ViT-L/14 and ViT-L/14↑ trained on WIT 400M. We show the
curves in Figure 3 (left). As shown, larger models with more patches (either via a smaller patch size
or a via a larger image size) correspond to higher AUC, suggesting that these models are better at
encoding shared knowledge. Next, we fix the model size and vary the pretraining data. The results
are shown in Figure 3 (middle). As shown, larger and higher-quality data lead to improved shared
encoding on ImageNet. In Section G of the Appendix, we also perform analysis on the Places365
[65] and Food101 [5] datasets. The previous observations may be well-known and non-surprising.
Nonetheless, what is noteworthy is the direct relationship established between the strength of the
shared encoding (represented by the AUC) and model size, pretraining data and zero-shot accuracy.
For example, we fit a linear line to the data points to approximate the AUC-accuracy relationship
in Figure 3 (right), and determine the coefficients to be 11.24 and 25.97 for ViT models (blue line).
This suggests that the accuracy is related to the strength by a factor of 11. Similarly, approximating
the AUC-data relationship provides insights into the amount and quality of pretraining data required
to achieve a desired strength of shared knowledge. This principle also extends to model size and
could allow us to design small, efficient models. Finally, this relationship is valuable for model
selection, especially in cases where accuracy alone is insufficient for distinguishing between models
(e.g., models with very similar accuracies such as ViT-L/14↑ and ViT-B/16-dfn). In Table 3 and
Figure 3 (green line), we show that AUC demonstrates a linear correlation with accuracy and model
size within the ResNet family. It is worth noting that AUC-Accuracy relationship only holds within
a given architecture; different architectures (ViT, ResNets, ConvNeXts) have different designs and
ways of learning representation. Therefore, they differ in how they utilize data and encode shared
knowledge. As an example, RN-50×16 includes much more dimensions to store information than
ConvNeXt-B2, and it is reasonable to expect that the shared information in RN-50×16 is stronger,
despite ConvNeXt-B2 achieves a slightly higher accuracy. In fact, the gradual design trajectory of
ConvNeXt [33] was built and tuned towards a higher classification accuracy.

Analyzing Concepts in the Vision Encoder: Although the focus of our work is to interpret and
analyze mutual concepts in the vision and language encoders of CLIP, we can still utilize our
multimodal explanations to inspect internal concepts learned in the vision encoder of CLIP for
individual instances. Figure 4 shows 4 examples, each represented by a distinct visual cluster denoted
by a different color. The corresponding textual description for each visual cluster is provided below,
aligned with its corresponding color. Different from attribution-based techniques [51, 60, 45, 2]
which typically highlight high-level and general features, our multimodal explanations disentangle
the features to offer visually and textually distinctive, fine-grained concepts. An example of such
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Figure 3: MI Dynamics curve comparing model families (left) and pretraining datasets (middle).
Correlation of AUC with zero-shot classification accuracy is shown right for ViTs and ResNets.

large eyes
pointed ears; long, feathered ears
a long, snout-like nose; long whiskers
a thick, double coat of fur that is black and silver
a black head with a white stripe behind the eye

light grey feathers on the body
small, tube-like feet
a beak; a black head with a white stripe behind the eye

often has spots or stripes
a small head with a red and yellow bill
birds or other animals nesting on the cliff

blue plumage; long, narrow tail
a black back and wings; a long, thin strip of 
feathers
long, red bill; a red beak

Figure 4: Qualitative examples of multimodal concepts in the vision encoder. The second-top textual
descriptor may be omitted to avoid clutter.

concepts in Figure 4 are long feathered ears, long whiskers (first example); blue plumage, red beak
(third example). These types of concepts are significantly more beneficial for understanding models
and analyzing MI. More examples of our multimodal concepts are in Section H of the Appendix.

dark fur with light marking four-limbed primatefour-limbed primatefour-limbed primate

si
am

an
g

so
ck

can be various colors, 
patterns and styles

can be various colors, 
patterns and styles

plush texture Decorative 
stitching pattern

Figure 5: Analyzing concepts in different ImageNet classes with Mutual Knowledge

Analyzing Mutual Knowledge across Classes: Next, we show how to make use of our multimodal
explanations and MI dynamics to analyze concepts across a set of images pertaining to a class. In
Figure 5 we show examples of three classes from ImageNet: sock, siamang and crayfish. Results
are averaged across all B images of the class (B = 50 for ImageNet validation set). On the left,
we show the MI curves. Note that, although the initial MI value for siamang is higher than that of
sock, the AUC for sock (2.10) surpasses that of siamang (1.82). This is attributed to the fact that the
curve for siamang starts at a higher point but drops faster at early stages. This shows that considering
MI alone without its dynamics, is not representative of the strength of shared information. Next,
we aim to delve deeper into this analysis using our multimodal explanations. To accomplish this,
we examine the same semantic concept corresponding across all images. In Figure 5 (right), we
showcase the semantic concept representing a gibbon body for the "siamang" class (e.g., dark fur with
light markings; four-limbed primate), visually identified by the red color. Similarly for the "sock"
class, we show the semantic concept of patterns and styles (e.g., various colors, patterns, and styles;
plush texture; decorative pattern), visually identified by the blue color. Analyzing the curves and
the area under them suggests that general concepts such as patterns and styles are better encoded
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than discriminative concepts such as the body of a siamang. This rationale stems from the fact that
CLIP was trained on a dataset from the internet, which is less discriminatory; it is less common to
encounter images of an endangered specie of a gibbon compared to general concepts such as patterns
and styles, which are prevalent characteristics across many objects in the world.

Visualizing Mutual Concepts: Finally, we provide visualizations of the mutual concepts detected
by both vision and language encoders of CLIP in Figure 6. In the first example, we see that mutual
concepts are distinctive to the zero-shot prediction of celo (e.g., handheld musical instrument, strings
stretched across the head, a sound hole), suggesting that both encoders effectively represent the
image and class in the joint space. In the second example, we see that the language encoder is
stronger than the visual encoder at encoding the concept of a rattle snack since it provides related
concepts, while the mutual concepts are weaker (only one mutual concept describes a rattle snack).
These visualizations help us understand the common concepts learned by both encoders and how the
encoders influence each other in the joint space. More examples are in Section I of the Appendix.

Language Encoder 
Text Concepts

Vision Encoder 
Text Concepts

a spiny, egg-laying 
mammal

small, triangular head

a pattern of dark 
spots or bands on the 
body

large, lizard-like 
reptile

large, scaly reptile

a snake with a 
rattle at the end 

of  its tail

large, stocky 
lizard

a large, venomous 
snake

small, slender snake

a large, heavy-bodied 
snake

a snake with a 
distinctive upturned 
nose

small, thin snake

Mutual 
Concepts

square-shaped head

a stinger

a short, thick neck

a music stand attached to 
the piano

a small, handheld 
musical 

instrument

strings stretched 
across the head

musical 
instrument

a body with a 
sound hole

a music stand

a string instrument

strings that are plucked or 
strummed

a sound hole

used as a percussion 
instrument

typically has six strings

Language Encoder 
Text Concepts

Vision Encoder 
Text Concepts

Mutual 
Concepts

Figure 6: Visualizing Vision-Language-Mutual Concepts

5 Conclusion
We proposed an approach for interpreting CLIP models for image classification from the perspective
of mutual knowledge, by analyzing and interpreting the information channel established along with
its dynamics. In the future, our work could be extended to non-contrastive models, or even to two
parts of the same model. Finally, it is important to note that, like any research, our work has its own
set of limitations, which are discussed in Section C of the appendix.
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Appendix

A Ablation Studies

A.1 Feature Facets

We consider three types of vision features f : the tokens and keys of the last attention layer of the
transformer, as well as an ensemble of them. In Figure 1, we show the similarity of the [CLS]
token across all layers for both the tokens and key features of a ViT-B/16. As shown, the token
features of the last layer are dissimilar to all previous layers, while the similarity of the key features is
consistent across all layers. This is rational since token features (a function of the key features) have
to adapt their feature space to align with language features. However, by running object localization
experiments on the full ImageNet validation split, we find that this phenomenon is only present
in large models. In Table 1 we report the CorLoc metric where we fit a bounding box around the
most prominent region and calculate the percentage of samples with an IoU larger than 0.5 between
that box and the ground-truth bounding box. In general, key features are more stable. By further
examining the results, we note that PCA performs significantly worse than Graph Decomposition
(GDC) of the feature affinity matrix, suggesting the presence of complex features that cannot be
captured through linear combinations of dimensions, requiring graph-based approaches to model
higher-order relationships. Therefore, we adopt eigenvector decomposition of the graph affinity
matrix as the primary method for extracting prominent patches.

Tokens Keys

(a) (b)

La
ye
rs

La
ye
rs

LayersLayers

Figure 1: CLIP layer similarity analysis for the
token features (a) and key features (b).

Table 1: Ablation studies on CorLoc for different
feature facets and decomposition methods. GDC:
Graph Decomposition.

ViT-B/16 ViT-L/14↑
Keys (GDC) 54.0 46.9
Keys (PCA) 46.9 39.3
Tokens (GDC) 55.8 30.7

Tokens (PCA) 1.0 30.0
Ensemble (GDC) 54.7 -
Ensemble (PCA) 15.2 -

A.2 Optimal Transport

We test the effectiveness of OT on our multimodal explanations. Let T l represent the detected textual
concepts in an image I for a visual concept l, where 1 ≤ l ≤ L such that T = {T 1, T 2, . . . , TL}.
Since visual concepts describe unique semantic regions (i.e., parts of objects), the textual descriptors
associated with each visual concept should also be unique. To evaluate this, we define the Entropy
metric which measures the diversity of T across all L visual concepts. This metric penalizes textual
concepts that appear repeatedly across two or more visual concepts. A higher value indicates greater
diversity. We present the findings in Table 2. The baseline case maps textual descriptors corresponding
to the visual concepts without any post-processing steps. As shown, this leads to a low entropy and
non-diverse results where some visual concepts are mapped to the same textual descriptor. Figure 2
shows this effect qualitatively. Using OT alleviates this issue and considerably increases the entropy.

Table 2: Entropy scores for ablating Optimal Transport.
PCA K-means

w/o Optimal Transport 1.70 1.70
w/ Optimal Transport 2.33 2.34
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Figure 2: Optimal Transport (OT) diversifies textual concepts across their visual counterparts

A.3 Eigendecomposition and CRF effect

To match the dimensions of the importance map with those of the image, we need to perform
interpolation. However, interpolation usually results in pixel overshooting effects. As an alternative
interpolation technique, we use Conditional Random Fields (CRF) [28] to interpolate the patch-
based importance map to a finer-grained pixel-based map. Prior to this, we remove noisy scattered
patches by extracting the largest fully-connected component (FCC) of the importance map, which
represents the largest primary connected region. A recent work [15] shows that this approach enhances
explainability. It is important to note that both the FCC and CRF preserve the original importance
map’s integrity and do not compromise its faithfulness. This is quantitatively demonstrated in
Table 3 for several ViT and ResNet CLIP models. We first evaluate the effect of interpolating the
binary importance map produced by eigendecomposition using nearest neighbor interpolation. To
perform this evaluation, we blur the non-prominent regions of the image (those with a negative
sign in ef ) using an 11 × 11 Gaussian kernel, effectively removing the details from these areas.
We opt to blur those areas rather than zeroing them out in order to avoid the Out-Of-Distribution
(OOD) problem reported in [21, 46]. We then reassess the zero-shot accuracy. As shown, using
only the most prominenet features identified by eigendecomposition does not drastically reduce the
zero-shot accuracy, with a loss of only 3% on average. This validates that the features obtained by
eigendecomposition are indeed the most important and are the ones that mainly (largely) contribute
to the model’s performance. Next, we show the effect on zero-shot accuracy when taking the FCC,
followed by CRF. As shown, this results in very marginal effects on accuracy compared to Nearest
Neighbor interpolation, indicating that these components does not alter the underlying importance
map. Note that the marginal effect can be either positive, where the FCC enhances zero-shot accuracy,
or negative, where excluding regions other than the fully-connected component reduces accuracy. In
both scenarios, the effect is very minimal and can be considered negligible. Therefore, we decided to
use these two components to achieve better visualizations.

Table 3: First two columns: Baseline ImageNet validation zero-shot accuracy (Base) and the
new accuracy after removing the non-prominent regions from the Nearest-Neighbor Interpolated
importance map (NN Interp.). Last three columns: Taking the fully-connected component (FCC) of
the importance map followed by CRF interpolation leads to very marginal effects compared to (NN
Interp.), indicating that these components do not alter the underlying importance map

Model Base NN Interp. +FCC +CRF ∆

ViT-B/32 61.66 58.09 58.13 58.22 +0.13
ViT-B/16 67.70 64.40 64.30 64.32 - 0.08
ViT-L/14 74.77 72.80 72.75 72.79 - 0.01
RN50 58.42 54.41 54.40 54.43 +0.02
RN101 60.90 56.83 56.84 56.87 +0.03
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A.4 Prompt and LLM Analysis

Since the textual descriptors D are considered as the discrete units that mimic the vision-language
information channel, it is essential to test their quality. In our work, we use the descriptors provided by
[36]. This work provides a set of descriptors for each different dataset. To generate these descriptors,
the work uses GPT-3.5 with the following prompt: What are useful visual features for distinguishing
a category name in a photo?. This work also uses an in-context example to instruct the LLM to
generate structured descriptors (short, distinctive). We generally find that the generated descriptors
are of good quality. To show this, we have conducted an ablation study on different prompts, as well
as different LLMs, using the ImageNet dataset. For each (LLM, prompt) experiment, we measured
the following:

• Zero-shot top-1 and top-5 accuracy: These measure the relevancy of the descriptors to
CLIP, and a higher accuracy implies more relevant descriptors to the class.

• Inter-Class Diversity (InterDiv): Measures the diversity of descriptors across different
classes rather than across a single class.

• Intra-Class Diversity (IntraDiv): This is the cosine similarity between the different
descriptors of a given class, averaged over all ImageNet classes. We used the Sentence
Transformer language encoder to encode the descriptors. Note that, the lower the similarity
is, the more diverse the descriptors are. Therefore, lower is better.

We considered 4 LLMs: GPT-3.5, GPT-4o-mini, GPT-4o, and the latest Llama3.1-8B-Instruct. We
also considered an ensemble of 2 LLMs: GPT-3.5 and GPT-4o-mini, where GPT-3.5 provides context
to GPT-4o-mini, and GPT-4o-mini answers according to its own knowledge as well as the context.
Moreover, we considered 4 prompts (P):

• P1: "What are useful visual features for distinguishing a category name in a photo?"
• P2: "What are the distinctive and physical features of a category name?"
• P3: "What specific attributes distinguish a category name?"
• P4: "Which physical features and attributes make a category name different from others of

the same type?"

The results for a ViT-B/16 are shown in Table 4:

Table 4: Results of different LLMs and prompts using ViT-B/16.
Prompt LLM Top-1 Top-5 InterDiv IntraDiv
P1 GPT-3.5 67.93 91.45 0.345 0.206
P1 GPT-4o-mini 68.39 91.74 0.236 0.172
P1 GPT-4o 68.42 91.66 0.246 0.175
P1 Llama3.1-8B-Instruct 68.19 91.56 0.263 0.184
P2 GPT-4o-mini 68.35 91.69 0.236 0.164
P3 GPT-4o-mini 68.39 91.78 0.231 0.152
P4 GPT-4o-mini 68.56 91.83 0.228 0.151
P4 GPT-3.5 + GPT-4o-mini 68.40 91.68 0.236 0.159

We found that P4 with GPT-4o-mini provides the best results in terms of all metrics. However,
the effect is very marginal (e.g., 0.63 accuracy improvement, and 0.11 diversity improvements).
Therefore, the experiment we used in our work (P1, GPT-3.5) is reliable.

B Derivation of Mutual Information

For ease of notation, denote the set of textual concepts at the vision encoder Dv by X , where
|X| = Lv, and the set of textual concepts at the language encoder Dg by Y , where |Y | = LT . We
remind readers that those concepts are mapped to discrete indices. The MI between X and Y is
therefore:
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I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3)

The entropy is defined as:

H(X) = −
Lv∑
i=1

p(Xi) log(p(Xi)) (4)

In our case, since each unit in X is unique, we have a uniform distribution with equal probability:
p(Xi) =

1
Lv

, and Eq. (3) becomes:

H(X) = −
∑
Lv

1

Lv
log

(
1

Lv

)
(5)

= −
∑
Lv

1

Lv
[log(1)− log(Lv)]

= − 1

Lv

∑
Lv

− log(Lv)

=
1

Lv

∑
Lv

log(Lv)

=
1

Lv
Lv log(Lv)

= log(Lv)

Similarly, each unit in Y is unique, and we have a uniform distribution with equal probability
p(Yi) =

1
LT

. In a similar manner, we obtain:

H(Y ) = log(LT ) (6)

H(X,Y ) is obtained through a contingency table T :

Tij =

{
1 if Xi = Yj , ∀i ∈ Lv,∀j ∈ LT

0 otherwise

p(Xi, Yj) =
Tij∑
i,j Ti,j

(7)

H(X,Y ) = −
Lv∑
i=1

LT∑
j=1

p(Xi, Yj) log(p(Xi, Yj)) (8)

Therefore, Eq. (3) reduces to:

I(X;Y ) = log(Lv) + log(LT ) +H(X;Y ) (9)

C Limitations

Every research work is accompanied by its own set of constraints and limitations that should be
acknowledged and considered. We highlight two limitations of our work. The first is in the multimodal
explanations of the visual encoder. We find that in some cases, the visual concepts identified by
PCA/K-means are noisy and scattered around different parts of the image. We show 4 examples
of this in Figure 3. This in turns leads to the divergence of the textual concept associated to the
noisy visual concept. We approach this problem by considering the largest connected region of
that visual concept as input to the corresponding textual concept identification process. While this

18



alleviates the problem, it still presents visually unappealing results to the user. We tried to address
this problem by considering better clustering techniques such as DBSCAN [13] and Hierarchical
Clustering [37], but this did not show any improvements. We also noticed that this problem is less
severe in self-supervised vision models such as DINO [6, 40].

Another limitation of our work is that it only analyzes zero-shot image classification tasks. However,
there are several tasks that can also be performed with CLIP such as image-text retrieval, image
segmentation and object localization. We leave these tasks to future work.

Figure 3: Noisy Scattered Visual Concepts

D Baselines for Concept-based Multimodal Explanations

In this section, we discuss the baseline methods we formulate for comparing against our multimodal
explanations in the vision encoder. We describe and analyze these baseline here.

D.1 Multimodal Concept Bottlenecks

Concept Bottleneck Models (CBMs) [27, 39] are networks which aim at training an inherently
interpretable network, and typically sacrifice performance (e.g., accuracy) for interpretability. Given
a set of features, they first predict an intermediate set of predefined concepts D, and then use D to
predict the final output (e.g., classification) through a linear layer. Since a linear layer is inherently
explainable, one can explain the prediction by simply identifying concepts in D with high weights to
the prediction. Note that in the case of a linear layer, the weights are also the gradients with respect
to the linear layer’s input.

We first note that this line of work differs from our multimodal explanations; CBMs train a model
to be inherently interpretable, while we explain an already pretrained model without any training.
Some later works involve solely training a linear classifier on top frozen features of a given model,
especially in the realm of CLIP models. One of such works is Label-Free Concept Bottleneck Models
(LF-CBM) [39]. This work learns concept bottlenecks for the CLIP model: First, the CLIP similarity
between an image I and each concept in D is computed to yield U ∈ RD where D is the number
of concepts. Next, a linear classifier is trained on top of U to classify images. However, this does
not make CBM explanations faithful to the existing frozen model which we extract features from
(e.g., CLIP), since training a linear classifier involves modifying the decision-making rule that the
existing model was trained on (zero-shot image classification via retrieval in case of CLIP). Training
a new classifier to predict targets from a set of concepts allows us to understand what concepts the
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new classifier learned, and not what the existing model learned. In fact, the work of [64] (further
discussed in Section J) shows that linear classifiers utilize completely irrelevant textual concepts to
make predictions, highlighting that re-training a linear classifier results in a complete transformation
in the decision-making process of the original model to be explained. Finally, CBMs are typically
uni-modal involving one type of modality (e.g., textual concepts).

Nevertheless, for comparison purposes, we assume a different scenario where we train an interpretable
CBM on top of CLIP features, and modify LF-CBM to suit multimodal concept bottlenecks. We
formulate two baselines which follow exactly the same architecture, shown in Figure 4, but differ in
how the attention mechanism is defined. We discuss its two variants below.
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Figure 4: The MM-CBM baseline we formulate

Multimodal Concept Bottleneck Models (MM-CBM): We encode the set of textual descriptors
D using the CLIP language encoder ϕl(D) followed by a linear projection to yield a set of concept
features Q ∈ RD×q where D is the number of concepts. Q acts as the query to the attention
mechanism. We further encode the image I using the CLIP vision encoder ϕv(I) followed by a
linear projection to yield a set of features K = V ∈ RN×q which act as the keys and values to
the attention mechanism. Note that we use the same facet of features and concept descriptors as
in our multimodal explanations. We then apply cross-attention over the tokens. Specifically, given
the attention scores QKT ∈ RD×N , we apply a softmax operation over N and extract a weighted
summation of tokens for each concept: softmax(QKT )V . The attention output is then fed into
a linear layer W ∈ Rq which outputs a single value for each concept in D. We term this as the
bottleneck output U ∈ RD. In LF-CBM, as mentioned earlier, the bottleneck output U is determined
using the cosine similarity where the values fall within the range of 0 to 1. To achieve a similar
affect, we employ the sigmoid activation function on U . Finally, U is fed to a classifier layer over all
ImageNet classes. We extract the textual concepts by decomposing the prediction into its elements
before the summation: Up = U ⊙ wp where wp ∈ RD are the weights of the predicted class p. We
then take the textual concepts corresponding to the highest values of Up. For each textual concept,
we take the attention weights over its visual tokens N as the corresponding visual concept.

MM-ProtoSim: We recall that our visual concepts are unique; a pixel can be assigned to only
one concept. Moreover, the textual concepts are representative of their visual concepts, but exist
in a different modality. To incorporate this uniqueness into MM-CBM, we draw inspiration from
ProtoSim [38] and enforce a hard assignment of a visual token to one of the D concepts. Given the
attention scores QKT ∈ RD×N , we apply a hard attention over the D textual concepts. In practice,
we relax the discrete distribution and use Gumbel-Softmax [23]. This method involves adding values
sampled from the Gumbel distribution, which models maximums, to the attention logits before
softmax. Therefore, we have gumbel-softmax(QKT )V . We extract textual and corresponding
visual concepts using the same approach as MM-CBM.

We train these baselines on the full ImageNet training set, and report the Top-1 and Top-5 accuracy
results on the ImageNet validation set in Table 5. The standard non-CBM baseline involves training a
MLP to classify images using solely vision features. Although not within the scope of our work, we
find that our multimodal baselines greatly outperforms the recent state-of-the-art LF-CBM [39] on
the challenging ImageNet dataset, a dataset which many other CBM works fail to scale to. We also
show that our MM-CBM not only maintains standard accuracy, but significantly improves it, another
phenomenon in which many previous works including LF-CBM fail to achieve. This shows the
effectiveness of considering multimodal bottlenecks for modeling discriminative tasks. The baselines
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are trained using the Adam optimizer [25] with a batch size of 64 and a learning rate of 1e-4 decayed
using a cosine schedule [34] to 1e-5. We set q = 512.

Table 5: ImageNet validation accuracy on our formulated multimodal baseline models compared
to LF-CBM and Standard baseline. All models use the same CLIP ViT-B/16 model. Vis: Vision
Features, Lan. Language Features, MMB: Multimodal Bottlenecks

Model Vis. Lan. MMB Top-1 Top-5
Standard ✓ ✗ ✗ 73.36 92.75
LF-CBM [39] ✓ ✓ ✗ 71.95 -
MM-CBM ✓ ✓ ✓ 77.88 94.96
MM-ProtoSim ✓ ✓ ✓ 78.79 95.43

D.2 Neuron Annotation

Another line of work [3, 19, 11] investigates individual neuron labeling. These works annotate the
functions of a subset of neurons across various layers of a given neural network with human-friendly
textual concepts, and then perform quantitative analysis to examine the types of concepts that the
model globally learns. This line of work falls into the category of global model explanations. MILAN
[19] involves feeding in a huge set of images (in the order of millions) to a model and inspecting
which set of images does each neuron, in a defined subset of neurons, respond to. Subsequently,
an intensive manual human-labor process is performed to annotate responding neurons with textual
descriptions. Finally, an autoregressive model is trained to generate these descriptions based on the
feature activations of a given neuron across multiple layers. Ultimately, this process defines the
function of a neuron by assigning a textual concept to it.
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Figure 5: Training and Concept Labeling processes of the concept labeler module used in our baseline
to label a feature activation map with a textual description

Similar to all issues discussed in Section 2 in the main paper concerning Natural Language Explana-
tions, neuron annotation methods require training. This renders these methods unfaithful to the model
and more akin to the task of image captioning, with the exception that they are trained on a subset
of features from different layers. This is especially evident in DeViL [11] where an autoregressive
generator is trained on the CC3M image captioning dataset [52] using a subset of features from
different layers implemented by applying Dropout. Furthermore, these models capture biases and
statistical correlations between the features and descriptions, despite achieving high evaluation scores
on Natural Language Generation metrics. This phenomenon is evident by three key observations
from the literature. Firstly, [47] highlighted that trained textual explanation models are characterized
with the shortcut bias learning problem, rendering the textual explanation ineffective. Secondly, there
exists a disparity in performance when a neuron text generator trained on MILAN annotations [19]
using features from one network (e.g., ResNet-101), is used to explain features of a different network
(e.g., ViT). In such scenarios, the achieved results are notably low, often approaching levels of 30%
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Figure 6: Feature activation maps of different neurons of the ViT-B/16. The left-most activation map
represents the highest spatial norm. Neuron 689 with the highest norm always encodes the main
object, while other neurons encode different concepts

accuracy, owing to discrepancies in feature spaces. This discrepancy underscores the fundamental
premise that feature distributions cannot be assumed similar across models. Thirdly, the work of
[64] shows that even non-autoregressive models such as simple linear classifiers use completely
irrelevant textual concepts at the bottleneck to make predictions, showing that training renders the
extracted textual concepts as ineffective. Another challenge in Neuron Annotation arises from the
impracticality of annotating all neurons within a model. Due to this constraint, only a fraction of
neurons can feasibly be annotated. For example, a ViT with 12 layers contains 2048 neurons in each
of its hidden MLP layers, amounting to 24,576 neurons in total. However, MILAN [19] annotates
only 1200 neurons (4% of the total MLP neurons). Consequently, these neuron annotation techniques
offer a narrow view of the model’s global behaviour.

Although this line of work differs from our multimodal explanations, for comparison purposes,
we modify these works to suit our scenario and formulate a baseline which we denote as Feature
Maps. Specifically, we encode an image I using the CLIP vision encoder ϕv(I) to extract features
f ∈ RN×C . Note that the N tokens can be reshaped into a 2-D feature activation map of shape
(H/P , W/P ) where H and W are the height and width of the image I and P is the patch size of ϕv .
We take the corresponding tokens for each neuron in C as the possible visual concepts. For ViT-B/16,
C = 768 which amounts to 768 different visual concepts. We calculate the norm across tokens for
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each neuron, and keep the top-k neurons with the highest norm. In order to label these neurons with a
textual description, we build a simple concept labeler module to classify features into the D textual
descriptors. Note that we use the same facet of features and concept descriptors as in our multimodal
explanations. During training of the concept labeler, we simulate the feature map labeling scenario
where a part of the feature activation map is active. We implement this using DropBlock [17], an
effective dropout technique [58] applicable to CNNs which drops a group of neighboring patches
rather than individual patches. We use the per-class descriptors as ground-truth descriptors and train
the classifier with Binary Cross-Entropy Loss on the full ImageNet training set, and validate it on the
ImageNet validation set. An overview of this process for both training and concept labeling is shown
in Figure 5. The feature activation map of the neuron with the highest norm usually identifies the
main object in the scene, and acts similar to the Fiedler eigenvector we use in Section 3.1 of the main
paper, while the remaining neurons act as the visual concepts we use. We show examples of this
from 6 different images in Figure 6, with the left-most feature activation map representing the highest
spatial norm. For each feature map, we normalize its values to be in the range between 0-1, and mask
out values lower than a threshold of 0.9. We discover that neuron 689 (highest spatial norm) always
encodes the main object, while other neurons are responsible for encoding visual concepts related to
the object. The classifier attains a top-all accuracy of 65.76%, where "top-all" denotes the accuracy
when all textual concepts of a class are accurately predicted. However, it is important to acknowledge
that achieving high accuracy in this context is challenging due to the potential applicability of textual
concepts from images of one class to images from another class. For instance, textual concepts such
as large eyes may be relevant to numerous ImageNet classes, potentially exceeding 200 classes, yet
they are only designated as one of the ground-truth concepts for 34 classes. Consequently, while
predictions remain technically correct, they are penalized in terms of accuracy. Hence, we assess
accuracy at the top-10 level rather than top-all, which involves considering the top-10 predicted
textual concepts and measuring their alignment with the ground-truth concepts. This evaluation yields
an accuracy of 83.84%.

E Evaluation of Concept-based Multimodal Explanations

In order to evaluate our multimodal explanations and compare them with the established baselines
discussed in the previous section, we adopt evaluation metrics commonly used in the literature of
explainable artificial intelligence. The deletion metric [42] starts with the original image and gradually
removes image information (e.g., pixels or patches) deemed most important by the explanation
algorithm. The output score of the predicted class is then plotted as a function of the image
information being removed, resulting in a curve. The Area Under the Curve (AUC) is then computed.
A sharp decrease in this curve (low AUC) generally reflects a faithful explanation to the model. The
intuition behind the deletion metric is that the removal of the "cause" will decrease the probability of
the predicted class as important pixels are gradually removed. The insertion metric follows a similar
process but in reverse, starting with a baseline image which removes the visual information of the
image (e.g., a heavily blurred version of the image), and gradually adds pixels or patches. In this case,
a higher AUC indicates a more faithful explanation.

To adapt these metrics to our multimodal explanations and to the baseline methods, we perform
the following steps: Initially, we rank the concepts in descending order of importance. Since each
multimodal (visual-textual) concept is considered as one entity, the scores of the two modalities should
be interdependent and mutually influential. We therefore compute the product of two similarity scores.
The first score represents the CLIP visual similarity between the image and the visual concept, and
the second represents the CLIP visual-language similarity between the image and textual descriptor.
A visual concept and descriptor both representative will yield a higher score in this ranking process.
Following the ordering of multimodal concepts, we proceed to add (in the case of insertion) or
remove (in the case of deletion) the concepts. Given that the entities in our case are the concepts
rather than individual pixels or patches, this process entails L steps of insertion or deletion, where L
represents the number of concepts. Subsequently, we plot the zero-shot predicted class score against
the concepts being added or removed. It is worth noting that removal of visual information typically
involves zeroing out regions of the image, a practice that some recent studies [21, 46] have found
leads to a change in the curve primarily due to the generation of Out-Of-Distribution (OOD) samples
when portions of the image are zeroed out. To avoid this problem, we opt to blur the concept instead
of zeroing it out. Figure 7 illustrates examples of both insertion and deletion steps along with their
corresponding curves. We additionally incorporate the AccDrop metric proposed in [7] (denoted
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Figure 7: Deletion and Insertion steps generated by removing/adding the visual concepts (left) and
inspecting how the zero-shot predicted class score changes (right). Last insertion step is removed to
avoid clutter. Similarity score is multiplied by 2.5, following [20].

as the Positive Perturbation Test in [7]), which behaves similar to the deletion metric, but keeps
track of the accuracy score rather than the predicted class score. By averaging results across the
ImageNet validation set, this curve illustrates the decrease in validation accuracy as concepts are
removed from the images. Lastly, we present the AccIncrease metric, which stands in contrast to
AccDrop. Evaluation is conducted on the ImageNet validation set, and the results are averaged.

F Visual Prompt Engineering to Encode Regions

Several works in the literature of CLIP [54, 63] propose to perform visual prompt engineering in
the image pixel space directly to encode a specific region of interest rather than encoding the whole
image. These works mainly tackle the task of zero-shot referring expression comprehension and
segmentation. In the simplest case, one could crop the region of interest from the image, and only
feed that region to CLIP. This approach [59], however, removes contextual information and blurs
the resulting cropped image, since the small crop has to be resized to the larger image size which
CLIP expects. Recently, [54] show that by simply drawing a red circle on the region of interest,
the CLIP vision encoder’s attention shifts towards that region, effectively encoding it while also
preserving contextual information and preserving spatial information. This work greatly outperforms
the cropping-based approach. A concurrent work [63] further confirms this by drawing a more
fine-grained boundary rather than a circle, but necessities the need for a strong fine-grained region
selector such a SAM [26]. So we decided to use the circle-based approach.

In addition to the red circle annotation, we follow [54] and additionally include grayscaling and
blurring outside the region of interest (referred to as Reverse-Grayscale and Reverse-Blur in [63],
respectively), and then average the features from the vision encoder of all three visual prompts as
the visual representation of the region. We follow the optimal hyperparameters from [54] and set the
circle thickness to 1.

G MI on other classification datasets

In the main paper, we demonstrated experiments on the ImageNet dataset. In this section, we perform
analysis on additional classification datasets. We first consider Places365 [65], which is a scene
recognition dataset composed of 365 different scene locations. It is well-established that zero-shot
CLIP does not perform well on this dataset, with the highest attainable accuracy of around 44%. We
therefore test whether our mutual knowledge formulation aligns with accuracy in this scenario as well.
In Table 6, we show two families of ViTs. The first is grouped according to the model size with the
pretraining data fixed, and the second grouped among the pretraining data which varies. As shown,
both groups align well with AUC, which further confirms our formulation. Finally, we perform an
analysis on the Food-101 dataset, which classifies different types of food into 101 categories. Here
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we fix the model size (ViT-B) and vary the pretraining data. As shown in Table 7, higher data quality
align well with AUC, which further confirms our formulation on this dataset as well.

Table 6: MI and its dynamics (AUC) on the Places365 dataset
Model Data Size Top-1 (%) MI AUC
Model Size
ViT-B/32 400M 38.25 8.252 2.658
ViT-B/16 400M 38.82 8.655 2.872
ViT-L/14 400M 39.67 9.154 3.427
ViT-L/14↑ 400M 40.36 9.073 3.450
Pretrain Data
ViT-B/32 400M 38.25 8.252 2.658
ViT-B/32-dcp 1B 41.92 8.454 2.681
ViT-B/16-dcp 1B 42.36 8.212 2.683
ViT-B/16-dfn 2B 43.99 8.549 2.900

Table 7: MI and its dynamics (AUC) on the Food-101 dataset.
Method Data Size Top-1 MI AUC
ViT-B/32-dcp 1B 85.81 8.358 2.948
ViT-B/16-dcp 1B 90.30 8.185 3.307
ViT-B/16-dfn 2B 91.24 8.364 3.763

H Additional Qualitative Examples

We show additional Qualitative Examples of our multimodal concept-based explanations in the visual
encoder along with the concept importance map in Figures 8 and ??. Each distinct visual concept is
denoted by a different color, and the corresponding textual description is provided below, aligned with
its corresponding color. Our multimodal explanations provide disentangled visually and textually
fine-grained concepts of the visual features, such as the bird’s nest, bill and body spots in the first
two examples of Figure 8, and the towers, water structure and water jets of the fountain in the last
example of Figure 8.

I Qualitative Examples of Vision-Language-Mutual Concepts

Additional Qualitative example of vision-language-mutual concepts are provided in Figure 10. In
the first example, we see that the two mutual concepts are distinctive of the "flute", suggesting an
effective encoding of the image-class inputs in the joint space. The second example presents a case
where the mutual concepts are general, and not distinctive enough for the prediction of a "moped".
This implies weaker shared knowledge for that prediction.

J Additional Related Work

We discuss an additional related work of analyzing concepts in contrastive vision-language models.
The work of [64] investigates how well contrastive vision-language models such as CLIP learn
textual concepts (denoted as primitive concepts) that together compose the predicted label (denoted
as a compositional concept). This work first builds a Concept Bottleneck model for CLIP, and then
analyzes it. Similar to [39], the bottleneck layer is built by the similarity of an image to all textual
descriptors. A linear model is then trained on top of the similarity output to classify images. A
prediction can then be directly explained by the linear combination of the textual concepts from the
bottleneck layer. Next, a classifier is trained on the binary ground-truth textual concepts (denoting this
model as Oracle-Prim), achieving almost 100% accuracy and validating the hypothesis that a linear
compositional model can be learned from the ground-truth primitive concepts. The quantification of
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Figure 8: Additional Qualitative Examples of our multimodal concept-based explanations in the
visual encoder, along with the concept importance map on the right

primitive concepts learned is measured by the difference between the classifier weights of Oracle-Prim
(the learned classifier weight values when trained and fed with the binary ground-truth concepts) and
the bottleneck model (the learned classifier weight values when trained on the similarity output of
CLIP but fed with the binary ground-truth concepts). A smaller difference implies better performance
of the bottleneck classifier. Note that this measure does not depend on the input, since in both cases
the classifier is fed with the ground-truth textual concepts. They find that the difference is high.
However, when the bottleneck classifier is fed with the similarity output from CLIP (what it was
trained on) rather than the ground-truth concepts, the difference becomes smaller (better), implying
that the classifier is utilizing irrelevant primitive concepts for prediction. To confirm this, they further
evaluate the accuracy between the Oracle-Prim model and the ground-truth concepts, and show that
it is almost perfect (≈97%). Then they evaluate the accuracy between the bottleneck classifier and
the ground-truth concepts, and show that it is very low, even approaching 0%. The final take-away
message is that contrastive vision-language models do not learn primitive concepts well.
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Figure 9: Additional Qualitative Examples of our multimodal concept-based explanations in the
visual encoder, along with the concept importance map on the right
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Figure 10: Qualitative Examples of our vision-language-mutual concepts

However, it is worth noting that this work only studies the joint feature space and using fine-grained
datasets such as CUB [62] in which CLIP is shown to perform poorly. For example, the best CLIP
model (ViT-L/14@336px) achieves a 49.5% zero-shot accuracy on the Birdsnap dataset [4], a fine-
grained dataset for bird classification. Hence, this conclusion cannot be extrapolated to other datasets
such as ImageNet, a general coarse-grained dataset encompassing a diverse set of 1000 objects from
the real-world. Moreover, since this work is based on Concept Bottleneck Models, it inherits the
same problems discussed in Section D.1. Finally, this study measures how well can CLIP dissect
concepts from the joint feature space directly when explicitly trained to do so, while we study the
degree of shared knowledge between the vision and language models which eventually leads to the
alignment in the joint feature space.

K Additional Implementation Details

In section 3.1, we set k = 500 and τ = 1. For analyzing the mutual information and its dynamics in
Section 4.1 in the main paper, we set the number of concepts L = 5 and consider the top 3 textual
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concepts for each visual concept. This results in a maximum of 5× 3 = 15 textual concepts in the
vision encoder, which are used for analyzing the MI dynamics. All baselines use also 5 concepts. For
the CRF, we use the implementation from [29] and leave all parameters as their default settings. The
original OpenAI CLIP models are provided from https://github.com/openai/CLIP.

For the application of CLIP zero-shot image classification with descriptors used in evaluating
the effectiveness of our multimodal explanations, we use the prompt from [47]: how can you
identify a <class label>. Distinctive and physical features describing it
is <descriptor> for both the baseline methods [36, 43] and our method. This prompt has shown
strong performance when class labels are paired with descriptors.

All experiments are ran on a single NVIDIA RTX3090 GPU. Experiments on the full ImageNet
validation set require around 10-11 hours for base ViT models and 20 hours for large ViT models.

L Language Encoder Prompts for Classifiers and Descriptors

The prompts we use for the language encoder for constructing the zero-shot classifiers are shown in
Table 8 and are averaged for each textual representation of the class [CLASS].

Table 8: Prompt templates for ImageNet, Places365, and Food101 datasets.
Dataset Prompt Templates

ImageNet itap of a [CLASS].
a bad photo of the [CLASS].

a origami [CLASS].
a photo of the large [CLASS].
a [CLASS] in a video game.

art of the [CLASS].
a photo of the small [CLASS].

a photo of a [CLASS].

Places365 a photo taken in an [CLASS].
a photo of a [CLASS].

a scene taken in a [CLASS].

Food101 a photo of [CLASS], a type of food.

The prompt we use for the language encoder for constructing the descriptors classifier is:

a photo showing [DES], where [DES] represents the descriptor.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have listed the contributions, importance and motivation of our work in the
introduction section (see 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section C of the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The only theoritical results included is the derivation of the mutual information
in Section B of the Appendix. We have verified that the proof is correct.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To the best of our knowledge, we have described all methods, experiments and
implementation details. Those that did not fit in the main paper have been discussed in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes]

Justification: We have added the link to the code in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: To the best of our knowledge, we have described all experiments and im-
plementation details. Those that did not fit in the main paper have been discussed in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Most of our main experiments are evaluation-based and deterministic, and
there is no randomness involved. However, a small part of our experiments uses K-means
clustering (an alternative to the PCA algorithm we reported for deriving visual concepts),
which is non-deterministic due to its random initialization of clusters. We ran two additional
experiments (using different random seeds) for MI using K-means with the ResNet CLIP
models on the ImageNet validation set, and found that on average, the statistical significance
is ±0.03, which indicates low variability in our results. We have omitted the error bars from
Table 3 as including them causes the table to exceed the page boundaries.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have described this in the last paragraph of Section K in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of Ethics, and to the best of our knowledge, our research
conforms with the code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The limitations of our work discussed in Section C may be considered as
negative impacts as well, because noisy visual concepts may mislead users into incorrect
machine learning decisions. In the same section, we have also discussed possible mitigations
that we tried.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: To the best of our knowledge, we have cited all datasets, methods, codes and
models we used as well as those that inspired us.
Guidelines:

• The answer NA means that the paper does not use existing assets.

33



• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The README.md file in our code provides instructions on how to run our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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