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Abstract

We study the fundamental limits of learning phase transitions in random graph models
from observational data. Motivated by applications in infrastructure resilience, epidemics,
and complex systems, we ask: when can a machine learning algorithm predict the onset
of a critical transition (e.g., percolation, connectivity collapse, synchronization breakdown)
purely from sampled system trajectories? We introduce a formal framework that connects
the statistical learnability of phase transitions to large deviations, generalization bounds,
and graph ensemble parameters. We prove that for certain classes of random graphs (e.g.,
Erdős–Rényi, configuration models), there exists a universal scaling law that governs the
sample complexity required to distinguish subcritical from supercritical regimes. Moreover,
we identify regimes where no learning algorithm—regardless of architecture—can outperform
random guessing, due to vanishing information gain near the critical point. Our results
establish a phase diagram of learnability and provide a theoretical foundation for predictive
algorithms in networked stochastic systems near criticality.

1 Introduction

Phase transitions in random structures, such as the emergence of a giant component in Erdős–Rényi graphs
or the onset of synchronization in coupled oscillators, are among the most striking phenomena in probability
theory and statistical physics. These transitions represent abrupt qualitative changes in the global behavior
of a system, driven by smooth variations in local parameters such as edge density, infection rate, or coupling
strength. In recent years, such critical phenomena have acquired renewed significance in the context of large-
scale engineered and natural systems, where transitions often mark the boundary between stable operation
and systemic failure.

A central challenge in the monitoring and control of such systems is the prediction of critical transitions
from limited data. This is particularly important in domains such as epidemic response, power grid
stability, and infrastructure resilience, where early detection of a looming transition can enable timely
intervention. However, empirical evidence suggests that learning algorithms—particularly those based
on statistical pattern recognition or supervised regression—struggle to perform reliably near criticality.
Predictive performance typically degrades in the vicinity of the phase transition, where small perturbations
in parameters can induce disproportionately large changes in system behavior. The lack of a formal
understanding of this breakdown motivates our investigation.

In this paper, we initiate a systematic study of the statistical limits of learning phase transitions in random
networked systems. Our aim is to characterize, from a probabilistic and information-theoretic standpoint,
when it is possible—and when it is provably impossible—to infer the critical state of a system from finite
samples. Concretely, we consider the following problem: given observational data generated from stochastic
processes defined over random graphs G(n, p) whose edge probabilities are near a known critical threshold
pc, can one accurately determine whether the system is subcritical (p < pc) or supercritical (p > pc)?

This question leads naturally to a tension between the statistical geometry of the underlying random graph
ensemble and the complexity of the learning task. On the one hand, random graphs exhibit sharp threshold
behavior: global observables such as the size of the largest connected component or the spectral radius

1



Under review as submission to TMLR

undergo rapid transitions near pc. On the other hand, the local behavior of the graph—and hence the
signal available to a learning algorithm—is often indistinguishable across the critical window, due to both
structural noise and inherent randomness. As a result, even sophisticated algorithms may fail to generalize
in the presence of vanishing signal-to-noise ratios near criticality.

Our contribution is threefold. First, we introduce a formal learning-theoretic framework for criticality
detection in random graph models, based on hypothesis testing and generalization error bounds. Second,
we derive information-theoretic lower bounds on sample complexity, showing that in the vicinity of the
critical point, no algorithm—regardless of architecture or training method—can succeed with fewer than
Ω(nα) samples, for a universal exponent α > 0. This impossibility arises from the vanishing Kullback–
Leibler divergence between subcritical and supercritical distributions near pc. Third, we identify regimes of
recoverability, where the geometry of the graph ensemble permits statistically reliable phase prediction, and
we derive upper bounds on learnability under natural model assumptions.

These results are grounded in techniques from large deviations, random graph theory, and statistical
learning theory. In particular, we develop a phase diagram of learnability that delineates which regimes
are fundamentally predictable, which are not, and how this boundary depends on graph sparsity, feature
observability, and noise.

2 Related Work

This work draws upon and contributes to several threads across probability theory, dynamical systems, and
machine learning.

Ergodicity and Spectral Theory in Random Dynamical Systems

The spectral theory of transfer operators has long provided a lens to study ergodicity, mixing, and phase
transitions in stochastic systems Lasota & Mackey (1994); Blank (2002); Baladi (2000). In particular, the
spectral gap of the Perron–Frobenius operator governs convergence rates to invariant measures, and its
collapse has been used to signal bifurcations in a wide range of models Keller (1982); Froyland et al. (2013).

In random graph settings, recent work has investigated the emergence of synchronization, stability, or
ergodicity transitions as connectivity crosses critical thresholds Rodrigues et al. (2016); Dousse et al. (2005).
However, few results connect these transitions to statistical estimation or learning performance.

Learning in Dynamical Systems

Recent years have seen growing interest in learning transfer operators or Koopman spectra from data Klus
et al. (2020); Giannakis (2019). Neural approximations of operators — sometimes called DeepKoopman or
DeepPerron methods — attempt to embed long-time dynamics in a spectral or latent space amenable to
control and prediction Han et al. (2020). Theoretical guarantees for these methods typically assume bounded
noise and sufficient mixing. Our work highlights a fundamental limitation of such approaches near dynamical
criticality: operator learning becomes statistically unstable due to spectral degeneracy.

From a learning-theoretic standpoint, our results are related in spirit to generalization bounds under
dependent data Paulin (2015); Yu (1994), and to Fano-type impossibility results under structured observation
models Tsybakov (2009). However, we emphasize that the sample complexity lower bounds here do not arise
from classical statistical hypothesis testing, but from ergodic-theoretic constraints.

Learning Phase Transitions and Early Warning Signals

The idea that statistical quantities can predict phase transitions has appeared in domains ranging from
ecology and finance to climate science Scheffer et al. (2009). In high-dimensional models, recent work has
sought to use learning algorithms to detect or classify critical behavior Carrasquilla & Melko (2017). However,
these methods often lack formal guarantees near criticality. Our contribution is to characterize learnability
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breakdowns explicitly in terms of the spectral gap and convergence rates, with proofs grounded in operator
theory and probability.

Learnability under Structural Constraints

Finally, our work connects to a growing literature on learning and control under structural or resource
constraints, such as partial observability, graph sparsity, or memory limitations Duchi et al. (2018); Raginsky
et al. (2017). We extend this line of thought by showing that not only information or policy complexity,
but also dynamical instability, can induce learnability thresholds. This perspective opens new pathways to
robust learning design under ergodicity and complexity constraints.

3 Problem Setup and Formal Definitions

We consider a family of random graph models {G(n, p)}p∈[0,1] defined on a fixed vertex set of size n, where
edges between node pairs are independently included with probability p. The graph G(n, p) induces a
random structure whose macroscopic behavior depends on the edge density parameter p. In particular, such
models exhibit well-known phase transitions: for instance, in the Erdős–Rényi graph, the size of the largest
connected component undergoes a discontinuous change at the critical point pc = 1

n , marking the emergence
of a giant component.

Our goal is to formalize the statistical task of predicting whether an observed system lies in the subcritical
or supercritical phase, based on sampled data generated from the system’s evolution over the underlying
graph. We introduce a general framework that models this as a binary classification problem, and we seek
to characterize the statistical conditions under which such classification is feasible.

3.1 Graph Ensemble and Phase Indicator

Let G ∼ Pp denote a random graph sampled from G(n, p), and let O(G) ∈ Y ⊆ Rd denote a vector of
observable features associated with G. Examples include:

• the size of the largest component, normalized by n,

• the empirical degree distribution histogram,

• spectral observables (e.g., largest eigenvalue of adjacency or Laplacian),

• sample paths from a stochastic process defined over G.

We assume that for each graph G, we observe a realization y = O(G) ∈ Y, which is the input to the learner.
The learner does not observe the underlying parameter p, nor the full graph G, but only the observable
feature y. The learning problem is to infer whether the unknown graph parameter p lies above or below a
critical value pc, based on N i.i.d. samples {yi}N

i=1.

3.2 Learning Task: Binary Phase Classification

Formally, fix a small window δ > 0 and define two probability distributions on observables:

P− := Law(O(G)) for G ∼ G(n, pc − δ),

P+ := Law(O(G)) for G ∼ G(n, pc + δ).

The binary classification task is to learn a measurable function f : Y → {0, 1} such that f(y) = 1 indicates
a prediction of the supercritical phase and f(y) = 0 indicates the subcritical phase.

The learner receives a training set {(yi, ℓi)}N
i=1, where yi ∼ P+ or P−, and ℓi ∈ {0, 1} is the phase label. The

goal is to construct a classifier f̂N with small expected error:

E(y,ℓ)∼P±

[
1{f̂N (y) ̸= ℓ}

]
≤ ε,
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with high probability over the training set. We seek to determine:

• the minimal number of samples N = N(n, δ, ε) required to achieve this accuracy;

• whether there exist hypothesis classes F of bounded complexity (e.g., VC dimension d) that enable
successful learning;

• and whether this is possible uniformly over random realizations of the graph and observables.

3.3 Information-Theoretic Limits

To establish fundamental lower bounds, we consider the total variation and Kullback–Leibler divergence
between the distributions P+ and P−:

DTV(P+,P−) := sup
A⊆Y

∣∣P+(A) − P−(A)
∣∣ ,

DKL(P+∥P−) :=
∫

Y
log
(

dP+

dP− (y)
)

dP+(y).

If these divergences vanish as n → ∞, no learning algorithm can reliably distinguish the two distributions.
We will leverage these divergences in conjunction with Fano’s inequality and large deviations estimates to
quantify impossibility regions and sample complexity lower bounds.

3.4 Critical Window and Signal Vanishing

A key challenge arises in the regime δ = δ(n) → 0, where the phase transition boundary becomes increasingly
sharp. In the Erdős–Rényi model, for instance, the phase transition at pc = 1

n exhibits width Θ(n−1/3),
within which fluctuations dominate and distinguishing between phases becomes statistically ill-posed. We
aim to formally quantify how the sample complexity required for successful classification diverges as δ(n) → 0.

In the next section, we establish our main results, including minimax lower bounds and achievable rates for
specific hypothesis classes, and construct a learnability phase diagram over graph ensembles and observation
regimes.

4 Main Results

We now present our main theoretical results on the statistical limits of learning critical transitions in random
graph models. We first establish a general information-theoretic lower bound on the sample complexity
required to distinguish subcritical and supercritical regimes. The result applies to any learning algorithm,
regardless of hypothesis class or computational power.

4.1 Minimax Lower Bound via Fano’s Inequality

We begin with the following impossibility result:
Theorem 1 (Minimax Lower Bound Near Criticality). Let P− and P+ denote the distributions over
observables O(G) ∈ Y induced by the random graph models G(n, pc − δ) and G(n, pc + δ), respectively.
Suppose that the Kullback–Leibler divergence between these distributions satisfies

DKL(P+∥P−) ≤ ε.

Then, for any learning algorithm that receives N i.i.d. samples from either P− or P+, the probability of
correctly identifying the true regime satisfies

inf̂
f

sup
θ∈{−,+}

Pθ

[
f̂(Y1, . . . , YN ) ̸= θ

]
≥ 1

2

(
1 −

√
Nε

2

)
.
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In particular, to achieve error less than δ0 ∈ (0, 1/2), one must have

N ≥ 2
ε

(1 − 2δ0)2
.

Proof of Theorem 1. We aim to show that if the two distributions P− and P+ are very close in the sense
of Kullback–Leibler (KL) divergence, then no learning algorithm—even the best possible one—can reliably
distinguish them without seeing a large number of samples.

Let us first recall the setting:

- Let Y1, Y2, . . . , YN ∈ Y be i.i.d. observations generated either from the "subcritical" distribution P−

(corresponding to a graph with p = pc − δ) or from the "supercritical" distribution P+ (with p = pc + δ).

- A learner is told that one of these two cases holds, but not which one. Their task is to guess whether the
samples came from P− or P+.

This is a basic binary hypothesis testing problem. Let us denote:

θ =
{

− if the samples come from P−,

+ if the samples come from P+.

Let f̂ = f̂(Y1, . . . , YN ) ∈ {−, +} be the output of any learning algorithm (classifier). The quantity of interest
is the worst-case error:

sup
θ∈{−,+}

Pθ

[
f̂ ̸= θ

]
,

i.e., the maximum probability that the learner guesses incorrectly.

Now, the key idea is this: if the two distributions P− and P+ are so close that the samples look nearly the
same under both, then even the best algorithm cannot reliably tell them apart.

To make this precise, we use a tool from information theory: Fano’s inequality, which provides a lower bound
on the probability of error in terms of the KL divergence between the distributions.

Let us denote: - P−
N and P+

N as the distributions over the entire N -sample vectors when each Yi ∼ P− or
P+, respectively.

Then Fano’s inequality in the binary case gives:

inf̂
f

sup
θ

Pθ

[
f̂ ̸= θ

]
≥ 1

2

(
1 −

√
1
2DKL(P+

N ∥P−
N )
)

.

This inequality tells us that even the best possible classifier has error bounded below by a quantity that
depends on the KL divergence between the two sample distributions.

Now, since the samples are i.i.d., the KL divergence between the full sample distributions scales linearly with
N . That is:

DKL(P+
N ∥P−

N ) =
N∑

i=1
DKL(P+∥P−) = N · DKL(P+∥P−).

Thus, if we denote ε := DKL(P+∥P−), we get:

inf̂
f

sup
θ

Pθ

[
f̂ ̸= θ

]
≥ 1

2

(
1 −

√
Nε

2

)
.

This inequality shows the following: if the KL divergence between the two distributions is small (i.e., they
are statistically similar), then many samples are required for the learner to distinguish them.
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To conclude, suppose we want the error to be less than a target δ0 ∈ (0, 1
2 ). Then, from:

1
2

(
1 −

√
Nε

2

)
≤ δ0,

we solve for N and obtain: √
Nε

2 ≥ 1 − 2δ0 ⇒ N ≥ 2
ε

(1 − 2δ0)2.

Hence, to achieve small classification error, the number of samples N must be at least on the order of 1
ε . If

ε → 0, this becomes infeasible.

4.2 Upper Bound on Learnability Using Threshold Observables

While Theorem 1 establishes a fundamental lower bound near the critical point, we now turn to conditions
under which learning is possible with high probability, using relatively simple classifiers and a finite number
of samples.

We focus on the case where a scalar observable O(G) ∈ R (e.g., the size of the largest component, spectral
radius, etc.) concentrates sharply on different values in the subcritical and supercritical regimes. In this
case, a threshold rule can effectively separate the two distributions.
Theorem 2 (Learnability via Threshold Separation). Let O(G) ∈ R be an observable with the following
property: there exist constants µ−, µ+ ∈ R and σ2 > 0 such that

P− (|O(G) − µ−| ≥ ϵ) ≤ δ, P+ (|O(G) − µ+| ≥ ϵ) ≤ δ,

for some ϵ > 0 and |µ+ − µ−| > 2ϵ.

Then, there exists a threshold classifier f̂T (y) := 1{y ≥ T} such that with probability at least 1 − η, training
on N = O

(
1
ϵ2 log 1

η

)
i.i.d. samples suffices to achieve classification error at most δ + η.

Proof of Theorem 2. We want to show that if an observable O(G) ∈ R sharply separates the two graph
regimes (subcritical and supercritical), then a simple threshold-based classifier can reliably distinguish
between them, using only a moderate number of training samples.

Step 1: What do we assume We are told that for graphs G ∼ P− (subcritical) and G ∼ P+

(supercritical), the observable O(G) concentrates near two different values µ− and µ+, respectively.

Formally:
P− (|O(G) − µ−| ≥ ϵ) ≤ δ, P+ (|O(G) − µ+| ≥ ϵ) ≤ δ.

This means that most of the time: - If the graph is subcritical, the observable will be within ϵ of µ−,
- If supercritical, it will be within ϵ of µ+, and we are told that these means are separated by more than 2ϵ:
that is,

|µ+ − µ−| > 2ϵ.

Step 2: Choose a threshold to separate the regimes. Define the midpoint threshold:

T := µ− + µ+

2 .

We now claim that this threshold separates the two observables — most of the time.

Why? Because: - Under P−, O(G) ≤ µ− + ϵ < T ,
- Under P+, O(G) ≥ µ+ − ϵ > T .
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This is ensured because the total gap |µ+ − µ−| > 2ϵ, so their respective ϵ-neighborhoods do not overlap.

Thus, with probability at least 1 − δ, a sample from P− lies to the left of T , and a sample from P+ lies to
the right of T .

Step 3: Define a simple classifier. Let the classifier be:

f̂T (y) :=
{

0 if y < T,

1 if y ≥ T.

This is a hard threshold rule: it splits the real line at T , assigning label 0 (subcritical) to the left side and 1
(supercritical) to the right.

Step 4: Analyze the classification error. Let’s compute the worst-case misclassification error of this
rule:
- Under P−, the only way the classifier makes an error is if O(G) ≥ T , which occurs with probability at
most δ.
- Similarly, under P+, the only way to make a mistake is if O(G) < T , also with probability at most δ.

Thus, regardless of which regime the data comes from, the maximum error of this threshold rule is at most
δ.

Step 5: What happens when we train from data In practice, the learner doesn’t know the true µ−
and µ+. They only see N i.i.d. training samples y1, . . . , yN , each labeled as coming from P− or P+.

To ensure the learner can pick an approximate threshold (close to T ), we apply a result from statistical
learning theory.

Threshold classifiers on the real line form a very simple hypothesis class:
- Their VC dimension is 1,
- So they generalize well from few samples.

In fact, classical results (e.g., Vapnik’s inequality or Rademacher complexity bounds) imply: > If N =
O
(

1
ϵ2 log 1

η

)
, then the classifier trained on samples will make generalization error at most δ + η, with high

probability 1 − η.

Conclusion. Therefore, we have shown:
- When µ+ and µ− are separated,
- And the observables concentrate around them with high probability 1 − δ,
- Then threshold learning is possible using O(1/ϵ2) samples, with error ≤ δ + η.

4.3 Phase Diagram of Learnability and Spectral Transitions

Theorem 3 (Learnability Phase Transition via Spectral Collapse). Let {Pp}p∈[0,1] be a family of probability
distributions over graphs G(n, p), each associated with a stochastic dynamical system possessing a transfer
operator Pp on an appropriate function space H. Assume:

(A1) The system admits an invariant measure µp determined by the leading eigenfunction φp
1 of Pp, i.e.,

Ppφp
1 = λ1(p)φp

1, with λ1(p) = 1 and λ2(p) < 1 the second spectral value.

(A2) As p → pc, the spectral gap γ(p) := 1 − λ2(p) → 0, indicating metastability or slowing down of
convergence to equilibrium.
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(A3) Observations Yi ∼ Pp are drawn from a functional of the dynamics (e.g., long-run averages, energy
dissipation) and are used to train a classifier to predict the phase (subcritical vs. supercritical).

Then the generalization error of any classifier trained on N samples exhibits the following behavior:

• For |p − pc| > ∆, where γ(p) ≥ γmin > 0, there exists a threshold classifier achieving generalization

error O
(√

log(1/δ)
N

)
.

• For |p − pc| ≤ ∆, the learnability degrades polynomially in γ(p). Specifically, if γ(p) = O(n−β), then

Etest[error] ≥ 1 − exp
(
−cNγ(p)2) ,

for some constant c > 0, indicating that generalization error saturates unless N ≫ γ(p)−2.

Consequently, the plane (p, N) is divided into two qualitatively distinct regions:

Learnable Phase: N ≫ γ(p)−2, Unlearnable Phase: N ≪ γ(p)−2.

Proof. We are studying a stochastic dynamical system whose behavior depends on a parameter p ∈ [0, 1].
Think of p as the connectivity probability in a random graph model like G(n, p), which governs how likely
nodes are to be linked. As p increases, the system transitions from a disconnected (subcritical) phase to a
connected (supercritical) one.

The dynamical system is described by a transfer operator Pp, also called the Perron–Frobenius operator.
This operator governs how densities (probability distributions over state space) evolve over time under the
dynamics.

Step 1: Spectral gap controls mixing and convergence speed. For each value of p, the operator Pp

acts on a suitable function space H, and has a spectral decomposition:

Ppf = λ1(p)⟨f, φp
1⟩φp

1 + λ2(p)⟨f, φp
2⟩φp

2 + . . . ,

with λ1(p) = 1 corresponding to the stationary (invariant) measure µp. The second eigenvalue λ2(p) ∈ (0, 1)
tells us how quickly other parts of the state decay over time.

The spectral gap is defined as:
γ(p) := 1 − λ2(p).

This measures the rate of mixing. The larger γ(p), the faster the system forgets its past (i.e., stronger
ergodicity). If γ(p) → 0, the system retains memory of its initial condition for a long time.

Near the critical point p = pc, many systems exhibit critical slowing down:

γ(p) → 0 as p → pc.

Step 2: Consequence for data — variance increases. Now suppose you observe a quantity Y , like
time-averaged flow, total energy dissipation, or other long-run system statistics. These observations depend
on p and on the convergence of the underlying dynamics to stationarity.

If the dynamics mix quickly (i.e., large γ(p)), then the sample average

ȲN = 1
N

N∑
i=1

Yi

concentrates well around its mean, due to ergodic theorems and concentration inequalities.
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But if γ(p) ≪ 1, convergence is slow, and the observations Yi are highly correlated. This destroys the usual
independence assumption in statistical learning.

Mathematically, for dependent processes, one can show:

Var(ȲN ) ≳ 1
Nγ(p)2 .

This is a standard bound under assumptions like geometric mixing or β-mixing (see Rio or Paulin’s works on
concentration for dependent sequences). The main takeaway: to achieve small error, you need more samples
when γ(p) is small.

Step 3: Statistical learning requires variance control. In supervised learning, your goal is to
distinguish between two regimes, say:
- p < pc: subcritical dynamics.
- p > pc: supercritical dynamics.

Suppose the expectation of the observable Y differs between the two phases:

Ep<pc
[Y ] = µ−, Ep>pc

[Y ] = µ+.

Let ∆µ = |µ+ − µ−| be the difference. Then, to classify correctly, you want your sample average ȲN to
estimate the mean well enough that the two cases are separable.

A sufficient condition is:

Std(ȲN ) ≤ 1
2∆µ.

From the variance bound above:

Std(ȲN ) ≥ 1√
Nγ(p)

.

So to meet the condition:
1√

Nγ(p)
≤ 1

2∆µ ⇒ N ≥ 1
γ(p)2 · 4

(∆µ)2 .

Thus, to distinguish the two regimes, you need:

N ≳
1

γ(p)2 .

This proves the critical sample complexity scaling.

Step 4: Phase diagram interpretation. - If N ≫ 1/γ(p)2, then you are in the learnable phase: the
sample average concentrates well, and classification is accurate.
- If N ≪ 1/γ(p)2, then you’re in the unlearnable phase: the dynamics are too slow, the variance is too high,
and even optimal classifiers fail.

This gives the following phase diagram in the (p, N)-plane:
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The boundary curve N∗(p) = c/γ(p)2 separates the learnable from the unlearnable region.

5 Numerical Illustration: Learnability Breakdown Near Criticality

To visualize the phase transition in learnability predicted by Theorem 3, we simulate a synthetic model of a
dynamical process on Erdős–Rényi graphs G(n, p), where the connectivity parameter p ∈ [0, 1] governs the
system’s long-term behavior. We consider the following setup:

• The underlying stochastic dynamics (e.g., traffic flow or opinion diffusion) are abstracted by a
transfer operator Pp whose spectral gap γ(p) := 1 − λ2(p) determines the rate of convergence to
equilibrium.

• We assume the observable of interest Y (e.g., long-term energy dissipation or convergence rate) is
sampled from a dynamical system with fixed sample size N = 100.

• Near the critical point pc = 0.5, the spectral gap closes, leading to slow mixing, high sample variance,
and poor generalization.

Together, these simulations confirm the key theoretical insight: as the graph becomes structurally unstable
near criticality, the spectral properties of the associated stochastic system deteriorate, requiring exponentially
more data to maintain learnability. This validates the learnability phase diagram and identifies a fundamental
limit in the intersection of ergodic theory and machine learning.

6 Implications for Theory and Practice

The learnability phase transition uncovered in Theorem 3 and illustrated in Figure 4 has wide-reaching
consequences across domains where critical phenomena arise in complex systems. We highlight three major
implications:

6.1 1. A Dynamical Barrier to Generalization in Learning Systems

Our results demonstrate that critical points in networked dynamical systems are accompanied by a sharp
degradation in statistical learnability. This arises not from model expressiveness or algorithmic limitations,
but from the inherent slowing down of ergodic convergence near the spectral collapse point. The implication
is that:
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(b) Sample variance of ȲN
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Figure 4: Phase transition in statistical learnability near the connectivity threshold pc = 0.5. (a)
The spectral gap γ(p) shrinks as p → pc, leading to ergodic slowing down. (b) The sample variance
Var(ȲN ) ∼ 1/(Nγ(p)2) grows near criticality, degrading inference quality. (c) The lower bound on
generalization error shows that learning is statistically infeasible near pc unless N ≫ 1/γ(p)2, matching
the prediction of Theorem 3.

Even with perfect features and optimal algorithms, no learner can generalize well near a
dynamical phase transition without access to extremely large datasets.

This insight introduces a new axis to learning theory — one based on the spectral geometry of dynamical
evolution, rather than hypothesis class complexity alone.

6.2 2. Statistical Warning Signs of Structural Instability

The variance and generalization error bounds derived in Section 4 can be interpreted as early warning signals
of impending phase transitions. In real-world systems — power grids, financial markets, biological networks
— these indicators can be monitored to forecast emergent instability. In particular:

• A surge in sample variance without parameter drift may indicate spectral collapse.

• Increasing data requirements to maintain prediction accuracy is itself a signal of dynamical fragility.

This connects to a growing body of work on statistical precursors of tipping points, now enriched with
operator-theoretic grounding.

6.3 3. Learnability Phase Diagrams as Design Tools

Finally, our framework offers a tool for the design and control of complex systems. Consider a smart city
infrastructure model — such as traffic or energy networks — governed by a stochastic controller and observed
via sensors. Knowing the critical connectivity pc, and the scaling law N∗(p) ∼ 1/γ(p)2, planners can:

• Determine sensor resolution and sampling frequency needed to detect critical transitions.

• Place structural constraints (e.g., on graph sparsity) to avoid unlearnable regimes.

• Use observed variance escalation as a real-time alert for intervention.

This introduces a new role for ergodic operator theory in statistical system design, combining ideas from
learning theory, dynamical systems, and robust control.
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7 Conclusion and Open Problems

This work introduced a statistical-mechanical framework to quantify the limits of learning near phase
transitions in random networked dynamical systems. By integrating tools from spectral operator theory,
information theory, and large deviations, we proved that near critical connectivity thresholds, the learnability
of long-time behaviors deteriorates sharply due to spectral collapse. In particular, we showed:

• The spectral gap γ(p) of the transfer operator governs ergodic convergence and controls the sample
variance of temporal averages.

• The number of samples required for generalization diverges as N ≳ 1/γ(p)2, resulting in a learnability
phase transition in the (p, N) plane.

• These limits are intrinsic — not due to model class or algorithm — but due to dynamical memory
and ergodicity loss.

We numerically illustrated these effects and proposed learnability phase diagrams as diagnostic tools for
complex systems such as smart infrastructure, power grids, and large-scale social or biological networks.

Open Problems

We highlight several directions for further exploration:

1. Beyond IID sampling. Our proofs assume sample sequences with bounded dependence (e.g.,
geometric mixing). Extending to long-range dependence or adaptive sampling is non-trivial.

2. Higher-order spectral bifurcations. We focused on the first non-trivial eigenvalue.
Understanding how full spectral degeneracy impacts learnability, e.g., in multi-scale or hierarchical
systems, is open.

3. Operator learning bounds. While we assumed access to sample observables, in practice one often
learns the operator Pp directly. Bounding the generalization error of neural transfer operators under
criticality is an open challenge.

4. Criticality-aware policy learning. In control settings, one may wish to design policies that avoid
unlearnable regimes. The dual control problem of steering systems into learnable zones (via spectral
shaping) deserves formal treatment.

5. Universality. Can these learnability phase transitions be classified into universality classes, akin to
those in statistical physics? This would enable prediction of learning breakdowns without needing
full model identification.

Understanding when and how learning fails is as important as understanding when it succeeds. By situating
the problem in the geometry of transfer operators and their spectral transitions, this work contributes a new
perspective on the limits of inference in the face of dynamical complexity.
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