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ABSTRACT

Partial Observability—where agents can only observe partial information about
the true underlying state of the system—is ubiquitous in real-world applications
of Reinforcement Learning (RL). Theoretically, learning a near-optimal policy un-
der partial observability is known to be hard in the worst case due to an exponen-
tial sample complexity lower bound. Recent work has identified several tractable
subclasses that are learnable with polynomial samples, such as Partially Observ-
able Markov Decision Processes (POMDPs) with certain revealing or decodability
conditions. However, this line of research is still in its infancy, where (1) unified
structural conditions enabling sample-efficient learning are lacking; (2) existing
sample complexities for known tractable subclasses are far from sharp; and (3)
fewer sample-efficient algorithms are available than in fully observable RL.
This paper advances all three aspects above for Partially Observable RL in the
general setting of Predictive State Representations (PSRs). First, we propose a
natural and unified structural condition for PSRs called B-stability. B-stable PSRs
encompasses the vast majority of known tractable subclasses such as weakly re-
vealing POMDPs, low-rank future-sufficient POMDPs, decodable POMDPs, and
regular PSRs. Next, we show that any B-stable PSR can be learned with polyno-
mial samples in relevant problem parameters. When instantiated in the afore-
mentioned subclasses, our sample complexities improve substantially over the
current best ones. Finally, our results are achieved by three algorithms simultane-
ously: Optimistic Maximum Likelihood Estimation, Estimation-to-Decisions, and
Model-Based Optimistic Posterior Sampling. The latter two algorithms are new
for sample-efficient learning of POMDPs/PSRs. We additionally design a variant
of the Estimation-to-Decisions algorithm to perform sample-efficient all-policy
model estimation for B-stable PSRs, which also yields guarantees for reward-free
learning as an implication.

1 INTRODUCTION

Partially Observable Reinforcement Learning (RL)—where agents can only observe partial infor-
mation about the true underlying state of the system—is ubiquitous in real-world applications of
RL such as robotics (Akkaya et al., 2019), strategic games (Brown & Sandholm, 2018; Vinyals
et al., 2019; Berner et al., 2019), economic simulation (Zheng et al., 2020), and so on. Partially
observable RL defies standard efficient approaches for learning and planning in the fully observ-
able case (e.g. those based on dynamical programming) due to the non-Markovian nature of the
observations (Jaakkola et al., 1994), and has been a hard challenge for RL research.

Theoretically, it is well-established that learning in partial observable RL is statistically hard in the
worst case—In the standard setting of Partially Observable Markov Decision Processes (POMDPs),
learning a near-optimal policy has an exponential sample complexity lower bound in the horizon
length (Mossel & Roch, 2005; Krishnamurthy et al., 2016), which in stark contrast to fully observ-
able MDPs where polynomial sample complexity is possible (Kearns & Singh, 2002; Jaksch et al.,

˚Equal contribution.
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Table 1: Comparisons of sample complexities for learning an ε near-optimal policy in POMDPs and PSRs.
Definitions of the problem parameters can be found in Section 3.2. The last three rows refer to the m-step
versions of the problem classes (e.g. the third row considers m-step αrev-revealing POMDPs). The current best
results within the last four rows are due to Zhan et al. (2022); Liu et al. (2022a); Wang et al. (2022); Efroni
et al. (2022) respectively1. All results are scaled to the setting with total reward in r0, 1s.

Problem Class Current Best Ours

ΛB-stable PSR - rO
`

dPSRAUAH
2 logNΘ ¨ Λ2

B{ε2
˘

αpsr-regular PSR rO
`

d4PSRA
4U9

AH
6 logpNΘOq{pα6

psrε
2
q
˘

rO
`

dPSRAU2
AH

2 logNΘ{pα2
psrε

2
q
˘

αrev-revealing tabular POMDP rO
`

S4A6m´4H6 logNΘ{pα4
revε

2
q
˘

rO
`

S2AmH2 logNΘ{pα2
revε

2
q
˘

ν-future-suff. rank-dtrans POMDP rO
`

d4transA
5m`3l`1H2

plogNΘq
2

¨ ν4γ2
{ε2

˘

rO
`

dtransA
2m´1H2 logNΘ ¨ ν2

{ε2
˘

decodable rank-dtrans POMDP rO
`

dtransA
mH2 logNG{ε2

˘

rO
`

dtransA
mH2 logNΘ{ε2

˘

2010; Azar et al., 2017). A later line of work identifies various additional structural conditions or
alternative learning goals that enable sample-efficient learning, such as reactiveness (Jiang et al.,
2017), revealing conditions (Jin et al., 2020a; Liu et al., 2022c; Cai et al., 2022; Wang et al., 2022),
decodability (Du et al., 2019; Efroni et al., 2022), and learning memoryless or short-memory poli-
cies (Azizzadenesheli et al., 2018; Uehara et al., 2022b).

Despite these progresses, research on sample-efficient partially observable RL is still at an early
stage, with several important questions remaining open. First, to a large extent, existing tractable
structural conditions are mostly identified and analyzed in a case-by-case manner and lack a more
unified understanding. This question has just started to be tackled in the very recent work of Zhan
et al. (2022), who show that sample-efficient learning is possible in the more general setting of
Predictive State Representations (PSRs) (Littman & Sutton, 2001)—which include POMDPs as a
special case—with a certain regularity condition. However, their regularity condition is defined
in terms of additional quantities (such as “core matrices”) not directly encoded in the definition of
PSRs, which makes it unnatural in many known examples and unable to subsume important tractable
problems such as decodable POMDPs.

Second, even in known sample-efficient problems such as revealing POMDPs (Jin et al., 2020c; Liu
et al., 2022a), existing sample complexities involve large polynomial factors of relevant problem
parameters that are likely far from sharp. Third, relatively few principles are known for designing
sample-efficient algorithms in POMDPs/PSRs, such as spectral or tensor-based approaches (Hsu
et al., 2012; Azizzadenesheli et al., 2016; Jin et al., 2020c), maximum likelihood or density esti-
mation (Liu et al., 2022a; Wang et al., 2022; Zhan et al., 2022), or learning short-memory poli-
cies (Efroni et al., 2022; Uehara et al., 2022b). This contrasts with fully observable RL where the
space of sample-efficient algorithms is much more diverse (Agarwal et al., 2019). It is an important
question whether we can expand the space of algorithms for partially observable RL.

This paper advances all three aspects above for partially observable RL. We define B-stablility, a
natural and general structural condition for PSRs, and design sharp algorithms for learning any
B-stable PSR sample-efficiently. Our contributions can be summarized as follows.

• We identify a new structural condition for PSRs termed B-stability, which simply requires its B-
representation (or observable operators) to be bounded in a suitable operator norm (Section 3.1).
B-stable PSRs subsume most known tractable subclasses such as revealing POMDPs, decodable
POMDPs, low-rank future-sufficient POMDPs, and regular PSRs (Section 3.2).

• We show that B-stable PSRs can be learned sample-efficiently by three algorithms simultane-
ously with sharp sample complexities (Section 4): Optimistic Maximum Likelihood Estimation
(OMLE), Explorative Estimation-to-Decisions (EXPLORATIVE E2D), and Model-based Opti-
mistic Posterior Sampling (MOPS). To our best knowledge, the latter two algorithms are first
shown to be sample-efficient in partially observable RL.

• Our sample complexities improve substantially over the current best when instantiated in both
regular PSRs (Section 4.1) and known tractable subclasses of POMDPs (Section 5). For ex-
ample, for m-step αrev-revealing POMDPs with S latent states, our algorithms find an ε near-
optimal policy within rO

`

S2Am logN {pα2
revε

2q
˘

episodes of play (with S2{α2
rev replaced by

1For ν-future-sufficient POMDPs, Wang et al. (2022)’s sample complexity depends on γ, which is an addi-
tional l-step past-sufficiency parameter that they require.
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SΛ2
B if measured in B-stability), which improves significantly over the current best result of

rO
`

S4A6m´4 logN {pα4
revε

2q
˘

. A summary of such comparisons is presented in Table 1.

• As a variant of the E2D algorithm, we design the ALL-POLICY MODEL-ESTIMATION E2D algo-
rithm that achieves sample-efficient all-policy model estimation—and as an application, reward-
free learning—for B-stable PSRs (Section 4.2 & Appendix H.2).

• Technically, our three algorithms rely on a unified sharp analysis of B-stable PSRs that involves a
careful error decomposition in terms of its B-representation, along with a new generalized ℓ2-type
Eluder argument, which may be of future interest (Appendix B).

Related work Our work is closely related to the long lines of work on sample-efficient learning of
fully/partially observable RL (with/without function approximation), especially the lines of work on
POMDPs and PSRs. We review these related works in Appendix A due to the space limit.

2 PRELIMINARIES

Sequential decision processes with observations An episodic sequential decision process is spec-
ified by a tuple

␣

H,O,A,P, trhuHh“1

(

, where H P Zě1 is the horizon length; O is the observa-
tion space with |O| “ O; A is the action space with |A| “ A; P specifies the transition dynam-
ics, such that the initial observation follows o1 „ P0p¨q P ∆pOq, and given the history τh :“
po1, a1, ¨ ¨ ¨ , oh, ahq up to step h, the observation follows oh`1 „ Pp¨|τhq; rh : O ˆ A Ñ r0, 1s is
the reward function at h-th step, which we assume is a known deterministic function of poh, ahq.

A policy π “ tπh : pOˆAqh´1 ˆO Ñ ∆pAquHh“1 is a collection of H functions. At step h P rHs,
an agent running policy π observes the observation oh and takes action ah „ πhp¨|τh´1, ohq P ∆pAq

based on the history pτh´1, ohq “ po1, a1, . . . , oh´1, ah´1, ohq. The agent then receives their reward
rhpoh, ahq, and the environment generates the next observation oh`1 „ Pp¨|τhq based on τh “

po1, a1, ¨ ¨ ¨ , oh, ahq. The episode terminates immediately after the dummy observation oH`1 “

odum is generated. We use Π to denote the set of all deterministic policies, and identify ∆pΠq as
both the set of all policies and all distributions over deterministic policies interchangeably. For any
ph, τhq, let Ppτhq :“

ś

h1ďh Ppoh1 |τh1´1q, πpτhq :“
ś

h1ďh πh1 pah1 |τh1´1, oh1 q, and let Pπpτhq :“
Ppτhq ˆ πpτhq denote the probability of observing τh (for the first h steps) when executing π. The
value of a policy π is defined as the expected cumulative reward V pπq :“ Eπr

řH
h“1 rhpoh, ahqs.

We assume that
řH

h“1 rhpoh, ahq ď 1 almost surely for any policy π.

POMDPs A Partially Observable Markov Decision Process (POMDP) is a special sequential de-
cision process whose transition dynamics are governed by latent states. An episodic POMDP is
specified by a tuple tH,S,O,A, tThuHh“1, tOhuHh“1, trhuHh“1, µ1u, where S is the latent state space
with |S| “ S, Ohp¨|¨q : S Ñ ∆pOq is the emission dynamics at step h (which we identify as an
emission matrix Oh P ROˆS ), Thp¨|¨, ¨q : S ˆ A Ñ ∆pSq is the transition dynamics over the latent
states (which we identify as transition matrices Thp¨|¨, aq P RSˆS for each a P A), and µ1 P ∆pSq

specifies the distribution of initial state. At each step h, given latent state sh (which the agent cannot
observe), the system emits observation oh „ Ohp¨|shq, receives action ah P A from the agent, emits
the reward rhpoh, ahq, and then transits to the next latent state sh`1 „ Thp¨|sh, ahq in a Markov
fashion. Note that a POMDP can be fully described by the parameter θ :“ pT,O, µ1q.

2.1 PREDICTIVE STATE REPRESENTATIONS

We consider Predictive State Representations (PSRs) (Littman & Sutton, 2001), a broader class of
sequential decision processes that generalize POMDPs by removing the explicit assumption of latent
states, but still requiring the system dynamics to be described succinctly by a core test set.

PSR, core test sets, and predictive states A test t is a sequence of future observations and actions
(i.e. t P T :“

Ť

WPZě1
OW ˆ AW´1). For some test th “ poh:h`W´1, ah:h`W´2q with length

W ě 1, we define the probability of test th being successful conditioned on (reachable) history τh´1

as Ppth|τh´1q :“ Ppoh:h`W´1|τh´1; dopah:h`W´2qq, i.e., the probability of observing oh:h`W´1

if the agent deterministically executes actions ah:h`W´2, conditioned on history τh´1. We follow
the convention that, if Pπpτh´1q “ 0 for any π, then Ppt|τh´1q “ 0.
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Definition 1 (PSR, core test sets, and predictive states). For any h P rHs, we say a set Uh Ă T
is a core test set at step h if the following holds: For any W P Zě1, any possible future (i.e., test)
th “ poh:h`W´1, ah:h`W´2q P OW ˆ AW´1, there exists a vector bth,h P RUh such that

Ppth|τh´1q “ xbth,h, rPpt|τh´1qstPUh
y, @τh´1 P T h´1 :“ pO ˆ Aqh´1. (1)

We refer to the vector qpτh´1q :“ rPpt|τh´1qstPUh
as the predictive state at step h (with convention

qpτh´1q “ 0 if τh´1 is not reachable), and q0 :“ rPptqstPU1
as the initial predictive state. A (linear)

PSR is a sequential decision process equipped with a core test set tUhuhPrHs.

The predictive state qpτh´1q P RUh in a PSR acts like a “latent state” that governs the transition
Pp¨|τh´1q through the linear structure (1). We define UA,h :“ ta : po,aq P Uh for some o P
Ť

WPN` OW u as the set of action sequences (possibly including an empty sequence) in Uh, with
UA :“ maxhPrHs |UA,h|. Further define UH`1 :“ todumu for notational simplicity. Throughout the
paper, we assume the core test sets pUhqhPrHs are known and the same within the PSR model class.

B-representation We define the B-representation of a PSR, a standard notion for PSRs (also known
as the observable operators (Jaeger, 2000)).
Definition 2 (B-representation). A B-representation of a PSR with core test set pUhqhPrHs is a set
of matrices2 tpBhpoh, ahq P RUh`1ˆUhqh,oh,ah

,q0 P RU1u such that for any 0 ď h ď H , policy
π, history τh “ po1:h, a1:hq P T h, and core test th`1 “ poh`1:h`W , ah`1:h`W´1q P Uh`1, the
quantity Ppτh, th`1q, i.e. the probability of observing o1:h`W upon taking actions a1:h`W´1, admits
the decomposition

Ppτh, th`1q “ Ppo1:h`W |dopa1:h`W´1qq “ eJ
th`1

¨ Bh:1pτhq ¨ q0, (2)

where eth`1
P RUh`1 is the indicator vector of th`1 P Uh`1, and

Bh:1pτhq :“ Bhpoh, ahqBh´1poh´1, ah´1q ¨ ¨ ¨B1po1, a1q.

It is a standard result (see e.g. Thon & Jaeger (2015)) that any PSR admits a B-representation, and
the converse also holds—any sequential decision process admitting a B-representation on test sets
pUhqhPrHs is a PSR with core test set pUhqhPrHs (Proposition D.1). However, the B-representation
of a given PSR may not be unique. We also remark that the B-representation is used in the structural
conditions and theoretical analyses only, and will not be explicitly used in our algorithms.

Rank An important complexity measure of a PSR is its PSR rank (henceforth also “rank”).
Definition 3 (PSR rank). Given a PSR, its PSR rank is defined as dPSR :“ maxhPrHs rankpDhq,
where Dh :“ rqpτhqsτhPT h P RUh`1ˆT h

is the matrix formed by predictive states at step h P rHs.

The PSR rank measures the inherent dimension3 of the space of predictive state vectors, which
always admits the upper bound dPSR ď maxhPrHs |Uh|, but may in addition be much smaller.

POMDPs as low-rank PSRs As a primary example, all POMDPs are PSRs with rank at
most S (Zhan et al., 2022, Lemma 2). First, Definition 1 can be satisfied trivially by choos-
ing Uh “

Ť

1ďWďH´h`1 tpoh, ah, . . . , oh`W´1qu as the set of all possible tests, and bth,h “

eth P RUh as indicator vectors. For concrete subclasses of POMDPs, we will consider alter-
native choices of pUhqhPrHs with much smaller cardinalities than this default choice. Second,
to compute the rank (Definition 3), note that by the latent state structure of POMDPs, we have
Ppth`1|τhq “

ř

sh`1
Ppth`1|sh`1qPpsh`1|τhq for any ph, τh, th`1q. Therefore, the associated ma-

trix Dh “ rPpth`1|τhqspth`1,τhqPUh`1ˆT h always has the following decomposition:

Dh “ rPpth`1|sh`1qspth`1,sh`1qPUh`1ˆS ˆ rPpsh`1|τhqspsh`1,τhqPSˆT h ,

which implies that dPSR “ maxhPrHs rankpDhq ď S.

Learning goal We consider the standard PAC learning setting, where we are given a model class
of PSRs Θ and interact with a ground truth model θ‹ P Θ. Note that, as we do not put fur-
ther restrictions on the parametrization, this setting allows any general function approximation for

2This definition can be generalized to continuous Uh, where Bhpoh, ahq P LpL1
pUhq, L1

pUh`1qq are
linear operators instead of (finite-dimensional) matrices.

3This definition using matrix ranks may be further relaxed, e.g. by considering the effective dimension.
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the model class. For any model class Θ, we define its (optimistic) covering number NΘpρq for
ρ ą 0 in Definition C.4. Let Vθpπq denote the value function of policy π under model θ, and
πθ :“ argmaxπPΠ Vθpπq denote the optimal policy of model θ. The goal is to learn a policy pπ
that achieves small suboptimality V‹ ´ Vθ‹ ppπq within as few episodes of play as possible, where
V‹ :“ Vθ‹ pπθ‹ q. We refer to an algorithm as sample-efficient if it finds an ε-near optimal policy
within polyprelevant problem parameters, 1{εq4 episodes of play.

3 PSRS WITH B-STABILITY

We begin by proposing a natural and general structural condition for PSR called B-stability (or also
stability). We show that B-stable PSRs encompass and generalize a variety of existing tractable
POMDPs and PSRs, and can be learned sample-efficiently as we show in the sequel.

3.1 THE B-STABILITY CONDITION

For any PSR with an associated B-representation, we define its B-operators tBH:huhPrHs as

BH:h : RUh Ñ RpOˆAq
H´h`1

, q ÞÑ rBH:hpτh:Hq ¨ qsτh:HPpOˆAqH´h`1 .

Operator BH:h maps any predictive state q “ qpτh´1q at step h to the vector BH:hq “

pPpτh:H |τh´1qqτh:H
which governs the probability of transitioning to all possible futures, by proper-

ties of the B-representation (cf. (17) & Corollary D.2). For each h P rHs, we equip the image space
of BH:h with the Π-norm: For a vector b indexed by τh:H P pO ˆ AqH´h`1, we define

}b}Π :“ maxπ̄
ř

τh:HPpOˆAqH´h`1 π̄pτh:Hq |bpτh:Hq| , (3)

where the maximization is over all policies π̄ starting from step h (ignoring the history τh´1) and
π̄pτh:Hq “

ś

hďh1ďH π̄h1 pah1 |oh1 , τh:h1´1q. We further equip the domain RUh with a fused-norm
} ¨ }˚, which is defined as the maximum of p1, 2q-norm and Π1-norm5:

}q}˚
:“ maxt}q}1,2 , }q}Π1 u, (4)

}q}1,2 :“
`
ř

aPUA,h

`
ř

o:po,aqPUh
|qpo,aq|

˘2˘1{2
, }q}Π1 :“ maxπ̄

ř

tPUh
π̄ptq |qptq| , (5)

where Uh :“ tt P Uh : Et1 P Uh such that t is a prefix of t1u.

We now define the B-stability condition, which simply requires the B-operators tBH:huhPrHs to have
bounded operator norms from the fused-norm to the Π-norm.
Definition 4 (B-stability). A PSR is B-stable with parameter ΛB ě 1 (henceforth also ΛB-stable) if
it admits a B-representation with associated B-operators tBH:huhPrHs such that

sup
hPrHs

max
}q}˚“1

}BH:hq}Π ď ΛB. (6)

When using the B-stability condition, we will often take q “ q1pτh´1q ´ q2pτh´1q to be the dif-
ference between two predictive states at step h. Intuitively, Definition 4 requires that the propagated
Π-norm error }BH:hpq1 ´ q2q}Π to be controlled by the original fused-norm error }q1 ´ q2}˚.

The fused-norm }¨}˚ is equivalent to the vector 1-norm up to a |UA,h|1{2-factor (despite its seemingly
involved form): We have }q}˚ ď }q}1 ď |UA,h|1{2 }q}˚ (Lemma D.6), and thus assuming a relaxed
condition max}q}1“1 }BH:h}Π ď Λ will also enable sample-efficient learning of PSRs. However,
we consider the fused-norm in order to obtain the sharpest possible sample complexity guarantees.
Finally, all of our theoretical results still hold under a more relaxed (though less intuitive) weak
B-stability condition (Definition D.4), with the same sample complexity guarantees. (See also the
additional discussions in Appendix D.2.)

4For the m-step versions of our structural conditions, we allow an exponential dependence on m but not H .
Such a dependence is necessary, e.g. in m-step decodable POMDPs (Efroni et al., 2022).

5The Π1-norm is in general a semi-norm.
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3.2 RELATION WITH KNOWN SAMPLE-EFFICIENT SUBCLASSES

We show that the B-stability condition encompasses many known structural conditions of PSRs and
POMDPs that enable sample-efficient learning. Throughout, for a matrix A P Rmˆn, we define its
operator norm }A}pÑq :“ max}x}pď1 }Ax}q , and use }A}p :“ }A}pÑp for shorthand.

Weakly revealing POMDPs (Jin et al., 2020a; Liu et al., 2022a) is a subclass of POMDPs that
assumes the current latent state can be probabilistically inferred from the next m emissions.
Example 5 (Multi-step weakly revealing POMDPs). A POMDP is called m-step αrev-weakly re-
vealing (henceforth also “αrev-revealing”) with αrev ď 1 if maxhPrH´m`1s }M:

h}2Ñ2 ď α´1
rev , where

for h P rH ´m` 1s, Mh P ROmAm´1
ˆS is the m-step emission-action matrix at step h, defined as

rMhspo,aq,s :“ Ppoh:h`m´1 “ o|sh “ s, ah:h`m´2 “ aq,@po,aq P Om ˆ Am´1, s P S. (7)
We show that any m-step αrev-weakly revealing POMDP is a ΛB-stable PSR with core test sets
Uh “ pO ˆ Aqmintm´1,H´hu ˆ O, and ΛB ď

?
Sα´1

rev (Proposition D.7). A similar result holds for
the ℓ1 variant of the revealing condition (see Appendix D.3.1). ♢

When the transition matrix Th of the POMDP has a low rank structure, Wang et al. (2022) show that
a subspace-aware generalization of the ℓ1-revealing condition—the future-sufficiency condition—
enables sample-efficient learning of POMDPs with possibly enormous state/observation spaces (see
also Cai et al. (2022)). We consider the following generalized definition of future-sufficiency.
Example 6 (Low-rank future-sufficient POMDPs). We say a POMDP has transition rank dtrans if for
each h P rH´1s, the transition kernel of the POMDP has rank at most dtrans (i.e. maxh rankpThq ď

dtrans). It is clear that low-rank POMDPs with transition rank dtrans has PSR rank dPSR ď dtrans.

A transition rank-dtrans (henceforth rank-dtrans) POMDP is called m-step ν-future-sufficient with
ν ě 1, if for h P rH´1s, there exists M6

h P RSˆUh such that M6

hMhTh´1 “ Th´1 and }M6

h}1Ñ1 ď

ν, where Mh is the m-step emission-action matrix defined in (7). 6

We show that any m-step ν-future sufficient rank-dtrans POMDP is a B-stable PSR with core test
sets Uh “ pO ˆ Aqmintm´1,H´hu ˆ O, dPSR ď dtrans, and ΛB ď

?
Am´1ν (Proposition D.12). ♢

Decodable POMDPs (Efroni et al., 2022), as a multi-step generalization of Block MDPs (Du et al.,
2019), assumes the current latent state can be perfectly decoded from the recent m observations.
Example 7 (Multi-step decodable POMDPs). A POMDP is called m-step decodable if
there exists (unknown) decoders ϕ‹ “ tϕ‹

huhPrHs, such that for every reachable trajectory
ps1, o1, a1, ¨ ¨ ¨ , sh, ohq we have sh “ ϕ‹

h pzhq, where zh “ pomphq, amphq, ¨ ¨ ¨ , ohq and mphq “

maxth ´ m ` 1, 1u. We show that any m-step decodable POMDP is a B-stable PSR with core test
sets Uh “ pO ˆ Aqmintm´1,H´hu ˆ O and ΛB “ 1 (Proposition D.17). ♢

Finally, Zhan et al. (2022) define the following regularity condition for general PSRs.
Example 8 (Regular PSRs). A PSR is called αpsr-regular if for all h P rHs there exists a core
matrix Kh P RUh`1ˆrankpDhq, which is a column-wise sub-matrix of Dh such that rankpKhq “

rankpDhq and maxhPrHs }K:

h}1Ñ1 ď α´1
psr . We show that any αpsr-regular PSR is ΛB-stable with

ΛB ď
?
UAα

´1
psr (Proposition D.18). ♢

We emphasize that B-stability not only encompasses αpsr-regularity, but is also strictly more expres-
sive. For example, decodable POMDPs are not αpsr-regular unless with additional assumptions on
K:

h (Zhan et al., 2022, Section 6.5), whereas they are B-stable with ΛB “ 1 (Example 7). Also,
any αrev-revealing POMDP is αpsr-regular with some α´1

psr ă 8, but with α´1
psr potentially not poly-

nomially bounded by α´1
rev (and other problem parameters) due to the restriction of Kh being a

column-wise sub-matrix of Dh; By contrast it is B-stable with ΛB ď
?
Sα´1

rev (Example 5).

4 LEARNING B-STABLE PSRS

In this section, we show that B-stable PSRs can be learned sample-efficiently, achieved by three
model-based algorithms simultaneously. We instantiate our results to POMDPs in Section 5.

6It is straightforward to generalize this example to the case when S and O are infinite by replacing vectors
with L1 integrable functions, and matrices with linear operators between these spaces.
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Algorithm 1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE)

1: Input: Model class Θ, parameter β ą 0.
2: Initialize: Θ1 “ Θ, D “ tu.
3: for iteration k “ 1, . . . ,K do
4: Set pθk, πkq “ argmaxθPΘk,π Vθpπq.
5: for h “ 0, . . . ,H ´ 1 do
6: Set exploration policy πk

h,exp :“ πk ˝h UnifpAq ˝h`1 UnifpUA,h`1q.
7: Execute πk

h,exp to collect a trajectory τk,h, and add pπk
h,exp, τ

k,hq into D.
8: Update confidence set

Θk`1 “

"

pθ P Θ :
ř

pπ,τqPD logPπ
pθ
pτq ě maxθPΘ

ř

pπ,τqPD logPπ
θ pτq ´ β

*

.

Output: pπout :“ Unifp
␣

πk
(

kPrKs
q.

4.1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE)

The OMLE algorithm is proposed by Liu et al. (2022a) for learning revealing POMDPs and
adapted7 by Zhan et al. (2022) for learning regular PSRs, achieving polynomial sample complex-
ity (in relevant problem parameters) in both cases. We show that OMLE works under the broader
condition of B-stability, with significantly improved sample complexities.

Algorithm and theoretical guarantee The OMLE algorithm (described in Algorithm 1) takes in
a class of PSRs Θ, and performs two main steps in each iteration k P rKs:

1. (Optimism) Construct a confidence set Θk Ď Θ, which is a superlevel set of the log-likelihood
of all trajectories within dataset D (Line 8). The policy πk is then chosen as the greedy policy
with respect to the most optimistic model within Θk (Line 4).

2. (Data collection) Execute exploration policies pπk
h,expq0ďhďH´1, where each πk

h,exp is defined
via the ˝h notation as follows: Follow πk for the first h ´ 1 steps, take a uniform action
UnifpAq at step h, take an action sequence sampled from UnifpUA,h`1q at step h ` 1, and
behave arbitrarily afterwards (Line 6). All collected trajectories are then added into D (Line 7).

Intuitively, the concatenation of the current policy πk with UnifpAq and UnifpUA,h`1q in Step 2
above is designed according to the structure of PSRs to foster exploration.
Theorem 9 (Guarantee of OMLE). Suppose every θ P Θ is ΛB-stable (Definition 4) and the true
model θ‹ P Θ has rank dPSR ď d. Then, choosing β “ C logpNΘp1{KHq{δq for some absolute
constant C ą 0, with probability at least 1´ δ, Algorithm 1 outputs a policy pπout P ∆pΠq such that
V‹ ´ Vθ‹ ppπoutq ď ε, as long as the number of episodes

T “ KH ě O
´

dAUAH
2 logpNΘp1{T q{δqι ¨ Λ2

B{ε2
¯

, (8)

where ι :“ log p1 `KdUAΛBRBq, with RB :“ maxht1,max}v}1“1

ř

o,a }Bhpo, aqv}1u.

Theorem 9 shows that OMLE is sample-efficient for any B-stable PSRs—a broader class than in
existing results for the same algorithm (Liu et al., 2022a; Zhan et al., 2022)—with much sharper
sample complexities than existing work when instantiated to their settings. Importantly, we achieve
the first polynomial sample complexity that scales with Λ2

B dependence B-stability parameter (or
regularity parameters alike8). Instantiating to αpsr-regular PSRs, using ΛB ď

?
UAα

´1
psr (Exam-

ple 8), our result implies a rOpdAU2
A logNΘ{pα2

psrε
2qq sample complexity (ignoring H and ι9).

This improves significantly over the rOpd4A4U9
A logpNΘOq{pα6

psrε
2qq result of Zhan et al. (2022).

7Named CRANE in (Zhan et al., 2022).
8Uehara et al. (2022b) achieves an AMσ´2

1 dependence for learning the optimal memory-M policy in (their)
σ1-revealing POMDPs, which is however easier than learning the globally optimal policy considered here.

9The log-factor ι contains additional parameter RB that is not always controlled by ΛB; this quantity also
appears in Zhan et al. (2022); Liu et al. (2022b) but is controlled by their α´1

psr or γ´1 respectively. Nevertheless,
for all of our POMDP instantiations, RB is polynomially bounded by other problem parameters so that ι is a
mild log-factor. Further, our next algorithm EXPLORATIVE E2D avoids the dependence on RB (Theorem 10).
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Overview of techniques The proof of Theorem 9 (deferred to Appendix G) builds upon a sharp
analysis for B-stable PSRs: 1) We use a more delicate choice of norm for bounding the errors (in the
B operators) yielded from performance difference arguments; 2) We develop a generalized ℓ2-type
Eluder argument that is sharper than the ℓ1-Eluder argument of Liu et al. (2022a); Zhan et al. (2022).
A more detailed overview of techniques is presented in Appendix B.

4.2 EXPLORATIVE ESTIMATION-TO-DECISIONS (EXPLORATIVE E2D)

Estimation-To-Decisions (E2D) is a general model-based algorithm that is sample-efficient for any
interactive decision making problem (including MDPs) with a bounded Decision-Estimation Co-
efficient (DEC), as established in the DEC framework by Foster et al. (2021). However, the E2D
algorithm has not been instantiated on POMDPs/PSRs. We show that B-stable PSRs admit a sharp
DEC bound, and thus can be learned sample-efficiently by a suitable E2D algorithm.

EDEC & EXPLORATIVE E2D algorithm We consider the Explorative DEC (EDEC) proposed in
the recent work of Chen et al. (2022), which for a PSR class Θ is defined as

edecγpΘq “ sup
µP∆pΘq

inf
pexpP∆pΠq

poutP∆pΠq

sup
θPΘ

!

Eπ„pout
rVθpπθq ´ Vθpπqs ´ γEπ„pexp

Eθ̄„µ

“

D2
H

`

Pπ
θ ,Pπ

θ̄

˘‰

)

,

where D2
HpPπ

θ ,Pπ
θ̄

q :“
ř

τH
pPπ

θ pτHq1{2 ´ Pπ
θ̄

pτHq1{2q2 denotes the squared Hellinger distance be-
tween Pπ

θ and Pπ
θ̄

. Intuitively, the EDEC measures the optimal trade-off on model class Θ between
gaining information by an “exploration policy” π „ pexp and achieving near-optimality by an “out-
put policy” π „ pout. Chen et al. (2022) further design the EXPLORATIVE E2D algorithm, a general
model-based RL algorithm with sample complexity scaling with the EDEC.

We sketch the EXPLORATIVE E2D algorithm for a PSR class Θ as follows (full description in Al-
gorithm 2): In each episode t P rT s, we maintain a distribution µt P ∆pΘ0q over an optimistic cover
prP,Θ0q of Θ with radius 1{T (cf. Definition C.4), which we use to compute two policy distributions
pptexp, p

t
outq by minimizing the following risk:

pptout, p
t
expq “ argmin

ppout,pexpqP∆pΠq2
sup
θPΘ

Eπ„pout
rVθpπθq ´ Vθpπqs ´ γEπ„pexp

Eθt„µt

“

D2
HpPπ

θ ,Pπ
θtq

‰

.

Then, we sample policy πt „ ptexp, execute πt and collect trajectory τ t, and update the model distri-
bution µt using a Tempered Aggregation scheme, which performs a Hedge update with initialization
µ1 “ UnifpΘ0q, the log-likelihood loss with rPπt

θ p¨q denoting the optimistic likelihood associated
with model θ P Θ0 and policy πt (cf. Definition C.4), and learning rate η ď 1{2:

µt`1pθq 9θ µ
tpθq ¨ exp

´

η log rPπt

θ pτ tq
¯

.

After T episodes, we output the average policy pπout :“
1
T

řT
t“1 p

t
out.

Theoretical guarantee We provide a sharp bound on the EDEC for B-stable PSRs, which implies
that EXPLORATIVE E2D can also learn them sample-efficient efficiently.
Theorem 10 (Bound on EDEC & Guarantee of EXPLORATIVE E2D). Suppose Θ is a PSR class
with the same core test sets tUhuhPrHs, and each θ P Θ admits a B-representation that is ΛB-stable
and has PSR rank at most d. Then we have

edecγpΘq ď OpdAUAΛ
2
BH

2{γq.

As a corollary, with probability at least 1 ´ δ, Algorithm 2 outputs a policy pπout P ∆pΠq such that
V‹ ´ Vθ‹ ppπoutq ď ε, as long as the number of episodes

T ě O
`

dAUAΛ
2
BH

2 logpNΘp1{T q{δq{ε2
˘

. (9)

The sample complexity (9) matches OMLE (Theorem 9) and has a slight advantage in avoiding the
log factor ι therein. In return, the d in Theorem 10 needs to upper bound the PSR rank of all models
in Θ, whereas the d in Theorem 9 only needs to upper bound the rank of the true model θ‹. We also
remark that EXPLORATIVE E2D explicitly requires an optimistic covering of Θ as an input to the
algorithm, which may be another disadvantage compared to OMLE (which uses optimistic covering

8
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implicitly in the analyses only). The proof of Theorem 10 (in Appendix I.2) relies on mostly the
same key steps as for analyzing the OMLE algorithm (overview in Appendix B).

Extension: Reward-free learning & All-policy model estimation Chen et al. (2022) also de-
sign the ALL-POLICY MODEL-ESTIMATION E2D algorithm for reward-free RL (Jin et al., 2020b)
and (a harder related task) all-policy model estimation, with sample complexity scaling with the
All-policy Model-estimation DEC (AMDEC) of the model class. We show that for B-stable PSRs,
the AMDEC (43) can be upper bounded similar to the EDEC, and thus ALL-POLICY MODEL-
ESTIMATION E2D (Algorithm 3) can be used to learn stable PSRs in a reward-free manner (Theo-
rem H.4 & Appendix H.2).

4.3 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (MOPS)

Finally, we show that MOPS—a general model-based algorithm originally proposed for MDPs
by Agarwal & Zhang (2022)—can learn B-stable PSRs with the same sample complexity as
OMLE and EXPLORATIVE E2D modulo minor differences (Theorem H.6 & Appendix H.3). The
analysis is parallel to that of EXPLORATIVE E2D, building on insights from Chen et al. (2022).

5 EXAMPLES: SAMPLE COMPLEXITY OF LEARNING POMDPS

We illustrate the sample complexity of OMLE and EXPLORATIVE E2D given in Theorem 9 & 10
(with MOPS giving similar results) for learning an ε near-optimal policy in the tractable POMDP
subclasses presented in Section 3.2, and compare with existing results. (Obtaining the rates for
OMLE also require bounds on the factor RB, which can be found in Appendix D.)

Weakly revealing tabular POMDPs m-step αrev-weakly revealing tabular POMDPs are B-stable
PSRs with ΛB ď

?
Sα´1

rev , dPSR ď S, and UA “ Am´1 (Example 5). Therefore, both Theo-
rem 9 & 10 achieve sample complexity rO

`

S2AmH2 logNΘ{pα2
revε

2q
˘

. This improves substantially
over the current best result rOpS4A6m´4H6 logNΘ{pα4

revε
2qq of Liu et al. (2022a, Theorem 24). For

tabular POMDPs, we further have logNΘ ď rOpHpS2A` SOqq.

Low-rank future-sufficient POMDPs m-step ν-future-sufficient rank-dtrans POMDPs are B-stable
PSRs with ΛB ď

?
UAν, dPSR ď dtrans, and UA “ Am´1 (Example 6). Therefore, Theorem 9 & 10

achieve sample complexity rO
`

dtransA
2m´1H2 logNΘ ¨ ν2{ε2

˘

. This improves substantially over
the rOpd2transA

5m`3l`1H2plogNΘq2 ¨ ν4γ2{ε2q achieved by Wang et al. (2022), which requires an
extra l-step γ-past-sufficiency assumption that we do not require.

Decodable low-rank POMDPs m-step decodable POMDPs with transition rank dtrans are B-stable
PSRs with ΛB “ 1, dPSR ď dtrans, and UA “ Am´1 (Example 7). Therefore, Theorem 9 & 10
achieve sample complexity rO

`

dtransA
mH2 logNΘ{ε2

˘

. Compared with the sample complexity up-
per bound rOpdtransA

mH2 logNG{ε2q of Efroni et al. (2022), the only difference is that their cov-
ering number NG is for the value class while NΘ is for the model class. However, this difference
is nontrivial if the model class admits a much smaller covering number than the value class re-
quired for a concrete problem. For example, for tabular decodable POMDPs, using dtrans ď S and
logNΘ ď rOpHpS2A`SOqq, we achieve the first rOpAmpolypH,S,O,Aq{ε2q sample complexity,
which resolves the open question of Efroni et al. (2022).

Besides the above, our results can be further instantiated to latent MDPs (Kwon et al. (2021), as a
special case of revealing POMDPs) and linear POMDPs (Cai et al., 2022) and improve over existing
results, which we present in Appendix D.3.2 & D.3.4.

6 CONCLUSION

This paper proposes B-stability—a new structural condition for PSRs that encompasses most of the
known tractable partially observable RL problems—and designs algorithms for learning B-stable
PSRs with sharp sample complexities. We believe our work opens up many interesting questions,
such as the computational efficiency of our algorithms, alternative (e.g. model-free) approaches for
learning B-stable PSRs, or extensions to multi-agent settings.
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A RELATED WORK

Learning POMDPs Due to the non-Markovian nature of observations, policies in POMDPs in
general depend on the full history of observations, and thus are much harder to learn than in fully
observable MDPs. It is well-established that learning a near-optimal policy in POMDPs is indeed
statistically hard in the worst-case, due to a sample complexity lower bound that is exponential in
the horizon (Mossel & Roch, 2005; Krishnamurthy et al., 2016). Algorithms achieving such upper
bounds are developed in (Kearns et al., 1999; Even-Dar et al., 2005). Poupart & Vlassis (2008); Ross
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et al. (2007) develop Bayesian methods to learn POMDPs, while Azizzadenesheli et al. (2018) con-
sider learning the optimal memoryless policies with policy gradient methods. Sample-efficient al-
gorithms for learning POMDPs have also been developed in Hsu et al. (2012); Azizzadenesheli
et al. (2016); Guo et al. (2016); Xiong et al. (2021); Jahromi et al. (2022); These works assume
exploratory data or reachability assumptions, and thus do not address the challenge of exploration.

For learning POMDPs in the online (exploration) setting, sample-efficient algorithms have been pro-
posed under various structural conditions, including reactiveness (Jiang et al., 2017), revealing con-
ditions (Jin et al., 2020a; Liu et al., 2022a;c), revealing (future/past-sufficiency) and low rank (Cai
et al., 2022; Wang et al., 2022), decodablity (Efroni et al., 2022), latent MDP (Kwon et al., 2021),
learning short-memory policies (Uehara et al., 2022b), and deterministic transitions (Uehara et al.,
2022a). Our B-stability condition encompasses most of these structural conditions, through which
we provide a unified analysis with significantly sharper sample complexities (cf. Section 3 & 5). We
further remark that for tabular revealing POMDPs, our sample complexities are minimax optimal
in the accuracy ε and the revealing constant, and have at most a small polynomial gap in S,O,A
factors from the minimax optimal rate, due to the lower bounds established in the work of Chen
et al. (2023) (see e.g. their Table 1) after the initial appearance of this work.

For the computational aspect, planning in POMDPs is known to be PSPACE-compete (Papadim-
itriou & Tsitsiklis, 1987; Littman, 1994; Burago et al., 1996; Lusena et al., 2001). The recent
work of Golowich et al. (2022b;a) establishes the belief contraction property in revealing POMDPs,
which leads to algorithms with quasi-polynomial statistical and computational efficiency. Uehara
et al. (2022a) design computationally efficient algorithms under the deterministic latent transition
assumption. We remark that computational efficiency is beyond the scope of this paper, but is an
important direction for future work.

Extensive-Form Games with Imperfect Information (EFGs; (Kuhn, 1953)) is an alternative formu-
lation of partial observability in sequential decision-making. EFGs can be formulated as Partially
Observable Markov Games (the multi-agent version of POMDPs (Liu et al., 2022c)) with a tree-
structure. Learning from bandit feedback in EFGs has been recently studied in Farina et al. (2021);
Kozuno et al. (2021); Bai et al. (2022a;b); Song et al. (2022), where the sample complexity scales
polynomially in the size of the game tree (typically exponential in the horizon). This line of results
is in general incomparable to ours as their tree structure assumption is different from B-stability.

Learning PSRs PSRs is proposed in Littman & Sutton (2001); Singh et al. (2012); Rosencrantz
et al. (2004); Boots et al. (2013) as a general formulation of partially observable systems, following
the idea of Observable Operator Models (Jaeger, 2000). POMDPs can be seen as a special case
of PSRs (Littman & Sutton, 2001). Algorithms for learning PSRs have been designed assuming
reachability or exploratory data, including spectral algorithms (Boots et al., 2011; Zhang et al.,
2021; Jiang et al., 2018), supervised learning (Hefny et al., 2015), and others (Hamilton et al., 2014;
Thon & Jaeger, 2015; Grinberg et al., 2018). Closely related to us, the very recent work of Zhan
et al. (2022) develops the first sample-efficient algorithm for learning PSRs in the online setting
assuming under a regularity condition. Our work provides three algorithms with sharper sample
complexities for learning PSRs, under the more general condition of B-stability.

A concurrent work by Liu et al. (2022b) (released on the same day as this work) also identifies a
general class of “well-conditioned” PSRs that can be learned sample-efficiently by the OMLE algo-
rithm (Liu et al., 2022a). Our B-stability condition encompasses and is slightly more relaxed than
their condition (consisting of two parts), whose part one is similar to the operator norm requirement
in B-stability with a different choice of input norm, and which requires an additional second part.

Next, our sample complexity is much tighter than that of Liu et al. (2022b), on both general well-
conditioned/B-stable PSRs and the specific examples encompassed (such as revealing POMDPs).
For example, for the general class of “γ well-conditioned PSRs” considered in their work, our
results imply a rO

`

dAU2
AH

2 logNΘ{pγ2ε2q
˘

sample complexity, whereas their result scales as
rO
`

d2A5U3
AH

4 logNΘ{pγ4ε2q
˘

(extracted from their proofs, cf. Appendix D.4). This originates
from several differences between our techniques: First, Liu et al. (2022b)’s analysis of the OMLE
algorithm is based on an ℓ1-type operator error bound for PSRs, combined with an ℓ1-Eluder ar-
gument, whereas our analysis is based on a new stronger ℓ2-type operator error bound for PSRs
(Proposition F.2) combined with a new generalized ℓ2-Eluder argument (Proposition E.1), which
together results in a sharper rate. Besides, our ℓ2-Eluder argument also admits an in-expectation de-
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coupling form as a variant (Proposition E.6) that is necessary for bounding the EDEC (and hence the
sample complexity of the EXPLORATIVE E2D algorithm) for B-stable PSRs; it is unclear whether
their ℓ1-Eluder argument can give the same results. Another difference is that our performance de-
composition and Eluder argument are done on a slightly difference choice of vectors from Liu et al.
(2022b), which is the main reason for our better 1{γ dependency (or ΛB dependency for B-stable
PSRs); See Appendix B for a detailed overview of our technique. Further, in terms of algorithms, Liu
et al. (2022b) only study the OMLE algorithm, whereas we study both OMLE and two alternative
algorithms Explorative E2D & MOPS in addition, which enjoy similar guarantees (with minor dif-
ferences) as OMLE. In summary, Liu et al. (2022b) do not overlap with our contributions (2) and
(3) highlighted in our abstract.

Finally, complementary to our work, Liu et al. (2022b) identify new concrete problems such as ob-
servable POMDPs with continuous observations, and develop new techniques to show that they fall
into both of our general PSR frameworks, and thus tractable to sample-efficient learning. In particu-
lar, their result implies that this class is contained in (an extension of) the low-rank future-sufficient
POMDPs defined in Definition D.11, if we suitably extend the formulation in Definition D.11 to the
continuous observation setting by replacing vectors with L1-integrable functions and matrices with
linear operators.

RL with function approximation (Fully observable) RL with general function approximation has
been extensively studied in a recent line of work (Jiang et al., 2017; Sun et al., 2019; Du et al., 2021;
Jin et al., 2021; Foster et al., 2021; Agarwal & Zhang, 2022; Chen et al., 2022), where sample-
efficient algorithms are constructed for problems admitting bounds in certain general complexity
measures. While POMDPs/PSRs can be cast into their settings by treating the history pτh´1, ohq

as the state, prior to our work, it was highly unclear whether any sample-efficient learning results
can be deduced from their results due to challenges in bounding the complexity measures (Liu
et al., 2022a). Our work answers this positively by showing that the Decision-Estimation Coefficient
(DEC; Foster et al. (2021)) for B-stable PSRs is bounded, using an explorative variant of the DEC
defined by Chen et al. (2022), thereby showing that their EXPLORATIVE E2D algorithm and the
closely related MOPS algorithm (Agarwal & Zhang, 2022) are both sample-efficient for B-stable
PSRs. Our work further corroborates the connections between E2D, MOPS, and OMLE identified
in (Chen et al., 2022) in the setting of partially observable RL.

B OVERVIEW OF TECHNIQUES

The proof of Theorem 9 consists of three main steps: a careful performance decomposition into
certain B-errors, bounding the squared B-errors by squared Hellinger distances, and a generalized
ℓ2-Eluder argument. The proof of (the EDEC bound in) Theorem 10 follows similar steps except
for replacing the final Eluder argument with a decoupling argument (Proposition E.6).

Step 1: Performance decomposition By the standard excess risk guarantee for MLE, our choice
of β “ OplogpNΘp1{T q{δqq guarantees with probability at least 1 ´ δ that θ‹ P Θk for all k P rKs

(Proposition G.2(a)). Thus, the greedy step (Line 4 in Algorithm 1) implies valid optimism: V‹ ď

Vθkpπkq. We then perform an error decomposition (Proposition F.1):

V‹ ´ Vθ‹ pπkq ď Vθkpπkq ´ Vθ‹ pπkq ď DTV

´

Pπk

θk ,Pπk

θ‹

¯

ď
řH

h“0 Eτh´1„πk

”

E‹
k,hpτh´1q

ı

, (10)

where E‹
k,0 :“ 1

2

›

›Bk
H:1

`

qk
0 ´ q‹

0

˘
›

›

Π
, and

E‹
k,hpτh´1q :“max

π

1

2

ÿ

oh,ah

πpah|ohq
›

›Bk
H:h`1

`

Bk
hpoh, ahq ´ B‹

hpoh, ahq
˘

q‹pτh´1q
›

›

Π
, (11)

where for the ground truth PSR θ‹ and the OMLE estimates θk from Algorithm 1, we have defined
respectively tB‹

h,q
‹
0u and tBk

h,q
k
0u as their B-representations, and tB‹

H:hu and tBk
H:hu as the cor-

responding B-operators. (10) follows by expanding the Pπk

θk pτq and Pπk

θ‹ pτq (within the TV distance)
using the B-representation and telescoping (Proposition F.1). This decomposition is similar as the
ones in Liu et al. (2022a); Zhan et al. (2022), and more refined by keeping the Bk

H:h`1 term in (11)
(instead of bounding it right away), and using the Π-norm (3) instead of the ℓ1-norm as the error
metric.
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Step 2: Bounding the squared B-errors By again the standard fast-rate guarantee of MLE in

squared Hellinger distance (Proposition G.2(b)), we have
řk´1

t“1

řH
h“0D

2
HpPπt

h,exp

θk ,Pπt
h,exp

θ‹ q ď 2β
for all k P rKs. Next, using the B-stability of the PSR, we have for any 1 ď t ă k ď K that
(Proposition F.2)

řH
h“0 Eπt

”

E‹
k,hpτh´1q2

ı

ď 32Λ2
BAUA

řH
h“0D

2
H

ˆ

Pπt
h,exp

θk ,Pπt
h,exp

θ‹

˙

. (12)

Plugging the MLE guarantee into (12) and summing over t P rk ´ 1s yields that for all k P rKs,

řk´1
t“1

řH
h“0 Eπt

”

E‹
k,hpτh´1q2

ı

ď O
`

Λ2
BAUAβ

˘

. (13)

(13) is more refined than e.g. Liu et al. (2022a, Lemma 11), as (13) controls the second moment of
Eθ,h, whereas their result only controls the first moment of a similar error.

Step 3: Generalized ℓ2-Eluder argument We now have (13) as a precondition and bounding (10)
as our target. The only remaining difference is that (13) controls the error E‹

k with respect to
tπtutďk´1, whereas (10) requires controlling the error E‹

k with respect to πk.

To this end, we perform a generalized ℓ2-Eluder dimension argument adapted to the structure of the
function E‹

k ’s (Proposition E.1), which implies that when dPSR ď d,
˜

k
ÿ

t“1

Eπt

“

E‹
t,hpτh´1q

‰

¸2

À dι ¨

˜

k `

k
ÿ

t“1

t´1
ÿ

s“1

Eπs

“

E‹
t,hpτh´1q2

‰

¸

, @pk, hq P rKs ˆ rHs. (14)

Note that such an ℓ2-type Eluder argument is allowed precisely as our precondition (13) is in ℓ2
whereas our target (10) only requires an ℓ1 bound. In comparison, Liu et al. (2022a); Zhan et al.
(2022) only obtain a precondition in ℓ1, and thus has to perform an ℓ1-Eluder argument which
results in an additional d factor in the final sample complexity. Combining (10), (13) (summed over
k P rKs) and (14) completes the proof of Theorem 9.

C TECHNICAL TOOLS

C.1 TECHNICAL TOOLS

Lemma C.1 (Hellinger conditioning lemma (Chen et al., 2022, Lemma A.4)). For any pair of
random variable pX,Y q, it holds that

EX„PX

“

D2
H

`

PY |X ,QY |X

˘‰

ď 2D2
H pPX,Y ,QX,Y q .

The following strong duality of (generalized) bilinear function is standard, e.g. it follows from the
proof of Foster et al. (2021, Proposition 4.2).
Theorem C.2 (Strong duality). Suppose that X , Y are two topological spaces, such that X is
discrete and Y is finite (with discrete topology). Then for a function f : X ˆ Y Ñ R that is
uniformly bounded, it holds that

sup
XP∆0pX q

inf
Y P∆pYq

Ex„XEy„Y rfpx, yqs “ inf
Y P∆pYq

sup
xPX

Ey„Y rfpx, yqs,

where ∆0pX q stands for space of the finitely supported distribution on X .

We will also use the following standard concentration inequality (see e.g. Foster et al. (2021, Lemma
A.4)) when analyzing algorithm OMLE.
Lemma C.3. For a sequence of real-valued random variables pXtqtďT adapted to a filtration
pFtqtďT , the following holds with probability at least 1 ´ δ:

t
ÿ

s“1

´ logE rexpp´Xsq|Fs´1s ď

t
ÿ

s“1

Xs ` log p1{δq , @t P rT s.
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C.2 COVERING NUMBER

In this section, we present the definition of the optimistic covering number NΘ. Suppose that we
have a model class Θ, such that each θ P Θ parameterizes a sequential decision process. The
ρ-optimistic covering number of Θ is defined as follows.
Definition C.4 (Optimistic cover). Suppose that there is a context space X . An optimistic ρ-cover
of Θ is a tuple prP,Θ0q, where Θ0 Ă Θ is a finite set, rP “

!

rPπ
θ0

p¨q P RT H

ě0

)

θ0PΘ0,πPΠ
specifies a

optimistic likelihood function for each θ P Θ0, such that:

(1) For θ P Θ, there exists a θ0 P Θ0 satisfying: for all τ P T H and π, it holds that rPπ
θ0

pτq ě Pπ
θ pτq.

(2) For θ P Θ0, maxπ

›

›

›
Pπ
θ pτH “ ¨q ´ rPπ

θ pτH “ ¨q

›

›

›

1
ď ρ2.

The optimistic covering number NΘpρq is defined as the minimal cardinality of Θ0 such that there
exists rP such that prP,M0q is an optimistic ρ-cover of Θ.

The above definition is taken from Chen et al. (2022); the covering argument in Liu et al. (2022a)
essentially uses the above notion of covering number. Besides, the optimistic covering number can
be upper bounded by the bracketing number adopted by Zhan et al. (2022).

By an explicit construction, Liu et al. (2022a) show that there is a universal constant C such that for
any model class Θ of tabular POMDPs, it holds that

logNΘpρq ď CHpS2A` SOq logpCHSOA{ρq.

D PROOFS FOR SECTION 3

D.1 BASIC PROPERTY OF B-REPRESENTATION

Proposition D.1 (Equivalence between PSR definition and B-representation). A sequential decision
process is a PSR with core test sets pUhqhPrHs (in the sense of Definition 1) if and only if it admits a
B-representation with respect to pUhqhPrHs (in the sense of Definition 2).

Proof of Proposition D.1. We first show that a PSR admits a B-representation. Suppose we have
a PSR with core test sets pUhqhPrHs satisfying Definition 1, with associated vectors tbth,h P

RUhuhPrHs,thPT given by (1). Then, define

Bhpo, aq :“

»

–

|

bJ
po,a,tq,h

|

fi

fl

tPUh`1

P RUh`1ˆUh , q0 :“

«

|

Pptq
|

ff

tPU1

P RU1 .

We show that this gives a B-representation of the PSR. By (1), we have for all ph, τh´1, o, aq that

Bhpo, aqqpτh´1q “ rPpo, a, th`1|τh´1qsth`1PUh`1
“ Ppoh “ o|τh´1q ˆ qpτh´1, o, aq.

Applying this formula recursively, we obtain

Bh:1pτhqq0 “ Ppτhq ˆ qpτhq “ rPpτh, th`1qsth`1PUh`1
,

which completes the verification of (2) in Definition 2.

We next show that a process admitting a B-representation is a PSR. Suppose we have a se-
quential decision process that admits a B-representation with respect to pUhqhPrHs as in Defi-
nition 2. Fix h P rHs. We first claim that, to construct vectors pbth,hqth P RUh such that
Ppth|τh´1q “ xbt,h,qpτh´1qy for all test th and history τh´1 (Definition 1), we only need to con-
struct such vectors for full-length tests th “ poh:H`1, ah:Hq. This is because, suppose we have
assigned bth,h P RUh for all full-length th’s. Then for any other th “ poh:h`W´1, ah:h`W´2q with
h`W ´ 1 ă H ` 1 (non-full-length), take

bth,h “
ÿ

oh`W :H`1

bth,poh`W :H`1,a1
h`W´1:Hq,h,
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where a1
h`W´1:H P AH´h´W`2 is an arbitrary and fixed action sequence. For this choice we have

xbt,h,qpτh´1qy “
ÿ

oh`W :H`1

A

bth,poh`W :H`1,a1
h`W´1:Hq,h,qpτh´1q

E

“
ÿ

oh`W :H`1

Ppth, oh`W :H`1, a
1
h`W´1:H |τh´1q “ Ppth|τh´1q

as desired.

It remains to construct bth,h for all full-length tests. For any full-length test th “ poh:H`1, ah:Hq,
take bth,h P RUh with

bJ
th,h

“ BHpoH , aHq ¨ ¨ ¨Bhpoh, ahq P R1ˆUh .

By definition of the B-representation, for any history τh “ po1, a1, ¨ ¨ ¨ , oh, ahq, and any test th`1 P

Uh`1, we have

Ppτhq ˆ Ppth`1|τhq “ eJ
th`1

Bh:1pτhq ˆ q0,

or in vector form,

Ppτhq ˆ qpτhq “ Bh:1pτhqq0, (15)

where we recall Ppτhq “ Ppo1, ¨ ¨ ¨ , oh|dopa1, ¨ ¨ ¨ , ahqq. Therefore, for the particular full history
τH “ pτh´1, thq, we have by applying (15) twice (for steps H and h´ 1) that

PpτHq “ BH:1pτHqq0 “ BH:hpoh:H , ah:HqBh´1:1pτh´1qq0

“ bJ
th,h

pPpτh´1q ˆ qpτh´1qq.

Dividing both sides by Ppτh´1q (when it is nonzero), we get

Ppth|τh´1q “ PpτH |τh´1q “ PpτHq{Ppτh´1q “ bJ
th,h

qpτh´1q. (16)

This verifies (1) for all τh´1 that are reachable. For τh´1 that are not reachable, (16) also holds as
both sides equal zero by our convention. This completes the verification of (1) in Definition 1.

From the proof above, we can extract the following basic property of B-representation.
Corollary D.2. Consider a PSR model with B-representation ttBhpoh, ahquh,oh,ah

,q0u. For 0 ď

h ď H ´ 1, it holds that

Ppoh|τh´1q ˆ qpτh´1, oh, ahq “ Bhpoh, ahqqpτh´1q.

Furthermore, it holds that

BH:hpτh:Hqqpτh´1q “ Ppτh:H |τh´1q. (17)

D.2 WEAK B-STABILITY CONDITION

In this section, we define a weaker structural condition on PSRs, named the weak B-stability condi-
tion. In the remaining appendices, the proofs of our main sample complexity guarantees (Theorem
9, 10, H.4, H.6) will then assume the less-stringent weak B-stability condition of PSRs. Therefore,
these main results will hold under both ΛB-stablility (Definition 4) and weak ΛB-stablility (Defini-
tion D.4) simultaneously.

To define weak B-stability, we first extend our definition of Π-norm to RT for any set T of tests.
Recall that in (3), we have defined Π-norm on RT with T “ pO ˆ AqH´h (and in (5), the Π1-norm
for T “ Uh).
Definition D.3 (Π-norm for general test set). For T Ă T, we equip RT with }¨}Π defined by

}v}Π :“ max
T 1ĂT

max
π̄

ÿ

tPT 1

π̄ptq |vptq| , v P RT

where maxT 1ĂT is taken over all subsets T 1 of T such that T 1 satisfies the prefix condition: there is
no two t ‰ t1 P T 1 such that t is a prefix of t1.
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It is straightforward to see that, for any v P RUh , we have }v}1 ě }v}Π ě }v}Π1

Definition D.4 (Weak B-stability). A PSR is weakly B-stable with parameter ΛB ě 1 (henceforth
weakly ΛB-stable) if it admits a B-representation and associated B-operators tBH:huhPrHs such
that, for any h P rHs and p,q P RUh

ě0, we have10

}BH:hpp ´ qq}Π ď ΛB

b

2p}p}Π ` }q}Πq }
?
p ´

?
q}2 , (18)

Despite the seemingly different form, we can show that the weak B-stability condition is indeed
weaker than the B-stability condition. Furthermore, the converse also holds: the B-stability can be
implied by the weak B-stability condition, if we are willing to pay a

?
2UA factor. This is given by

the proposition below.
Proposition D.5. If a PSR is B-stable with parameter ΛB, then it is weakly B-stable with the same
parameter ΛB. Conversely, if a PSR is weakly B-stable with parameter ΛB (cf. Definition D.4), then
it is B-stable with parameter

?
2UAΛB.

Proof of Proposition D.5. We first show that B-stability implies weak B-stability. Fix a h P rHs.
We only need to show that, for p,q P RUh

ě0, we have

}p ´ q}˚ ď

b

2p}p}Π ` }q}Πq }
?
p ´

?
q}2 . (19)

We show this inequality by showing the bound for the p1, 2q-norm and the Π1-norm separately. First,
we have

}p ´ q}
2
1,2 “

ÿ

aPUA,h

´

ÿ

o:po,aqPUh

|ppo,aq ´ qpo,aq|

¯2

ď
ÿ

aPUA,h

´

ÿ

o:po,aqPUh

ˇ

ˇ

ˇ

a

ppo,aq `
a

qpo,aq

ˇ

ˇ

ˇ

2 ¯´ ÿ

o:po,aqPUh

ˇ

ˇ

ˇ

a

ppo,aq ´
a

qpo,aq

ˇ

ˇ

ˇ

2 ¯

ď 2
ÿ

aPUA,h

´

ÿ

o:po,aqPUh

ppo,aq ` qpo,aq

¯´

ÿ

o:po,aqPUh

ˇ

ˇ

ˇ

a

ppo,aq ´
a

qpo,aq

ˇ

ˇ

ˇ

2 ¯

ď 2p}p}Π ` }q}Πq
ÿ

aPUA,h

ÿ

o:po,aqPUh

ˇ

ˇ

ˇ

a

ppo,aq ´
a

qpo,aq

ˇ

ˇ

ˇ

2

“ 2p}p}Π ` }q}Πq }
?
p ´

?
q}

2
2 ,

where the first inequality is due to the Cauchy-Schwarz inequality; the second inequality is due to
AM-GM inequality; the last inequality is because maxaPUA,h

ř

o:po,aqPUh
vpo,aq ď }v}Π. Next, we

have

}p ´ q}
2
Π1 “ max

π

´

ÿ

tPUh

πptq ˆ |pptq ´ qptq|

¯2

ď 2max
π

´

ÿ

tPUh

πptqppptq ` qptqq

¯´

ÿ

tPUh

πptq
ˇ

ˇ

ˇ

a

pptq ´
a

qptq
ˇ

ˇ

ˇ

2 ¯

ď 2max
π

´

ÿ

tPUh

πptqppptq ` qptqq

¯´

ÿ

tPUh

ˇ

ˇ

ˇ

a

pptq ´
a

qptq
ˇ

ˇ

ˇ

2 ¯

ď 2p}p}Π ` }q}Πq }
?
p ´

?
q}

2
2 .

Combining these two inequalities completes the proof of Eq. (19), which gives the first claim of
Proposition D.5.

Next, we show that weak B-stability implies B-stability up to a
?
2UA factor. Fix a h P rHs. For

x P RUh , we take p “ rxs`, q “ rxs´, then it suffices to show that
b

2p}p}Π ` }q}Πq }
?
p ´

?
q}2 ď

a

2UA}x}˚. (20)

10Here we introduce the constant 2 in the square root in order for weak B-stability to be weaker than B-
stability (Definition 4).
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Indeed, we have

}
?
p ´

?
q}2 “

›

›

›

a

|x|

›

›

›

2
“

b

}x}1,

}p}Π ` }q}Π ď
›

›rxs`

›

›

1
`
›

›rxs´

›

›

1
“ }x}1 .

This implies that
b

2p}p}Π ` }q}Πq }
?
p ´

?
q}2 ď

?
2}x}1. (21)

Applying Lemma D.6 completes the proof of Eq. (20), and hence proves the second claim of Propo-
sition D.5.

Lemma D.6. Consider the fused-norm as defined in Eq. (4). For any q P RUh , we have

}q}˚ ď }q}1 ď |UA,h|
1{2

}q}˚.

Proof of Lemma D.6. By definition, we clearly have }q}1,2 ď }q}1 and }q}Π1 ď }q}1. On the other
hand, by Cauchy-Schwarz inequality,

}q}
2
1 “

¨

˝

ÿ

po,aqPUh

|qpo,aq|

˛

‚

2

ď |UA,h|
ÿ

aPUA,h

¨

˝

ÿ

o:po,aqPUA,h

|qpo,aq|

˛

‚

2

ď |UA,h| }q}
2
˚ .

Combining the inequalities above completes the proof.

D.3 PROOFS FOR SECTION 3.2

D.3.1 REVEALING POMDPS

ℓ1 revealing condition We first remark that, besides the revealing condition using the ℓ2 norms
defined in Example 5, we also consider the ℓ1 version of the revealing condition, which measures
the ℓ1-operator norm of any left inverse M`

h of Mh, instead of the ℓ2-operator norm of the pseudo-
inverse M:

h. Concretely, we say a POMDP satisfies the m-step αrev,ℓ1 ℓ1-revealing condition, if
there exists a matrix M`

h such that M`
hMh “ I and }M`

h }1Ñ1 ď α´1
rev,ℓ1

. In Proposition D.7,
we also show that any m-step αrev,ℓ1 ℓ1-revealing POMDP is a ΛB-stable PSR with core test sets
Uh “ pO ˆ Aqmintm´1,H´hu ˆ O, and ΛB ď

?
Am´1α´1

rev,ℓ1
.

We consider Example 5, and show that any m-step revealing POMDP admit a B-representation that
is B-stable. By definition, the initial predictive state is given by q0 “ M1µ1. For h ď H ´ m, we
take

Bhpoh, ahq “ Mh`1Th,ah
diagpOhpoh|¨qqM`

h P RUh`1ˆUh , (22)

where Th,a :“ Thp¨|¨, aq P RSˆS is the transition matrix of action a P A, and M`
h is any left inverse

of Mh. When h ą H ´m, we only need to take

Bhpoh, ahq “ r1pth “ poh, ah, th`1qqspth`1,thqPUh`1ˆUh
P RUh`1ˆUh , (23)

where 1pth “ poh, ah, th`1qq is 1 if th equals to poh, ah, th`1q, and 0 otherwise.
Proposition D.7 (Weakly revealing POMDPs are B-stable). For m-step revealing POMDP, (22)
and (23) indeed give a B-representation, which is B-stable with ΛB ď maxh

›

›M`
h

›

›

˚Ñ1
, where

›

›M`
h

›

›

˚Ñ1
:“ max

xPRUh :}x}˚ď1

›

›M`
h x

›

›

1
.

Therefore, any m-step αrev-weakly revaling POMDP is B-stable with ΛB ď
?
Sα´1

rev (by taking
` “ :, using }¨}2 ď }¨}˚, and }¨}1 ď

?
S }¨}2). Similarly, any m-step αrev,ℓ1 ℓ1-revealing POMDP

is B-stable with ΛB ď
?
Am´1α´1

rev,ℓ1
(using }¨}1 ď

?
UA }¨}˚ with UA “ Am´1).

For succinctness, we only provide the proof of a more general result (Proposition D.12). Besides,
by a similar argument, we can also show that the parameter RB that appears in Theorem 9 can
be bounded by RB ď α´1

revA
m (for αrev-weakly revealing POMDP) or RB ď α´1

revA
m (for αrev,ℓ1

ℓ1-revealing POMDP, see e.g. Lemma D.13).
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D.3.2 LATENT MDPS

In this section, we follow Kwon et al. (2021) to show that latent MDPs as a sub-class of POMDPs,
and then obtain the sample complexity for learning latent MDPs of our algorithms.
Example D.8 (Latent MDP). A latent MDP M is specified by a tuple

␣

S,A, pMmqNm“1, H, ν
(

,
where M1, ¨ ¨ ¨ ,MN are N MDPs with joint state space S, joint action space A, horizon H , and
ν P ∆prN sq is the mixing distribution over M1, ¨ ¨ ¨ ,MN . For m P rN s, the transition dynamic of
Mm is specified by pTh,m : S ˆ A Ñ ∆pSqqHh“1 along with the initial state distribution µm, and at
step h the binary random reward rh,m is generated according to probability Rh,m : S ˆA Ñ r0, 1s.

Clearly, M can be casted into a POMDP M 1 with state space S “ rN s ˆS ˆ t0, 1u and observation
space O “ S ˆ t0, 1u by considering the latent state being s̄h “ psh, rh,mq P S and observation
being oh “ psh, rh´1q P O. More specifically, at the start of each episode, the environment gener-
ates a m „ ν and a state s „ µm, then the initial latent state is s̄1 “ pm, s, 0q and o1 “ ps, 0q; at
each step h, the agent takes ah after receiving oh, then the environment generates rh P t0, 1u, s̄h`1

and oh`1 according to ps̄h, ahq: rh “ 1 with probability Rh,mpsh, ahq11, sh`1 „ Th,mp¨|sh, ahq,
s̄h`1 “ pm, sh`1, rhq and oh`1 “ psh`1, rhq. 12

In a latent MDP, we denote Th to be the set of all possible sequences of the form
pah, rh, sh`1, ¨ ¨ ¨ , ah`l´1, rh`l´1, sh`lq (called a test in (Kwon et al., 2021)). For h ď H ´ l ` 1,
t “ pah, rh, sh`1, ¨ ¨ ¨ , ah`l´1, rh`l´1, sh`lq P Th and s P S, we can define

Ph,mpt|sq “ Pmprh, sh`1, ¨ ¨ ¨ , rh`l´1, sh`l|sh “ s,dopah, ¨ ¨ ¨ , ah`l´1qq,

where Pm stands for the probability distribution under MDP Mm.
Definition D.9 (Sufficient tests for latent MDP). A latent MDP M is said to be l-step test-sufficient,
if for h P rH ´ l ` 1s and s P S, the matrix Lhpsq given by

Lhpsq :“ rPh,mpt|sqs
pt,mqPThˆrNs

P RThˆN

has rank N . M is l-step σ-test-sufficient if σN pLhpsqq ě σ for all h P rH ´ l ` 1s and s P S.

Under test sufficiency, the latent MDP is an pl ` 1q-step σ-weakly revealing POMDP, as shown
in (Zhan et al., 2022, Lemma 12). Hence, as a corollary of Proposition D.7, using the fact that
ˇ

ˇS
ˇ

ˇ “ 2SN , we have the following result.
Proposition D.10 (Latent MDPs are B-stable). For an l-step σ-test-sufficient latent MDP M , its
equivalent POMDPM 1 is pl`1q-step σ-weakly revealing, and thus B-stable with ΛB ď

?
2SNσ´1.

Therefore, by a similar reasoning to m-step revealing POMDPs in Section 5 (and Appendix D.3.1),
our algorithms OMLE/EXPLORATIVE E2D/MOPS can achieve a sample complexity of

rO
ˆ

S2N2Al`1H2 logNΘ

σ2ε2

˙

for learning ε-optimal policy, where Θ is the class of all such latent MDPs. Further, the opti-
mistic covering number of Θ can be bounded as (similar as (Liu et al., 2022a, Appendix B) and
Appendix D.3.4)

logNΘpρq ď rO
`

NS2AH
˘

.

Thus, we achieve a rO
`

S4N3Al`2H3σ´2ε´2
˘

sample complexity. This improves over the result
of Kwon et al. (2021) who requires extra assumptions including reachability, a gap between the N
MDP transitions, and full rank condition of histories (Kwon et al., 2021, Condition 2.2). Besides,
our result does not require extra assumptions on core histories—which is needed for deriving sample
complexities from the αpsr-regularity of (Zhan et al., 2022)—which could be rather unnatural for
latent MDPs.

We remark that the argument above can be generalized to low-rank latent MDPs13 straightforwardly,
achieving a sample complexity of rO

`

d2transN
2Al`2H2 logNΘ{σ2ε2

˘

. For more details, see Ap-
pendix D.3.3.

11Note that under such formulation, M 1 has deterministic rewards.
12The terminal state sH`1 is a dummy state.
13A latent MDP M has transition rank d if each Mm has rank d as a linear MDP (Jin et al., 2020c).
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Proof of Proposition D.10. As is pointed out by Zhan et al. (2022), the pl` 1q-step emission matrix
of M 1 has a relatively simple form: notice that for h P rH ´ l ` 1s, s̄ “ pm, s, rq P S and
th “ poh, ah, ¨ ¨ ¨ , oh`lq P Uh (with oh`1 “ psh`1, rhq, ¨ ¨ ¨ , oh`l “ psh`l, rh`l´1q), we have

Mhpt, sq “ 1poh “ psh, rh´1qqPmprh, sh`1, ¨ ¨ ¨ , rh`l´1, sh`l|sh “ s,dopah, ¨ ¨ ¨ , ah`l´1qq,

where 1poh “ psh, rh´1qq is 1 when oh “ psh, rh´1q and 0 otherwise. Therefore, up to some
permutation, Mh has the form

Mh “

»

—

—

—

—

—

—

—

—

—

–

Lhpsp1qq

Lhpsp1qq

Lhpsp2qq

Lhpsp2qq

. . .
Lhpsp|S|qq

Lhpsp|S|qq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where
␣

sp1q, sp2q, ¨ ¨ ¨ , sp|S|q
(

is an ordering of S. Therefore, it follows from definition that
}M:

h}2Ñ2 ď maxh,s }Lhpsq:}2Ñ2 ď σ´1. Applying Proposition D.7 completes the proof.

D.3.3 LOW-RANK POMDPS WITH FUTURE SUFFICIENCY

In this section, we provide a detailed discussion of low-rank POMDPs andm-step future sufficiency
condition mentioned in Example 6. We present a slightly generalized version of the m-step future
sufficiency condition defined in (Wang et al., 2022); see also (Cai et al., 2022).

For low-rank POMDPs, we now state a slightly more relaxed version of the future-sufficiency con-
dition defined in (Wang et al., 2022). Recall the m-step emission-action matrices Mh P RUhˆS

defined in (7).
Definition D.11 (m-step ν-future-sufficient POMDP). We say a low-rank POMDP is m-step ν-
future-sufficient if for h P rHs, minM6

h
}M6

h}1Ñ1 ď ν, where minM6

h
is taken over all possible M6

h’s

such that M6

hMhTh´1 “ Th´1.

Wang et al. (2022) consider a factorization of the latent transition: Th “ ΨhΦh with Ψh P

RSˆdtrans ,Φh P RdtransˆpSˆAq for h P rHs, and assumes that }M6

h}1Ñ1 ď ν with the specific
choice M6

h “ Ψh´1pMhΨh´1q: (note that it is taking an exact pseudo-inverse instead of any gen-
eral left inverse). It is straightforward to check that this choice indeed satisfies M6

hMhTh “ Th,
using which Definition D.11 recovers the definition of Wang et al. (2022). It also encompasses the
setting of Cai et al. (2022) (m “ 1).

We show that the following (along with (23)) gives a B-representation for the POMDP:14

Bhpo, aq “ Mh`1Th,a diag pOhpo|¨qqM6

h, h P rH ´ms. (24)

This generalizes the choice of B-representation in (22) for (tabular) revealing POMDPs, as the matrix
M6

h can be thought of as a “generalized pseudo-inverse” of Mh that is aware of the subspace spanned
by Th´1. This choice is more suitable when S or O are extremely large, in which case the vanilla
pseudo-inverse M:

h may not be bounded in }¨}1Ñ1 norm. In the tabular case, setting 6 “ : in (24)
recovers (22).
Proposition D.12 (Future-sufficient low-rank POMDPs are B-stable). The operators
pBhpo, aqqh,o,a given by (24) (with the case h ą H´m given by (23)) is indeed a B-representation,
and it is B-stable with ΛB ď

?
Am´1 maxh }M6

h}1. As a corollary, any m-step ν-future-sufficient
low-rank POMDP admits a B-representation with ΛB ď

?
Am´1ν (and also RB ď Amν).

Combining Proposition D.12 and Algorithm 2 gives the sample complexity guarantee of Algorithm 2
for future sufficient POMDP. For Algorithm OMLE, combining RB ď Amν with Theorem 9 estab-
lishes the sample complexity of OMLE, as claimed in Section 5.

14For simplicity, we write Th,a :“ Thp¨|¨, aq P RSˆS the transition matrix of action a P A.
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Proof of Proposition D.12. First, we verify (2) for 0 ď h ď H ´ m. In this case, for th`1 P Uh`1,
we have15

eJ
th`1

Bh:1pτhqq0 “ eJ
th`1

h
ź

l“1

”

Ml`1Tl,al
diag pOlpol|¨qqM6

l

ı

M1µ1

piq
“eJ

th`1
Mh`1Th,ah

diag pOhpoh|¨qq ¨ ¨ ¨T1,a1 diag pO1po1|¨qqµ1

piiq
“

ÿ

s1,s2,¨¨¨ ,sh`1

Ppth`1|sh`1qTh,ah
psh`1|shqOhpoh|shq ¨ ¨ ¨T1ps2|s1qO1po1|s1qµ1ps1q

“Ppτh, th`1q,

(25)

where (i) is due to M6

lMlTl “ Tl for 1 ď l ď h, in (ii) we use the definition (7) to deduce that the
pth`1, sh`1q-entry of Mh`1 is Ppth`1|sh`1q.

Finally, we verify (2) for H ´ m ă h ă H . In this case, Uh`1 “ OH´h ˆ AH´h´1, and hence
for τh “ po1, a1, ¨ ¨ ¨ , oh, ahq, th`1 “ poh`1, ah`1, ¨ ¨ ¨ , oHq P Uh`1, we consider tH´m`1 “

poH´m`1, aH´m`1, ¨, oHq:

eJ
th`1

Bh:1pτhqq0 “ eJ
tH´m`1

BH´m:1pτH´mqq0 “ PptH´m`1, τH´mq “ Ppth`1, τhq.

It remains to verify that the B-representation is ΛB-stable with ΛB ď
?
Am´1ν and RB ď Amν, we

invoke the following lemma.

Lemma D.13. For 1 ď h ď H , x P R|Uh|, it holds that

}BH:hx}Π “ max
π

ÿ

τh:H

}BHpoH , aHq ¨ ¨ ¨Bhpoh, ahqx}1 ˆ πpτh:Hq ď max
!
›

›

›
M6

hx
›

›

›

1
, }x}Π

)

.

Similarly, we have
ř

o,a }Bhpo, aqv}1 ď max
!

Am
›

›

›
M6

hv
›

›

›

1
, A }v}1

)

.

By Lemma D.13, it holds that

}BH:hx}Π ď max tν }x}1 , }x}Πu ď ν }x}1 ď ν
a

UA }x}˚ “ ν
?
Am´1 }x}˚ ,

where the second inequality is because }x}Π ď }x}1 and ν ě 1, and the third inequality is due to
Lemma D.6 and }x}˚ ě }x}Π1 by definition. Similarly, we have RB ď Amν. This concludes the
proof of Proposition D.12.

Proof of Lemma D.13. We first consider the case h ą H ´ m. Then for each h ď l ď H , Bl is
given by (23), and hence for trajectory τh:H “ poh, ah, ¨ ¨ ¨ , oH , aHq and x P RUh , it holds that

Bh:Hpτh:Hqx “ xpoh, ah, ¨ ¨ ¨ , oHq.

This implies that }BH:hx}Π “ }x}Π and
ř

o,a }Bhpo, aqx}1 “ A }x}1 directly.

We next consider the case h ď H ´m. Note that for τh:H “ poh, ah, ¨ ¨ ¨ , oH´m, aH´m, ¨ ¨ ¨ , oHq,
we can denote tH´m`1 “ poH´m`1, aH´m`1, ¨ ¨ ¨ , oHq, then similar to (25) we have

BH:hpτh:Hq “ eJ
tH´m`1

MH´m`1

«

H´m
ź

l“h

Tl,al
diag pOlpol|¨qq

ff

M6

h

“
ÿ

sh,¨¨¨ ,sH´m`1

PptH´m`1|sH´m`1q

«

H´m
ź

l“h

Tl,al
psl`1|slqOlpol|slq

ff

eJ
sh
M6

h

“
ÿ

sPS
Ppτh:H |sh “ sqeJ

s M
6

h.

Therefore, for policy π and trajectory τh:H , it holds that

πpτh:Hq ˆ BH:hpτh:Hqx “
ÿ

sPS
Pπpτh:H |sh “ sq ˆ eJ

s M
6

hx,

15For the clarity of presentation, in this section we adopt the following notation: for operator pLnqnPN, we
write

śm
h“n Lh “ Lm ˝ ¨ ¨ ¨ ˝ Ln.
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and this gives }BH:hx}Π ď

›

›

›
M6

hx
›

›

›

1
directly.

Besides, we similarly have
ÿ

o,a

}Bhpo, aqv}1 “
ÿ

o,a

›

›

›
Mh`1Th,a diag pOhpo|¨qqM6

hx
›

›

›

1
ď A |UA,h`1|

›

›

›
M6

hx
›

›

›

1
.

The proof is completed by combining the two cases above.

D.3.4 LINEAR POMDPS

Linear POMDPs (Zhan et al., 2022) is a subclass of low-rank POMDPs where the latent transition
and emission dynamics are linear in certain known feature maps. In the following, we present a
slightly more general version of the linear POMDP definition in Zhan et al. (2022, Definition 5).
Definition D.14 (Linear POMDP). A POMDP is linear with respect to the given set Ψ of feature
maps pψh : S Ñ Rds,1 , ψh : S ˆ A Ñ Rds,2 , φh : O ˆ S Ñ Rdoqh if there exists Ah P

Rds,1ˆds,2 , uh P Rd, v P Rds,1 such that

Thps1|s, aq “ ϕhps1qJAhψhps, aq, µ1psq “ xv, ϕ0psqy , Ohpo|sq “ xuh, φhpo|sqy .

We further assume a standard normalization condition: For R :“ max tds,1, ds,2, dou,
ÿ

s1

›

›ϕhps1q
›

›

1
ď R, }ψhps, aq}1 ď R,

ÿ

o

}φhpo|sq}1 ď R,

}Ah}8,8 ď R, }v}8 ď R, }uh}8 ď R.

Proposition D.15. Suppose that Θ is the set of models that are linear with respect to a given Ψ
and have parameters bounded by R. Then logNΘpρq “ O ppds ` doqH logpdsdoH{ρqq, where we
denote ds :“ ds,1ds,2.

It is direct to check that any linear POMDP is a low-rank POMDP (cf. Example 6) with dPSR ď

dtrans ď min tds,1, ds,2u. Therefore, by a similar reasoning to Appendix D.3.3, Theorem 9 & 10
both achieve a sample complexity of rO

`

min tds,1, ds,2upds,1ds,2 ` doqAUAH
3Λ2

Bε
´2

˘

for learn-
ing an ε-optimal policy in ΛB-stable linear POMDPs (which include e.g. revealing and decodable
linear POMDPs).

This result significantly improves over the result extracted from (Zhan et al., 2022, Corollary 6.5):
Assuming their αpsr-regularity, we have ΛB ď

?
UAα

´1
psr (Example 8) and thus obtain a sample

complexity of
rO
`

min tds,1, ds,2upds,1ds,2 ` doqAU2
AH

3{pα2
psrε

2q
˘

.

This only scales with d3AU2
A (where d ě max tds,1, ds,2, dou), whereas their results involve much

larger polynomial factors of all three parameters. Further, apart from the dimension-dependence,
their covering number scales with an additional logO (and thus their result does not handle ex-
tremely large observation spaces).

Proof of Proposition D.15. In the following, we generalize the construction of optimistic covering
of Θ using the optimistic covering of

␣

Oθ
h

(

θPΘ
and

␣

Tθ
h

(

θPΘ
as in Liu et al. (2022a, Appendix B).

Lemma D.16 (Bounding optimistic covering number for POMDPs). For Θ a class of POMDPs, let
us denote Θh;o “

␣

Oθ
h

(

θPΘ
and Θh;o “

␣

Tθ
h

(

θPΘ
16. Then it holds that for ρ P p0, 1s,17

logNΘpρ1q ď 2Hmax
h

␣

logNΘh;o
pρ1{3Hq, logNΘh;t

pρ1{3Hq
(

.

By Lemma D.16, we only need to verify that for all h P rHs,

logNΘh;o
pρq “ O pdo logpRdo{ρqq , logNΘh;t

pρq “ O pds logpRds{ρqq .

16Here, for h “ 0, we take Θ0;t “
␣

µθ
1

(

θPΘ
.

17The optimistic covers of the emission matrices Θh;o and transitions Θh;t are defined as in Chen et al.
(2022, Definition C.5) with context π being s and ps, aq, and output being o and s, respectively.
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We demonstrate how to construct a ρ-optimistic covering for Θh;o; the construction for Θh;t is
essentially the same. In the following, we follow the idea of (Chen et al., 2022, Proposition H.15).

Fix a h P rHs and setN “ rR{ρs. LetR1 “ Nρ, for u P r´R1, R1sdo , we define the ρ-neighborhood
of u as B8pu, ρq :“ ρ tu{ρu ` r0, ρsd, and let

rOh;upo|sq :“ max
u1PB8pu,ρq

@

u1, φhpo|sq
D

.

Then, if u induces a emission dynamic Oh;v , then rOh;upo|sq ě Oh;upo|sq, and
ÿ

o

ˇ

ˇ

ˇ

rOh;upo|sq ´ Oh;upo|sq
ˇ

ˇ

ˇ
“
ÿ

o

max
u1PB8pu,ρq

ˇ

ˇ

@

u1 ´ u, φhpo|sq
D
ˇ

ˇ ď ρ
ÿ

o

}φhpo|sq}1 ď Rρ.

Therefore, we can pick each rOh;up¨|¨q a representative u such that u induce a lawful emission dy-

namic; there are at most p2Nqdo many elements in the set
!

rOh;up¨|¨q

)

uPr´R1,R1sdo
, and hence by

doing this, we obtain a Rρ-optimistic covering prO,Θ1
h;oq of Θh;o such that

ˇ

ˇ

ˇ
Θ1

h;o

ˇ

ˇ

ˇ
ď p2 rR{ρsqdo .

This proves Proposition D.15.

Proof of Lemma D.16. Fix a ρ1 P p0, 1s and let ρ “ ρ1{3H .

Note that given a tuple of parameters prµ1, rT, rOq (not necessarily induce a POMDP model), we can
define rP as

rPpτHq “
ÿ

s1,¨¨¨ ,sH

rµ1ps1qrO1po1|s1qrT1ps2|s1, a1q ¨ ¨ ¨ rTH´1psH |sH´1, aH´1qrOpoH |sHq,

and rPπpτHq “ πpτHq ˆ rPpτHq. Then for a tuple of parameters pµ1,T,Oq that induce a POMDP
such that

}rµ1 ´ µ1}1 ď ρ2, max
s,a,h

›

›

›
prTh ´ Thqp¨|s, aq

›

›

›

1
ď ρ2, max

s,h

›

›

›
prOh ´ Ohqp¨|sq

›

›

›

1
ď ρ2,

it holds that
›

›

›

rPπp¨q ´ Pπp¨q

›

›

›

1
“
ÿ

τH

ˇ

ˇ

ˇ

rPπpτHq ´ PπpτHq

ˇ

ˇ

ˇ

ď
ÿ

s1:H ,τH

#

πpτHq |rµ1ps1q ´ µ1ps1q| rO1po1|s1qrT1ps2|s1, a1q ¨ ¨ ¨ rOpoH |sHq

` πpτHqµ1ps1q

ˇ

ˇ

ˇ

rO1po1|s1q ´ Ohpo1|s1q

ˇ

ˇ

ˇ

rT1ps2|s1, a1q ¨ ¨ ¨ rOpoH |sHq

` πpτHqµ1ps1qO1po1|s1q

ˇ

ˇ

ˇ

rT1ps2|s1, a1q ´ T1ps2|s1, a1q

ˇ

ˇ

ˇ
¨ ¨ ¨ rOpoH |sHq

` ¨ ¨ ¨

` πpτHqµ1ps1qO1po1|s1qT1ps2|s1, a1q ¨ ¨ ¨

ˇ

ˇ

ˇ

rOpoH |sHq ´ OpoH |sHq

ˇ

ˇ

ˇ

+

p˚q

ď 2Hρ2p1 ` ρ2q2H ď 4Hρ2 ď ρ21,

where (*) is because
ř

sh`1

rThpsh`1|sh, ahq ď 1`ρ2 and
ř

oh
Ohpoh|shq ď 1`ρ2 for all h, sh, ah.

Therefore, suppose that for each h, prTh,Θ
1
h;tq is a ρ-optimistic covering of Θh;t, and prOh,Θ

1
h;oq is

a ρ-optimistic covering of Θh;o, then we can obtain a ρ1-optimistic covering prP,Θ1q of Θ, where

Θ1 “ Θ1
0;t ˆ Θ1

1;o ˆ Θ1
1;t ˆ ¨ ¨ ¨ ˆ Θ1

H´1;t ˆ Θ1
H;o.

This completes the proof.
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D.3.5 DECODABLE POMDPS

To construct a B-representation for the decodable POMDP, we introduce the following notation. For
h ď H ´ m, we consider th “ poh, ah, ¨ ¨ ¨ , oh`m´1q P Uh, th`1 “ po1

h`1, a
1
h`1, ¨ ¨ ¨ , o1

h`mq P

Uh`1, and define

Phpth`1|thq “

$

&

%

Ppoh`m “ o1
h`m|sh`m´1 “ ϕh`m´1pthq, ah`m´1q, if oh`1:h`m´1 “ o1

h`1:h`m´1

and ah`1:h`m´2 “ a1
h`1:h`m´2,

0, otherwise,
(26)

where ϕh`m´1 is the decoder function that maps th to a latent state sh`m´1. Similarly, for h ą

H ´m, th P Uh, th`1 P Uh`1, we let Phpth`1|thq be 1 if th ends with th`1, and 0 otherwise.

Under such definition, for all h P rHs, th P Uh, th`1 P Uh`1, it is clear that
Phpth`1|thq “ Ppth`1|th, τh´1q (27)

for any reachable pτh´1, thq, because of decodability. Hence, we can interpret Phpth`1|thq as the
probability of observing th`1 conditional on observing th on step h. 18 Then, for h P rHs, we can
take

Bhpo, aq “ r1ppo, aq Ñ thqPhpth`1|thqspth`1,thqPUh`1ˆUh
, (28)

where 1ppo, aq Ñ thq is 1 if th starts with po, aq and 0 otherwise19.

We verify that (28) indeed gives a B-representation for decodable POMDPs:
Proposition D.17 (Decodable POMDPs are B-stable). (28) gives a B-stable B-representation of the
m-step decodable POMDP, with ΛB “ 1.

The results above already guarantee the sample complexity of EXPLORATIVE E2D for decodable
POMDPs. For OMLE, we can similarly obtain that

ř

o,a }Bhpo, aqx}1 “ A }x}1, and thus we can
take RB “ A. Combining this fact with Theorem 9 establishes the sample complexity of OMLE as
claimed in Section 5.

Proof of Proposition D.17. We verify that (28) gives a B-representation for decodable POMDP:
Note that for h P rH ´ 1s, poh, ahq P O ˆ A, th`1 P Uh`1, there is a unique element th P Uh such
that th is the prefix of the trajectory poh, ah, th`1q, and it holds that

eJ
th`1

Bhpoh, ahqx “ Phpth`1|thq ˆ xpthq.

Applying this equality recursively, we obtain the following fact: For trajectory τh1:h and th`1 P

Uh`1, pτh1:h, th`1q has a prefix th1 P Uh1 , and

eJ
th`1

Bh:h1 pτh1:hqx “ Ppτh1:h, th`1|th1 q ˆ xpth1 q, (29)

where Ppτh1:h, th`1|th1 q stands for the probability of observing pτh1:h, th`1q conditional on observ-
ing th1 at step h1, which is well-defined due to decodability (similar to (27)).

Taking h1 “ 1 and x “ q0 in (29), we have for any history τh and th`1 P Uh`1 that

Ppτh, th`1q “ eJ
th`1

Bh:1pτhqq0.

Therefore, (28) indeed gives a B-representation of the decodable POMDP.

Furthermore, we can take h “ H in (29) to obtain that: For any trajectory τh:H “

poh, ah, ¨ ¨ ¨ , oH , aHq, it has a prefix th P Uh, and
BH:hpτh:Hqx “ Ppτh:H |thq ˆ xpthq.

Hence, for any policy π, it holds that
ÿ

τh:H

πpτh:Hq ˆ |BH:hpτh:Hqx| “
ÿ

τh:H

Pπpτh:H |thq ˆ |xpthq| “
ÿ

thPUh

πpthq ˆ |xpthq| .

Therefore, }BH:hx}Π ď }x}Π always. This completes the proof of Proposition D.17.
18It is worth noting that the pPhq we define is exactly the transition dynamics of the associated megastate

MDP (Efroni et al., 2022).
19For h “ H , we understand BHpo, aq “ r1pt “ oqstPUH

because oH`1 “ odum always.
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D.3.6 REGULAR PSRS

Proposition D.18 (Regular PSRs are B-stable). Any αpsr-regular PSR admits a B-
representation pBq such that for all 1 ď h ď H , }BH:hx}Π ď }K:

hx}1, where Kh is any core
matrix of Dh (cf. Example 8). Hence, any αpsr-regular PSR is B-stable with ΛB ď

?
UAα

´1
psr .As a

byproduct, we show that the B-representation also has RB ď α´1
psrAUA.

Proof of Proposition D.18. By (Zhan et al., 2022, Lemma 6), the PSR admits a B-
representation such that rowspanpBhpo, aqq Ă colspanpDh´1q. In the following, we show that
such a B-representation is indeed what we want.

Fix a core matrix Kh´1 of Dh´1, and suppose that Kh´1 “
“

qpτ1h´1q, ¨ ¨ ¨ ,qpτdh´1q
‰

with d “

rankpDhq. Then it holds that

}BH:hx}Π “max
π

ÿ

τh:H

πpτh:Hq ˆ |BH:hpτh:Hqx|

“max
π

ÿ

τh:H

πpτh:Hq ˆ

ˇ

ˇ

ˇ
BH:hpτh:HqKh´1K

:

h´1x
ˇ

ˇ

ˇ

ďmax
π

ÿ

τh:H

πpτh:Hq ˆ

d
ÿ

j“1

|BH:hpτh:HqKh´1ej | ¨

ˇ

ˇ

ˇ
eJ
j K

:

h´1x
ˇ

ˇ

ˇ

“max
π

d
ÿ

j“1

ˇ

ˇ

ˇ
eJ
j K

:

h´1x
ˇ

ˇ

ˇ
ˆ

ÿ

τh:H

πpτh:Hq ˆ

d
ÿ

j“1

ˇ

ˇ

ˇ
BH:hpτh:Hqqpτ jh´1q

ˇ

ˇ

ˇ
.

Notice that BH:hpτh:Hqqpτ jh´1q “ Ppτh:H |τ jh´1q by Corollary D.2, and hence for any policy π, we
have

ÿ

τh:H

πpτh:Hq ˆ

ˇ

ˇ

ˇ
BH:hpτh:Hqqpτ jh´1q

ˇ

ˇ

ˇ
“

ÿ

τh:H

Pπpτh:H |τ jh´1q “ 1

Therefore, it holds that }BH:hx}Π ď

›

›

›
K:

h´1x
›

›

›

1
for h P rHs and any core matrix Kh´1 of Dh´1.

Similarly, we can pick a core matrix Kh´1 such that }K:

h´1}1 ď α´1
psr , then

ÿ

o,a

}Bhpo, aqx}1 “
ÿ

o,a

›

›

›
Bhpo, aqKh´1K

:

h´1x
›

›

›

1
ď A |UA,h`1|

›

›

›
K:

h´1x
›

›

›

1
ď α´1

psrAUA }x}1 .

This completes the proof.

D.4 COMPARISON WITH WELL-CONDITIONED PSRS

Concurrent work by Liu et al. (2022b) defines the following class of well-conditioned PSRs.
Definition D.19. A PSR is γ-well-conditioned if it admits a B-representation such that for all h P

rHs, policy π (that starts at step h), vector x P RUh , the following holds:
ÿ

τh:H

πpτh:Hq ˆ |BHpoH , aHq ¨ ¨ ¨Bhpoh, ahqx| ď
1

γ
}x}1 , (30)

ÿ

oh,ah

πpah|ohq ˆ }Bhpoh, ahqx}1 ď
1

γ
}x}1 . (31)

By (30) and the inequality }x}1 ď
?
UA }x}˚ (Lemma D.6), any γ-well-conditioned PSR is a

B-stable PSR with ΛB ď
?
UAγ

´1. Plugging this into our main results shows that, for well-
conditioned PSRs, OMLE, EXPLORATIVE E2D and MOPS all achieve sample complexity

rO
ˆ

dAU2
AH

2 logNΘ

γ2ε2

˙

,
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which is better than the sample complexity20
rO
`

d2A5U3
AH

4 logNΘ{γ4ε2
˘

achieved by the analysis
of OMLE in Liu et al. (2022b). Also, being well-conditioned imposes the extra restriction (31) on
the structure of the PSR, while our B-stability condition does not.

E DECORRELATION ARGUMENTS

In this section, we present two decorrelation propositions: the generalized ℓ2-Eluder argument
(Proposition E.1), and the decoupling argument (Proposition E.6). These two propositions are im-
portant steps in the proof of main theorems (Theorem 9, 10, H.4, H.6). These two Propositions
are parallel: Proposition E.1 is the triangular-to-diagonal version of the decorrelation used in the
proof of Theorem 9 (see Appendix G for its proof), whereas Proposition E.6 is the expectation-to-
expectation version of the decorrelation used in the proof of Theorem 10 (see Appendix I for its
proof).

E.1 GENERALIZED ℓ2-ELUDER ARGUMENT

We first present the triangular-to-diagonal version of the decorrelation argument, the generalized
ℓ2-Eluder argument.
Proposition E.1 (Generalized ℓ2-Eluder argument). Suppose we have sequences of vectors

txk,iupk,iqPrKsˆI Ă Rd, tyk,j,rupk,j,rqPrKsˆrJsˆR Ă Rd

where I,R are arbitrary (abstract) index sets. Consider functions tfk : Rd Ñ RukPrKs:

fkpxq :“ max
rPR

J
ÿ

j“1

|xx, yk,j,ry| .

Assume that the following condition holds:

k´1
ÿ

t“1

Ei„qt

“

fkpxt,iq
2
‰

ď βk, @k P rKs,

where pqk P ∆pIqqkPrKs is a family of distributions over I.

Then for any M ą 0, it holds that

k
ÿ

t“1

M ^ Ei„qtrftpxt,iqs ď

g

f

f

e2d
´

M2k `

k
ÿ

t“1

βt

¯

log

ˆ

1 `
k

d

R2
xR

2
y

M2

˙

, @k P rKs,

where R2
x “ maxk Ei„qk r}xk,i}

2
2s, Ry “ maxk,r

ř

j }yk,j,r}2.

We call this proposition “generalized ℓ2-Eluder argument” because, when I is a single element set
and βk “ β, the result reduces to

if
ÿ

tăk

fkpxtq
2 ď β, for all k P rKs, then

k
ÿ

t“1

|ftpxtq| ď rO
´

a

dβk
¯

, (32)

as long as maxt |ftpxtq| ď 1, which implies that the function class tftut has Eluder dimension
rO pdq. In particular, when tfkukPrKs is given by fkpxq “ |xyk, xy|, (32) is equivalent to the stan-
dard ℓ2-Eluder argument for linear functions, which can be proved using the elliptical potential
lemma (Lattimore & Szepesvári, 2020, Lemma 19.4).

In the following, we present a corollary of Proposition E.1 that is more suitable for our applications.

20Liu et al. (2022b) only asserts a polynomial rate without spelling out the concrete powers of the problem
parameters. This rate is extracted from Liu et al. (2022b, Proposition C.5 & Lemma C.6).
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Corollary E.2. Suppose we have a sequence of functions tfk : Rn Ñ RukPrKs:

fkpxq :“ max
rPR

J
ÿ

j“1

|xx, yk,j,ry| ,

which is given by the family of vectors tyk,j,ru
pk,j,rqPrKsˆrJsˆR Ă Rn. Further assume that there

exists L ą 0 such that fkpxq ď L }x}1.

Consider further a sequence of vector pxiqiPI , satisfying the following condition

k´1
ÿ

t“1

Ei„qt

“

f2k pxiq
‰

ď βk, @k P rKs,

and the subspace spanned by pxiqiPI has dimension at most d. Then it holds that

k
ÿ

t“1

1 ^ Ei„qtrftpxiqs ď

g

f

f

e4d
´

k `

k
ÿ

t“1

βt

¯

log
´

1 ` kdLmax
i

}xi}1

¯

, @k P rKs.

We prove Proposition E.1 and Corollary E.2 in the following subsections.
Remark E.3. In the initial version of this paper, the statement of Corollary E.2 was slightly different
from above, which states that under the same precondition,

k
ÿ

t“1

1 ^ Ei„qtrftpxiqs ď

g

f

f

e4d
´

k `

k
ÿ

t“1

βt

¯

log p1 ` kdLκdpXqq, @k P rKs,

where matrix X :“ rxisiPI P RnˆI and

κdpXq “ min
␣

}F1}1 }F2}1 : X “ F1F2, F1 P Rnˆd, F2 P RdˆI(.

After our initial version, we noted the concurrent work Liu et al. (2022b, Lemma G.3) which essen-
tially shows that κdpXq ď dmaxi }xi}1 by an elegant argument using the Barycentric spanner. For
the sake of simplicity, we have applied their result (cf. Lemma E.5) to make Corollary E.2 slightly
more convenient to use.

We also note that, in the initial version of this paper, in the statement of Theorem 9, the sample
complexity involved a log factor ι :“ logp1 ` KdΛBRBκdq, where κd :“ maxh κdpDhq, which
we then tightly bounded for all concrete problem classes in terms of the corresponding problem
parameter. The above change makes the statement slightly cleaner (though the result slightly looser)
by always using the bound κd ď dUA. The effect on the final result is however minor, as the sample
complexity of OMLE only depends on κd logarithmically through ι, and the sample complexity of
MOPS or EXPLORATIVE E2D does not involve this factor.

E.1.1 PROOF OF PROPOSITION E.1

To prove this proposition, we first show that the proposition can be reduced to the case when n “ 1 ,
extending the idea of the proof of (Liu et al., 2022a, Proposition 22). After that, we invoke a certain
variant of the elliptical potential lemma to derive the desired inequality.

We first transform and reduce the problem. For every pair of pk, iq P rKs ˆ I, we take r˚pk, iq :“
argmaxr

ř

j |xxk,i, yk,j,ry|, and consider

ryk,i,j :“ yk,j,r˚pk,iq @pk, i, jq P rKs ˆ I ˆ rns.

We then define
ryk,i :“

ÿ

j

ryk,i,j sign xryk,i,j , xk,iy @pk, iq P rKs ˆ I.

Under such a transformation, it holds that for all t, k, i, i1,

|xxt,i, ryt,iy| “
ÿ

j

ˇ

ˇ

@

xt,i, yt,j,r˚pt,iq

D
ˇ

ˇ “ max
r

ÿ

j

|xxt,i, yt,j,ry| “ ftpxt,iq,
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|xxt,i, ryk,i1 y| ď max
r

ÿ

j

|xxt,i, yk,j,ry| “ fkpxt,iq, }ryk,i}2 ď Ry.

Therefore, it remains to bound
řk

t“1M^Ei„qt |xxt,i, ryt,iy|, under the condition that for all k P rKs,
ř

tăk Ei„qtrmaxi1 |xxt,i, ryk,i1 y|
2
s ď βk.

To show this, we define Φt :“ Ei„qt

“

xt,ix
J
t,i

‰

, and take λ0 “ M2

R2
y

, Vk :“ λ0I `
ř

tăk Φt. Then

k
ÿ

t“1

M ^ Ei„qt |xxt,i, ryt,iy| ď

k
ÿ

t“1

min
!

M,Ei„qt

”

}xt,i}V ´1
t

}ryt,i}Vt

ı)

ď

k
ÿ

t“1

min

"

M,

c

pM2 ` βtqEi„qt

”

}xt,i}
2
V ´1
t

ı

*

ď

k
ÿ

t“1

c

pM2 ` βtqmin
!

1,Ei„qt

”

}xt,i}
2
V ´1
t

ı)

ď

´

kM2 `

k
ÿ

t“1

βt

¯
1
2
´

k
ÿ

t“1

min
!

1,Ei„qt

”

}xt,i}
2
V ´1
t

ı)¯
1
2

,

where the second inequality is due to the fact that for all pt, iq,

}ryt,i}
2
Vt

“ λ0 }ryt,i}
2

`
ÿ

săt

Ei1„qs |xxs,i1 , ryt,iy|
2

ď M2 ` βt.

Note that

Ei„qt

”

}xt,i}
2
V ´1
t

ı

“ Ei„qt

”

tr
´

V
´ 1

2

k xk,ix
J
k,iV

´ 1
2

k

¯ı

“ tr
´

V
´ 1

2

k ΦkV
´ 1

2

k

¯

.

In order to bound the term
řk

t“1 mint1, trpV
´1{2
k ΦkV

´1{2
k qu, we invoke the following standard

lemma, which generalizes Lattimore & Szepesvári (2020, Lemma 19.4).
Lemma E.4 (Generalized elliptical potential lemma). Let tΦk P RdˆdukPrKs be a sequence of
symmetric semi-positive definite matrix, and Vk :“ λ0I `

ř

tăk Φt, where λ0 ą 0 is a fixed real.
Then it holds that

K
ÿ

k“1

min
!

1, tr
´

V
´ 1

2

k ΦkV
´ 1

2

k

¯)

ď 2d log

˜

1 `

řK
k“1 trpΦkq

dλ0

¸

.

Applying Lemma E.4 and noticing trpΦtq “ Ei„qtr}xt,i}
2
2s ď R2

x, the proof of Proposition E.1 is
completed.

Proof of Lemma E.4. By definition and by linear algebra, we have

Vk`1 “ V
1
2

k

´

I ` V
´ 1

2

k ΦkV
´ 1

2

k

¯

V
1
2

k ,

and hence detpVk`1q “ detpVkqdetpI ` V
´ 1

2

k ΦkV
´ 1

2

k q. Therefore, we have

K
ÿ

k“1

min
!

1, tr
´

V
´ 1

2

k ΦkV
´ 1

2

k

¯)

ď

K
ÿ

k“1

2 log
´

1 ` tr
´

V
´ 1

2

k ΦkV
´ 1

2

k

¯¯

ď2
K
ÿ

k“1

log det
´

1 ` V
´ 1

2

k ΦkV
´ 1

2

k

¯

“2
K
ÿ

k“1

rlog detpVk`1q ´ log detpVkqs

“2 log
detpVK`1q

detpV0q
,
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where the first inequality is due to the fact that min t1, uu ď 2 logp1 ` uq, @u ě 0, and the second
inequality is because for any positive semi-definite matrix X , it holds detpI ` Xq ě 1 ` trpXq.
Now, we have

log detpVK`1q ď log

ˆ

trpVK`1q

d

˙d

“ d log

˜

λ0 `

řK
k“1 trpΦkq

d

¸

,

which completes the proof of Lemma E.4.

E.1.2 PROOF OF COROLLARY E.2

Let us take a decomposition xi “ Fvi@i P I, such that }vi}8 ď 1 and }F }1Ñ1 ď maxi }xi}1
(the existence of such a decomposition is guaranteed by Lemma E.5). We define rfk : Rd Ñ R as
follows:

rfkpvq :“ fkpFvq “ max
r

ÿ

j

ˇ

ˇ

@

v, FJyk,j,r
D
ˇ

ˇ .

By definition, rfkpviq “ fkpxiq, and hence our condition becomes
ÿ

tăk

Ei„qt

”

rf2k pviq
ı

ď βk, @k P rKs,

Then applying Proposition E.1 gives for all k P rKs,

k
ÿ

t“1

1 ^ Ei„qtrftpxiqs “

k
ÿ

t“1

1 ^ Ei„qt

”

rftpviq
ı

ď

g

f

f

e2d
´

k `

k
ÿ

t“1

βt

¯

log p1 ` kd´1 ¨R2
2R

2
1q,

where R2 ď maxi }vi}2 ď
?
d, and

R1 “max
k,r

ÿ

j

›

›FJyk,j,r
›

›

2
ď max

k,r

ÿ

j

›

›FJyk,j,r
›

›

1
ď max

k,r

ÿ

j

d
ÿ

m“1

ˇ

ˇeJ
mF

Jyk,j,r
ˇ

ˇ

“max
k,r

ÿ

j

d
ÿ

m“1

|xFem, yk,j,ry| ď max
k

d
ÿ

m“1

fkpFemq ď

d
ÿ

m“1

L }Fem}1 ď dL }F1}1 ď dLmax
i

}xi}1 .

Therefore, we have

log
`

1 ` kd´1 ¨R2
1R

2
2

˘

ď log
´

1 ` kd2L2 max
i

}xi}
2
1

¯

ď 2 logp1 ` kdLmax
i

}xi}1q,

which completes the proof of Corollary E.2.

The following lemma is an immediate consequence of Liu et al. (2022b, Lemma G.3).
Lemma E.5. Assume that a sequence of vectors txiuiPI Ă Rn satisfies that spanpxi : i P Iq

has dimension at most d and R “ maxi }x}1 ă 8. Then, there exists a sequence of vectors
tviuiPI Ă Rd and a matrix F P Rnˆd, such that xi “ Fvi @i P I, and }vi}8 ď 1, }F }1Ñ1 ď R.

Proof. Without loss of generality, we assume that X “ spanpxi : i P Iq has dimension at most
d. Then X is a d-dimensional compact subset of Rn, and we take a Barycentric spanner of X to be
tw1, ¨ ¨ ¨ , wdu. By definition, for each i P I, there exists weights pαijq1ďjďd such that αij P r´1, 1s

and xi “
řd

j“1 αijwj . Therefore, we can take vi “ rαijsJ
1ďjďd P Rd and F “ rw1, ¨ ¨ ¨ , wds P

Rnˆd, and they clearly fulfill the statement of Lemma E.5.

E.2 DECOUPLING ARGUMENT

Proposition E.1 can be regarded a triangular-to-diagonal decorrelation result. In this section, we
present its expectation-to-expectation analog, which is central for bounding Explorative DEC.
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Proposition E.6 (Decoupling argument). Suppose we have vectors and functions

txiuiPI Ă Rn, tfθ : Rn Ñ RuθPΘ

where Θ, I are arbitrary abstract index sets, with functions fθ given by

fθpxq :“ max
rPR

J
ÿ

j“1

|xx, yθ,j,ry| , @x P Rn,

where tyθ,j,ru
pθ,j,rqPΘˆrJsˆR Ă Rn is a family of bounded vectors in Rn. Then for any distribution

µ over Θ and probability family tqθuθPΘ Ă ∆pIq,

Eθ„µEi„qθ rfθpxiqs ď

b

dXEθ,θ1„µEi„qθ1 rfθpxiq2s,

where dX is the dimension of the subspace of Rn spanned by pxiqiPI .

Proof of Proposition E.6. By the assumption that tyθ,j,ru
pθ,j,rq

is a family of bounded vectors in
Rd, there exists Ry ă 8 such that supθ,r

řn
j“1 }yθ,j,r} ď Ry . We follow the same two steps as the

proof of Proposition E.1.

First, we reduce the problem. We consider r˚pθ, iq “ argmaxrPR
ř

j |xxi, yθ,j,ry|, and define the
vectors

ryθ,i,j “ yθ,j,r˚pθ,iq,

ryθ,i “
ÿ

j

sign xxi, ryθ,i,jy ryθ,i,j .

Then for all i P I, θ P Θ,

xxi, ryθ,iy “
ÿ

j

|xxi, ryθ,i,jy| “
ÿ

j

ˇ

ˇ

@

xi, yθ,j,r˚pθ,iq

D
ˇ

ˇ “ fθpxiq,

|xxi, ryθ1,i1 y| ď
ÿ

j

|xxi, ryθ1,i1,jy| “
ÿ

j

ˇ

ˇ

@

xi, yθ1,j,r˚pθ1,i1q

D
ˇ

ˇ ď fθ1 pxiq,
(33)

and }ryθ,i}2 ď
ř

j

›

›yθ,j,r˚pθ,iq

›

›

2
ď Ry. Therefore, it suffices to bound Eθ„µEi„qθ r|xxi, ryθ,iy|s.

Next, we define Φλ :“ λ` Eθ„µEi„qθ

“

xix
J
i

‰

with λ ą 0. Then we can bound the target as

Eθ„µEi„qθ r|xxi, ryθ,iy|s ďEθ„µEi„qθ

”

}xi}Φ´1
λ

}ryθ,i}Φλ

ı

ď

”

Eθ„µEi„qθ }xi}
2
Φ´1

λ

ı1{2 ”

Eθ„µEi„qθ }ryθ,i}
2
Φλ

ı1{2

.

The first term can be rewritten as

Eθ„µEi„qθ

”

}xi}
2
Φ´1

λ

ı

“Eθ„µEi„qθ

”

tr
´

Φ
´1{2
λ xix

J
i Φ

´1{2
λ

¯ı

“tr
´

Φ
´1{2
λ Eθ„µEi„qθ

“

xix
J
i

‰

Φ
´1{2
λ

¯

“tr
´

Φ
´1{2
λ Φ0Φ

´1{2
λ

¯

ď rankpΦ0q ď dX .

The second term can be bounded as

Eθ„µEi„qθ }ryθ,i}
2
Φλ

“Eθ1„µEi1„qθ1 }ryθ1,i1 }
2
Φλ

“Eθ1„µEi1„qθ1

!

Eθ„µEi„qθ

”

|xxi, ryθ1,i1 y|
2
ı

` λ }ryθ1,i1 }
2
)

“Eθ1„µEθ„µEi„qθ

”

|xxi, ryθ1,i1 y|
2
ı

` λEθ1„µEi1„qθ1 }ryθ1,i1 }
2

ďEθ1„µEθ„µEi„qθ

”

|fθ1 pxiq|
2
ı

` λR2
y,

where the last inequality is due to (33). Letting λ Ñ 0` completes the proof of Proposition E.6.
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F STRUCTURAL PROPERTIES OF B-STABLE PSRS

In this section, we present two important propositions that are used in the proofs of all the main
theorems (Theorem 9, 10, H.4, H.6). The first proposition bounds the performance difference of
two PSR models by B-errors. The second proposition bounds the squared B-errors by the Hellinger
distance of observation probabilities between two models.

F.1 PERFORMANCE DECOMPOSITION

We first present the performance decomposition proposition.
Proposition F.1 (Performance decomposition). Suppose that two PSR models θ, θ̄ admit
ttBθ

hpoh, ahquh,oh,ah
,qθ

0u and ttBθ̄
hpoh, ahquh,oh,ah

,qθ̄
0u as B-representation respectively, and

suppose that tBθ
H:huhPrHs and tBθ̄

H:huhPrHs are the associated B-operators respectively. Define

E θ̄
θ,hpτh´1q :“

1

2
max
π

ÿ

oh,ah

πpah|ohq

›

›

›
Bθ
H:h`1

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q

›

›

›

Π
,

E θ̄
θ,0 :“

1

2

›

›

›
Bθ
H:1

´

qθ
0 ´ qθ̄

0

¯›

›

›

Π
.

Then it holds that

DTV

`

Pπ
θ ,Pπ

θ̄

˘

ď E θ̄
θ,0 `

H
ÿ

h“1

Eθ̄,π

”

E θ̄
θ,hpτh´1q

ı

,

where for h P rHs, the expectation Eθ̄,π is taking over τh´1 under model θ̄ and policy π.

Proof of Proposition F.1. By the definition of B-representation, we have Pπ
θ pτHq “ πpτHq ˆ

Bθ
H:1pτHqqθ

0 for PSR model θ. Then for two different PSR models θ, θ̄, we have

Pπ
θ pτHq ´ Pπ

θ̄ pτHq

“ πpτHq ˆ

”

Bθ
H:1pτ1:Hqqθ

0 ´ Bθ̄
H:1pτ1:Hqqθ̄

0

ı

“ πpτHq ˆ Bθ
H:1pτ1:Hq

´

qθ
0 ´ qθ̄

0

¯

` πpτHq ˆ

H
ÿ

h“1

Bθ
H:h`1pτh`1:Hq

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

Bθ̄
1:h´1pτh´1qqθ̄

0

“ πpτHq ˆ Bθ
H:1pτHq

´

qθ
0 ´ qθ̄

0

¯

`

H
ÿ

h“1

πpτh:Hq ˆ Bθ
H:h`1pτh`1:Hq

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q ˆ Pπ
θ̄ pτh´1q,

where the last equality is due to the definition of B-representation (see e.g. (15)). Therefore, we
have

1

2

ÿ

τH

|Pπ
θ pτHq ´ Pπ

θ‹ pτHq|

ď
1

2

ÿ

τH

πpτHq ˆ

ˇ

ˇ

ˇ
Bθ

H:1pτHq

´

qθ
0 ´ qθ̄

0

¯
ˇ

ˇ

ˇ
`

1

2

ÿ

τH

H
ÿ

h“1

πpτh:Hq

ˆ

ˇ

ˇ

ˇ
Bθ

H:h`1pτh`1:Hq

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q

ˇ

ˇ

ˇ
ˆ Pπ

θ̄ pτh´1q

ď
1

2

›

›

›
Bθ
H:1

´

qθ
0 ´ qθ̄

0

¯
›

›

›

Π
`

1

2

H
ÿ

h“1

ÿ

τh´1

Pπ
θ̄ pτh´1q

ˆ max
π

ÿ

oh,ah

πpah|ohq

›

›

›
Bθ
H:h`1pτh`1:Hq

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q

›

›

›

Π
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“ E θ̄
θ,0 `

H
ÿ

h“1

Eθ̄,π

”

E θ̄
θ,hpτh´1q

ı

,

where the last inequality is due to the definition of Eθ̄,π and E θ̄
θ,hpτh´1q.

F.2 BOUNDING THE SQUARED B-ERRORS BY HELLINGER DISTANCE

In the following proposition, we show that under B-stability or weak B-stability, the squared B-
errors can be bounded by the Hellinger distance between Pπh,exp

θ and Pπh,exp

θ̄
. Here, for a policy

π P Π and h P rHs, πh,exp is defined as

πh,exp :“ π ˝h UnifpAq ˝h`1 UnifpUA,h`1q, (34)

which is the policy that follows π for the first h ´ 1 steps, takes UnifpAq at step h, takes an action
sequence sampled from UnifpUA,h`1q at step h`1, and behaves arbitrarily afterwards. This notation
is consistent with the exploration policy in the OMLE algorithm (Algorithm 1).
Proposition F.2 (Bounding squared B-errors by squared Hellinger distance). Suppose that the B-
representation of θ is ΛB-stable (cf. Definition 4) or weakly ΛB-stable (cf. Definition D.4), then we
have for h P rH ´ 1s

Eθ̄,π

”

E θ̄
θ,hpτh´1q2

ı

ď 4Λ2
BAUA

“

D2
H

`

Pπh,exp

θ ,Pπh,exp

θ̄

˘

`D2
H

`

Pπh´1,exp

θ ,Pπh´1,exp

θ̄

˘‰

,

and

Eθ̄,π

”

E θ̄
θ,HpτH´1q2

ı

ď 2pΛB ` 1q2D2
H

`

PπH´1,exp

θ ,PπH´1,exp

θ̄

˘

,

´

E θ̄
θ,0

¯2

ď Λ2
BUAD

2
H

`

Pπ0,exp

θ ,Pπ0,exp

θ̄

˘

,

where E θ̄
θ,hpτh´1q and E θ̄

θ,0 are as defined in Proposition F.1.

Proof of Proposition F.2. We first deal with the case h P rHs. By taking the difference, we have

2E θ̄
θ,hpτh´1q “ max

π

ÿ

τh:H

πpτh:Hq ˆ

ˇ

ˇ

ˇ
Bθ

H:h`1pτh`1:Hq

´

Bθ
hpoh, ahq ´ Bθ̄

hpoh, ahq

¯

qθ̄pτh´1q

ˇ

ˇ

ˇ

ďmax
π

ÿ

τh:H

πpτh:Hq ˆ

ˇ

ˇ

ˇ
Bθ

H:hpτh:Hq

´

qθpτh´1q ´ qθ̄pτh´1q

¯
ˇ

ˇ

ˇ

` max
π

ÿ

τh:H

πpτh:Hq ˆ

ˇ

ˇ

ˇ
Bθ

H:h`1pτh`1:Hq

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯
ˇ

ˇ

ˇ

“

›

›

›
Bθ
H:h

´

qθpτh´1q ´ qθ̄pτh´1q

¯
›

›

›

Π

` max
πh

ÿ

oh,ah

πhpah|ohq

›

›

›
Bθ
H:h`1

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯
›

›

›

Π
.

We now introduce several notations for the convenience of the proof.

1. For an action sequence a of length lpaq, Pp¨|τh´1,dopaqq stands for the distribution of oh:h`lpaq

conditional on τh´1 and taking action a for step h to step h` lpaq ´ 1.

2. Given a set A of action sequences (possibly of different length), PUnifpA qp¨|τh´1q stands for the
distribution of observation generated by: conditional on τh´1, first sample a a „ UnifpUA,hq, then
take a and then observe o (of length lpaq ` 1).

By the definition of Hellinger distances and by the notations above, we have

D2
H

´

PUnifpA q

θ p¨|τh´1q,PUnifpA q

θ̄
p¨|τh´1q

¯

“
1

|A |

ÿ

aPA

D2
H pPθp¨|τh´1,dopaqq,Pθ̄p¨|τh´1,dopaqqq .

(35)

Next, we present two lemmas whose proof will be deferred after the proof of the proposition.
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Lemma F.3. Suppose that B is weakly ΛB-stable (ΛB-stable is a sufficient condition), then it holds
that
›

›

›
Bθ
H:h

´

qθpτh´1q ´ qθ̄pτh´1q

¯
›

›

›

Π
ď 2ΛB

b

|UA,h|DH

´

PUnifpUA,hq

θ p¨|τh´1q,PUnifpUA,hq

θ̄
p¨|τh´1q

¯

.

Lemma F.4. Suppose that B is weakly ΛB-stable (ΛB-stable is a sufficient condition), then it holds
that

max
πh

ÿ

oh,ah

πhpah|ohq

›

›

›
Bθ
H:h`1

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯
›

›

›

Π

ď 2ΛB

b

A |UA,h`1|DH

´

PUnifpAq˝UnifpUA,h`1q

θ p¨|τh´1q,PUnifpAq˝UnifpUA,h`1q

θ̄
p¨|τh´1q

¯

.

Therefore, we first consider the case h P rH´1s. Applying Lemma F.3 and taking expectation with
respect to τh´1, we obtain

Eθ̄,π

„

›

›

›
Bθ
H:h

´

qθpτh´1q ´ qθ̄pτh´1q

¯
›

›

›

2

Π

ȷ

ď 4Λ2
B |UA,h|Eθ̄,π

”

D2
H

´

PUnifpUA,hq

θ p¨|τh´1q,PUnifpUA,hq

θ̄
p¨|τh´1q

¯ı

ď 8Λ2
B |UA,h|D2

H

´

Pπ˝hUnifpUA,hq

θ ,Pπ˝hUnifpUA,hq

θ̄

¯

ď 8Λ2
BA |UA,h|D2

H

`

Pπh´1,exp

θ ,Pπh´1,exp

θ̄

˘

,

(36)

where the second inequality is due to Lemma C.1, and the last inequality is due to importance
sampling. Similarly, applying Lemma F.4 and taking expectation with respect to τh´1, we have

Eθ̄,π

»

–

˜

max
πh

ÿ

oh,ah

πhpah|ohq

›

›

›
Bθ
H:h`1

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯
›

›

›

Π

¸2
fi

fl

ď8Λ2
BA |UA,h`1|D2

H

´

Pπ˝hUnifpAq˝UnifpUA,hq

θ ,Pπ˝hUnifpAq˝UnifpUA,hq

θ̄

¯

“8Λ2
BA |UA,h`1|D2

H

`

Pπh,exp

θ ,Pπh,exp

θ̄

˘

.

The proof for h P rH´1s is completed by noting that px`yq2 ď 2x2`2y2 and UA “ maxh |UA,h|.

For the case h “ H , note that by Corollary D.2,

max
π

ÿ

oH ,aH

πpaH |oHq

ˇ

ˇ

ˇ

´

Bθ
HpoH , aHqqθpτH´1q ´ Bθ̄

HpoH , aHqqθ̄pτH´1q

¯ˇ

ˇ

ˇ

“
ÿ

oH

|PθpoH |τH´1q ´ Pθ̄poH |τH´1q| ď 2DH pPθp¨|τH´1q,Pθ̄p¨|τH´1qq ,

and by Lemma F.3 it holds that
›

›

›
Bθ
H:H

´

qθpτH´1q ´ qθ̄pτH´1q

¯
›

›

›

Π

ď2ΛB

b

|UA,H |DH

´

PUnifpUA,Hq

θ p¨|τH´1q,PUnifpUA,Hq

θ̄
p¨|τH´1q

¯

“2ΛBDH pPθp¨|τH´1q,Pθ̄p¨|τH´1qq ,

where the equality is due to UA,H only containing the null action sequence. Therefore,

E θ̄
θ,HpτH´1q ď pΛB ` 1qDH

`

PπH´1,exp

θ ,PπH´1,exp

θ̄

˘

,

and applying Lemma C.1 completes the proof of the case h “ H .

The case h “ 0 is directly implied by Lemma F.3:
›

›

›
Bθ
H:1

´

qθ
0 ´ qθ̄

0

¯
›

›

›

2

Π
ď4Λ2

B |UA,1|D2
H

´

Pπ˝1UnifpUA,1q

θ ,Pπ˝1UnifpUA,1q

θ̄

¯

“4Λ2
B |UA,1|D2

H

`

Pπ0,exp

θ ,Pπ0,exp

θ̄

˘

.

Combining all these cases finishes the proof of Proposition F.2.
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We next prove Lemma F.3 and F.4 that were used in the proof of Proposition F.2.

Proof of Lemma F.3. By the weak B-stability as in Definition D.4 (B-stability is also sufficient, see
Eq. (19)), we have
›

›

›
Bθ
H:h

´

qθpτh´1q ´ qθ̄pτh´1q

¯
›

›

›

2

Π
ď2Λ2

B

´

›

›qθpτh´1q
›

›

Π
`

›

›

›
qθ̄pτh´1q

›

›

›

Π

¯

›

›

›

›

b

qθpτh´1q ´

b

qθ̄pτh´1q

›

›

›

›

2

2

,

where }¨}Π is defined in Definition D.3. By the definition of qθpτh´1q, for th “ po,aq P Uh, we
have

qθpτh´1qpo,aq “ Pθpth|τh´1q “ Pθpoh:h`lpaq´1 “ o|τh´1,dopaqq.

Hence, we have
›

›qθpτh´1q
›

›

Π
“ max

T 1ĂUh

max
π

ÿ

po,aqPUh

πpo,aq ˆ Pθpoh:h`lpaq´1 “ o|τh´1,dopaqq

“ max
T 1ĂUh

max
π

Pπ
θ pT 1|τh´1q ď 1,

where Pπ
θ pT 1|τh´1q stands for the probability that some test in T 1 is observed under θ̄, π conditional

on τh´1. Similarly, we have
›

›

›
qθ̄pτh´1q

›

›

›

Π
ď 1. Therefore, we have

1

4
Λ´2
B

›

›

›
Bθ
H:h

´

qθpτh´1q ´ qθ̄pτh´1q

¯
›

›

›

2

Π
ď

›

›

›

›

b

qθpτh´1q ´

b

qθ̄pτh´1q

›

›

›

›

2

2

“
ÿ

aPUA,h

ÿ

o:po,aqPUh

ˇ

ˇ

ˇ
r
a

Pθ ´
a

Pθ̄spo|τh´1,dopaqq

ˇ

ˇ

ˇ

2

piq
ď

ÿ

aPUA,h

ÿ

oPOlpaq`1

ˇ

ˇ

ˇ
r
a

Pθ ´
a

Pθ̄spo|τh´1,dopaqq

ˇ

ˇ

ˇ

2

piiq
“

ÿ

aPUA,h

D2
H pPθp¨|τh´1,dopaqq,Pθ̄p¨|τh´1,dopaqqq

piiiq
“ |UA,h|D2

H

´

PUnifpUA,hq

θ p¨|τh´1q,PUnifpUA,hq

θ̄
p¨|τh´1q

¯

,

where in (i) we include those o such that po,aq may not belong to Uh`1 into summation, (ii) is due to
the definition of Pp¨|τh´1,dopaqq, and (iii) follows from importance sampling (35). This completes
the proof of Lemma F.3.

Proof of Lemma F.4. Similar to the proof of Lemma F.3, we only need to work under the weak
B-stability condition. By Corollary D.2, for th`1 “ po,aq P Uh`1, it holds that

“

Bθ
hpo, aqqθpτh´1q

‰

po,aq “ Pθpth`1|τh´1, o, aq ˆ Pθpo|τh´1q “ Pθpo, a, th`1|τh´1q,

and hence
›

›Bθ
hpo, aqqθpτh´1q

›

›

Π
“ max

T 1ĂUh`1

max
π

ÿ

th`1PT 1

πpth`1q ˆ Pθpth`1|τh´1, o, aq ˆ Pθpo|τh´1q

“ max
T 1ĂUh`1

max
π

Pπ
θ pT 1|τh´1, o, aq ˆ Pθpo|τh´1q ď Pθpo|τh´1q,

where Pπ
θ pT 1|τh´1, o, aq stands for the probability that some test in T 1 is observed under θ, π con-

ditional on observing τh “ pτh´1, o, aq. Similarly, we have
›

›

›
Bθ̄

hpo, aqqθ̄pτh´1q

›

›

›

Π
ď Pθ̄po|τh´1q.

Therefore, by the weak B-stability as in Definition D.4 and combining with the inequalities above,
it holds that

›

›

›
Bθ
H:h`1

´

Bθ
hpo, aqqθpτh´1q ´ Bθ̄

hpo, aqqθ̄pτh´1q

¯
›

›

›

Π

ď ΛB

a

2rPθ ` Pθ̄spoh “ o|τh´1q ¨

”

ÿ

tPUh`1

ˇ

ˇ

ˇ

”

a

Pθ ´
a

Pθ̄

ı

po, a, t|τh´1q

ˇ

ˇ

ˇ

2 ı1{2

.
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Hence, we have

Λ´1
B max

πh

ÿ

oh,ah

πhpah|ohq

›

›

›
Bθ
H:h`1

´

Bθ
hpoh, ahqqθpτh´1q ´ Bθ̄

hpoh, ahqqθ̄pτh´1q

¯
›

›

›

Π

ď max
π

ÿ

o,a

πpa|oq
a

2rPθ ` Pθ̄spoh “ o|τh´1q

”

ÿ

tPUh`1

ˇ

ˇ

ˇ

”

a

Pθ ´
a

Pθ̄

ı

po, a, t|τh´1q

ˇ

ˇ

ˇ

2 ı1{2

piq
ď

ÿ

o

a

2rPθ ` Pθ̄spoh “ o|τh´1q

”

ÿ

a

ÿ

tPUh`1

ˇ

ˇ

ˇ

”

a

Pθ ´
a

Pθ̄

ı

po, a, t|τh´1q

ˇ

ˇ

ˇ

2 ı1{2

piiq
ď 2

”

ÿ

o,a

ÿ

tPUh`1

ˇ

ˇ

ˇ

”

a

Pθ ´
a

Pθ̄

ı

po, a, t|τh´1q

ˇ

ˇ

ˇ

2 ı1{2

“ 2
”

ÿ

o,a

ÿ

po,aqPUh`1

ˇ

ˇ

ˇ
r
a

Pθ ´
a

Pθ̄spoh:h`lpaq`1 “ po,oq|τh´1,dopa,aqq

ˇ

ˇ

ˇ

2 ı1{2

piiiq
ď 2

”

ÿ

pa,aqPAˆUA,h`1

ÿ

o,o

ˇ

ˇ

ˇ
r
a

Pθ ´
a

Pθ̄spoh:h`lpaq`1 “ po,oq|τh´1,dopa,aqq

ˇ

ˇ

ˇ

2 ı1{2

pivq

ď 2
b

A |UA,h`1|DH

´

PUnifpAq˝UnifpUA,h`1q

θ p¨|τh´1q,PUnifpAq˝UnifpUA,h`1q

θ̄
p¨|τh´1q

¯

,

where (i) is due to the fact that maxπP∆pAq

ř

aPA πpaqxpaq ď
`
ř

a xpaq2
˘1{2

, (ii) is due to Cauchy-
Schwarz inequality, in (iii) we include those o such that po,aq may not belong to Uh`1 into sum-
mation, (iv) is due to (35): UnifpAq ˝UnifpUA,h`1q is simply the uniform policy over AˆUA,h`1.
This concludes the proof of Lemma F.4.

G PROOF OF THEOREM 9

We first restate Theorem 9 as follows in terms of the (more relaxed) weak B-stability condition.
Theorem G.1 (Restatement of Theorem 9). Suppose every θ P Θ is ΛB-stable (Definition 4) or
weakly ΛB-stable (Definition D.4), and the true model θ‹ P Θ with rank dPSR ď d. Then, choosing
β “ C logpNΘp1{KHqq{δq for some absolute constant C ą 0, with probability at least 1 ´ δ, Al-
gorithm 1 outputs a policy pπout P ∆pΠq such that V‹ ´ Vθ‹ ppπoutq ď ε, as long as the number of
episodes

T “ KH ě O
´

dAUAΛ
2
BH

2 logpNΘp1{T q{δqι{ε2
¯

, (37)

where ι :“ log p1 `KdUAΛBRBq with RB :“ maxht1,max}v}1“1

ř

o,a }Bhpo, aqv}1u.

The proof of Theorem G.1 uses the following fast rate guarantee for the OMLE algorithm, which is
standard (e.g. Van de Geer (2000); Agarwal et al. (2020)). For completeness, we present its proof in
Appendix G.1.
Proposition G.2 (Guarantee of MLE). Suppose that we choose β ě 2 logNΘp1{T q`2 logp1{δq`2
in Algorithm 1. Then with probability at least 1 ´ δ, the following holds:

(a) For all k P rKs, θ‹ P Θk;

(b) For all k P rKs and any θ P Θk, it holds that

k´1
ÿ

t“1

H´1
ÿ

h“0

D2
H

ˆ

Pπt
h,exp

θ ,Pπt
h,exp

θ‹

˙

ď 2β.

We next prove Theorem G.1. We adopt the definitions of E θ̄
θ,hpτh´1q as in Proposition F.1 and

abbreviate E‹
k,h “ Eθ‹

θk,h. We also condition on the success of the event in Proposition G.2.
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Step 1. By Proposition G.2, it holds that θ‹ P Θ. Therefore, Vθkpπkq ě V‹, and by Proposition F.1,
we have

k
ÿ

t“1

`

V‹ ´ Vθ‹ pπtq
˘

ď

k
ÿ

t“1

`

Vθtpπtq ´ Vθ‹ pπtq
˘

ď

k
ÿ

t“1

DTV

´

Pπt

θt ,Pπt

θ‹

¯

ď

k
ÿ

t“1

1 ^

˜

E‹
t,0 `

H
ÿ

h“1

Eπt

“

E‹
t,hpτh´1q

‰

¸

ď

k
ÿ

t“1

˜

1 ^ E‹
t,0 `

H
ÿ

h“1

1 ^ Eπt

“

E‹
t,hpτh´1q

‰

¸

.

(38)

On the other hand, by Proposition F.2, we have

pE‹
t,0q2 `

H
ÿ

h“1

Eπt

“

E‹
k,hpτh´1q2

‰

ď 12Λ2
BAUA

H´1
ÿ

h“0

D2
H

`

Pπh,exp

θk ,Pπh,exp

θ‹

˘

.

Furthermore, by Proposition G.2 we have

k´1
ÿ

t“1

H´1
ÿ

h“0

D2
H

ˆ

Pπt
h,exp

θk ,Pπt
h,exp

θ‹

˙

ď 2β.

Therefore, defining βk,h :“
ř

tăk EπtrE‹
k,hpτh´1q2s, combining the two equations above gives

H
ÿ

h“0

βk,h “

H
ÿ

h“0

ÿ

tăk

EπtrE‹
k,hpτh´1q2s ď 24Λ2

BAUAβ, @k P rKs. (39)

Step 2. We would like to bridge the performance decomposition (38) and the squared B-errors
bound (39) using the generalized ℓ2-Eluder argument. We consider separately the case for h “ 0
and h P rHs.

Case 1: h “ 0. This case follows directly from Cauchy-Schwarz inequality:

k
ÿ

t“1

1 ^ E‹
t,0 ď

´

k
k
ÿ

t“1

1 ^
`

E‹
t,0

˘2
¯1{2

ď

b

kpβk,0 ` 1q. (40)

Case 2: h P rHs. We invoke the generalized ℓ2-Eluder argument (actually, its corollary) as in
Appendix E.1, restated as follows for convenience.
Corollary E.2. Suppose we have a sequence of functions tfk : Rn Ñ RukPrKs:

fkpxq :“ max
rPR

J
ÿ

j“1

|xx, yk,j,ry| ,

which is given by the family of vectors tyk,j,ru
pk,j,rqPrKsˆrJsˆR Ă Rn. Further assume that there

exists L ą 0 such that fkpxq ď L }x}1.

Consider further a sequence of vector pxiqiPI , satisfying the following condition

k´1
ÿ

t“1

Ei„qt

“

f2k pxiq
‰

ď βk, @k P rKs,

and the subspace spanned by pxiqiPI has dimension at most d. Then it holds that

k
ÿ

t“1

1 ^ Ei„qtrftpxiqs ď

g

f

f

e4d
´

k `

k
ÿ

t“1

βt

¯

log
´

1 ` kdLmax
i

}xi}1

¯

, @k P rKs.

We have the following three preparation steps to apply Corollary E.2.
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1. Recall the definition of E‹
t,hpτh´1q as in Proposition F.1 (in short E‹

k,hpτh´1q :“ Eθ‹

θk,hpτh´1q),

E‹
k,hpτh´1q :“

1

2
max
π

ÿ

τh:H

πpτh:Hq ˆ
ˇ

ˇBk
H:h`1pτh`1:Hq

`

Bk
hpoh, ahq ´ B‹

hpoh, ahq
˘

q‹pτh´1q
ˇ

ˇ ,

where we replace superscript θk of B by k for simplicity. Let us define

yk,j,π :“
1

2
πpτ jh:Hq ˆ

”

Bk
H:h`1pτ jh`1:Hq

´

Bk
hpojh, a

j
hq ´ B‹

hpojh, a
j
hq

¯ıJ

P R|Uh|,

where tτ jh:H “ poh, ah, ¨ ¨ ¨ , oH , aHqunj“1 is an ordering of all possible τh:H (and hence n “

pOAqH´h`1), π is any policy that starts at step h. We then define

fkpxq “ max
π

ÿ

j

|xyk,j,π, xy| , x P RUh .

It follows from definition that E‹
k,hpτh´1q “ fkpq‹pτh´1qq.

2. We define xi “ q‹pτ ih´1q P R|Uh|, where tτ ih´1ui is an ordering of all possible τh´1 P pO ˆ

Aqh´1. Then by the assumption that θ‹ has PSR rank less than or equal to d, we have dim spanpxi :
i P Iq ď d. Furthermore, we have }xi}1 ď UA by definition.

3. It remains to verify that fk is Lipschitz with respect to 1-norm. We only need to verify it under
the weak ΛB-stability condition. We have

fkpqq ď
1

2

«

›

›Bk
H:hq

›

›

Π
` max

π

ÿ

o,a

πpa|oq
›

›Bk
H:h`1B

‹
hpo, aqq

›

›

Π

ff

ď 2ΛB }q}1 ` 2ΛB max
π

ÿ

o,a

πpa|oq }B‹
hpo, aqq}1

ď 2ΛB }q}1 ` 2ΛB

ÿ

o,a

}B‹
hpo, aq}1 }q}1 ď 2ΛBpRB ` 1q }q}1 ,

where the first inequality follows the same argument as (35); the second inequality is due to B-
stability (or weak B-stability and (21)); the last inequality is due to the definition of B. Hence we
can take L “ 2ΛBpRB ` 1q to ensure that fkpxq ď L }x}1.

Therefore, applying Corollary E.2 yields

k
ÿ

t“1

1 ^ Eπt

“

E‹
t,hpτh´1q

‰

ď

g

f

f

e4ι

˜

kd` d
k
ÿ

t“1

βt,h

¸

, (41)

where ι “ log p1 ` 2kdUAΛBpRB ` 1qq. This completes case 2.

Combining these two cases, we obtain

k
ÿ

t“1

`

V‹ ´ Vθ‹ pπtq
˘

piq
ď

k
ÿ

t“1

1 ^ E‹
t,0 `

H
ÿ

h“1

´

k
ÿ

t“1

1 ^ Eπt

“

E‹
t,hpτh´1q

‰

¯

piiq
ď

b

kpβk,0 ` 1q ` 2
?
ι ¨

H
ÿ

h“1

´

kd` d
k
ÿ

t“1

βt,h

¯1{2

ď

g

f

f

ep4Hι` 1q ¨

´

kpHd` 1q ` d
k
ÿ

t“1

H
ÿ

h“0

βt,h

¯

piiiq
“ O

ˆ

b

Λ2
BdAUAH ¨ kβι

˙

.

where (i) used (38); (ii) used the above two cases (40) and (41); (iii) used (39). As a consequence,
whenever k ě OpΛ2

BdAUAH ¨ βι{ε2q, we have 1
k

řk
t“1 pV‹ ´ Vθ‹ pπtqq ď ε. This completes the

proof of Theorem G.1 (and hence Theorem 9).
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G.1 PROOF OF PROPOSITION G.2

For the simplicity of presentation, we consider the following general interaction process: For t “

1, ¨ ¨ ¨ , T , the learner determines a π̄t, then executes π̄t and collects a trajectory τ̄ t „ Pπ̄t

θ‹ p¨q. We
show that, with probability at least 1 ´ δ, the following holds for all t P rT s and θ P Θ:

t´1
ÿ

s“1

D2
H

´

Pπ̄s

θ ,Pπ̄s

θ‹

¯

ď Ltpθ
‹q ´ Ltpθq ` 2 logNΘp1{T q ` 2 logp1{δq ` 2, (42)

where Lt is the total log-likelihood (at step t) defined as

Ltpθq :“
t´1
ÿ

s“1

logPπ̄s

θ pτ̄sq.

Proposition G.2 is implied by (42) directly: Suppose we choose β ě 2 logNΘp1{T q`2 logp1{δq`2.
On the event (42), by the non-negativity of squared Hellinger distances, we have for all k P rKs and
θ P Θ that

ÿ

pπ,τqPDk

logPπ
θ‹ pτq ě

ÿ

pπ,τqPDk

logPπ
θ pτq ´ β,

where Dk is the dataset of all histories before the outer loop of Algorithm 1 enters step k. Taking max
over θ P Θ on the right-hand side, we obtain θ‹ P Θk, which gives Proposition G.2(1). Furthermore,
for k P rKs and θ P Θk, (42) implies that

k´1
ÿ

t“1

H´1
ÿ

h“0

D2
H

ˆ

Pπt
h,exp

θ ,Pπt
h,exp

θ‹

˙

ď
ÿ

pπ,τqPDk

logPπ
θ‹ pτq ´

ÿ

pπ,τqPDk

logPπ
θ pτq ` β

ď max
pθ

ÿ

pπ,τqPDk

logPπ
pθ
pτq ´

ÿ

pπ,τqPDk

logPπ
θ pτq ` β ď 2β,

which gives Proposition G.2(2).

In the following, we establish (42). Let us fix a 1{T -optimistic covering prP,Θ0q of Θ, such that
n :“ |Θ0| “ NΘp1{T q. We label prPθ0qθ0PΘ0 by rP1, ¨ ¨ ¨ , rPn. By the definition of optimistic
covering, it is clear that for any θ P Θ, there exists i P rns such that for all π, τ , it holds that
rPπ
i pτq ě Pπ

θ pτq and }rPπ
i p¨q ´ Pπ

θ p¨q}1 ď 1{T 2. We say θ is covered by this i P rns.

Then, we consider

ℓti “ log
Pπ̄t

θ‹ pτ̄ tq

rPπ̄t

i pτ̄ tq
, t P rT s, i P rns.

By Lemma C.3, the following holds with probability at least 1 ´ δ: for all t P rT s, i P rns,

1

2

t´1
ÿ

s“1

ℓsi ` logpn{δq ě

t´1
ÿ

s“1

´Es

„

exp

ˆ

´
1

2
ℓsi

˙ȷ

,

where Es denotes the conditional expectation over all randomness after π̄s has been determined. By
definition,

Et

„

exp

ˆ

´
1

2
ℓti

˙ȷ

“ Et

»

–

d

rPπ̄t

i pτ̄ tq

Pπ̄t

θ‹ pτ̄ tq

fi

fl “ Eτ„π̄t

»

–

d

rPπ̄t

i pτq

Pπ̄t

θ‹ pτq

fi

fl “
ÿ

τ

b

Pπ̄t

θ‹ pτqrPπ̄t

i pτq

Therefore, for any θ P Θ that is covered by i P rns, we have

´ logEt

„

exp

ˆ

´
1

2
ℓti

˙ȷ

ě1 ´
ÿ

τ

b

Pπ̄t

θ‹ pτqrPπ̄t

i pτq

“1 ´
ÿ

τ

b

Pπ̄t

θ‹ pτqPπ̄t

θ pτq ´
ÿ

τ

b

Pπ̄t

θ‹ pτq

ˆ

b

rPπ̄t

i pτq ´

b

Pπ̄t

θ pτq

˙
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Algorithm 2 EXPLORATIVE E2D (Chen et al., 2022)

Input: Model class Θ, parameters γ ą 0, η P p0, 1{2q. An 1{T -optimistic cover prP,Θ0q.
1: Initialize µ1 “ UnifpΘ0q.
2: for t “ 1, . . . , T do
3: Set pptexp, p

t
outq “ argminppexp,poutqP∆pΠq2

pV µt

γ ppexp, poutq, where pV µt

γ is defined by

pV µt

γ ppexp, poutq :“ sup
θPΘ

Eπ„pout
rVθpπθq ´ Vθpπqs ´ γEπ„pexp

Eθt„µt

“

D2
H pPπ

θ ,Pπ
θtq

‰

.

4: Sample πt „ ptexp. Execute πt and observe τ t.
5: Compute µt`1 P ∆pΘ0q by

µt`1pθq 9θ µ
tpθq ¨ exp

´

η log rPπt

θ pτ tq
¯

.

Output: Policy pπout :“
1
T

řT
t“1 p

t
out.

ě
1

2
D2

H

´

Pπ̄t

θ pτ “ ¨q,Pπ̄t

θ‹ pτ “ ¨q

¯

´

˜

ÿ

τ

ˇ

ˇ

ˇ

ˇ

b

rPπ̄t

i pτq ´

b

Pπ̄t

θ pτq

ˇ

ˇ

ˇ

ˇ

2
¸1{2

ě
1

2
D2

H

´

Pπ̄t

θ pτ “ ¨q,Pπ̄t

θ‹ pτ “ ¨q

¯

´

›

›

›

rPπ̄t

i p¨q ´ Pπ̄t

θ p¨q

›

›

›

1{2

1

ě
1

2
D2

H

´

Pπ̄t

θ pτ “ ¨q,Pπ̄t

θ‹ pτ “ ¨q

¯

´
1

T
,

where the first inequality is due to ´ log x ě 1´x; in the second inequality we use the definition of
Hellinger distance and Cauchy inequality; the third inequality is because p

?
x´

?
yq2 ď |x´ y| for

all x, y P Rě0; the last inequality is due to our assumption that θ is covered by i. Notice that every
θ P Θ is covered by some i P rns, and for such i,

řt´1
s“1 ℓ

s
i ď Ltpθ

‹q ´ Ltpθq; therefore, it holds
with probability 1 ´ δ that, for all θ P Θ, t P rT s,

1

2
pLtpθ

‹q ´ Ltpθqq ` logpn{δq `
t´ 1

T
ě

1

2

t´1
ÿ

s“1

D2
H

´

Pπ̄s

θ ,Pπ̄s

θ‹

¯

.

Plugging in n “ NΘp1{T q and scaling the above inequality by 2 gives (42).

H EXPLORATIVE E2D, ALL-POLICY MODEL-ESTIMATION E2D, AND
MOPS

In this section, we present the detailed algorithms of EXPLORATIVE E2D, ALL-POLICY MODEL-
ESTIMATION E2D, and MOPS introduced in Section 4. We also state the theorems for their sample
complexity bounds of learning ε-optimal policy of B-stable PSRs.

H.1 EXPLORATIVE E2D ALGORITHM

In this section, we provide more details about the EXPLORATIVE E2D algorithm as discussed in
Section 4.2. The full algorithm of EXPLORATIVE E2D is given in Algorithm 2, equivalent to Chen
et al. (2022, Algorithm 2) in the known reward setting (D2

RL becomesD2
H since we assumed that the

reward is deterministic and known, so that the contribution from reward distance inD2
RL becomes 0).

Chen et al. (2022, Theorem F.1) showed that EXPLORATIVE E2D achieves the following estimation
bound.
Theorem H.1 (Chen et al. (2022), Theorem F.1). Given an 1{T -optimistic cover prP,Θ0q (c.f. Defi-
nition C.4) of the model class Θ, Algorithm 2 with η “ 1{3 achieves the following with probability
at least 1 ´ δ:

V‹ ´ Vθ‹ ppπoutq ď edecγpΘq `
10γ

T
rlog |Θ0| ` 2 logp1{δq ` 3s,

where edecγ is the Explorative DEC as defined in Section 4.2.
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Algorithm 3 ALL-POLICY MODEL-ESTIMATION E2D(Chen et al., 2022)

1: Input: Model class Θ, parameters γ ą 0, η P p0, 1{2s. An 1{T -optimistic cover prP,Θ0q.
2: Initialize µ1 “ UnifpΘ0q.
3: for t “ 1, . . . , T do
4: Set pptexp, µ

t
outq “ argminppexp,µoutqP∆pΠqˆ∆pΘq

pV µt

me,γppexp, µoutq, where

pV µt

me,γppexp, µoutq :“ sup
θPΘ

sup
π̄PΠ

Eθ̄„µout

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„pexp
E
pθt„µt

”

D2
H

´

Pπ
θ ,Pπ

pθt

¯ı

.

5: Sample πt „ ptexp. Execute πt and observe τ t.
6: Compute µt`1 P ∆pΘ0q by

µt`1pθq 9θ µ
tpθq ¨ exp

´

η log rPπt

θ pτ tq
¯

.

7: Compute µout “ 1
T

řT
t“1 µ

t
out P ∆pΘq.

8: Output: pθ “ argminθPΘ supπPΠ Eθ̄„µout

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

.

As we can see from the theorem above, as long as we can bound edecγpΘq, we can get a sample
complexity bound for the EXPLORATIVE E2D algorithm. This gives Theorem 10 in the main text,
which we restate as below.
Theorem H.2 (Restatement of Theorem 10). Suppose Θ is a PSR class with the same core test sets
tUhuhPrHs, and each θ P Θ admits a B-representation that is ΛB-stable (c.f. Definition 4) or weakly
ΛB-stable (c.f. Definition D.4), and has PSR rank dPSR ď d. Then

edecγpΘq ď 9dAUAΛ
2
BH

2{γ.

Therefore, we can choose a suitable parameter γ and an 1{T -optimistic cover prP,Θ0q, such that with
probability at least 1 ´ δ, Algorithm 2 outputs a policy pπout P ∆pΠq such that V‹ ´ Vθ‹ ppπoutq ď ε,
as long as the number of episodes

T ě O
`

dAUAΛ
2
BH

2 logpNΘp1{T q{δq{ε2
˘

.

The proof of Theorem H.2 and hence Theorem 10 is contained in Appendix I.2.

H.2 ALL-POLICY MODEL-ESTIMATION E2D FOR MODEL-ESTIMATION

In this section, we provide more details about model-estimation learning in PSRs as discussed in
Section 4.2. In reward-free RL (Jin et al., 2020b), the goal is to optimally explore the environment
without observing reward information, so that after the exploration phase, a near-optimal policy of
any given reward can be computed using the collected trajectory data alone without further interact-
ing with the environment.

Chen et al. (2022) developed ALL-POLICY MODEL-ESTIMATION E2D as a unified algorithm for
reward-free/model-estimation learning in RL, and showed that its sample complexity scales with a
complexity measure named All-policy Model-Estimation DEC (AMDEC). The AMDEC is defined
as amdecγpΘq :“ sup

pµP∆pΘq amdecγpΘ, pµq, where

amdecγpΘ, pµq :“ inf
pexpP∆pΠq,µoutP∆pΠq

sup
θPΘ

sup
π̄PΠ

Eθ̄„µout

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„pexp
E
pθ„pµ

”

D2
H

´

Pπ
θ ,Pπ

pθ

¯ı

.

(43)

The ALL-POLICY MODEL-ESTIMATION E2D algorithm (Algorithm 3) for a PSR class Θ is given
as follows: In each episode t P rT s, we maintain a distribution µt P ∆pΘ0q over an 1{T -optimistic
cover prP,Θ0q of Θ (c.f. Definition C.4), which we use to compute an exploration policy distribution
ptexp by minimizing the following risk:

pptexp, µ
t
outq “ argmin

ppexp,µoutqP∆pΠqˆ∆pΘq

sup
θPΘ

sup
π̄PΠ

Eθ̄„µout

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„pexp
E
pθt„µt

”

D2
H

´

Pπ
θ ,Pπ

pθt

¯ı

.
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Then, we execute policy πt „ ptexp, collect trajectory τ t, and update the model distribution using
the same Tempered Aggregation scheme as in EXPLORATIVE E2D. After T episodes, we output the
emipirical model pθ by computing µout “ 1

T

řT
t“1 µ

t
out P ∆pΘq and then projecting it into Θ, i.e.

pθ “ argmin
θPΘ

sup
πPΠ

Eθ̄„µout

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

.

Chen et al. (2022, Theorem H.2) show that the output model pθ of ALL-POLICY MODEL-
ESTIMATION E2D has an estimation error (measured in terms of the TV distance) that scales as
amdecγ .

Theorem H.3. Given an 1{T -optimistic cover prP,Θ0q (c.f. Definition C.4) of the class of transition
dynamics Θ, Algorithm 3 with η “ 1{2 achieves the following with probability at least 1 ´ δ:

sup
π
DTV

´

Pπ
pθ
,Pπ

θ‹

¯

ď 6amdecγpΘq `
60γ

T
rlog |Θ0| ` 2 logp1{δq ` 3s,

where amdecγ is the All-policy Model-Estimation DEC as defined in (43).

We provide a sharp bound on the AMEDEC for B-stable PSRs, which implies that ALL-POLICY
MODEL-ESTIMATION E2D can also learn them sample-efficient efficiently in a model-estimation
manner.
Theorem H.4. Suppose Θ is a PSR class with the same core test sets tUhuhPrHs, and each θ P Θ ad-
mits a B-representation that is ΛB-stable (c.f. Definition 4) or weakly ΛB-stable (c.f. Definition D.4),
and has PSR rank dPSR ď d. Then

amdecγpΘq ď 6dAUAΛ
2
BH

2{γ. (44)

Therefore, we can choose a suitable parameter γ and an 1{T -optimistic cover prP,Θ0q, such that with

probability at least 1 ´ δ, Algorithm 3 outputs a model pθ P Θ such that supπDTV

´

Pπ
pθ
,Pπ

θ‹

¯

ď ε,
as long as the number of episodes

T ě O
`

dAUAΛ
2
BH

2 logpNΘp1{T q{δq{ε2
˘

.

The proof of Theorem H.4 is contained in Appendix I.3.

H.3 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (MOPS)

In this section, we provide more details about the MOPS algorithm as discussed in Section 4.3.

We consider the following version of the MOPS algorithm of Agarwal & Zhang (2022); Chen et al.
(2022). Similar to EXPLORATIVE E2D, MOPS also maintains a posterior µt P ∆pΘ0q over an 1{T

optimistic cover prP,Θ0q, initialized at a suitable prior µ1. The exploration policy in the t-th episode
is obtained by posterior sampling: πt “ πθt ˝ht UnifpAq ˝ht`1 UnifpUA,ht`1q, where θt „ µt

and ht „ Unifpt0, 1, . . . ,H ´ 1uq. After executing πt and observing τ t, the algorithm updates the
posterior as

µt`1pθq 9θ µ
1pθq exp

´

t
ÿ

s“1

`

γ´1Vθpπθq ` η log rPπs

θ pτsq
˘

¯

.

Finally, the algorithm output pπout :“ 1
T

řT
t“1 poutpµ

tq, where poutpµtq P ∆pΠq is defined as

poutpµqpπq “ µptθ : πθ “ πuq, @π P Π. (45)

We further consider the following Explorative PSC (EPSC), which is a modification of the PSC
proposed in Chen et al. (2022, Definition 4):

pscestγ pΘ, θ̄q “ sup
µP∆0pΘq

Eθ„µ

“

Vθpπθq ´ Vθ̄pπθq ´ γEπ„µ

“

D2
H

`

Pπexp

θ ,Pπexp

θ̄

˘‰‰

, (46)
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Algorithm 4 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (Agarwal & Zhang, 2022)

1: Input: Parameters γ ą 0, η P p0, 1{2q. An 1{T -optimistic cover prP,Θ0q

2: Initialize: µ1 “ UnifpΘ0q

3: for t “ 1, . . . , T do
4: Sample θt „ µt and ht „ Unifpt0, 1, ¨ ¨ ¨ , H ´ 1uq.
5: Set πt “ πθt ˝ht UnifpAq ˝ht`1 UnifpUA,h`1q, execute πt and observe τ t.
6: Compute µt`1 P ∆pΘ0q by

µt`1pθq 9θ µ
1pθq exp

´

t
ÿ

s“1

`

γ´1Vθpπθq ` η log rPπs

θ pτsq
˘

¯

.

Output: Policy pπout :“
1
T

řT
t“1 poutpµ

tq, where poutp¨q is defined in (45).

where ∆0pΘq is the set of all finitely supported distributions on Θ, πexp is defined as

πexp “ 1
H

řH´1
h“0 π ˝h UnifpAq ˝h`1 UnifpUA,h`1q,

and we abbreviate π „ poutpµq to π „ µ.

Adapting the proof for the MOPS algorithm in Chen et al. (2022, Corollary D.3 & Theorem D.1) to
the explorative version, we can show that the output policy pπout of MOPS has a sub-optimality gap
that scales as pscest.

Theorem H.5. Given an 1{T -optimistic cover prP,Θ0q (c.f. Definition C.4) of the class of PSR
models Θ, Algorithm 4 with η “ 1{6 and γ ě 1 achieves the following with probability at least
1 ´ δ:

V‹ ´ Vθ‹ ppπoutq ď pscestγ{6pΘ, θ‹q `
2

γ
`
γ

T
rlog |Θ0| ` 2 logp1{δq ` 5s,

where pscestγ is the Explorative PSC as defined in (46).

We provide a sharp bound on the EPSC for B-stable PSRs, which implies that MOPS can also learn
them sample-efficient efficiently.
Theorem H.6. Suppose Θ is a PSR class with the same core test sets tUhuhPrHs, and each θ P Θ ad-
mits a B-representation that is ΛB-stable (c.f. Definition 4) or weakly ΛB-stable (c.f. Definition D.4),
and the ground truth model θ‹ has PSR rank at most d. Then

pscestγ pΘ, θ‹q ď 6Λ2
BdAUAH

2{γ.

Therefore, we can choose a suitable parameter γ and an 1{T -optimistic cover prP,Θ0q, such that with
probability at least 1 ´ δ, Algorithm 4 outputs a policy pπout P ∆pΠq such that V‹ ´ Vθ‹ ppπoutq ď ε,
as long as the number of episodes

T ě O
`

dAUAΛ
2
BH

2 logpNΘp1{T q{δq{ε2
˘

.

The proof of Theorem H.6 is contained in Appendix I.2. We remark here that EPSC provides an
upper bound of EDEC (c.f. Eq. (55)), So Theorem H.2 (and hence Theorem 10) directly follows
from Theorem H.6.

I PROOFS FOR APPENDIX H

For the clarity of discussion, we introduce the following notation in this section: for policy π, we
denote φh to be a policy modification such that

φh ˛ π “ π ˝h UnifpAq ˝h`1 UnifpUA,h`1q.

Again, here φh ˛ π means that we follow π for the first h ´ 1 steps, takes UnifpAq at step h, takes
an action sequence sampled from UnifpUA,h`1q at step h ` 1, and behaves arbitrarily afterwards.
Such definition agrees with (47). We further define the φ policy modification as

φ ˛ π “ 1
H

řH´1
h“0 φh ˛ π “ 1

H

řH´1
h“0 π ˝h UnifpAq ˝h`1 UnifpUA,h`1q. (47)

We call φ ˛ π the exploration policy of π.
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I.1 PROOF OF THEOREM H.6

To prove Theorem H.6, due to Theorem H.5, we only need to bound the coefficients pscestγ pΘ, θ‹q.
By its definition, we have

pscestγ pΘ, θ‹q “ sup
µP∆0pΘq

Eθ„µ

“

Vθpπθq ´ Vθ‹ pπθq ´ γEπ„µ

“

D2
H pPφ˛π

θ ,Pφ˛π
θ‹ q

‰‰

ď sup
µP∆0pΘq

Eθ„µrDTV pPπθ

θ ,Pπθ

θ‹ qs ´ γEθ„µEπ„µ

“

D2
H pPφ˛π

θ ,Pφ˛π
θ‹ q

‰

.
(48)

We then invoke the following error decorrelation result, which follows from the decoupling argument
in Appendix E.2 and Proposition F.1.
Proposition I.1 (Error decorrelation). Under the condition of Theorem H.2 (the same condition as
Theorem H.6), for any µ P ∆0pΘq and any reference model θ̄ P Θ, we have

Eθ„µ

“

DTV

`

Pπθ

θ ,Pπθ

θ̄

˘‰

ď

b

24Λ2
Bdθ̄AUAH2 ¨ Eθ,θ1„µ

“

D2
H

`

Pφ˛πθ1

θ ,Pφ˛πθ1

θ̄

˘‰

,

where dθ̄ is the PSR rank of θ̄, φ ˛ π defined in (47) is the exploration policy of π.

Combining Proposition I.1 with (48) immediately gives the desired upper bound of pscestγ pΘ, θ‹q,
and thus completes the proof of Theorem H.6.

We next turn to prove the Proposition I.1 above. We consider the following generalized version of
Proposition I.1.
Proposition I.2 (Generalized error decorrelation). Under the condition of Theorem H.4, for any
θ̄ P Θ ν P ∆0pΘ ˆ Πq, we have

Epθ,πq„ν

“

DTV

`

Pπ
θ ,Pπ

θ̄

˘‰

ď

b

24Λ2
Bdθ̄AUAH2 ¨ Eθ„νEπ„ν

“

D2
H

`

Pφ˛π
θ ,Pφ˛π

θ̄

˘‰

,

where φ ˛ π defined in (47) is the exploration policy of π.

Proof of Proposition I.2. In the following, we fix a θ̄ P Θ and abbreviate E “ E θ̄, q “ qθ̄. Then, by
Proposition F.1, we have

Epθ,πq„µ

“

DTV

`

Pπ
θ ,Pπ

θ̄

˘‰

ďEpθ,πq„µ

«

Eθ,0 `

H
ÿ

h“1

Eθ̄,π

“

Eθ,hpτh´1q
‰

ff

“Eθ„µ

“

Eθ,0

‰

`

H
ÿ

h“1

Epθ,πq„µEθ̄,π

“

Eθ,hpτh´1q
‰

.

(49)

Note that for the term Eθ„µ

“

Eθ,0

‰

, we have

Eθ„µ

“

Eθ,0

‰

ď

c

Eθ„µ

”

E2

θ,0

ı

. (50)

We next consider the case for h P rHs, and upper bound the corresponding terms in the right-
hand-side of (49) using the decoupling argument introduced in Appendix E.2, restated as follows
for convenience.
Proposition E.6 (Decoupling argument). Suppose we have vectors and functions

txiuiPI Ă Rn, tfθ : Rn Ñ RuθPΘ

where Θ, I are arbitrary abstract index sets, with functions fθ given by

fθpxq :“ max
rPR

J
ÿ

j“1

|xx, yθ,j,ry| , @x P Rn,

where tyθ,j,ru
pθ,j,rqPΘˆrJsˆR Ă Rn is a family of bounded vectors in Rn. Then for any distribution

µ over Θ and probability family tqθuθPΘ Ă ∆pIq,

Eθ„µEi„qθ rfθpxiqs ď

b

dXEθ,θ1„µEi„qθ1 rfθpxiq2s,

where dX is the dimension of the subspace of Rn spanned by pxiqiPI .
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We have the following three preparation steps to apply Proposition E.6:

1. Recall that E “ E θ̄ is defined in Proposition F.1. Let us define

yθ,j,π :“
1

2
πpτ jh:Hq ˆ

”

Bθ
H:h`1pτ jh`1:Hq

´

Bθ
hpojh, a

j
hq ´ Bθ̄

hpojh, a
j
hq

¯ıJ

P Rd,

where tτ jh:H “ pojh, a
j
h, ¨ ¨ ¨ , ojH , a

j
Hqu

ny

j“1 is an ordering of all possible τh:H (and hence ny “

pOAqH´h`1), π is any policy (that starts at step h). We then define

fθpxq “ maxπ
ř

j |xyθ,j,π, xy| , x P R|Uh|.

Then it follows from definition (c.f. Proposition F.1) that Eθ,hpτh´1q “ fθpqpτh´1qq.

2. We define xi “ q‹pτ ih´1q P R|Uh| for i P I “ pO ˆAqh´1 where tτ ih´1uiPI is an ordering of all
possible τh´1 P pO ˆ Aqh´1. Then by our definition of PSR rank (c.f. Definition 3), the subspace
of R|Uh| spanned by txiuiPI has dimension less than or equal to dθ̄.

3. We take qθ P ∆pIq as

qθpiq “ Eπ„µp¨|θq

“

Pπ
θ̄ pτh´1 “ τ ih´1q

‰

, i P I “ pO ˆ Aqh´1. (51)

Therefore, applying Proposition E.6 to function family tfθuθPΘ, vector family txiuiPI , and distri-
bution family tqθuθPΘ gives 21

Epθ,πq„µ

“

Eθ̄,π

“

Eθ,hpτh´1q
‰‰

“ Eθ„µEi„qθ rfθpxiqs

ď

b

dθ̄Eθ,θ1„µEi„qθ1 rfθpxiq2s “

c

dθ̄Eθ„µEπ„µ

”

Eθ̄,π

”

E2

θ,hpτh´1q

ıı

.
(52)

Combining Eq. (50), (52), and (49) yields

Epθ,πq„µ

“

DTV

`

Pπ
θ ,Pπ

θ̄

˘‰

ďEpθ,πq„µ

“

Eθ,0

‰

`

H
ÿ

h“1

Epθ,πq„µEθ̄,π

“

Eθ,hpτh´1q
‰

ď

c

Eθ„µ

”

E2

θ,0

ı

`

H
ÿ

h“1

c

dθ̄ Eθ,π„µ

”

Eθ̄,π

”

E2

θ,hpτh´1q

ıı

ď

g

f

f

epHdθ̄ ` 1q

˜

Eθ„µ

”

E2

θ,0

ı

`

H
ÿ

h“1

Eθ,π„µ

”

Eθ̄,π

”

E2

θ,hpτh´1q

ıı

¸

ď

g

f

f

epHdθ̄ ` 1q

˜

Eθ,π„µ

«

H´1
ÿ

h“0

12Λ2
BAUA ¨D2

H

`

Pφh˛π
θ ,Pφh˛π

θ̄

˘

ff¸

“

b

12pHdθ̄ ` 1qH ¨ Λ2
BAUAEθ,π„µ

“

D2
H

`

Pφ˛π
θ ,Pφ˛π

θ̄

˘‰

,

where the third inequality is due to Cauchy-Schwarz inequality, and the fourth inequality is due to
Proposition F.2. This completes the proof of Proposition I.1.

I.2 PROOF OF THEOREM H.2 (THEOREM 10)

According to Theorem H.1, in order to prove Theorem H.2 (Theorem 10), we only need to bound
the coefficients edecγpΘq for γ ą 0.

In the following, we bound edec by pscest using the idea of Chen et al. (2022, Proposition 6). Recall
that edec is defined in (4.2). By strong duality (c.f. Theorem C.2), we have

edecγpΘ, µq

21The boundedness of tyθ,j,πu is trivially satisfied, because µ0 is finitely supported.
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:“ inf
pexpP∆pΠq

poutP∆pΠq

sup
θPΘ

Eπ„pout
rVθpπθq ´ Vθpπqs ´ γEθ̄„µEπ„pexp

“

D2
HpPπ

θ ,Pπ
θ̄ q
‰

“ sup
µP∆0pΘq

inf
pexpP∆pΠq

poutP∆pΠq

Eθ„µEπ„pout
rVθpπθq ´ Vθpπqs ´ γEθ„µEθ̄„µEπ„pexp

“

D2
HpPπ

θ ,Pπ
θ̄ q
‰

.

(53)

Note that |Vθpπq ´ Vθ̄pπq| ď DTV

`

Pπ
θ ,Pπ

θ̄

˘

ď DH

`

Pπ
θ ,Pπ

θ̄

˘

. Therefore, we can take pout “ pµ,
where pµ is defined as pµpπq “ µptθ : πθ “ πuq. Then for a fixed α P p0, 1q, we have

Eθ„µEπ„pµ
rVθpπθq ´ Vθpπqs

ďEθ„µEθ̄„µEπ„pµ

“

DH

`

Pπ
θ ,Pπ

θ̄

˘‰

` Eθ„µEθ̄„µEπ„pµ
rVθpπθq ´ Vθ̄pπqs

“Eθ„µEθ̄„µEπ„pµ

“

DH

`

Pπ
θ ,Pπ

θ̄

˘‰

` Eθ„µEθ̄„µ rVθpπθq ´ Vθ̄pπθqs

ď
1

4p1 ´ αqγ
` γEθ„µEθ̄„µEπ„pµ

“

D2
H

`

Pπ
θ ,Pπ

θ̄

˘‰

` Eθ„µEθ̄„µ rVθpπθq ´ Vθ̄pπθqs ,

(54)

where the equality is due to our choice of pµ:

Eθ„µEπ„pµ
rVθ̄pπqs “ Eπ„pµ

rVθ̄pπqs “ Eθ„µ rVθ̄pπθqs ,

and the last inequality is due to AM-GM inequality.

Therefore, we can take pexp “ αpµ ` p1 ´ αqpe P ∆pΠq, where pe is given by pepπq “ µptθ :
φ ˛ πθ “ πuq,22 and using this choice of pexp and pout in Eq. (53) and using Eq. (54), we get

edecγpΘ, µq ď sup
µP∆0pΘq

!

Eθ̄„µ

“

Eθ„µ rVθpπθq ´ Vθ̄pπθqs

´ αγEθ„µEπ„µ

“

D2
HpPφ˛π

θ ,Pφ˛π

θ̄
q
‰ ‰

)

`
1

4p1 ´ αqγ

ďmax
θ̄PΘ

pscestαγpΘ, θ̄q `
1

4p1 ´ αqγ
.

(55)

Recall that pscestγ has been bounded in Theorem H.6. Taking α “ 3{4 yields edecγpΘ, µq ď

p8Λ2
BdAUAH

2 ` 1q{γ. This completes the proof of Theorem H.2.

I.3 PROOF OF THEOREM H.4

To prove Theorem H.4, due to Theorem H.3, we only need to bound the coefficients amdecγpΘ, pµq

for all pµ P ∆pΘq. By strong duality (c.f. Theorem C.2), we have

amdecγpΘ, pµq “ inf
pexpP∆pΠq,µoutP∆pΠq

sup
θPΘ

sup
π̄PΠ

Eθ̄„µout

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„pexp
E
pθ„pµ

”

D2
H

´

Pπ
θ ,Pπ

pθ

¯ı

“ sup
νP∆0pΘˆΠq

inf
pexpP∆pΠq,µoutP∆pΠq

Epθ,π̄q„νEθ̄„µout

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„pexp
Eθ„ν,pθ„pµ

”

D2
H

´

Pπ
θ ,Pπ

pθ

¯ı

ď sup
νP∆0pΘˆΠq

inf
pexpP∆pΠq

Eθ̄„pµ

“

Epθ,π̄q„ν

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„pexp
Eθ„ν

“

D2
H

`

Pπ
θ ,Pπ

θ̄

˘‰‰

ď sup
νP∆0pΘˆΠq

Eθ̄„pµ

“

Epθ,π̄q„ν

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„νEθ„ν

“

D2
H

`

Pφ˛π
θ ,Pφ˛π

θ̄

˘‰‰

ď sup
νP∆0pΘˆΠq

sup
θ̄PΘ

Epθ,π̄q„ν

“

DTV

`

Pπ̄
θ ,Pπ̄

θ̄

˘‰

´ γEπ„νEθ„ν

“

D2
H

`

Pφ˛π
θ ,Pφ˛π

θ̄

˘‰

,

where the first inequality is because we take µout “ pµ in infµout
, and the second inequality is

because we can take pexp P ∆pΠq corresponds to φ ˛ π with π „ ν. Applying Proposition I.2 gives

amdecγpΘ, pµq ď sup
θ̄PΘ

6Λ2
Bdθ̄AUAH

2

γ
ď

6Λ2
BdAUAH

2

γ
,

and thus the proof of Theorem H.4.
22Here, pe is technically a distribution over the set of mixed policies ∆pΠq, and can be identified with a

mixed policy in ∆pΠq.
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