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ABSTRACT

Partial Observability—where agents can only observe partial information about
the true underlying state of the system—is ubiquitous in real-world applications
of Reinforcement Learning (RL). Theoretically, learning a near-optimal policy un-
der partial observability is known to be hard in the worst case due to an exponen-
tial sample complexity lower bound. Recent work has identified several tractable
subclasses that are learnable with polynomial samples, such as Partially Observ-
able Markov Decision Processes (POMDPs) with certain revealing or decodability
conditions. However, this line of research is still in its infancy, where (1) unified
structural conditions enabling sample-efficient learning are lacking; (2) existing
sample complexities for known tractable subclasses are far from sharp; and (3)
fewer sample-efficient algorithms are available than in fully observable RL.

This paper advances all three aspects above for Partially Observable RL in the
general setting of Predictive State Representations (PSRs). First, we propose a
natural and unified structural condition for PSRs called B-stability. B-stable PSRs
encompasses the vast majority of known tractable subclasses such as weakly re-
vealing POMDPs, low-rank future-sufficient POMDPs, decodable POMDPs, and
regular PSRs. Next, we show that any B-stable PSR can be learned with polyno-
mial samples in relevant problem parameters. When instantiated in the afore-
mentioned subclasses, our sample complexities improve substantially over the
current best ones. Finally, our results are achieved by three algorithms simultane-
ously: Optimistic Maximum Likelihood Estimation, Estimation-to-Decisions, and
Model-Based Optimistic Posterior Sampling. The latter two algorithms are new
for sample-efficient learning of POMDPs/PSRs. We additionally design a variant
of the Estimation-to-Decisions algorithm to perform sample-efficient all-policy
model estimation for B-stable PSRs, which also yields guarantees for reward-free
learning as an implication.

1 INTRODUCTION

Partially Observable Reinforcement Learning (RL)—where agents can only observe partial infor-
mation about the true underlying state of the system—is ubiquitous in real-world applications of
RL such as robotics (Akkaya et al., 2019), strategic games (Brown & Sandholm, 2018; Vinyals
et al., 2019; Berner et al., 2019), economic simulation (Zheng et al., 2020), and so on. Partially
observable RL defies standard efficient approaches for learning and planning in the fully observ-
able case (e.g. those based on dynamical programming) due to the non-Markovian nature of the
observations (Jaakkola et al., 1994), and has been a hard challenge for RL research.

Theoretically, it is well-established that learning in partial observable RL is statistically hard in the
worst case—In the standard setting of Partially Observable Markov Decision Processes (POMDPs),
learning a near-optimal policy has an exponential sample complexity lower bound in the horizon
length (Mossel & Roch, 2005; Krishnamurthy et al., 2016), which in stark contrast to fully observ-
able MDPs where polynomial sample complexity is possible (Kearns & Singh, 2002; Jaksch et al.,
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Table 1: Comparisons of sample complexities for learning an € near-optimal policy in POMDPs and PSRs.
Definitions of the problem parameters can be found in Section 3.2. The last three rows refer to the m-step
versions of the problem classes (e.g. the third row considers m-step ove -revealing POMDPs). The current best
results within the last four rows are due to Zhan et al. (2022); Liu et al. (2022a); Wang et al. (2022); Efroni
et al. (2022) respectively'. All results are scaled to the setting with total reward in [0, 1].

Problem Class ’ Current Best ’ Ours
Ag-stable PSR - 4] (dpsrAUAH? log Ne - A§/€?)
apsr-regular PSR O (disg ATUS H® log(Ne0)/(ae?)) 14} (dpsrAUZ H? log No /(aipse?))
Qyev-revealing tabular POMDP 16} (S*AS™ " HS log No /(cre,e?)) o (S?A™H?log No/(a2,€%))
v-future-suff. rank-diyans POMDP | O (divans A" P H? (log No )2 - 1142 /€?) 10) (derans A*™ " H? log No - 1% /%)
decodable rank-dans POMDP O (dirans A™ H? log Ng /<?) O (duwans A™ H? log No /2)

2010; Azar et al., 2017). A later line of work identifies various additional structural conditions or
alternative learning goals that enable sample-efficient learning, such as reactiveness (Jiang et al.,
2017), revealing conditions (Jin et al., 2020a; Liu et al., 2022c; Cai et al., 2022; Wang et al., 2022),
decodability (Du et al., 2019; Efroni et al., 2022), and learning memoryless or short-memory poli-
cies (Azizzadenesheli et al., 2018; Uehara et al., 2022b).

Despite these progresses, research on sample-efficient partially observable RL is still at an early
stage, with several important questions remaining open. First, to a large extent, existing tractable
structural conditions are mostly identified and analyzed in a case-by-case manner and lack a more
unified understanding. This question has just started to be tackled in the very recent work of Zhan
et al. (2022), who show that sample-efficient learning is possible in the more general setting of
Predictive State Representations (PSRs) (Littman & Sutton, 2001)—which include POMDPs as a
special case—with a certain regularity condition. However, their regularity condition is defined
in terms of additional quantities (such as “core matrices”) not directly encoded in the definition of
PSRs, which makes it unnatural in many known examples and unable to subsume important tractable
problems such as decodable POMDPs.

Second, even in known sample-efficient problems such as revealing POMDPs (Jin et al., 2020c; Liu
et al., 2022a), existing sample complexities involve large polynomial factors of relevant problem
parameters that are likely far from sharp. Third, relatively few principles are known for designing
sample-efficient algorithms in POMDPs/PSRs, such as spectral or tensor-based approaches (Hsu
et al., 2012; Azizzadenesheli et al., 2016; Jin et al., 2020c), maximum likelihood or density esti-
mation (Liu et al., 2022a; Wang et al., 2022; Zhan et al., 2022), or learning short-memory poli-
cies (Efroni et al., 2022; Uehara et al., 2022b). This contrasts with fully observable RL where the
space of sample-efficient algorithms is much more diverse (Agarwal et al., 2019). It is an important
question whether we can expand the space of algorithms for partially observable RL.

This paper advances all three aspects above for partially observable RL. We define B-stablility, a
natural and general structural condition for PSRs, and design sharp algorithms for learning any
B-stable PSR sample-efficiently. Our contributions can be summarized as follows.

* We identify a new structural condition for PSRs termed B-stability, which simply requires its B-
representation (or observable operators) to be bounded in a suitable operator norm (Section 3.1).
B-stable PSRs subsume most known tractable subclasses such as revealing POMDPs, decodable
POMDPs, low-rank future-sufficient POMDPs, and regular PSRs (Section 3.2).

* We show that B-stable PSRs can be learned sample-efficiently by three algorithms simultane-
ously with sharp sample complexities (Section 4): Optimistic Maximum Likelihood Estimation
(OMLE), Explorative Estimation-to-Decisions (EXPLORATIVE E2D), and Model-based Opti-
mistic Posterior Sampling (MOPS). To our best knowledge, the latter two algorithms are first
shown to be sample-efficient in partially observable RL.

* Our sample complexities improve substantially over the current best when instantiated in both
regular PSRs (Section 4.1) and known tractable subclasses of POMDPs (Section 5). For ex-
ample, for m-step ayey-revealing POMDPs with S latent states, our algorithms find an & near-

optimal policy within O (S2A™log N/ (a2, €%)) episodes of play (with S?/a2, replaced by

'For v-future-sufficient POMDPs, Wang et al. (2022)’s sample complexity depends on +y, which is an addi-
tional [-step past-sufficiency parameter that they require.
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SAZ if measured in B-stability), which improves significantly over the current best result of
O (544"~ *1log N'/(aje,€?)). A summary of such comparisons is presented in Table 1.

* Asavariant of the E2D algorithm, we design the ALL-POLICY MODEL-ESTIMATION E2D algo-
rithm that achieves sample-efficient all-policy model estimation—and as an application, reward-
free learning—for B-stable PSRs (Section 4.2 & Appendix H.2).

* Technically, our three algorithms rely on a unified sharp analysis of B-stable PSRs that involves a
careful error decomposition in terms of its B-representation, along with a new generalized ¢>-type
Eluder argument, which may be of future interest (Appendix B).

Related work Our work is closely related to the long lines of work on sample-efficient learning of
fully/partially observable RL (with/without function approximation), especially the lines of work on
POMDPs and PSRs. We review these related works in Appendix A due to the space limit.

2 PRELIMINARIES

Sequential decision processes with observations An episodic sequential decision process is spec-
ified by a tuple {H,0, A, P, {r,}f}, where H € Z, is the horizon length; O is the observa-
tion space with |O| = O; A is the action space with | A| = A; IP specifies the transition dynam-
ics, such that the initial observation follows 0; ~ Pg(-) € A(O), and given the history 7, :=
(01,a1, -+ ,0n,ap) up to step h, the observation follows 0j, 1 ~ P(:|7); 7 : O x A — [0,1] is
the reward function at h-th step, which we assume is a known deterministic function of (oy,, ay,).

A policy m = {7, : (O x A)"1 x O — A(A)}L | is acollection of H functions. Atstep h € [H],
an agent running policy 7 observes the observation oy, and takes action aj, ~ 7 (+|Th—1,0n) € A(A)
based on the history (7,—1,0r) = (01,a1,...,0n-1,an—_1,0p). The agent then receives their reward
rh(on, an), and the environment generates the next observation opy1 ~ P(:|7,) based on 7, =
(01,a1, -+ ,0p,ap). The episode terminates immediately after the dummy observation og 11 =
Odum 1s generated. We use II to denote the set of all deterministic policies, and identify A(II) as
both the set of all policies and all distributions over deterministic policies interchangeably. For any
(hymh), let P(7y,) = [ [ <p Plon|Th—1), ©(Th) 1= [ [}y <p T (an [Thi—1, 00 ), and let P7(73,) :=
P(73,) x 7(75,) denote the probability of observing 7, (for the first h steps) when executing 7. The
value of a policy 7 is defined as the expected cumulative reward V (7) := E™ [Zthl ri(on, an)]-

We assume that ZhH:1 ri(on, ap) < 1 almost surely for any policy 7.

POMDPs A Partially Observable Markov Decision Process (POMDP) is a special sequential de-
cision process whose transition dynamics are governed by latent states. An episodic POMDP is
specified by a tuple {H, S, O, A, {Tp }L, {0}, {rn}f_,, 11}, where S is the latent state space
with |S| = S, Ox(+]-) : S — A(O) is the emission dynamics at step h (which we identify as an
emission matrix Oy, € RO*S), Ty, (-|-,-) : S x A — A(S) is the transition dynamics over the latent
states (which we identify as transition matrices Ty, (-|-, a) € RS*S for each a € A), and p; € A(S)
specifies the distribution of initial state. At each step h, given latent state s;, (which the agent cannot
observe), the system emits observation oy, ~ Qy,(+|sy,), receives action a;, € A from the agent, emits
the reward rp, (op, an), and then transits to the next latent state sp+1 ~ Tp(|sp,an) in a Markov
fashion. Note that a POMDP can be fully described by the parameter 6 := (T, Q, p11).

2.1 PREDICTIVE STATE REPRESENTATIONS

We consider Predictive State Representations (PSRs) (Littman & Sutton, 2001), a broader class of
sequential decision processes that generalize POMDPs by removing the explicit assumption of latent
states, but still requiring the system dynamics to be described succinctly by a core test set.

PSR, core test sets, and predictive states A rest t is a sequence of future observations and actions
(e te¥:= UWGZ>1 OW x AW=1). For some test t;, = (Op.nsw—1,Gh:new—2) With length
W = 1, we define the ﬁrobability of test t;, being successful conditioned on (reachable) history 7,1
as P(tn|mh—1) = P(on.n+w-1|Th—1;do(an.n+w—2)), i.e., the probability of observing op.,+w —1
if the agent deterministically executes actions ap.p+w —2, conditioned on history 75,_1. We follow
the convention that, if P™(7;,_1) = 0 for any 7, then P(¢|7,—1) = 0.
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Definition 1 (PSR, core test sets, and predictive states). For any h € [H), we say a set U, < ¥
is a core test set at step h if the following holds: For any W € Zx1, any possible future (i.e., test)
th = (Onhew—1, ahnsw—2) € OV x AW there exists a vector by, ;, € R such that

P(tn|mh-1) = {bey hs [P Th—1)ltews,, ), Vo1 € T = (0O x AL (1)

We refer to the vector q(Th—1) 1= [P(t|Th—1)]tew, as the predictive state at step h (with convention
A(Th—1) = 0if Th_1 is not reachable), and qq := [P(t)]icus, as the initial predictive state. A (linear)
PSR is a sequential decision process equipped with a core test set {Up } ne[ -

The predictive state q(7,_1) € R“" in a PSR acts like a “latent state” that governs the transition
P(:|75,—1) through the linear structure (1). We define U4 ) := {a : (0,a) € U, forsome o €
Uwen+ OW} as the set of action sequences (possibly including an empty sequence) in Uj,, with
Uy 1= maxpe(p) |Ua,n|. Further define Up 11 := {0qum} for notational simplicity. Throughout the
paper, we assume the core test sets (U},) he[m] are known and the same within the PSR model class.

B-representation We define the B-representation of a PSR, a standard notion for PSRs (also known
as the observable operators (Jaeger, 2000)).

Definition 2 (B-representation). A B-representation of a PSR with core test set (Un)ne[m) is a set
of matrices® {(Bp,(op, ay) € RUn+1xUny, - qo € RY} such that for any 0 < h < H, policy
7, history 7, = (01.1,a1.,) € T", and core test ty 1 = (Opi1:hews Qhithow—1) € Uny1, the
quantity P(mp, ty+1), i.e. the probability of observing o1.,+w upon taking actions ay.p+w —1, admits
the decomposition

P(7h,the1) = P(ornpwldo(arniw-1)) = etThH “Bp:1(7h) - o, (2)
where ey, | € RYr+1 s the indicator vector of th+1 € Up41, and

B (h) := Bp(on, an)Bp—1(0op—1,an-1) - - - B1(01,a1).

It is a standard result (see e.g. Thon & Jaeger (2015)) that any PSR admits a B-representation, and
the converse also holds—any sequential decision process admitting a B-representation on test sets
(Un) he[m is @ PSR with core test set (U ) pep ) (Proposition D.1). However, the B-representation
of a given PSR may not be unique. We also remark that the B-representation is used in the structural
conditions and theoretical analyses only, and will not be explicitly used in our algorithms.

Rank An important complexity measure of a PSR is its PSR rank (henceforth also “rank”).
Definition 3 (PSR rank). Given a PSR, its PSR rank is defined as dpsr := maxpeg) rank(Dy,),
where Dy, := [q(Th)],, crn € RUn+1XT" is the matrix formed by predictive states at step h € [H].

The PSR rank measures the inherent dimension® of the space of predictive state vectors, which
always admits the upper bound dpsr < maxye(z) [Un|, but may in addition be much smaller.

POMDPs as low-rank PSRs As a primary example, all POMDPs are PSRs with rank at
most S (Zhan et al., 2022, Lemma 2). First, Definition 1 can be satisfied trivially by choos-
ing U, = U1<W<H7h+1 {(on,an,...,ontw—1)} as the set of all possible tests, and by, ;, =
ey, € RYr as indicator vectors. For concrete subclasses of POMDPs, we will consider alter-
native choices of (Up,)per; With much smaller cardinalities than this default choice. Second,
to compute the rank (Definition 3), note that by the latent state structure of POMDPs, we have
P(thi1|m) = Zshﬂ P(tn+1|$n+1)P(spy1|mh) for any (h, 73, th11). Therefore, the associated ma-

trix Dy = [P(th+1(7)] 4, | 7 )ets, o x7» alWays has the following decomposition:
Dy, = I:]P)(th-‘rl|Sh+1)](th+1;5h+1)6uh+1XS X [P(Shﬂ|Th)](sh+1,rh)68x7h ,
which implies that dpsg = maxpe[p) rank(Dy) < S.

Learning goal We consider the standard PAC learning setting, where we are given a model class
of PSRs O and interact with a ground truth model §* € ©. Note that, as we do not put fur-
ther restrictions on the parametrization, this setting allows any general function approximation for

This definition can be generalized to continuous Uy,, where By, (on,arn) € L(L*Up), L' (Un+1)) are
linear operators instead of (finite-dimensional) matrices.
3This definition using matrix ranks may be further relaxed, e.g. by considering the effective dimension.
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the model class. For any model class ©, we define its (optimistic) covering number Ng(p) for
p > 0 in Definition C.4. Let Vy(7) denote the value function of policy 7 under model 6, and

Ty 1= argmaxen Vp(m) denote the optimal policy of model 6. The goal is to learn a policy 7
that achieves small suboptimality V, — Vp«(7) within as few episodes of play as possible, where
Vi = Vi« (my~). We refer to an algorithm as sample-efficient if it finds an e-near optimal policy

within poly(relevant problem parameters, 1/¢)* episodes of play.

3 PSRS WITH B-STABILITY

We begin by proposing a natural and general structural condition for PSR called B-stability (or also
stability). We show that B-stable PSRs encompass and generalize a variety of existing tractable
POMDPs and PSRs, and can be learned sample-efficiently as we show in the sequel.

3.1 THE B-STABILITY CONDITION

For any PSR with an associated B-representation, we define its B-operators { B .4} he[] as

H—h+1
Br.p, : R4 — RO*A) ; a~ [Ban(thm) - dlr, ye(oxaym—nit.

Operator By, maps any predictive state q = q(7,-1) at step h to the vector Bp.p,q =
(P(7h:1|Th—1))r,.,; Which governs the probability of transitioning to all possible futures, by proper-
ties of the B-representation (cf. (17) & Corollary D.2). For each h € [H], we equip the image space
of Byy.p, with the II-norm: For a vector b indexed by 71,.57 € (O x A)H~"+1, we define

”bHH ‘= mMaXg ZT;L;HE(OX.A)H*"*I ﬁ(Th:H) |b(7_h:H)‘ ) (3)

where the maximization is over all policies 7 starting from step % (ignoring the history 7,,_1) and
T(Th:rr) = [p<p<g T (an|on, Thow —1). We further equip the domain RY» with a fused-norm
| - ||+, which is defined as the maximum of (1, 2)-norm and IT’-norm?:

lall = max{lal, ;. lalm}, €
. 2\1/2 . _
HqHLZ = (ZaEZ/{A)h (Zo:(o,a)euh |q(07a)|) ) ’ HqHH/ = Mmaxz Zteah ﬂ—(t) ‘q(t)‘ ’ (5)

where Uy, := {t e U}, : 1t € Uy, such that ¢ is a prefix of t'}.

We now define the B-stability condition, which simply requires the B-operators {B.1, } he#] to have
bounded operator norms from the fused-norm to the II-norm.

Definition 4 (B-stability). A PSR is B-stable with parameter Ag > 1 (henceforth also Ag-stable) if
it admits a B-representation with associated B-operators { B, } he[ ] such that

sup max |Bp.pq|n < As. (6)
ne[H] lalx=1

When using the B-stability condition, we will often take q = q1(7,—1) — q2(7h—1) to be the dif-
ference between two predictive states at step h. Intuitively, Definition 4 requires that the propagated
II-norm error |Bg.x(d1 — g2) | to be controlled by the original fused-norm error [q; — gz -

The fused-norm |- |, is equivalent to the vector 1-norm up to a |U4 5, |*/2-factor (despite its seemingly

involved form): We have |q|, < |laf, < [4a,»|"/?| ], (LemmaD.6), and thus assuming a relaxed
condition maxq|, =1 [Bu:n[n < A will also enable sample-efficient learning of PSRs. However,
we consider the fused-norm in order to obtain the sharpest possible sample complexity guarantees.
Finally, all of our theoretical results still hold under a more relaxed (though less intuitive) weak
B-stability condition (Definition D.4), with the same sample complexity guarantees. (See also the
additional discussions in Appendix D.2.)

“For the m-step versions of our structural conditions, we allow an exponential dependence on m but not H.
Such a dependence is necessary, e.g. in m-step decodable POMDPs (Efroni et al., 2022).
>The IT'-norm is in general a semi-norm.
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3.2 RELATION WITH KNOWN SAMPLE-EFFICIENT SUBCLASSES

We show that the B-stability condition encompasses many known structural conditions of PSRs and
POMDPs that enable sample-efficient learning. Throughout, for a matrix A € R™*", we define its

operator norm || Al|,—,q := max,, <1 [Az|q, and use [|A[, := [A],_,, for shorthand.

Weakly revealing POMDPs (Jin et al., 2020a; Liu et al., 2022a) is a subclass of POMDPs that
assumes the current latent state can be probabilistically inferred from the next m emissions.
Example 5 (Multi-step weakly revealing POMDPs). A POMDP is called m-step aye,-weakly re-

—1 where

vealing (henceforth also “aye,-revealing”) with aie, < 1if maxpe(g—m41) HMILHQ_,2 < Qrgys

forhe [H—m+1],M € RO™A™ XS g the m-step emission-action matrix at step h, defined as

[Mr](o,a),s := P(Oh:htm—1 = O|sh = 8, an:nym—2 = a),¥(0,a) € O™ x A"l seS. (7
We show that any m-step aye,-weakly revealing POMDP is a Ag-stable PSR with core test sets
Uy, = (O x Aymin{m=1H=h} » O and Ag < v/ Sal (Proposition D.7). A similar result holds for

rev

the ¢ variant of the revealing condition (see Appendix D.3.1). ¢

When the transition matrix T}, of the POMDP has a low rank structure, Wang et al. (2022) show that
a subspace-aware generalization of the /1 -revealing condition—the future-sufficiency condition—
enables sample-efficient learning of POMDPs with possibly enormous state/observation spaces (see
also Cai et al. (2022)). We consider the following generalized definition of future-sufficiency.
Example 6 (Low-rank future-sufficient POMDPs). We say a POMDP has transition rank dyaps if for
each h € [ H — 1], the transition kernel of the POMDP has rank at most diyans (i.€. maxy, rank(T},) <
dirans). It is clear that low-rank POMDPs with transition rank dy,ans has PSR rank dpsg < dirans.

A transition rank-di ans (henceforth rank-dirans) POMDP is called m-step v-future-sufficient with
v = 1,iffor h € [H—1], there exists M% € RS*¥n such that M M, T,y = Ty, and [M? ||, 1 <
v, where M, is the m-step emission-action matrix defined in (7). 6

We show that any m-step v-future sufficient rank-d;.,ns POMDP is a B-stable PSR with core test
sets Uy, = (O x A)ymintm=LH=h} 5 O dpsg < dirans, and Ag < v/ A™=1v (Proposition D.12). ¢

Decodable POMDPs (Efroni et al., 2022), as a multi-step generalization of Block MDPs (Du et al.,
2019), assumes the current latent state can be perfectly decoded from the recent m observations.
Example 7 (Multi-step decodable POMDPs). A POMDP is called m-step decodable if
there exists (unknown) decoders ¢* = {¢} }ne[m], such that for every reachable trajectory
(81,01,a1,- -+ ,8p,0n) We have s, = @, (2n), where 2, = (Opy(h)s Gm(n); -+ > 0n) and m(h) =
max{h —m + 1, 1}. We show that any m-step decodable POMDP is a B-stable PSR with core test
sets Uy, = (O x A)min{m=1LH=h} 5 O and Ag = 1 (Proposition D.17). ¢

Finally, Zhan et al. (2022) define the following regularity condition for general PSRs.

Example 8 (Regular PSRs). A PSR is called s -regular if for all h € [H] there exists a core
matrix Kj, € RY+1x1ank(Dn) “which is a column-wise sub-matrix of Dj, such that rank(K}) =
. We show that any ape-regular PSR is Ag-stable with

rank(Dp,) and maxpe(p) HK;TLH1—>1 < Qpgr-

A < +/Ujaz! (Proposition D.18). ¢

psr
We emphasize that B-stability not only encompasses o -regularity, but is also strictly more expres-
sive. For example, decodable POMDPs are not c, -regular unless with additional assumptions on
K,z (Zhan et al., 2022, Section 6.5), whereas they are B-stable with Ag = 1 (Example 7). Also,
any «ey-revealing POMDP is ag,-regular with some apS} < 0, but with oz;s} potentially not poly-
nomially bounded by a ;! (and other problem parameters) due to the restriction of K}, being a

column-wise sub-matrix of Dj,; By contrast it is B-stable with Ag < VS ar;\} (Example 95).

4 LEARNING B-STABLE PSRS

In this section, we show that B-stable PSRs can be learned sample-efficiently, achieved by three
model-based algorithms simultaneously. We instantiate our results to POMDPs in Section 5.

81t is straightforward to generalize this example to the case when S and O are infinite by replacing vectors
with L, integrable functions, and matrices with linear operators between these spaces.
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Algorithm 1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE)

1: Input: Model class ©, parameter 3 > 0.

2: Initialize: ©' = 0, D = {}.

3: foriterationk = 1,..., K do

Set (0%, 7%) = arg maxcgr Vo (7).

forh=0,..., H—1do
Set exploration policy wfiem := 7k o), Unif(A) op41 Unif (Ua pi1)-
Execute 7. ., to collect a trajectory 7%", and add (m 7% into D.

Update confidence set

k
h,exp’

® RNk

ek+1 — {ée © : X, r)ep 108 PZ(T) = maxpee X (x yep 108 PG (T) — B}.

OlltPUt: 7?out = Unif({ﬂ-k}k:e[K]).

4.1 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE)

The OMLE algorithm is proposed by Liu et al. (2022a) for learning revealing POMDPs and
adapted’ by Zhan et al. (2022) for learning regular PSRs, achieving polynomial sample complex-
ity (in relevant problem parameters) in both cases. We show that OMLE works under the broader
condition of B-stability, with significantly improved sample complexities.

Algorithm and theoretical guarantee The OMLE algorithm (described in Algorithm 1) takes in
a class of PSRs ©, and performs two main steps in each iteration k € [K7:

1. (Optimism) Construct a confidence set ©F < ©, which is a superlevel set of the log-likelihood
of all trajectories within dataset D (Line 8). The policy 7* is then chosen as the greedy policy
with respect to the most optimistic model within ©F (Line 4).

2. (Data collection) Execute exploration policies (W}li’exp)og h<H—1, Where each Wﬁ’exp is defined

via the o}, notation as follows: Follow 7% for the first h — 1 steps, take a uniform action
Unif(.A) at step h, take an action sequence sampled from Unif (U4 ,+1) at step h + 1, and
behave arbitrarily afterwards (Line 6). All collected trajectories are then added into D (Line 7).

Intuitively, the concatenation of the current policy 7% with Unif(.A) and Unif(Ua 5 1) in Step 2
above is designed according to the structure of PSRs to foster exploration.

Theorem 9 (Guarantee of OMLE). Suppose every 0 € © is Ag-stable (Definition 4) and the true
model 6* € © has rank dpsg < d. Then, choosing 3 = C'log(Ne(1/KH)/6) for some absolute
constant C' > 0, with probability at least 1 — 0, Algorithm I outputs a policy Tou € A(I1) such that
Vi = Vou (Tous) < €, as long as the number of episodes

T-KH> (’)(dAUAH2 log(Ne(1/T)/8)c - A2 /52), ®)
where 1 :=log (1 + KdUaAgRg), with Rg := maxp, {1, max,|, =1 2, , [Br(0,a)v],}.

Theorem 9 shows that OMLE is sample-efficient for any B-stable PSRs—a broader class than in
existing results for the same algorithm (Liu et al., 2022a; Zhan et al., 2022)—with much sharper
sample complexities than existing work when instantiated to their settings. Importantly, we achieve
the first polynomial sample complexity that scales with A3 dependence B-stability parameter (or

regularity parameters alike®). Instantiating to s -regular PSRs, using Ag < /U ACV,;} (Exam-
ple 8), our result implies a O(dAU? log No/(a%,c2)) sample complexity (ignoring H and .%).

psr

This improves significantly over the (5(d4A4UfZ‘ log(NeO)/(ag,e?)) result of Zhan et al. (2022).

"Named CRANE in (Zhan et al., 2022).

8Uehara et al. (2022b) achieves an A™ o2 dependence for learning the optimal memory-M policy in (their)
o1-revealing POMDPs, which is however easier than learning the globally optimal policy considered here.

The log-factor ¢ contains additional parameter Rg that is not always controlled by Ag; this quantity also
appears in Zhan et al. (2022); Liu et al. (2022b) but is controlled by their ap_s} or v~ ! respectively. Nevertheless,
for all of our POMDP instantiations, Rg is polynomially bounded by other problem parameters so that ¢ is a
mild log-factor. Further, our next algorithm EXPLORATIVE E2D avoids the dependence on Rg (Theorem 10).
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Overview of techniques The proof of Theorem 9 (deferred to Appendix G) builds upon a sharp
analysis for B-stable PSRs: 1) We use a more delicate choice of norm for bounding the errors (in the
B operators) yielded from performance difference arguments; 2) We develop a generalized ¢5-type
Eluder argument that is sharper than the ¢;-Eluder argument of Liu et al. (2022a); Zhan et al. (2022).
A more detailed overview of techniques is presented in Appendix B.

4.2 EXPLORATIVE ESTIMATION-TO-DECISIONS (EXPLORATIVE E2D)

Estimation-To-Decisions (E2D) is a general model-based algorithm that is sample-efficient for any
interactive decision making problem (including MDPs) with a bounded Decision-Estimation Co-
efficient (DEC), as established in the DEC framework by Foster et al. (2021). However, the E2D
algorithm has not been instantiated on POMDPs/PSRs. We show that B-stable PSRs admit a sharp
DEC bound, and thus can be learned sample-efficiently by a suitable E2D algorithm.

EDEC & EXPLORATIVE E2D algorithm We consider the Explorative DEC (EDEC) proposed in
the recent work of Chen et al. (2022), which for a PSR class © is defined as

— . 2 T DT
edecy(©) = swp inf ZES{EMM [Va(w6) = Va(m)] = En~per Bos [ D (P, P5)] },
poutEA(H)

where D (P7,P7) := >, (PF(rg)"* — P5(75)"/?)? denotes the squared Hellinger distance be-
tween 7 and 7. Intuitively, the EDEC measures the optimal trade-off on model class © between
gaining information by an “exploration policy” m ~ pexp and achieving near-optimality by an “out-
put policy” m ~ pous. Chen et al. (2022) further design the EXPLORATIVE E2D algorithm, a general
model-based RL algorithm with sample complexity scaling with the EDEC.

We sketch the EXPLORATIVE E2D algorithm for a PSR class O as follows (full description in Al-
gorithm 2): In each episode ¢ € [T'], we maintain a distribution u* € A(©g) over an optimistic cover

(IT”, ©y) of © with radius 1/T (cf. Definition C.4), which we use to compute two policy distributions
(Plp> Phut) by minimizing the following risk:

(Pous: Pexp) = argmin_ supErrp, [Vo(mg) — Vo(m)] = VErnpe,, Bor vyt [ D (PG, PG ) |-
(PoutPexp)EA(IT)2 0O
Then, we sample policy 7* ~ pf, , execute 7* and collect trajectory 7*, and update the model distri-
bution ! using a Tempered Aggregation scheme, which performs a Hedge update with initialization

p' = Unif(Oy), the log-likelihood loss with ]?Dgt () denoting the optimistic likelihood associated
with model § € © and policy 7! (cf. Definition C.4), and learning rate n < 1/2:

© N (0) o 1t (6) - exp (n log Bj’ (Tt))-

After T episodes, we output the average policy Tout 1= % Zle Pl

Theoretical guarantee We provide a sharp bound on the EDEC for B-stable PSRs, which implies
that EXPLORATIVE E2D can also learn them sample-efficient efficiently.

Theorem 10 (Bound on EDEC & Guarantee of EXPLORATIVE E2D). Suppose © is a PSR class
with the same core test sets {Z/{h}he[H], and each 0 € © admits a B-representation that is Ag-stable
and has PSR rank at most d. Then we have

edec,(0) < O(dAUsAZH? /7).

As a corollary, with probability at least 1 — 0, Algorithm 2 outputs a policy Tous € A(I) such that
Vi — Vg (Tout) < €, as long as the number of episodes

T > O(dAUsAEH? log(Ne(1/T)/5)/?). )

The sample complexity (9) matches OMLE (Theorem 9) and has a slight advantage in avoiding the
log factor ¢ therein. In return, the d in Theorem 10 needs to upper bound the PSR rank of all models
in ©, whereas the d in Theorem 9 only needs to upper bound the rank of the true model 6*. We also
remark that EXPLORATIVE E2D explicitly requires an optimistic covering of © as an input to the
algorithm, which may be another disadvantage compared to OMLE (which uses optimistic covering
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implicitly in the analyses only). The proof of Theorem 10 (in Appendix 1.2) relies on mostly the
same key steps as for analyzing the OMLE algorithm (overview in Appendix B).

Extension: Reward-free learning & All-policy model estimation Chen et al. (2022) also de-
sign the ALL-POLICY MODEL-ESTIMATION E2D algorithm for reward-free RL (Jin et al., 2020b)
and (a harder related task) all-policy model estimation, with sample complexity scaling with the
All-policy Model-estimation DEC (AMDEC) of the model class. We show that for B-stable PSRs,
the AMDEC (43) can be upper bounded similar to the EDEC, and thus ALL-POLICY MODEL-
ESTIMATION E2D (Algorithm 3) can be used to learn stable PSRs in a reward-free manner (Theo-
rem H.4 & Appendix H.2).

4.3 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (MOPS)

Finally, we show that MOPS—a general model-based algorithm originally proposed for MDPs
by Agarwal & Zhang (2022)—can learn B-stable PSRs with the same sample complexity as
OMLE and EXPLORATIVE E2D modulo minor differences (Theorem H.6 & Appendix H.3). The
analysis is parallel to that of EXPLORATIVE E2D, building on insights from Chen et al. (2022).

5 EXAMPLES: SAMPLE COMPLEXITY OF LEARNING POMDPs

We illustrate the sample complexity of OMLE and EXPLORATIVE E2D given in Theorem 9 & 10
(with MOPS giving similar results) for learning an € near-optimal policy in the tractable POMDP
subclasses presented in Section 3.2, and compare with existing results. (Obtaining the rates for
OMLE also require bounds on the factor Rg, which can be found in Appendix D.)

Weakly revealing tabular POMDPs m-step «.,-weakly revealing tabular POMDPs are B-stable
PSRs with Ag < V/Sazl, dpsg < S, and Uy = A™ ' (Example 5). Therefore, both Theo-
rem 9 & 10 achieve sample complexity O (S2A™H?log Neo/(aZ,2?)). This improves substantially
over the current best result O(S* A4 H6 log N /(oL £2)) of Liu et al. (2022a, Theorem 24). For
tabular POMDPs, we further have log No < O(H(S2A + S0)).

Low-rank future-sufficient POMDPs m-step v-future-sufficient rank-d,,,s POMDPs are B-stable
PSRs with Ag < A/Uav, dpsg < dirans, and U4 = A™ 1 (Example 6). Therefore, Theorem 9 & 10

achieve sample complexity O (diransA*™ " H?log Ng - v?/¢?). This improves substantially over

the O(d2,, A5 31 H2(1og Ng)? - 1442 /2) achieved by Wang et al. (2022), which requires an
extra [-step y-past-sufficiency assumption that we do not require.

Decodable low-rank POMDPs m-step decodable POMDPs with transition rank d,,,s are B-stable
PSRs with Ag = 1, dpsg < dirans, and U4 = A™! (Example 7). Therefore, Theorem 9 & 10

achieve sample complexity O (dtransAmH Zlog No/ 52) . Compared with the sample complexity up-

per bound (5(dtransAmH ?log Ng /52) of Efroni et al. (2022), the only difference is that their cov-
ering number N is for the value class while Ng is for the model class. However, this difference
is nontrivial if the model class admits a much smaller covering number than the value class re-
quired for a concrete problem. For example, for tabular decodable POMDPs, using dians < S and
log No < O(H(S2A + S0)), we achieve the first O(A™poly(H, S, 0, A)/e2) sample complexity,
which resolves the open question of Efroni et al. (2022).

Besides the above, our results can be further instantiated to latent MDPs (Kwon et al. (2021), as a
special case of revealing POMDPs) and linear POMDPs (Cai et al., 2022) and improve over existing
results, which we present in Appendix D.3.2 & D.3.4.

6 CONCLUSION

This paper proposes B-stability—a new structural condition for PSRs that encompasses most of the
known tractable partially observable RL problems—and designs algorithms for learning B-stable
PSRs with sharp sample complexities. We believe our work opens up many interesting questions,
such as the computational efficiency of our algorithms, alternative (e.g. model-free) approaches for
learning B-stable PSRs, or extensions to multi-agent settings.
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A RELATED WORK

Learning POMDPs Due to the non-Markovian nature of observations, policies in POMDPs in
general depend on the full history of observations, and thus are much harder to learn than in fully
observable MDPs. It is well-established that learning a near-optimal policy in POMDPs is indeed
statistically hard in the worst-case, due to a sample complexity lower bound that is exponential in
the horizon (Mossel & Roch, 2005; Krishnamurthy et al., 2016). Algorithms achieving such upper
bounds are developed in (Kearns et al., 1999; Even-Dar et al., 2005). Poupart & Vlassis (2008); Ross
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et al. (2007) develop Bayesian methods to learn POMDPs, while Azizzadenesheli et al. (2018) con-
sider learning the optimal memoryless policies with policy gradient methods. Sample-efficient al-
gorithms for learning POMDPs have also been developed in Hsu et al. (2012); Azizzadenesheli
et al. (2016); Guo et al. (2016); Xiong et al. (2021); Jahromi et al. (2022); These works assume
exploratory data or reachability assumptions, and thus do not address the challenge of exploration.

For learning POMDPs in the online (exploration) setting, sample-efficient algorithms have been pro-
posed under various structural conditions, including reactiveness (Jiang et al., 2017), revealing con-
ditions (Jin et al., 2020a; Liu et al., 2022a;c), revealing (future/past-sufficiency) and low rank (Cai
et al., 2022; Wang et al., 2022), decodablity (Efroni et al., 2022), latent MDP (Kwon et al., 2021),
learning short-memory policies (Uehara et al., 2022b), and deterministic transitions (Uehara et al.,
2022a). Our B-stability condition encompasses most of these structural conditions, through which
we provide a unified analysis with significantly sharper sample complexities (cf. Section 3 & 5). We
further remark that for tabular revealing POMDPs, our sample complexities are minimax optimal
in the accuracy ¢ and the revealing constant, and have at most a small polynomial gap in S, 0, A
factors from the minimax optimal rate, due to the lower bounds established in the work of Chen
et al. (2023) (see e.g. their Table 1) after the initial appearance of this work.

For the computational aspect, planning in POMDPs is known to be PSPACE-compete (Papadim-
itriou & Tsitsiklis, 1987; Littman, 1994; Burago et al., 1996; Lusena et al., 2001). The recent
work of Golowich et al. (2022b;a) establishes the belief contraction property in revealing POMDPs,
which leads to algorithms with quasi-polynomial statistical and computational efficiency. Uehara
et al. (2022a) design computationally efficient algorithms under the deterministic latent transition
assumption. We remark that computational efficiency is beyond the scope of this paper, but is an
important direction for future work.

Extensive-Form Games with Imperfect Information (EFGs; (Kuhn, 1953)) is an alternative formu-
lation of partial observability in sequential decision-making. EFGs can be formulated as Partially
Observable Markov Games (the multi-agent version of POMDPs (Liu et al., 2022c)) with a tree-
structure. Learning from bandit feedback in EFGs has been recently studied in Farina et al. (2021);
Kozuno et al. (2021); Bai et al. (2022a;b); Song et al. (2022), where the sample complexity scales
polynomially in the size of the game tree (typically exponential in the horizon). This line of results
is in general incomparable to ours as their tree structure assumption is different from B-stability.

Learning PSRs PSRs is proposed in Littman & Sutton (2001); Singh et al. (2012); Rosencrantz
et al. (2004); Boots et al. (2013) as a general formulation of partially observable systems, following
the idea of Observable Operator Models (Jaeger, 2000). POMDPs can be seen as a special case
of PSRs (Littman & Sutton, 2001). Algorithms for learning PSRs have been designed assuming
reachability or exploratory data, including spectral algorithms (Boots et al., 2011; Zhang et al.,
2021; Jiang et al., 2018), supervised learning (Hefny et al., 2015), and others (Hamilton et al., 2014;
Thon & Jaeger, 2015; Grinberg et al., 2018). Closely related to us, the very recent work of Zhan
et al. (2022) develops the first sample-efficient algorithm for learning PSRs in the online setting
assuming under a regularity condition. Our work provides three algorithms with sharper sample
complexities for learning PSRs, under the more general condition of B-stability.

A concurrent work by Liu et al. (2022b) (released on the same day as this work) also identifies a
general class of “well-conditioned” PSRs that can be learned sample-efficiently by the OMLE algo-
rithm (Liu et al., 2022a). Our B-stability condition encompasses and is slightly more relaxed than
their condition (consisting of two parts), whose part one is similar to the operator norm requirement
in B-stability with a different choice of input norm, and which requires an additional second part.

Next, our sample complexity is much tighter than that of Liu et al. (2022b), on both general well-
conditioned/B-stable PSRs and the specific examples encompassed (such as revealing POMDPs).
For example, for the general class of “y well-conditioned PSRs” considered in their work, our
results imply a O (dAUiH 2log Ne/ (7252)) sample complexity, whereas their result scales as

9, (d?APU% H*log No/(v*e?)) (extracted from their proofs, cf. Appendix D.4). This originates
from several differences between our techniques: First, Liu et al. (2022b)’s analysis of the OMLE
algorithm is based on an ¢;-type operator error bound for PSRs, combined with an ¢;-Eluder ar-
gument, whereas our analysis is based on a new stronger ¢2-type operator error bound for PSRs
(Proposition F.2) combined with a new generalized ¢5-Eluder argument (Proposition E.1), which
together results in a sharper rate. Besides, our ¢5-Eluder argument also admits an in-expectation de-
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coupling form as a variant (Proposition E.6) that is necessary for bounding the EDEC (and hence the
sample complexity of the EXPLORATIVE E2D algorithm) for B-stable PSRs; it is unclear whether
their /1 -Eluder argument can give the same results. Another difference is that our performance de-
composition and Eluder argument are done on a slightly difference choice of vectors from Liu et al.
(2022b), which is the main reason for our better 1/ dependency (or Ag dependency for B-stable
PSRs); See Appendix B for a detailed overview of our technique. Further, in terms of algorithms, Liu
et al. (2022b) only study the OMLE algorithm, whereas we study both OMLE and two alternative
algorithms Explorative E2D & MOPS in addition, which enjoy similar guarantees (with minor dif-
ferences) as OMLE. In summary, Liu et al. (2022b) do not overlap with our contributions (2) and
(3) highlighted in our abstract.

Finally, complementary to our work, Liu et al. (2022b) identify new concrete problems such as ob-
servable POMDPs with continuous observations, and develop new techniques to show that they fall
into both of our general PSR frameworks, and thus tractable to sample-efficient learning. In particu-
lar, their result implies that this class is contained in (an extension of) the low-rank future-sufficient
POMDPs defined in Definition D.11, if we suitably extend the formulation in Definition D.11 to the
continuous observation setting by replacing vectors with L;-integrable functions and matrices with
linear operators.

RL with function approximation (Fully observable) RL with general function approximation has
been extensively studied in a recent line of work (Jiang et al., 2017; Sun et al., 2019; Du et al., 2021;
Jin et al., 2021; Foster et al., 2021; Agarwal & Zhang, 2022; Chen et al., 2022), where sample-
efficient algorithms are constructed for problems admitting bounds in certain general complexity
measures. While POMDPs/PSRs can be cast into their settings by treating the history (7,_1, 0p)
as the state, prior to our work, it was highly unclear whether any sample-efficient learning results
can be deduced from their results due to challenges in bounding the complexity measures (Liu
etal., 2022a). Our work answers this positively by showing that the Decision-Estimation Coefficient
(DEC; Foster et al. (2021)) for B-stable PSRs is bounded, using an explorative variant of the DEC
defined by Chen et al. (2022), thereby showing that their EXPLORATIVE E2D algorithm and the
closely related MOPS algorithm (Agarwal & Zhang, 2022) are both sample-efficient for B-stable
PSRs. Our work further corroborates the connections between E2D, MOPS, and OMLE identified
in (Chen et al., 2022) in the setting of partially observable RL.

B OVERVIEW OF TECHNIQUES

The proof of Theorem 9 consists of three main steps: a careful performance decomposition into
certain B-errors, bounding the squared B-errors by squared Hellinger distances, and a generalized
{o-Eluder argument. The proof of (the EDEC bound in) Theorem 10 follows similar steps except
for replacing the final Eluder argument with a decoupling argument (Proposition E.6).

Step 1: Performance decomposition By the standard excess risk guarantee for MLE, our choice
of 8 = O(log(Ne(1/T)/§)) guarantees with probability at least 1 — § that §* € ©F for all k € [K]
(Proposition G.2(a)). Thus, the greedy step (Line 4 in Algorithm 1) implies valid optimism: V, <
Vyr (m*). We then perform an error decomposition (Proposition F.1):

Vi — Vi (%) < Vi (%) — Ve (%) < Doy (Pg,f,lpgf) <> E. o [5,;,,,,(7,1,1)], (10)

where £ o := & ||BY;; (af — aj)||;,» and
1
& n(Th-1) "= max o > w(anlon) |Blrnyy (Bh(on,an) — B (on,an)) a* (tn-1)| . (1D

Oh,Qh

where for the ground truth PSR #* and the OMLE estimates #* from Algorithm 1, we have defined
respectively {B},q} and {BF, gk} as their B-representations, and {B};.,,} and {B%.,} as the cor-
responding -operators. (10) follows by expanding the Pglf () and ng (7) (within the TV distance)
using the B-representation and telescoping (Proposition F.1). This decomposition is similar as the
ones in Liu et al. (2022a); Zhan et al. (2022), and more refined by keeping the B?I: haq termin (11)
(instead of bounding it right away), and using the II-norm (3) instead of the ¢;-norm as the error
metric.

15



Published as a conference paper at ICLR 2023

Step 2: Bounding the squared B-errors By again the standard fast-rate guarantee of MLE in

squared Hellinger distance (Proposition G.2(b)), we have Zf;ll Z,{LO D% (]Pg,:"e"", IE”gf"e"") < 203
for all k € [K]. Next, using the B-stability of the PSR, we have for any 1 < ¢ < k < K that
(Proposition F.2)

S0 Bre | €2(m1)? | < 3203404 1L, DY (PZ?’“XP,ng’°XP> . (12)

Plugging the MLE guarantee into (12) and summing over ¢ € [k — 1] yields that for all k € [K],
P S0 B [ 1)?| < O (A34UL5). (13)
(13) is more refined than e.g. Liu et al. (2022a, Lemma 11), as (13) controls the second moment of

Ep.1, whereas their result only controls the first moment of a similar error.

Step 3: Generalized /5-Eluder argument We now have (13) as a precondition and bounding (10)
as our target. The only remaining difference is that (13) controls the error & with respect to
{r'}, <k—1» Whereas (10) requires controlling the error £ with respect to k.

To this end, we perform a generalized ¢5-Eluder dimension argument adapted to the structure of the
function £;’s (Proposition E.1), which implies that when dpsg < d,

k 2 ko1
(Z Ee [é’t*,h(m_l)]> <de- (k + 3D Ene [Stth(ril_l)z]), V(k,h) e [K] x [H]. (14)
t=1 t=1s=1

Note that such an /5-type Eluder argument is allowed precisely as our precondition (13) is in {5
whereas our target (10) only requires an ¢; bound. In comparison, Liu et al. (2022a); Zhan et al.
(2022) only obtain a precondition in ¢1, and thus has to perform an ¢;-Eluder argument which
results in an additional d factor in the final sample complexity. Combining (10), (13) (summed over
k € [K]) and (14) completes the proof of Theorem 9.

C TECHNICAL TOOLS

C.1 TECHNICAL TOOLS

Lemma C.1 (Hellinger conditioning lemma (Chen et al., 2022, Lemma A.4)). For any pair of
random variable (X,Y'), it holds that

Ex~px[Dfi (Py|x,Qyix)] < 2Df (Pxy,Qx,y).

The following strong duality of (generalized) bilinear function is standard, e.g. it follows from the
proof of Foster et al. (2021, Proposition 4.2).

Theorem C.2 (Strong duality). Suppose that X, ) are two topological spaces, such that X is
discrete and Y is finite (with discrete topology). Then for a function f : X x Y — R that is
uniformly bounded, it holds that

su inf E,.xE,~ x, = inf supE,~ x, )],
ol vkl B x By )l = | It sup -y y)]

where Ao (X) stands for space of the finitely supported distribution on X.

We will also use the following standard concentration inequality (see e.g. Foster et al. (2021, Lemma
A.4)) when analyzing algorithm OMLE.

Lemma C.3. For a sequence of real-valued random variables (Xy), <7 adapted to a filtration
(Ft)i<» the following holds with probability at least 1 — §:

> —logE[exp(—X,)| Foor] < Y| X +1log(1/8),  Vte[T].

s=1 s=1
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C.2 COVERING NUMBER

In this section, we present the definition of the optimistic covering number Ng. Suppose that we

have a model class O, such that each § € © parameterizes a sequential decision process. The

p-optimistic covering number of © is defined as follows.

Definition C.4 (Optimistic cover). Suppose that there is a context space X. An optimistic p-cover

of © is a tuple (ﬁ’, Op), where ©g < O is a finite set, P= {IF’gU() € RZ(I;}G o specifies a
- €O, mell

optimistic likelihood function for each 6 € ©, such that:

(1) For 0 € ©, there exists a 0 € O satisfying: for all T € T and =, it holds that IF’gO (1) =Py (7).

(2) For 0 € O, max,

Py (1 =) — Iﬁg(TH = )H1 < P2

The optimistic covering number Ng(p) is defined as the minimal cardinality of ©¢ such that there
exists P such that (P, My) is an optimistic p-cover of ©.
The above definition is taken from Chen et al. (2022); the covering argument in Liu et al. (2022a)

essentially uses the above notion of covering number. Besides, the optimistic covering number can
be upper bounded by the bracketing number adopted by Zhan et al. (2022).

By an explicit construction, Liu et al. (2022a) show that there is a universal constant C' such that for
any model class © of tabular POMDPs, it holds that

log Ne(p) < CH(S?*A + SO)log(CHSOA/p).

D PROOFS FOR SECTION 3

D.1 BASIC PROPERTY OF B-REPRESENTATION

Proposition D.1 (Equivalence between PSR definition and B-representation). A sequential decision
process is a PSR with core test sets (Uy,) ne[H) (in the sense of Definition 1) if and only if it admits a
B-representation with respect to (Un ) e[ ) (in the sense of Definition 2).

Proof of Proposition D.1. We first show that a PSR admits a B-representation. Suppose we have
a PSR with core test sets (Up,)pe[r) satisfying Definition 1, with associated vectors {b;, n €

RU» Yhel ) tnex given by (1). Then, define

| |
By (0,a) := b?o}a’t)’h e RUr+1xUn g4 = [P(t)] e RY,
teth

teUn 1

We show that this gives a B-representation of the PSR. By (1), we have for all (h, 7;,—1, 0, a) that

By (0, a)q(th—1) = [P(o, a, th+1|Th—1)] =P(op, = o|Th—1) x q(Th-1, 0, a).

th+1€UR+1

Applying this formula recursively, we obtain
Bra(a)ao = P(7a) x a(7a) = [P(7h; tas1)]y, et s
which completes the verification of (2) in Definition 2.

We next show that a process admitting a B-representation is a PSR. Suppose we have a se-
quential decision process that admits a B-representation with respect to (Uy,)pe[r] as in Defi-
nition 2. Fix h € [H]. We first claim that, to construct vectors (by, n):, € RY" such that
P(tn|mh—1) = {bin,a(Th—1)) for all test ¢;, and history 75,—1 (Definition 1), we only need to con-
struct such vectors for full-length tests t,, = (op.p+1,an.m). This is because, suppose we have
assigned by, 5, € RY" for all full-length ¢;,’s. Then for any other t, = (Op:n+w—1,ah:n+w—2) With
h+W —1 < H + 1 (non-full-length), take

bt}nh = Z bth,¢(0h+W:H+17a;L+W71;H)7h7
Oh4+W:H+1
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where aj, , 1.y € AT ="=W*2 is an arbitrary and fixed action sequence. For this choice we have
<bt,th(7—h71)> = Z <bt;“(oh+W;H+1,a’}L+W71:H),}L1q(Th71)>
Oh+W:H+1

= > Pl onswimst Ghaw—tplmo1) = P(talm)
Oh4+W:H+1

as desired.

It remains to construct by, j, for all full-length tests. For any full-length test ¢, = (on.g+1,an.H),
take by, », € RY" with

b;r}“h = BH(OH, aH) s Bh(oh,ah) € Rlxuh.

By definition of the B-representation, for any history 7, = (01, a1, -+ ,0n, an), and any test t;,41 €
Uy 11, we have

P(7h) x P(thy1|m) = etTh,Hthl(Th) X qo,
or in vector form,

P(1) % q(7) = Bp:1(7h)q0, (15)

where we recall P(73) = P(o01,---,0p|do(ay,- - ,ap)). Therefore, for the particular full history
T = (Th—1, tn), we have by applying (15) twice (for steps H and h — 1) that

P(ry) = Bra(ta)do = Bu.n(onm, anm)Br-1.1(Th-1)q0
= by, 4 (P(th-1) x Q(Th-1)).
Dividing both sides by P(7,—1) (when it is nonzero), we get
P(th|mh-1) = P(ra|th-1) = P(ra)/P(Th—1) = b} na(Ta-1). (16)

This verifies (1) for all 7, _; that are reachable. For 7;,_; that are not reachable, (16) also holds as
both sides equal zero by our convention. This completes the verification of (1) in Definition 1. [

From the proof above, we can extract the following basic property of B-representation.
Corollary D.2. Consider a PSR model with B-representation {{By,(op, an)}h,op.ansdo}- For 0 <
h < H — 1, it holds that
P(on|Th—1) x a(7h—1,0n,an) = Br(on, an)a(th-1).
Furthermore, it holds that

B (Th:m)d(Th—1) = P(Th.a|Th—1)- (17)

D.2 WEAK B-STABILITY CONDITION

In this section, we define a weaker structural condition on PSRs, named the weak B-stability condi-
tion. In the remaining appendices, the proofs of our main sample complexity guarantees (Theorem
9, 10, H.4, H.6) will then assume the less-stringent weak B-stability condition of PSRs. Therefore,
these main results will hold under both Ag-stablility (Definition 4) and weak Ag-stablility (Defini-
tion D.4) simultaneously.

To define weak B-stability, we first extend our definition of II-norm to R” for any set T" of tests.
Recall that in (3), we have defined IT-norm on R with ' = (O x A)#~" (and in (5), the II’-norm
for T = Uy).

Definition D.3 (II-norm for general test set). For T' < T, we equip RT with |- | defined by

. — T
[0l = maxmax ) 7(t)[o(1)],  veR
teT”

where maxyrcr is taken over all subsets T' of T such that T' satisfies the prefix condition: there is
notwot # t' € T' such that t is a prefix of t'.
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It is straightforward to see that, for any v € RY», we have |[v], = |v|l; = |v/y
Definition D.4 (Weak B-stability). A PSR is weakly B-stable with parameter Ag > 1 (henceforth
weakly Ap-stable) if it admits a B-representation and associated B-operators {Bp.n}nem] such

that, for any h € [H] and p,q € Rg’(‘), we have'”

|Br:n(P — @)l < Asy/2([Ply + lalw) lvP = vals (18)

Despite the seemingly different form, we can show that the weak B-stability condition is indeed
weaker than the B-stability condition. Furthermore, the converse also holds: the B-stability can be
implied by the weak B-stability condition, if we are willing to pay a v/2U 4 factor. This is given by
the proposition below.

Proposition D.5. If a PSR is B-stable with parameter Ag, then it is weakly B-stable with the same
parameter Ag. Conversely, if a PSR is weakly B-stable with parameter Ag (cf. Definition D.4), then
it is B-stable with parameter /2U 4 Ag.

Proof of Proposition D.5. We first show that B-stability implies weak B-stability. Fix a h € [H].
We only need to show that, for p,q € Rg’b, we have

Ip—al. <+/2(lply + lalw) [vP = val, - (19)

We show this inequality by showing the bound for the (1, 2)-norm and the TI’-norm separately. First,
we have

2
2
p-a.= X (X Iple.a)-alo.a))
aella,n  o:(o,a)ely
I2

<2 (Y |veea+vaea) ) Y |Veloa - Valoal )

aela,n  o:(o,a)eUy o:(o,a)ely,
2
<2 Z ( Z p(o,a) + q(o,a)) ( Z ’\/p(o,a) - \/q(o,a)‘ )
aella,n  o:(o,a)eUy o:(0,a)eUy,

<2ply+lak) Y Y [Vplo.a) - valoa)|

aela p o:(0,a)eUy,

= 2(|ply + laly) IvP — val;,

where the first inequality is due to the Cauchy-Schwarz inequality; the second inequality is due to
AM-GM inequality; the last inequality is because maXact/s ,, 2o (0,a)eus, V(0 @) < [v]y. Next, we
have

Ip—al?, = max (3 7)< Ip(t) —a(0)])

teﬁh

<2max (3 w(0p) +a®) (3 =0V - vai| )

" tel, tely,
<2max (3] w00 +a0) ( X [V - va®)| )
teldy, tely,
< 2(Iply + aln) 16— val:.

Combining these two inequalities completes the proof of Eq. (19), which gives the first claim of
Proposition D.5.

Next, we show that weak B-stability implies B-stability up to a 1/2U 4 factor. Fix a h € [H]. For
x € RY we take p = [z] q= [x]_, then it suffices to show that

2Py + laln) [vP = val, < vV2Ualz] (20)

Here we introduce the constant 2 in the square root in order for weak B-stability to be weaker than B-
stability (Definition 4).
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Indeed, we have

VB = vl = [Vil], = /Il

HPHH + HQHH < H[$]+H1 + H[x]—Hl = HCUH1

2Py + laly) Ve - val, < v2[z)s. 2D

Applying Lemma D.6 completes the proof of Eq. (20), and hence proves the second claim of Propo-
sition D.5. 0

This implies that

Lemma D.6. Consider the fused-norm as defined in Eq. (4). For any q € RY", we have

1/2
lall« < lalh < Uan"? |l

Proof of Lemma D.6. By definition, we clearly have |q|, , < |q]|; and ||q|;, < |ql|;. On the other
hand, by Cauchy-Schwarz inequality,
2 2

2 2
lali = | ) lale,a)l| <Uanl D, Y, lalo,a)l | < Uanllals-
(o,a)ely, aelda.pn \o:(o,a)ela p
Combining the inequalities above completes the proof. O

D.3 PROOFS FOR SECTION 3.2

D.3.1 REVEALING POMDPs

¢ revealing condition We first remark that, besides the revealing condition using the {5 norms
defined in Example 5, we also consider the ¢; version of the revealing condition, which measures
the ¢1-operator norm of any left inverse Ml; of My, instead of the ¢5-operator norm of the pseudo-
inverse M;rL Concretely, we say a POMDP satisfies the m-step ey ¢, £1-revealing condition, if
there exists a matrix M such that M/ M, = I and |[M; |11 < a,,, . In Proposition D.7,

we also show that any m-step ey,¢, ¢1-revealing POMDP is a Ag-stable PSR with core test sets
Uy, = (O x A)min{m—l,H—h} x O, and Ag < + /Am—1n"1

rev,lq"

We consider Example 5, and show that any m-step revealing POMDP admit a B-representation that
is B-stable. By definition, the initial predictive state is given by qp = M. For h < H — m, we
take

By, (o, an) = Mu41Th.q, diag(Qp(os|-))M; € RUn+1xUn, (22)

where Ty, o := Tp(-|-,a) € RS*S is the transition matrix of action a € A, and M;{ is any left inverse
of Mj,. When h > H — m, we only need to take

Br(on,an) = [L(tn = (0n, an, th1))) ey 11 t0)etnsr xtin € RUn+1xUn (23)

where 1(t, = (op,an,tp+1)) is 1if t; equals to (op, ap, the1), and O otherwise.

Proposition D.7 (Weakly revealing POMDPs are B-stable). For m-step revealing POMDP, (22)
and (23) indeed give a B-representation, which is B-stable with Ag < max, HMZ ”*Hr where

M = max Mz, .

Pt mes I,
Therefore, any m-step aue,-weakly revaling POMDP is B-stable with Ag < \/ga;\} (by taking
+ =1, using ||y < || and |-|; < VS |-|,)- Similarly, any m-step cey ¢, £1-revealing POMDP

is B-stable with Ag < Amfla;\}yél (using ||, < VUa ||, withUa = A™1).

For succinctness, we only provide the proof of a more general result (Proposition D.12). Besides,
by a similar argument, we can also show that the parameter Rg that appears in Theorem 9 can
be bounded by Rg < aZ LA™ (for aye,-weakly revealing POMDP) or Rg < aZtA™ (for Qrev,t;

rev rev

{1-revealing POMDP, see e.g. Lemma D.13).
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D.3.2 LATENT MDPs

In this section, we follow Kwon et al. (2021) to show that latent MDPs as a sub-class of POMDPs,
and then obtain the sample complexity for learning latent MDPs of our algorithms.

Example D.8 (Latent MDP). A latent MDP M is specified by a tuple {S, A, (M) _,, H,v},

m=1>
where M, -+, My are N MDPs with joint state space S, joint action space A, horizon H, and
v € A([N]) is the mixing distribution over My, - -+ , M. For m € [N], the transition dynamic of

M,y, is specified by (T, : S x A — A(S))E | along with the initial state distribution ,,, and at
step h the binary random reward 1, ,,, is generated according to probability Ry, : S x A — [0, 1].

Clearly, M can be casted into a POMDP M’ with state space S = [N] x S x {0, 1} and observation
space O = S x {0, 1} by considering the latent state being 5, = (s, 74, m) € S and observation
being oy, = (sp,rn—1) € O. More specifically, at the start of each episode, the environment gener-
ates am ~ v and a state s ~ [i,,, then the initial latent state is §; = (m, s,0) and 0; = (s,0); at
each step h, the agent takes ay, after receiving oy, then the environment generates 7y, € {0, 1}, 5541
and 0,41 according to (55,ap): rp, = 1 with probability Ry, (s, an)", spe1 ~ Thom(-|sn,an),
Snt1 = (M, sper,7p) and opy1 = (Sha1, 7).

In a latent MDP, we denote 7j, to be the set of all possible sequences of the form

(Qhy Thy Sht1y " 5 Qhtl—1,Th+i—1, Sh+1) (called a fest in (Kwon et al., 2021)). Forh < H — 1 + 1,
t = (Qh, Thy Shals " > htl—1,Th+i—1,Sh+1) € Tp and s € S, we can define
Ph,'m(t‘s) = Pm(rfu Sh+1," " yTh+l—1, Sh-‘rl|5h =S, dO(CLh, T 7ah+l—1))7

where P,,, stands for the probability distribution under MDP M,,,.
Definition D.9 (Sufficient tests for latent MDP). A latent MDP M is said to be l-step test-sufficient,

ifforhe[H —1+ 1] and s € S, the matrix Ly(s) given by
Lh(s) = [Phﬁm(t‘s)](t,m)eThx[N] e RTnxN
has rank N. M is l-step o-test-sufficient if o (Lp(s)) = o forallhe [H —1+ 1]and s € S.

Under test sufficiency, the latent MDP is an (I + 1)-step o-weakly revealing POMDP, as shown
in (Zhan et al., 2022, Lemma 12). Hence, as a corollary of Proposition D.7, using the fact that
|S| = 2SN, we have the following result.

Proposition D.10 (Latent MDPs are B-stable). For an l-step o-test-sufficient latent MDP M, its
equivalent POMDP M’ is (1+1)-step o-weakly revealing, and thus B-stable with Ag < v/2SNo L.

Therefore, by a similar reasoning to m-step revealing POMDPs in Section 5 (and Appendix D.3.1),
our algorithms OMLE/EXPLORATIVE E2D/MOPS can achieve a sample complexity of

5 (SQNQAIHH2 logN@>

o2g?

for learning e-optimal policy, where © is the class of all such latent MDPs. Further, the opti-
mistic covering number of © can be bounded as (similar as (Liu et al., 2022a, Appendix B) and
Appendix D.3.4)

log No(p) < O (NS?AH) .

Thus, we achieve a O (S*N3AT2H3572272) sample complexity. This improves over the result
of Kwon et al. (2021) who requires extra assumptions including reachability, a gap between the N
MDP transitions, and full rank condition of histories (Kwon et al., 2021, Condition 2.2). Besides,
our result does not require extra assumptions on core histories—which is needed for deriving sample
complexities from the ops-regularity of (Zhan et al., 2022)—which could be rather unnatural for
latent MDPs.

We remark that the argument above can be generalized to low-rank latent MDPs'? straightforwardly,
achieving a sample complexity of O (dZ,,N?A'""?H?log No/o?e?). For more details, see Ap-
pendix D.3.3.

""Note that under such formulation, M’ has deterministic rewards.
2The terminal state s H+1 is a dummy state.
13 A latent MDP M has transition rank d if each M,,, has rank d as a linear MDP (Jin et al., 2020c).
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Proof of Proposition D.10. As is pointed out by Zhan et al. (2022), the (I + 1)-step emission matrix
of M’ has a relatively simple form: notice that for h € [H — 1 + 1], 5 = (m,s,r) € S and
th = (On,@n, "+ 0p41) € Up (With 011 = (Sh41578), "+ 5 Opt = (Sht, Tht1-1)), We have

My (t,s) = L(on = (8 Th—1))Pm(Ths St 15+ s Thai—1, Shtlsn = 8,do(an, -+, anyi-1)),

where 1(op, = (sp,7h—1)) is 1 when o, = (sp,7r—1) and O otherwise. Therefore, up to some
permutation, M, has the form

[ Ly (s™) 1
Ly(sM)
Lh(s(z)
M, = Lh(s(z)) ,
Ly (s(5D)

i Ly, (s15D) |
where {s(l),s@), e ,s(“s')} is an ordering of S. Therefore, it follows from definition that
M 2 < maxy ¢ | Ln(s) |22 < o~'. Applying Proposition D.7 completes the proof. O

D.3.3 Low-RANK POMDPS WITH FUTURE SUFFICIENCY

In this section, we provide a detailed discussion of low-rank POMDPs and m-step future sufficiency
condition mentioned in Example 6. We present a slightly generalized version of the m-step future
sufficiency condition defined in (Wang et al., 2022); see also (Cai et al., 2022).

For low-rank POMDPs, we now state a slightly more relaxed version of the future-sufficiency con-

dition defined in (Wang et al., 2022). Recall the m-step emission-action matrices M, € R“»*S

defined in (7).

Definition D.11 (m-step v-future-sufficient POMDP). We say a low-rank POMDP is m-step v-

future-sufficient if for h € [H], minyg M3 |11 < v, where miny . is taken over all possible ML}, s
h h

such that MEM, T,y = Tp,_ .

Wang et al. (2022) consider a factorization of the latent transition: T, = U,P; with U, €
RS*dwns &), e Ribwarsx(5%A) for e [H], and assumes that [M? [, ,; < v with the specific
choice MEI = U,_1 (M, \IJ;,,_l)T (note that it is taking an exact pseudo-inverse instead of any gen-

eral left inverse). It is straightforward to check that this choice indeed satisfies MELMh']I‘h =T,
using which Definition D.11 recovers the definition of Wang et al. (2022). It also encompasses the
setting of Cai et al. (2022) (m = 1).

We show that the following (along with (23)) gives a B-representation for the POMDP: '
Bi.(0,a) = My, 11T} o diag (Qp(o]-))ME,  he[H —m]. (24)

This generalizes the choice of B-representation in (22) for (tabular) revealing POMDPs, as the matrix

Mi can be thought of as a “generalized pseudo-inverse” of M, that is aware of the subspace spanned
by Tj_;. This choice is more suitable when S or O are extremely large, in which case the vanilla

pseudo-inverse ML may not be bounded in |-||;_,; norm. In the tabular case, setting fj = T in (24)
recovers (22).

Proposition D.12 (Future-sufficient low-rank POMDPs are B-stable). The operators
(Br(0,a))h.0,q given by (24) (with the case h > H —m given by (23)) is indeed a B-representation,
and it is B-stable with Ag < v A™~1 maxy, HMiHl As a corollary, any m-step v-future-sufficient
low-rank POMDP admits a B-representation with Ag < vV A™~1v (and also Rg < A™v).

Combining Proposition D.12 and Algorithm 2 gives the sample complexity guarantee of Algorithm 2
for future sufficient POMDP. For Algorithm OMLE, combining Rg < A™v with Theorem 9 estab-
lishes the sample complexity of OMLE, as claimed in Section 5.

“For simplicity, we write Th,e :=Th(-],a) € RS*¥ the transition matrix of action a € A.
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Proof of Proposition D.12. First, we verify (2) for 0 < h < H — m. In this case, for ¢, 1 € Up+1,
we have!?
h

e;HBh:l(Th)QQ = e;lﬂ 1_[ [Ml-lel,al diag (©l(0l|'))M?]M1N1
=1

@) . .
=etTh+1Mh+1Th,ah diag (Op(on|)) - - - T1,q, diag (O1(01]-)) 11 (25)

DS P(tasalsnet)Tha (sns1l5)On(onlsn) - Ti(sals1)O1 (o1]s1)pa (s1)

51,52, ,Sh+1
:P(T}La th-‘rl);
where (i) is due to M?M;Tl = T, for 1 <1 < h, in (ii) we use the definition (7) to deduce that the
(th+1, Sp+1)-entry of My 1 is P(tp11]Sh41)-

Finally, we verify (2) for H — m < h < H. In this case, U1 = OF " x AF=h=1 and hence
for 7, = (01,01, ,0n,an), the1 = (Ont1,Gh+1, " ,0H) € Upy1, we consider ty_p,i1 =
(0H7m+17 OH—m+15 OH)I

etThHBm(Th)QO = eZH7m+1BH7m:1(TH7m)qO =Pt —mi1,TH-m) = P(thy1, Tn).

It remains to verify that the B-representation is Ag-stable with Ag < vV A™ 1y and Rg < A™v, we
invoke the following lemma.

Lemma D.13. For 1 < h < H, z € RYl it holds that

|Ba:nllg = max Z |Br(om,am) - Bp(on,an)z|; X m(Th:p) < max {HMEL:E‘L , ||xHH}
Th:H

Similarly, we have . . |Bp(0,a)v|; < max {Am HMELU‘

Al )
By Lemma D.13, it holds that
Bzl < max{v|z|,, |z|g} < vz, < vA/Ua 2], = vvVA™ 2],

where the second inequality is because |z|; < |z||; and v > 1, and the third inequality is due to
Lemma D.6 and [|z|, > [lz|, by definition. Similarly, we have Rg < A™v. This concludes the

proof of Proposition D.12. O

Proof of Lemma D.13. We first consider the case h > H — m. Then foreach h < [ < H, By is

given by (23), and hence for trajectory 7.5 = (op, an, -+ ,0m,axg) and z € RY: it holds that
Bh.g(th.m)r = x(on, an, - ,0m).

This implies that | By.pz|; = 2] and 35, , [Br (o, @)z|, = A x|, directly.

We next consider the case h < H — m. Note that for 7.5 = (0p, @,y OH—m, QH—m," " ,0H),
we can denote tg— i1 = (OF—m+1, GH—m+1," - , 0 ), then similar to (25) we have

H—m
Baan(mhe) = etTH—mHMH—mHl H Ty,q, diag (@1(01|'))1M9L

l=h
H—m
= > P(tH—m+1|3H—m+1)[ 11 Tz,al(81+181)@z(01Sl)]e;rhMEL
Shy 3 SH—m+1 l=h
= Z P(Th:H|Sh = S)GIMEL
seS

Therefore, for policy 7 and trajectory 7.7, it holds that

®(ther) X Baon(thew)w = Y P™(mheu|sn = 5) x e] Mz,
seS

'5For the clarity of presentation, in this section we adopt the following notation: for operator (L, )nen, we
write [ [} Ly =Lmo---0Ln.
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and this gives |By.pz|; < HMixH directly.
1
Besides, we similarly have

Y IBa(o, a)uly = Y| M1 Th ding (On(o])Mie| < Alhags| Mz -
The proof is completed by combining the two cases above. O

D.3.4 LINEAR POMDPs

Linear POMDPs (Zhan et al., 2022) is a subclass of low-rank POMDPs where the latent transition
and emission dynamics are linear in certain known feature maps. In the following, we present a
slightly more general version of the linear POMDP definition in Zhan et al. (2022, Definition 5).

Definition D.14 (Linear POMDP). A POMDP is linear with respect to the given set ¥ of feature
maps (Y, © S — Rt g, : S x A — R%2 0y + O x S — R¥%),, if there exists A;, €
Rds1xdsz 4 e RY v € R such that

Th(s'ls,a) = on(s') Antn(s,a),  pa(s) = (v,d0(s)),  On(ols) = (un,@n(o]s))-

We further assume a standard normalization condition: For R := max {ds 1, ds 2, do},

Z lon(sN)], < [¢¥n (s, a)ly < R, 2. lenlols)l, < R,

||Ah|\go,OO <R, vl < R, Junll, < R.

Proposition D.15. Suppose that © is the set of models that are linear with respect to a given ¥
and have parameters bounded by R. Then log Ng(p) = O ((ds + do)H log(dsdoH /p)), where we
denote ds := dg1d; 2.

It is direct to check that any linear POMDP is a low-rank POMDP (cf. Example 6) with dpsg <
drrans < min{ds 1,ds2}. Therefore, by a similar reasoning to Appendix D.3.3, Theorem 9 & 10
both achieve a sample complexity of O (min {ds.1,ds2}(ds1ds 2 + do) AUAH3Age™2) for learn-

ing an e-optimal policy in Ag-stable linear POMDPs (which include e.g. revealing and decodable
linear POMDPs).

This result significantly improves over the result extracted from (Zhan et al., 2022, Corollary 6.5):
Assuming their aps-regularity, we have Ag < /Uy, (Example 8) and thus obtain a sample

k psr
complexity of

(mln{ds 1, s 2}( s, 1ds ,2 +d )AUAH3/( psr )) :

This only scales with d> AU (where d > max {ds.1,ds,2,d,}), whereas their results involve much
larger polynomial factors of all three parameters. Further, apart from the dimension-dependence,
their covering number scales with an additional log O (and thus their result does not handle ex-
tremely large observation spaces).

Proof of Proposition D.15. In the following, we generalize the construction of optimistic covering
of © using the optimistic covering of {Of },_. and {T} },_o as in Liu et al. (2022a, Appendix B).

Lemma D.16 (Bounding optimistic covering number for POMDPs). For O a class of POMDPs, let
us denote O, = {@Z}QE@ and Oy, = {T }9 916. Then it holds that for p € (0,1],17

logN@(pl) < 2Hm}?x {logN@h;o(pl/SH)vIOgN@h;t(pl/SH)}'

By Lemma D.16, we only need to verify that for all h € [H],
log No,.,(p) = O (dolog(Rdo/p)),  logNe,.,(p) = O (dslog(Rds/p)) .-

1%Here, for h = 0, we take O, = {”1}959
""The optimistic covers of the emission matrices ©y,,, and transitions Oy, are defined as in Chen et al.
(2022, Definition C.5) with context 7 being s and (s, a), and output being o and s, respectively.
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We demonstrate how to construct a p-optimistic covering for ©j.,; the construction for ©p,; is
essentially the same. In the following, we follow the idea of (Chen et al., 2022, Proposition H. 15)

Fixah e [H]andset N = [R/p]. Let R = Np, foru € [-R’, R']%, we define the p-neighborhood
of u as Bes (u, p) := p|u/p| + [0, p]?, and let

Oneu(o]s) := maX <u on(ols)).

u'€Byy

Then, if u induces a emission dynamic Qy,.,,, then @h;u(o\s) = Op,y(0]s), and

2 [Brsulols) — Onalols)| = X3 max [¢u — . pnfols) < Xlenlollh <

> uw'E€By (u,p)
Therefore, we can pick each @hu(|) a representative v such that v induce a lawful emission dy-
namic; there are at most (2N)% many elements in the set {@hu(”} , and hence by

we[—R!,R/]do
doing this, we obtain a Rp-optimistic covering (O, ©},.,) of Op;o such that ‘@;w < (2[R/p])
This proves Proposition D.15. O

Proof of Lemma D.16. Fix a p; € (0,1] and let p = p1/3H.

Note that given a tuple of parameters (fi1, ﬁ', @) (not necessarily induce a POMDP model), we can
define PP as

P(ra) = >, M(s1)01(o1]s1)Ti(s2ls1,a1) - Tr1(sulsu-1,au-1)0(on|sn),

S1,7,SH

and P™ (1) = 7(rg) x P(r). Then for a tuple of parameters (1, T, Q) that induce a POMDP
such that

7 =l < 2%, max H(Th _ Th)(,|57a)Hl <2, max H(@h —On) (s )H1 < p?,

it holds that

Fo-ro], -3

< ) {W(TH)Wl(Sl)—M1(81)|@1(01|51)ﬁ“1(8281,a1)"'@(0H|8H)

S1:H,TH

B (i) — P (7|

+ (e ) pa (1) ‘@1(01|51) — @h(01|31)‘ Ti(s2]s1,a1) - O(on|su)
+ m(te)p1 (51)01(01]51) ‘ﬁ1(82|81>a1) - Tl(sz\shal)‘ -~ O(opsm)

+ w(ra)par (31)01 (01]s1) T (sals, ar) -+ [Olon |si) = Olonlsi) }

(%)
<2Hp*(1+p?)*! < 4Hp® < pt,

where (*) is because > 'ﬁ‘h(shH |sn,an) < 1+p% and ZO’L On(on|sn) < 1+p? forall h, sy, ap,.

Sh+1

Therefore, suppose that for each A, (1~1’h, ©)},.;) is a p-optimistic covering of ©,;, and (@h, Ol,.0) 18
a p-optimistic covering of ©},.,, then we can obtain a p;-optimistic covering (IP, ©') of ©, where

0 = I 0;t X @ o X 611;15 X X @;Ifl;t X 9’[‘1;0'
This completes the proof. O
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D.3.5 DECODABLE POMDPSs

To construct a B-representation for the decodable POMDP, we introduce the following notation. For
h < H —m, we consider t, = (0p,an, "+ ,0htm—-1) € Un, the1 = (0h41,0h 41, " 04 1m) €
Uy 11, and define
P(onym = Oy mlshim—1 = Gnim—1(tn), ahim—1); A Oni1him—1 = Oh 1him1
]Ph(th+1|th) = and Ah+1:h+m—2 = a/h+1:h+m—2’
0, otherwise,
(26)
where ¢p 1,1 is the decoder function that maps ¢, to a latent state sy ,,—1. Similarly, for h >
H —m, ty, € Up, the1 € Ups1, we let Py (tp41]ty) be 1if ¢, ends with 1,41, and 0 otherwise.

Under such definition, for all h € [H], t, € Up, th+1 € Up41, itis clear that
Ph(ths1ltn) = P(theiltn, Th—1) 27

for any reachable (7,1, tp), because of decodability. Hence, we can interpret Py, (511 |t) as the
probability of observing ¢, 1 conditional on observing ¢;, on step h. '® Then, for h € [H], we can
take

Br(o,a) =[1((0,a) — th)Ph(th‘H|th)](th+1,th)euh+1xuh7 (28)

where 1((0,a) — t3,) is 1 if t;, starts with (0, a) and 0 otherwise'”.

We verify that (28) indeed gives a B-representation for decodable POMDPs:

Proposition D.17 (Decodable POMDPs are B-stable). (28) gives a B-stable B-representation of the
m-step decodable POMDP, with Ag = 1.

The results above already guarantee the sample complexity of EXPLORATIVE E2D for decodable
POMDPs. For OMLE, we can similarly obtain that },, , [Bn(0,a)z|; = A|z[,, and thus we can
take Rg = A. Combining this fact with Theorem 9 establishes the sample complexity of OMLE as
claimed in Section 5.

Proof of Proposition D.17. We verify that (28) gives a B-representation for decodable POMDP:
Note that for h € [H — 1], (op,an) € O X A, tp11 € Up41, there is a unique element ¢, € Uy, such
that ¢, is the prefix of the trajectory (o, ap, tn+1), and it holds that

et—tr;b+1Bh(Oh7 ah)x = Ph(th+1|th) X x(th).
Applying this equality recursively, we obtain the following fact: For trajectory 7., and t,411 €
Un+1, (Thr:h, th+1) has a prefix ¢, € Uy, and
etThHBh:h'(Th':h)SB = P(7h:ns thar [tnr) X x(th), (29)

where P(7p7., th+1|tn) stands for the probability of observing (7.1, t5+1) conditional on observ-
ing t at step i/, which is well-defined due to decodability (similar to (27)).

Taking b’ = 1 and = = qp in (29), we have for any history 75, and 5,1 € Uy 11 that
P(7h,the1) = etTh,HBhﬂ(Th)QW
Therefore, (28) indeed gives a B-representation of the decodable POMDP.

Furthermore, we can take h = H in (29) to obtain that: For any trajectory 7p.p =
(on,an, -+ ,om,apm), it has a prefix ¢, € Uy, and

Ban(mh.r)r = P(th.gltn) x x(th).
Hence, for any policy 7, it holds that
Z m(Th.r) X [Ba:n(Th:a)z| = Z P (mh.m|tn) x |z(tn)| = Z m(tn) ¥ |z(tn)] -
Th:H ThiH theUp

Therefore, |Br.px|lg < || always. This completes the proof of Proposition D.17. O

181t is worth noting that the (Pr,) we define is exactly the transition dynamics of the associated megastate
MDP (Efroni et al., 2022).
YFor h = H, we understand B (0,a) = [1(t = 0)]cu,, because om 41 = 0dum always.
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D.3.6 REGULAR PSRs

Proposition D.18 (Regular PSRs are B-stable). Any «ps-regular PSR admits a B-
representation (B) such that for all 1 < h < H, |Bg.pz|; < HK}TL;U 1, where Ky, is any core
matrix of Dy, (cf. Example 8). Hence, any cups-regular PSR is B-stable with Ag < Waps} As a
byproduct, we show that the B-representation also has Rg < o S AU 4.

Proof of Proposition D.18. By (Zhan et al., 2022, Lemma 6), the PSR admits a B-
representation such that rowspan(By,(0,a)) < colspan(Dp_1). In the following, we show that
such a B-representation is indeed what we want.

Fix a core matrix Kj,_; of Dj,_1, and suppose that Kj,_1 = [q(7}_), -+ ,q(7f_;)] with d =
rank(Dy,). Then it holds that

|Br:n]y = max ) 7 (7hem) X Brn(Thm)z]

Th:H
_ (Therr) % (Bran (Them ) K1 K]
= max T(Th:H) X |BH:R(Th:H ) p—118),_1 T

Th:H

d
.

<m,?XZ (Th:H Z|BHh Th:H K}L—19j|‘ejK;17133‘

Th:H j=1

SH
SH

X Z ThH Z’BHh ThH (Tg—l)"

j=1 Th:H

Notice that Bp.p, (5. H)q(Th 1) = P(7s H|’7'h 1) by Corollary D.2, and hence for any policy 7, we
have

Z 7(Th:m) % ’BH:h(Th:H)Q(Tg_l)) = 2 PW(Th:Hh}{—l) =1

Th:H Th:H

Therefore, it holds that | Bg.pz||; < HK’le‘L for h € [H] and any core matrix K1 of Dj_;.

Similarly, we can pick a core matrix K1 such that HK;TL_1 |1 < apy, then

Y IBro.a)al, = ) [Bulo.a) K1 K] sz < Aanil | K] x| < ant AU o],
This completes the proof. O

D.4 COMPARISON WITH WELL-CONDITIONED PSRS

Concurrent work by Liu et al. (2022b) defines the following class of well-conditioned PSRs.

Definition D.19. A PSR is y-well-conditioned if it admits a B-representation such that for all h €
[H], policy 7 (that starts at step h), vector x € RY», the following holds:

1

> m(mnen) X [Br(om, an) - Bu(on, an)z| < = ||, , (30)
Th:H ’y

1
> w(anlon) x |Br(on, an)a], < = |z, - (31)
Oh,Qh ’Y

By (30) and the inequality |z|, < +/Ua |z[, (Lemma D.6), any y-well-conditioned PSR is a

B-stable PSR with Ag < /Uy~ !. Plugging this into our main results shows that, for well-
conditioned PSRs, OMLE, EXPLORATIVE E2D and MOPS all achieve sample complexity

& ((JAUZH? log No
’)/262 )
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which is better than the sample complexity®® O (d>A3U?3 H* log N /v*¢?) achieved by the analysis
of OMLE in Liu et al. (2022b). Also, being well-conditioned imposes the extra restriction (31) on
the structure of the PSR, while our B-stability condition does not.

E DECORRELATION ARGUMENTS

In this section, we present two decorrelation propositions: the generalized ¢2-Eluder argument
(Proposition E.1), and the decoupling argument (Proposition E.6). These two propositions are im-
portant steps in the proof of main theorems (Theorem 9, 10, H.4, H.6). These two Propositions
are parallel: Proposition E.1 is the triangular-to-diagonal version of the decorrelation used in the
proof of Theorem 9 (see Appendix G for its proof), whereas Proposition E.6 is the expectation-to-
expectation version of the decorrelation used in the proof of Theorem 10 (see Appendix I for its
proof).

E.1 GENERALIZED /5-ELUDER ARGUMENT

We first present the triangular-to-diagonal version of the decorrelation argument, the generalized
{5-Eluder argument.

Proposition E.1 (Generalized ¢2-Eluder argument). Suppose we have sequences of vectors
{Zh,it ket xz = RY, Wk bk jiryelx]x [ xR < R

where T, R are arbitrary (abstract) index sets. Consider functions {fi, : R? — R} ke[K]"
J
Ju(@) = Trnei;g:; [CRTRIVIE
Assume that the following condition holds:
k—1
S Bivg [fr(20)?] < B, Vhe[K],
t=1

where (qx € A(Z)) e[k is a family of distributions over T.
Then for any M > 0, it holds that

k

k k R2R?
2: M AT , 2 }: z %y
pa AEieg [fi(ze)] < Qd(M k + 2 /3}) log (1 + pi 3 ), Vk € [K],

where R? = maxy, Eiq, [|2k,il3], By = maxy, 3, [ykjol,.

We call this proposition “generalized /5-Eluder argument” because, when Z is a single element set
and 8, = [, the result reduces to

k
it 3 file)? < B, forall k e [K], then Y |fi(zs)| < O («/dﬁk) : (32)
t<k t=1

as long as max; | f¢(z¢)| < 1, which implies that the function class {f;}; has Eluder dimension

O (d). In particular, when {fy.}re[x7 is given by fi.(z) = |[{yx, )|, (32) is equivalent to the stan-
dard /¢5-Eluder argument for linear functions, which can be proved using the elliptical potential
lemma (Lattimore & Szepesvari, 2020, Lemma 19.4).

In the following, we present a corollary of Proposition E.1 that is more suitable for our applications.

2Liu et al. (2022b) only asserts a polynomial rate without spelling out the concrete powers of the problem
parameters. This rate is extracted from Liu et al. (2022b, Proposition C.5 & Lemma C.6).
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Corollary E.2. Suppose we have a sequence of functions { f, : R™ — R} ke[ K]

J
fr(z) = Ipef%j; <@, Yk, gl

which is given by the family of vectors {yk,jm}(k SrelK]x[J]xR © R™. Further assume that there
exists L > 0 such that fi(x) < L |z||;.

Consider further a sequence of vector (x;) ez, satisfying the following condition

Z i~qy fk Blﬁ Vk € [K],

and the subspace spanned by (x;);cz has dimension at most d. Then it holds that

k k
S 1A Eing, [felw)] < 4d<k + ) @) log (1 + hdL max HxiHl), vk € [K].
= t=1

We prove Proposition E.1 and Corollary E.2 in the following subsections.

Remark E.3. In the initial version of this paper, the statement of Corollary E.2 was slightly different
from above, which states that under the same precondition,

k k
S 1A By [fela)] < 4d(k: + ) @) log (1 + kdLka(X)),  Vke[K],

t=1 =
where matrix X := [z;],.; € R"*T and
ka(X) = min {|Fy|, |, : X = FiFy, Fy e R Fy e R*T L

After our initial version, we noted the concurrent work Liu et al. (2022b, Lemma G.3) which essen-
tially shows that 4(X) < dmax; |x;||; by an elegant argument using the Barycentric spanner. For
the sake of simplicity, we have applied their result (cf. Lemma E.5) to make Corollary E.2 slightly
more convenient to use.

We also note that, in the initial version of this paper, in the statement of Theorem 9, the sample
complexity involved a log factor ¢ := log(1 + KdAgRgky), where kg := maxy, £q(Dp,), which
we then tightly bounded for all concrete problem classes in terms of the corresponding problem
parameter. The above change makes the statement slightly cleaner (though the result slightly looser)
by always using the bound x4 < dU 4. The effect on the final result is however minor, as the sample
complexity of OMLE only depends on ~4 logarithmically through ¢, and the sample complexity of
MOPS or EXPLORATIVE E2D does not involve this factor.

E.1.1 PROOF OF PROPOSITION E.1

To prove this proposition, we first show that the proposition can be reduced to the case whenn =1,
extending the idea of the proof of (Liu et al., 2022a, Proposition 22). After that, we invoke a certain
variant of the elliptical potential lemma to derive the desired inequality.

We first transform and reduce the problem. For every pair of (k,i) € [K] x Z, we take r*(k, ) :=
arg max, . (T, Yk,j,r)|, and consider

Uk,ij i= Yk jrx(hi) V(K 3,5) € [K] x I x [n].
We then define
Uk = Eﬂk,m sigh (ki j, Tr,i) V(k,i) € [K] x T.
J
Under such a transformation, it holds that for all ¢, k, 4, ¢’,

|<$t,i, 27“>| = Z |<xt,iayt,j,r*(t,i)>| = mjlxz |<$t,i, yt,j,7->| = ft(xt,i)a
J J
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<@, Y, )| < maxz [<@t,is Yr,jr )|l = fr(t4), |9k.ill, < R

Therefore, it remains to bound Z{:1 M AE;~q, |{z¢,i, Ut.i )|, under the condition that for all k € [K],
Sici Bing, [maxy [(xy i, G, )] < B

To show this, we define ®; := ;g |2/, ], and take Ao = R;, Vi := Aol + >},_;, ®+. Then

wly

k k
D0 M A Big, Ko, o)l < 3 min { M, B [0,y 15,
t=1 t=1 )
k

S

t=1

1]}

k

Z\/M2+ﬂt mln{l,E%qt[Hx“ ]}
=

k )
<(kar?+ 33 8)" (3 min {1, Eig, Lot} )
t=1
where the second inequality is due to the fact that for all (¢, 7),

1525, = A0 [5eill® + D Bong, Kasir Gedl” < M* + By

s<t

—

=

Nk

t

Il
—

Note that
]Ei"’(h,l: —1] =E;q, [tr(V Tk lzgv‘/];%)] = tr(‘/ki%q)kvki%).

In order to bound the term Zt , min{1, tr(V,~ Y 2<I>kV Y 2)}, we invoke the following standard
lemma, which generalizes Lattimore & Szepesvari (2020 Lemma 19.4).

Lemma E.4 (Generalized elliptical potential lemma). Let {®j, € R4X } ke[K] be a sequence of
symmetric semi-positive definite matrix, and Vi, := Aol + Y, _, ®, where )\0 > 0 is a fixed real.
Then it holds that

i n {1, (v I ’)} < 2dlog (1 + W)

Applying Lemma E.4 and noticing tr(®;) = E;,, [Ha:m”g] < R2, the proof of Proposition E.1 is
completed. O

Proof of Lemma E.4. By definition and by linear algebra, we have
Vier = Vi (14 Py D)V,

and hence det(Vy41) = det(Vy)det(I + V,

i min{l,tr(Vk_%@ka_%)} < i 2log (1 +tr<Vk_%<I>ka_%))

k=1 k=1

[

_1
®,,V, ?). Therefore, we have

K _1 _1
<2 ) logdet (14 V; TV, )
k=1

K
Z [log det(Vi41) — log det(V%)]

det(VK+1)
—9]og N K+
& et (Vo)
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where the first inequality is due to the fact that min {1, u} < 2log(1 + u), Vu > 0, and the second
inequality is because for any positive semi-definite matrix X, it holds det(I + X) > 1 + tr(X).
Now, we have

d K
t tr(®
logdet(Vk 1) < log <Y(V§+1)) = dlog ()\0 T Zk=1dr(k)>’

which completes the proof of Lemma E.4. O

E.1.2 PROOF OF COROLLARY E.2

Let us take a decomposition z; = Fv;Vi € Z, such that |v;|,, < 1 and |F|,_; < max; |z;],

(s
(the existence of such a decomposition is guaranteed by Lemma E.5). We define fk :RY — R as
follows:

fr) = fu(Fv) = mTaxZ Kv7 FTyk’j,T>} )

By definition, fk(vl) = fr(x;), and hence our condition becomes

> Eiva|F200)| < B VEE[K],

t<k

Then applying Proposition E.1 gives for all k£ € [K],

ZM]EM,[ff )] ZMEM,[L(@Z)] < ( Zk] )log (1+kd' - RZR?),

where Ry < max; |v;, < +/d, and

d
R, = maXZHF yij‘|2 maXZHF y;mr ax Z |emF y;wr
m=1

7

d d
—maXZ Z [<Fem, Y, jr)| < Z k(Fem) < Z L{Fen|, <dL|F], < dLmax |z, .
m=1 m=1

j m=1

Therefore, we have
log (1 + kd=t- R%Rg) < log (1 + kd*L? max ||xl|ﬁ) < 2log(1 + kdL max |z;|;),

which completes the proof of Corollary E.2. O

The following lemma is an immediate consequence of Liu et al. (2022b, Lemma G.3).

Lemma E.5. Assume that a sequence of vectors {x;},.; < R" satisfies that span(z; : i € I)
has dimension at most d and R = max; |z||; < oo. Then, there exists a sequence of vectors

{vi},er = R and a matrix F € R"*4, such that v; = Fv; Vi € Z, and ||v;|,, < 1,|F|,_,, < R.

Proof. Without loss of generality, we assume that X = span(x; : ¢ € Z) has dimension at most
d. Then X is a d-dimensional compact subset of R”, and we take a Barycentric spanner of X’ to be

{wq,--- ,wgq}. By definition, for each i € Z, there exists weights (;;)1<;<q such that a;; € [—1,1]
and z; = Z;Llaijwj. Therefore, we can take v; = [ainsjsd eR¥and F = [wy,--- ,wq] €
R™*4, and they clearly fulfill the statement of Lemma E.5. O

E.2 DECOUPLING ARGUMENT

Proposition E.1 can be regarded a triangular-to-diagonal decorrelation result. In this section, we
present its expectation-to-expectation analog, which is central for bounding Explorative DEC.
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Proposition E.6 (Decoupling argument). Suppose we have vectors and functions
{xi}iel' C Rn, {fg R — R}GEG

where ©,T are arbitrary abstract index sets, with functions fg given by
J
fo(x) = %%%(Zl|<x,y9,j,’l‘>‘7 Vz € R",
i=

where {y&j,r}(o jreox[J]xR © R™ is a family of bounded vectors in R™. Then for any distribution
w over © and probability family {qs}y.e < A(Z),

E9~pEz~qe [f0 xz \/dXEO 0’~p, i~qgr [fG(sz) ]7

where dx is the dimension of the subspace of R™ spanned by (x;);cz.

Proof of Proposition E.6. By the assumption that {yg,jm}(a i) is a family of bounded vectors in

R, there exists R,, < o0 such that supy ,. i1 lYe,j.r| < R,. We follow the same two steps as the
proof of Proposition E.1.

First, we reduce the problem. We consider r*(0,7) = argmax,cx >3; [{%s,Yo,;,)|, and define the
vectors

ﬂe,i,j = Y0,5,r%(0,i)>
= 2 sign <=’Ci, g@,i,j> g@,i,j'
J
ThenforallieZ, 0 € O,
(i, Po,i) = Z [K{zi, Yo.i,5)| = Z |<i, Yo, jr 0.0y )| = fo(s),
J

(33)
(x4, Yo i )] < Z &5, Yorir )| = Z [ zisyor jorror,r) )] < for (@),
J

and |74, < X, |v6..r% (0.0) H2 < R,. Therefore, it suffices to bound Eg~, E; g, [|{z:, To.:)|]-

Next, we define @) := A + Eg  Eiq, [xlx ] with A > 0. Then we can bound the target as

|

) 2 N
< [EosBinas il | [EomuBine,

Eo~ iy (K1, 50,01 <EouBingy | I2il ot 170,

) ]1/2.

The first term can be rewritten as
EouEivy, [Hxiuﬁ,;l] —EoyEivy, [tr (@;1/2x 2TPT 1/2)]
—tr (@5 *Eo~uBing, [2i2] ] 01%)
—tr (@;1/2%@;1/2) < rank(®p) < dy.
The second term can be bounded as
=Eg < Eirvq, |Jor,ir 2
~Eor~Eir~qy {EomuBingy |Kais G )| + A1}

L R ([N ) - T

Eo~uEiay 0.5

<E9’~ME9~HE1'NQ9 [|f9/ (xz)\z] + )\Ri,

where the last inequality is due to (33). Letting A — 01 completes the proof of Proposition E.6. [
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F STRUCTURAL PROPERTIES OF B-STABLE PSRS

In this section, we present two important propositions that are used in the proofs of all the main
theorems (Theorem 9, 10, H.4, H.6). The first proposition bounds the performance difference of
two PSR models by B-errors. The second proposition bounds the squared B-errors by the Hellinger
distance of observation probabilities between two models.

F.1 PERFORMANCE DECOMPOSITION

We first present the performance decomposition proposition.

Proposition F.1 (Performance decomposition). Suppose that two PSR models 6,0 admit
{{BY (0n, a1)}h.on.an> 95} and {{BY(on,an)}n.op.an,q}} as B-representation respectively, and
suppose that {BY.,,} herr) and (B} he[H] are the associated B-operators respectively. Define

_ 1 _
E0 () =g max Y w(anlon) | Birsir (Bf(onsan) = B (on,an)) a”(mios)|

Oh,Qh

_ 1 _
£h0 =5 Hlf%:l (qg — q§>

Then it holds that

HH'

— H —
Doy (P5,P5) < &6o+ ), Eé,w[gg,h(Th—l)]7
h=1

where for h € [H], the expectation Eg . is taking over Tj,_1 under model 0 and policy .

Proof of Proposition F.1. By the definition of B-representation, we have P§(ry) = m(7h) X
BY,., (1z)q} for PSR model . Then for two different PSR models 6, §, we have

P§(ta) — P5(TH)
= 7(ra) % | Bl (ruon)al) — Bl (rm)a
= m(7r) * Bl (riar) (t§ — o))

H —

() %Y Blpr (mhsaen) (B (on, an) = B (0ns ) ) By (1)t
h=1

— (i) Bl (rar) () — )
H

+ Z T (Th.pr) ¥ B?{;h+1(7—h+1:H)(BZ(0h7ah) - BZ(Omah))qé(Th—O x PG (Th-1),
h=1

where the last equality is due to the definition of B-representation (see e.g. (15)). Therefore, we
have

1 7T Uy
5 215 (ra) = P ()
TH

< 3 Snlrm) % (Bl (ran) (o — )| + 5 3 S wlrn)

TH h=1

% [Bria (7h12a0) (B (ons an) = B (on an) ) (7n1) | x Py (1)
1 ; 1<
<3 HB%(:I (qg - qS) HH t3 D0 > P
h=1Tr—1

X max Z m(ap|on) HBIQLI:h+1(Th+1¢H) (BZ(oh, ap) — Bg(oh, ah)>qé(7'h—1>HH

Oh;Qh
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H
e B el
h=1
where the last inequality is due to the definition of Eg . and Sg’ w(Th=1). O

F.2 BOUNDING THE SQUARED B-ERRORS BY HELLINGER DISTANCE

In the following proposition, we show that under B-stability or weak B-stability, the squared B-
errors can be bounded by the Hellinger distance between Pgh"”‘p and ]P’;—rh'e"”. Here, for a policy
welland h € [H], Tp exp is defined as

Th,exp ‘= T 0p Unif(A) opq1 Unif (Ua py1), (34)

which is the policy that follows 7 for the first h — 1 steps, takes Unif (A) at step h, takes an action
sequence sampled from Unif (U4 j,+1) at step h+1, and behaves arbitrarily afterwards. This notation
is consistent with the exploration policy in the OMLE algorithm (Algorithm 1).

Proposition F.2 (Bounding squared B-errors by squared Hellinger distance). Suppose that the B-
representation of 0 is Ag-stable (cf. Definition 4) or weakly Ag-stable (cf. Definition D.4), then we
have for h € [H — 1]
By x| €0, (rio1)?] < 4NBAUL [D (B Bo0) 4+ Df (B )]

and

By € 1 (rn1)?] < 2(Ap + 1) D} (P51 =),

N2
(€f0)" < ABUADR (o= 7o),

where égh(rh_l) and é'g’o are as defined in Proposition F.1.

Proof of Proposition F.2. We first deal with the case h € [H

268 (1) = max 3. w(7ueir) X (Bl (i) (B

Th:H

. By taking the difference, we have

(on» an) — BY (on, ah)) qg(Th—l)‘

> —

< max Z T(Th.E) X )B%:h(ThiH) (qe(Thfl) - qe(Th*I)N

Th:H

e 3 w(mem) % (Bl (i) (B (on an)’(7i) = B (o, ar)a’ () )|

(L),

)B%:}H—l (BZ(O}H ah>q0 (Th—l) - BZ(O}H ah)qe (Th—l)) HH

+ max Z mr(ap|on)
Th

Oh,Qh

We now introduce several notations for the convenience of the proof.

1. For an action sequence a of length [(a), P(+|7,—1,do(a)) stands for the distribution of 0y, (a)
conditional on 7, and taking action a for step h to step h + [(a) — 1.

2. Given a set <7 of action sequences (possibly of different length), PUif(</) (-|Th—1) stands for the
distribution of observation generated by: conditional on 7,1, first sample a a ~ Unif({/4 1), then
take a and then observe o (of length [(a) + 1).

By the definition of Hellinger distances and by the notations above, we have

nif (. nif (. 1

D (B (), By Cmn)) = 7 3 D (B, do(a), B (-, do(a))
aeo/

(35)

Next, we present two lemmas whose proof will be deferred after the proof of the proposition.
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Lemma F.3. Suppose that B is weakly Ag-stable (Ag-stable is a sufficient condition), then it holds
that

HB%:h (qg(Th—l) - qé(Th—l)) HH < 2Agy/|[Uan|Du (PUmf(uA (. \Th—l),Pgnif(uA’h)('\Th—l)) :

Lemma F.4. Suppose that B is weakly Ag-stable (Ag-stable is a sufficient condition), then it holds
that

max Y mu(anlon) | B (B (0n: an)a’ (m—1) = Blon, an)a’ (1) )|

 on,anp

UmonUmfZ/l 3 Unif(A)oUnif(Ua
< 2Mg /A|uAh+1|DH< (A) (A}+1)(|7_h_1)7 ; (A) (A,}+1)(.|7_h_1))'

Therefore, we first consider the case h € [H — 1]. Applying Lemma F.3 and taking expectation with
respect to 7,_1, we obtain

Eg . [ ‘B?I;h (qe(Th—l) - qé(Th—l)) Hi]

Unif (U Unif(Ua pn
< 403 U By | D (B0 () B (o)) | 36)
|uA h| DH ( wohUnlf(MA h),PgohUnif(uA'h))

<8A A|uAh|DH( PR Liexp ]P)ﬂ'h 1cxp)7

where the second inequality is due to Lemma C.1, and the last inequality is due to importance
sampling. Similarly, applying Lemma F.4 and taking expectation with respect to 75,1, we have

2
Eg (H}%X > mnlanlon) ‘Bﬁmm(BZ(Oh’ah)qo(Th—l)BZ(Ohvah)qe(Th—1)>HH>

Oh,Gh
<8A A |Z/{A h+1| ‘DH
_8A A |Z/{A h+1| DH ( P hexe P?Th exp) .

< wohUmf(.A)oUmf(L{A n) IED7rohUn1f(.A)oUn1f(l/1A h))

The proof for h € [H —1] is completed by noting that (z+y)? < 222 +2y? and U4 = maxy, |[Ua |-
For the case h = H, note that by Corollary D.2,

max > w(anlon) ‘(B%{(OH;GH)QH(TH—l)_B%(OHyaH)qé(TH—l))‘

OH,AH

= [Po(on|rr—1) — Pglon|rr—1)| < 2Du (Po(-lra—1), P(-lra—1)),

on

and by Lemma F.3 it holds that
HB?LI:H<q9(TH—1) - qé(TH—l)) HH
<2Ag/[Ua,n|Du (PUmf(uA (. |TH—1)7Pgnif(uA’H)(’|TH—1)>
=2AsDu (Po(-|7a-1), Ps(-[7H-1)) ,

where the equality is due to /4, 7 only containing the null action sequence. Therefore,
€5 1 (Ti-1) < (Ag + 1)Dyy (B P71 o)

and applying Lemma C.1 completes the proof of the case h = H.

The case h = 0 is directly implied by Lemma F.3:

HBH 1 (% QO) H <4AB |UA 1] DH (PmlUmf(uA 1),PgolUnif(uA’l))

_4AB |Z/lA 1| DH ( 71'0 exp ]P)Tro exp) .

Combining all these cases finishes the proof of Proposition F.2. [
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We next prove Lemma F.3 and F.4 that were used in the proof of Proposition F.2.

Proof of Lemma F.3. By the weak B-stability as in Definition D.4 (B-stability is also sufficient, see
Eq. (19)), we have

12

HB%:h(qe(Thq) - qé(Th—l)) HQH <2A%(Hq0(7h71)ﬂn + Hqg(Thfl)HH> H\/q‘)(ml) — \/qé(Th,l)

b

where || is defined in Definition D.3. By the definition of g’ (7,_1), for ¢, = (0,a) € Uj,, we
have

q’(th-1)(0,a) = Py(tn|mh—1) = Po(0n:n+i(a)—1 = O|Th—1,do(a)).
Hence, we have

qu(Th—l)HH :791315( m;f;mx Z m(0,a) x PG(Oh:hH(a)fl = 0o|Tp—1,do(a))
" (o,a)eUy,

L deal
= max max P53 (1" |7 <
T'cU, 9( | h 1) < 5L

where PZ (T"|75,—1) stands for the probability that some test in 7" is observed under 6, 7 conditional

on 7,_1. Similarly, we have Hqé(Th_l)H < 1. Therefore, we have
I

138 [Ba ()~ )] < [~ el r) 2

=YY W - VBl dot@)|

aella,n o:(0,a)EUy,

LY % [ VRl dofa))|

acl s n ocOl(a)+1

DS D2 (Py(-rn1, do(@)), Ps(-|7n1, do(a)))

aEMA,h

1% nif nif
(:)|UA,h|D12{ (Pg (Z/{A,h)(.|7_h_1)7 g (MA,h)(_|Th_1)>,

where in (i) we include those o such that (0, a) may not belong to U/}, 11 into summation, (ii) is due to
the definition of P(-|7,_1, do(a)), and (iii) follows from importance sampling (35). This completes
the proof of Lemma F.3. O

Proof of Lemma F4. Similar to the proof of Lemma F.3, we only need to work under the weak
B-stability condition. By Corollary D.2, for t;,+1 = (0,a) € Uy 1, it holds that

[B) (0,a)q’ (h-1)](0,a) = P (ths1|mh—1,0,a) x Py(o|th—1) = Py(0, a, ths1|mh1),
and hence

HBZ(O, a)q‘g(Th,l)HH = max max m(tht1) X Po(tht1|mh-1,0,a) x Py(o|Th—1)
T'cUpy1 ™ thirel”

= max maxPj(T"|th_1,0,a) x Py(o|th_1) < Pg(o|Th_1),
T'CZ/I}H,l T

where Pj (T"|1,—1, 0, a) stands for the probability that some test in 7" is observed under 6, 7 con-
ditional on observing 7, = (7,—1, 0,a). Similarly, we have HBZ(O, a)qé(m_ﬁHH < Pg(o|h-1).

Therefore, by the weak B-stability as in Definition D.4 and combining with the inequalities above,
it holds that

Bl (B (0,00’ (ri-1) = Bl (0, )’ (71-1)) |

< AB\/Q[Pg + Pg|(op, = o|Th—1) - [ Z ‘[\/ET— \/HTg](o,a,t\Th_l)

telp 41

‘2]1/2.
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Hence, we have

Agl max Z mr(ap|op)
Th

Oh,Qh

‘B%;h+1 (BZ(O}H ah)qe (Th—l) - BZ(O}H ah)qa (Th—l)) HH

< max ) 7m(alo)y/2[Py + Pg](on = ofmi-1) ) ‘[\/IPT— \/IITg] (o,a,tlThﬂ)‘?T/z

0,a T telp 41

2 Y Vol + Byl(on = o[ Y |[VEe—vBs |G, a,t|7‘h_1)‘2]1/2

a teldy 41
(2) 2[2 Z ’[\/I[T - \/ET@] (Ovaat|7—h71) 2]1/2

0,a telp 41

—oS Y |V - VBl = (0.0)mor.do(aa) |

0,a (0,a)eUp+1

Lo Y D[WE - VBl onmsiwe = (.0)mor.dofa,a)| |

(a,a)E.AXMAYh_Fl 0,0

(i) ni oUni ni oUni
Yo /a Unnia| D (Pg £(A)oU f(uA,hH)(_‘Th_l),Pg f(A)oU f(MA,h+l)(_|Th_1)),

where (i) is due to the fact that max e (4) Ypes T(@)z(a) < (3, (a)?) 1/2, (ii) is due to Cauchy-
Schwarz inequality, in (iii) we include those o such that (o, a) may not belong to U}, into sum-
mation, (iv) is due to (35): Unif(.A) o Unif (U4 j,+1) is simply the uniform policy over A x Uy p+1.
This concludes the proof of Lemma F.4. O

G PROOF OF THEOREM 9

We first restate Theorem 9 as follows in terms of the (more relaxed) weak B-stability condition.

Theorem G.1 (Restatement of Theorem 9). Suppose every 6 € © is Ag-stable (Definition 4) or
weakly Ag-stable (Definition D.4), and the true model 6* € © with rank dpsg < d. Then, choosing
B = Clog(Ne(1/KH))/) for some absolute constant C' > 0, with probability at least 1 — ¢, Al-
gorithm 1 outputs a policy Touy € A(IT) such that V, — Vs (Tout) < &, as long as the number of
episodes

T-KH> o(dAUAAgHQ log(Ne (1/T) /5)L/e2), 37)

where 1 := log (1 + KdU 4Ag Rg) with Rg := maxp{1, max,| =12, , |[Bn(o,a)v],}.

The proof of Theorem G.1 uses the following fast rate guarantee for the OMLE algorithm, which is
standard (e.g. Van de Geer (2000); Agarwal et al. (2020)). For completeness, we present its proof in
Appendix G.1.

Proposition G.2 (Guarantee of MLE). Suppose that we choose 3 = 21og No(1/T) +21og(1/5)+2
in Algorithm 1. Then with probability at least 1 — 6, the following holds:

(a) Forallk e [K], 6* € ©F;

(b) Forall k € [K] and any 0 € ©F, it holds that
k—1H-1 . .
515 o (g5t ) <2
t=1 h=0

We next prove Theorem G.1. We adopt the definitions of Sg_ n(Th—1) as in Proposition F.1 and
abbreviate & |, = 53,: n- We also condition on the success of the event in Proposition G.2.
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Step 1. By Proposition G.2, it holds that §* € ©. Therefore, Vs (wk) > V,, and by Proposition F.1,

we have i
2, (Ve = Vo () <

t=1

Mw

k
(Vor (") — Vor (m Z TV (Pet,Pe,)
1A ( +2E & (T 1)]) (38)
(1/\6}0—&- Z 1AEq [S,:h(Thl)]>.

-+
Il
—

Mw

-
Il
—

M?v

t=1 h=1
On the other hand, by Proposition F.2, we have
H H-1
(E0)* + D) Ene[E8 n(no1)?] < 12A3AUA Y, D (Ppio®, Pyle) .
h=1 h=0

Furthermore, by Proposition G.2 we have

2 2 (PQ&W,PQ?"W) <28

Therefore, defining S n := Y, Ext [Ef },(7h—1)?], combining the two equations above gives

Z B = Z D B[ € (Th1)?] < 24A3AUAB, Vk € [K]. (39)

h=0t<k

Step 2. We would like to bridge the performance decomposition (38) and the squared B-errors
bound (39) using the generalized /5-Eluder argument. We consider separately the case for h = 0
and h € [H].

Case 1: h = 0. This case follows directly from Cauchy-Schwarz inequality:
1/2
21A5;0 (kElA 70)°) " < \/B(Bro + ). (40)

Case 2: h € [H]. We invoke the generalized /5-Eluder argument (actually, its corollary) as in
Appendix E.1, restated as follows for convenience.

Corollary E.2. Suppose we have a sequence of functions { f : R™ — R}crx7:

J
ful) i= max 2, Koyl

which is given by the family of vectors {yk,j,r}(k JrelK]x[J]xR © R"™. Further assume that there
exists L > 0 such that fi(x) < L |z||;.

Consider further a sequence of vector (x;)iez, satisfying the following condition

N Eicg [f2()] < Br. VEe[K],

and the subspace spanned by (x;);ez has dimension at most d. Then it holds that

k k
SN 1A B, [file)] < 4d(k +Y @) log (1 + kdL max Hxi\|1>7 vk € [K].

t=1 t=1

We have the following three preparation steps to apply Corollary E.2.
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1. Recall the definition of St* 1 (Th—1) as in Proposition F.1 (in short 5,:7 n(Tho1) i= g,: w(Th=1))s
5k n(Th—1) 5 maX Z (Th:r) % |B’§1:h+1(7'h+1:H) (BZ(Oh’ah) - BZ(Oh’ah)) q*(7h71)|7
Th:H

where we replace superscript % of B by k for simplicity. Let us define

1 . P T
yk,jﬂ" = EW(TZ:H) X [Bllf-l:h-Fl(TfJLJrl:H) (Bk (Oh?a’h) Bh(ohaai))] € Rvj{ht

where {Tg:H = (op,ap,- ,OH,CLH)};L=1 is an ordering of all possible 7.5 (and hence n =
(OA)H=h+1) 7 is any policy that starts at step . We then define
fr(x) = mj}XZ [k g @), weRY
J

It follows from definition that 5,;h(7h_1) = fr(q*(Th-1)).

2. We define z; = q*(1i_,) € R“| where {rj ,}, is an ordering of all possible 7,1 € (O x
A)"~1. Then by the assumption that #* has PSR rank less than or equal to d, we have dim span(z; :
i € T) < d. Furthermore, we have ||z;|; < Ux by definition.

3. It remains to verify that fj is Lipschitz with respect to 1-norm. We only need to verify it under
the weak Ag-stability condition. We have

1 .
fu(@) < 5| |Birnaly +max Y w(alo) [Bl.p41Bj (0. a)al,

0,a
< 2Ag lal; + 27 max ) | 7(alo) B} (0, a)al;
< 2Ag [al, + 288 ), |Bj (0,0, lal, < 2As(Rs +1)[al, ,

0,a

where the first inequality follows the same argument as (35); the second inequality is due to B-
stability (or weak B-stability and (21)); the last inequality is due to the definition of B. Hence we
can take L = 2Ag(Rg + 1) to ensure that fi(z) < L |z],.

Therefore, applying Corollary E.2 yields

k k
Z En(mna1)] < 4L<kd+d2,ﬁt,h>, (41)

t=1

where ¢ = log (1 + 2kdU s Ag(Rg + 1)). This completes case 2.

Combining these two cases, we obtain

k Nk H k
S (Vi = Ve () < 2 NEGH D) (Z 1 AEwt[ggh(Th,l)])
t=1 t=1 h=1 t=1

b0+ 1)+ 20 Z(kd+d26th) v

k H
< (4HL+1)~<k(Hd+1)+d2 Z )

@o (4 [AZdAULH - km) .

where (i) used (38); (ii) used the above two cases (40) and (41); (iii) used (39). As a consequence,
whenever k > O(A3dAULH - Bi/e?), we have L S| (V, — Vge (%)) < e. This completes the
proof of Theorem G.1 (and hence Theorem 9). ]
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G.1 PROOF OF PROPOSITION G.2

For the simplicity of presentation, we consider the following general interaction process: For ¢ =

1,---,T, the learner determines a 7%, then executes 7% and collects a trajectory 7% ~ ng (+). We
show that, with probability at least 1 — 4, the following holds for all ¢ € [T'] and 6 € ©:

Z D ( ) < L(0%) — L£4(0) + 2log No(1/T) + 2log(1/8) + 2, 42)

where L; is the total log-likelihood (at step t) defined as

)= ) logPg (7).

Proposition G.2 is implied by (42) directly: Suppose we choose 3 > 2log Ng (1/T)+2log(1/5)+2.
On the event (42), by the non-negativity of squared Hellinger distances, we have for all k¥ € [ K] and

6 € O that
Z log Ph. (1) = Z logPg (1) — 8,
(m,7)eDk (m,7)EDk

where DF is the dataset of all histories before the outer loop of Algorithm 1 enters step k. Taking max
over 6 € O on the right-hand side, we obtain 6* € ©%, which gives Proposition G.2(1). Furthermore,
for k € [K] and § € ©F, (42) implies that

k

—1H-1 + ¢
DI2-I <]P;;rh,exp7 ]P);riz,exp) < Z log ]P)'ﬂ'* (7—) _ Z log Pg (T) + ﬂ

t=1 h=0 (m,7)EDk (m,7)EDk
< max Z log P7 (1) — Z logPy (1) + B8 < 28,
O (x,r)eDF (,7)eD*

which gives Proposition G.2(2).

In the following, we establish (42). Let us fix a l/T -optimistic covering (P, ©) of ©, such that

= 0| = No(1/T). We label (Py,)g,co, by P1,---,P,. By the definition of optimistic
covering, it is clear that for any 0 € ©, there exists ¢ € [n] such that for all 7, 7, it holds that

IF’?(T) > P7 () and Hﬁ’f() PZ(-)|1 < 1/T?. We say 0 is covered by this i € [n].

Then, we consider

7t (=t
Ef:loglf?:(T), te[T], ie[n].
P (7)

By Lemma C.3, the following holds with probability at least 1 — ¢: for all t € [T], i € [n],

1 = 1,
5 g ° + log(n/d) = Z —E, [exp (261)],

s=1

where E; denotes the conditional expectation over all randomness after 7° has been determined. By
definition,

1 BT (7) PT (1) I
E )| =k i R, L = NP ()BT
t[exp< 2 1,):| t ]P’gf (7—_,:) Pg* (7_) E ] (T) i (7')
Therefore, for any 6 € O that is covered by i € [n], we have
1
—logE, [exp (—2@) ] Z P (T BT (1)
—1- 2 B3 (1)B5 (1) — Y10/ Pp () <\/1F>;Tr‘ (r) - A/ B5' (T)>
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Algorithm 2 EXPLORATIVE E2D (Chen et al., 2022)

Input: Model class ©, parameters v > 0, 7 € (0,1/2). An 1/T-optimistic cover (P, ©).
1: Initialize ' = Unif(©y).
2: fort=1,...,Tdo
3: Set (Phxps Pous) = argming, o nqryz VI (Pexps Pout), Where VI is defined by

~ ¢
vy (Pexps Pout) 1= 2‘11@) Ernpou [Vo(m) = Vo(m)] — YEr~pey Eor oyt [DI2{ (P5, gt)]~
€

4: Sample 7* ~ p! . Execute 7" and observe 7°.
5 Compute pt*1 e A(6g) by

HLO) oo i (0) - exp (nlog B (7).

Output: Policy Tout := & 31|l

1/2
>3k (B = ). Bl (r =) - <Z VB0 - R o) )
> 203 (B (r = ) B =) - [0 - B 0
1 1

—t —t
>2Df (B (r = ). P (r =) — 7
where the first inequality is due to — log x > 1 — x; in the second inequality we use the definition of
Hellinger distance and Cauchy inequality; the third inequality is because (v/z — \/y)? < |z — y| for
all z,y € R>¢; the last inequality is due to our assumption that 6 is covered by 7. Notice that every
0 € © is covered by some ¢ € [n], and for such i, Zi;ll 03 < L4(0*%) — L4(0); therefore, it holds
with probability 1 — ¢ that, forall § € ©, t € [T]],

(E0) — L) +log(nfs) + > 5 3, D (B

Plugging in n = Ng(1/T) and scaling the above inequality by 2 gives (42). O

H EXPLORATIVE E2D, ALL-POLICY MODEL-ESTIMATION E2D, AND
MOPS

In this section, we present the detailed algorithms of EXPLORATIVE E2D, ALL-POLICY MODEL-
ESTIMATION E2D, and MOPS introduced in Section 4. We also state the theorems for their sample
complexity bounds of learning e-optimal policy of B-stable PSRs.

H.1 EXPLORATIVE E2D ALGORITHM

In this section, we provide more details about the EXPLORATIVE E2D algorithm as discussed in
Section 4.2. The full algorithm of EXPLORATIVE E2D is given in Algorithm 2, equivalent to Chen
et al. (2022, Algorithm 2) in the known reward setting (D%{L becomes qu since we assumed that the
reward is deterministic and known, so that the contribution from reward distance in DIQ{L becomes 0).
Chen et al. (2022, Theorem F.1) showed that EXPLORATIVE E2D achieves the following estimation
bound.

Theorem H.1 (Chen et al. (2022), Theorem F.1). Given an 1/T-optimistic cover (IF’, Q) (c.f. Defi-
nition C.4) of the model class ©, Algorithm 2 with ) = 1/3 achieves the following with probability
at least 1 — §:

~ — 10
Vi = Vo (Tour) < edecy(©) + T’Y[log |O0| + 21og(1/5) + 3],

where edec, is the Explorative DEC as defined in Section 4.2.
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Algorithm 3 ALL-POLICY MODEL-ESTIMATION E2D(Chen et al., 2022)

1: Input: Model class ©, parameters v > 0, i € (0, 1/2]. An 1/T-optimistic cover (P, ©y).
2: Initialize ' = Unif(6y).
3: fort=1,...,Tdo

. ~ ot
4: Set (péxw .uf)ut) =argmin, o oo.)eA(IN) x A(O) Vrﬁe,fy (pexrn Hout ), Where

~ ¢ o
Vrﬁe,ry (pexpn Mout) = 2118 Sug EH_NMOL‘L [DTV ( 57 ]Pg)] - VE’ﬂ'~p6XpE§t ~pt [DIZ{ ( 791'7 Pgt)]
€O we

5 Sample 7* ~ pl . Execute 7" and observe 7°.
Compute p!*1 € A(©g) by

H () oo 1 (0) - exp (nlog B (7).

~

_ T
: Complnef‘out = % Zt:l p’éut € A(G)
: Output: § = arg mingeg sup, ey Bgzp [Drv (PF,P5)].

o]

As we can see from the theorem above, as long as we can bound edec, (0), we can get a sample
complexity bound for the EXPLORATIVE E2D algorithm. This gives Theorem 10 in the main text,
which we restate as below.

Theorem H.2 (Restatement of Theorem 10). Suppose © is a PSR class with the same core test sets

{Un}he[ ), and each 0 € © admits a B-representation that is Ag-stable (c.f. Definition 4) or weakly
Ag-stable (c.f. Definition D.4), and has PSR rank dpsg < d. Then

edec, (0) < 9dAUAAEH?/y.

Therefore, we can choose a suitable parameter v and an 1/T-optimistic cover (IT”, ©y), such that with
probability at least 1 — 9, Algorithm 2 outputs a policy Tout € A(IL) such that Vi, — Ve (Tout) < &,
as long as the number of episodes

T > O(dAUAAZH? log(No(1/T)/5)/?).
The proof of Theorem H.2 and hence Theorem 10 is contained in Appendix I.2.

H.2 ALL-PoLICY MODEL-ESTIMATION E2D FOR MODEL-ESTIMATION

In this section, we provide more details about model-estimation learning in PSRs as discussed in
Section 4.2. In reward-free RL (Jin et al., 2020b), the goal is to optimally explore the environment
without observing reward information, so that after the exploration phase, a near-optimal policy of
any given reward can be computed using the collected trajectory data alone without further interact-
ing with the environment.

Chen et al. (2022) developed ALL-POLICY MODEL-ESTIMATION E2D as a unified algorithm for
reward-free/model-estimation learning in RL, and showed that its sample complexity scales with a
complexity measure named All-policy Model-Estimation DEC (AMDEC). The AMDEC is defined

as amdec, (©) := supjep o) amdec, (O, f1), where

amdec (0, i) := inf
1(6:7) PexpEA(I), tout €A(IT) 9O 7ell
(43)

The ALL-POLICY MODEL-ESTIMATION E2D algorithm (Algorithm 3) for a PSR class © is given
as follows: In each episode ¢ € [T'], we maintain a distribution u* € A(Og) over an 1/T-optimistic
cover (P, ©) of © (c.f. Definition C.4), which we use to compute an exploration policy distribution
péxp by minimizing the following risk:

supsupEy_, . [Drv (PF,P5)] = 1Erwp.By_s| Di (P5.77) .

(bl o) = argmin  supsupBy_,  [Drv (P, P5)] — 1Eavp, B | Df (P57, ) .

(Pexpstout)EA(IT) x A(O) 0O 7ell
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Then, we execute policy * ~ pexp, collect trajectory 7¢, and update the model distribution using
the same Tempered Aggregation scheme as in EXPLORATIVE E2D. After T episodes, we output the

emipirical model § by computing 7i Pout = T Zt 1 B € A(©) and then projecting it into ©, i.e.

0 = arg minsup B t[DTV( 5:P5)]-
0e©  mell

Chen et al. (2022, Theorem H.2) show that the output model  of ALL-POLICY MODEL-
ESTIMATION E2D has an estimation error (measured in terms of the TV distance) that scales as
amdec,.

Theorem H.3. Given an 1/T-optimistic cover (ﬁ’, Oyg) (c.f. Definition C.4) of the class of transition
dynamics ©, Algorithm 3 with ) = 1/2 achieves the following with probability at least 1 — §:

—_— 60
sup Drv (Pg,mﬁ) < 6amdec, (0) + Tfy[log |©0] + 21og(1/6) + 3],

where amdec, is the All-policy Model-Estimation DEC as defined in (43).

We provide a sharp bound on the AMEDEC for B-stable PSRs, which implies that ALL-POLICY
MODEL-ESTIMATION E2D can also learn them sample-efficient efficiently in a model-estimation
manner.

Theorem H.4. Suppose © is a PSR class with the same core test sets {Up } pe[ 1], and each 6 € © ad-
mits a B-representation that is Ag-stable (c.f. Definition 4) or weakly Ag-stable (c.f. Definition D.4),
and has PSR rank dpsg < d. Then

amdec,(©) < 6dAUsAZH? /. (44)

Therefore, we can choose a suitable parameter v and an 1/T-optimistic cover (]ﬁ’, Oy), such that with
probability at least 1 — §, Algorithm 3 outputs a model 0 € © such that sup, Dtv (]P’g, ]P’g*) < g,

as long as the number of episodes

T > O(dAUAAEH? log(No(1/T)/5)/?).
The proof of Theorem H.4 is contained in Appendix I.3.

H.3 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (MOPS)

In this section, we provide more details about the MOPS algorithm as discussed in Section 4.3.

We consider the following version of the MOPS algorithm of Agarwal & Zhang (2022); Chen et al.
(2022). Similar to EXPLORATIVE E2D, MOPS also maintains a posterior u* € A(©g) over an 1/T
optimistic cover (]IND, ©y), initialized at a suitable prior x*. The exploration policy in the ¢-th episode
is obtained by posterior sampling: 7* = gt ope Unif(A) opeyq Unif(Ua pey1), where 68 ~ pt
and h* ~ Unif ({0,1,..., H — 1}). After executing 7' and observing 7¢, the algorithm updates the
posterior as

”M”

p ) o pt( eXp( v~ Wa(me) + nlog By (7 )))-

Finally, the algorithm output 7oy = 7 Zthl Pous (1), Where pous (u?) € A(II) is defined as
Dout () () = p({0 : mg = 7}), VeIl (45)

We further consider the following Explorative PSC (EPSC), which is a modification of the PSC
proposed in Chen et al. (2022, Definition 4):

sc?ft((%, 0) = sup Eo~p [Vg(ﬂ'g) — Vi(mg) — VErnp [DH (]P’“C"p IP’WCXP)]], (46)
HEAQ(O)
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Algorithm 4 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (Agarwal & Zhang, 2022)

Input: Parameters v > 0, 7 € (0,1/2). An 1/T-optimistic cover (P, ©)
Initialize: ;! = Unif(©,)
fort=1,...,T do
Sample ' ~ u' and h* ~ Unif({0,1,--- , H — 1}).
Set w* = mye ope Unif(A) ope 1 Unif(Ua p41), execute w° and observe 7°.
Compute pttt e A(6Oq) by

EANSARE I e

t
pr () ocp pt( eXp(Z ~Wa(mo) +nlog By (r é))>-

Output: Policy out 1= & D/ | Pout (11"), Where poye (-) is defined in (45).

where Ay (©) is the set of all finitely supported distributions on ©, ey, is defined as

Texp = qH Zh o™ Oop, Ul’llf(A) Oh+1 Unif(Z/[A’h+1),
and we abbreviate T ~ pout (@) to T ~ .
Adapting the proof for the MOPS algorithm in Chen et al. (2022, Corollary D.3 & Theorem D.1) to

the explorative version, we can show that the output policy 7ot of MOPS has a sub-optimality gap
that scales as psc®st.

Theorem H.5. Given an 1/T-optimistic cover (Iﬁ’, ©yo) (c.f- Definition C.4) of the class of PSR
models ©, Algorithm 4 with n = 1/6 and v = 1 achieves the following with probability at least
1—4:

. . o 2
Ve = Vi (Rows) < pocTo(©,67) + = + [log o] + 210g(1/6) + 5],

where psc%St is the Explorative PSC as defined in (46).
We provide a sharp bound on the EPSC for B-stable PSRs, which implies that MOPS can also learn
them sample-efficient efficiently.

Theorem H.6. Suppose © is a PSR class with the same core test sets {Up } ne[ 1], and each 6 € © ad-
mits a B-representation that is Ag-stable (c.f. Definition 4) or weakly Ag-stable (c.f. Definition D.4),
and the ground truth model 6* has PSR rank at most d. Then

pscS™ (0, 0) < 6ARdAUAH? /.
Therefore, we can choose a suitable parameter v and an 1/T-optimistic cover (]T”7 ©y), such that with

probability at least 1 — 9, Algorithm 4 outputs a policy Tout € A(IL) such that Vi, — Vs (Tout) < &,
as long as the number of episodes

T > O(dAUsAEH? log(Ne(1/T)/5)/?).

The proof of Theorem H.6 is contained in Appendix 1.2. We remark here that EPSC provides an
upper bound of EDEC (c.f. Eq. (55)), So Theorem H.2 (and hence Theorem 10) directly follows
from Theorem H.6.

I PROOFS FOR APPENDIX H

For the clarity of discussion, we introduce the following notation in this section: for policy m, we
denote ¢y, to be a policy modification such that

op o = mop, Unif(A) op41 Unif (Ua py1).

Again, here ¢, © 7 means that we follow 7 for the first h — 1 steps, takes Unif(.A) at step h, takes
an action sequence sampled from Unif (U4 j,+1) at step h + 1, and behaves arbitrarily afterwards.
Such definition agrees with (47). We further define the ¢ policy modification as

pomw = % ZhH=_01 opoT = % hH 01 7 op, Unif(A) op4q Unif(Ua p11)- 47)
We call ¢ ¢ 7 the exploration policy of 7.
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I.1 PROOF OF THEOREM H.6

To prove Theorem H.6, due to Theorem H.5, we only need to bound the coefficients psc%“(@, 0*).
By its definition, we have

psc(0.6%) = sup Egy[Vo(mo) = Vir (o) — 1Ery [ D (BT PET)]]
HEAQ

< sup ]E9~u [DTV (Pge ) ]P)gf)] - ’YEHNMETFNM [DI2-I (Pgoﬂv ngﬂ')]
HEAQ(O)

(48)

We then invoke the following error decorrelation result, which follows from the decoupling argument
in Appendix E.2 and Proposition F.1.

Proposition I.1 (Error decorrelation). Under the condition of Theorem H.2 (the same condition as
Theorem H.6), for any u € Ao(O) and any reference model 0 € ©, we have

By Drv (P, P3)] < /2403 dg AU H2 - Eg g [ D} (P57 B,
where dj is the PSR rank of 0, @ o 7 defined in (47) is the exploration policy of .

Combining Proposition 1.1 with (48) immediately gives the desired upper bound of pscf‘ft(@, 6*),
and thus completes the proof of Theorem H.6. [

We next turn to prove the Proposition 1.1 above. We consider the following generalized version of
Proposition I.1.

Proposition 1.2 (Generalized error decorrelation). Under the condition of Theorem H.4, for any
0 e Ove Ay(O x II), we have

E(omy~s[Drv (PF,5)] < /240305 AUAH? - Egy Er o [D} (P57, PE°7)],

where @ o  defined in (47) is the exploration policy of .

Proof of Proposition 1.2. In the following, we fix a § € © and abbreviate £ = £ 8, q= qé. Then, by
Proposition F.1, we have

H
E.m~u|Drv (P5,P5)] <E(g,7)~p lgao + Z Eg . Ee,h(ml)]l

A (49)
=Eou[€0,0] + 2 E9,m)~uBg x[E0.n(Th=1)].
h=1
Note that for the term Eg., [?9,0] , we have
EQ,\,M [?9,0] < EG”M [E;O:I . (50)

We next consider the case for h € [H], and upper bound the corresponding terms in the right-
hand-side of (49) using the decoupling argument introduced in Appendix E.2, restated as follows
for convenience.

Proposition E.6 (Decoupling argument). Suppose we have vectors and functions
{zitiez = R",  {fo:R" > R}yq

where ©,T are arbitrary abstract index sets, with functions fy given by
J
fo(z) := %%%(Z;Kx’y@,j,TN ) Vz € R",
i=

where {yg’j,r}(e jreox[J]xR © R™ is a family of bounded vectors in R™. Then for any distribution
p over © and probability family {qs}y.c < A(Z),

Eo~yEivas [fo(@)] < 3/ dxEo.0~uEin, [fo(w:)?],

where dx is the dimension of the subspace of R™ spanned by (x;);e1.
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We have the following three preparation steps to apply Proposition E.6:

1. Recall that € = £° is defined in Proposition F.1. Let us define

1 : ) o S T
Yoin = 37(Thr) % | Bl (Tyrn) (B0 al) = Bl(o) a})) | e R,

where {TZ:H = (o{l, ai, e ,0%, ail)}?il is an ordering of all possible 7;,.5 (and hence n, =
(OA)H=h+1) 7 is any policy (that starts at step h). We then define
folx) = max; 3 [Cyo jmr2)|, @€ RIUHL

Then it follows from definition (c.f. Proposition F.1) that g 1, (Th—1) = fo(qQ(Th-1)).

2. We define z; = q*(1/_,) € Rl fori e T = (O x A)"~' where {7}, };cz is an ordering of all
possible 7,1 € (O x A)"~L. Then by our definition of PSR rank (c.f. Definition 3), the subspace
of RI“»| spanned by {x;};cz has dimension less than or equal to dj.

3. We take gy € A(Z) as
a0(1) =Erepioy[P5(Tho1 = 71_1)], i€ =(0x A" (51)

Therefore, applying Proposition E.6 to function family {fy}¢co, vector family {x;};cz, and distri-
bution family {gs}gco gives *!

E(G,Tr)~u [Eé,‘n- [geA,h(Th*l)]] = E9~HE1'~% [f@(ﬁl)]

<\/d§Ea,9'~uEi~q3/ [fo(x:)?] = \/d0E9~uEW~u I:]Eé,rr [?Z,m_l)]].

(52)

Combining Eq. (50), (52), and (49) yields

H
E(o,m)~u[D1v (P, P5) ] <E(o.m~ul€0,0] + D E(o,m)~nEox[Eo,n(mh-1)]
h—1

< /Egp [Ez,o] + i \/dg Eg r~p [Eé,n[gz,h(ﬂl—l)“
h=1

< 08 (Boa[Eia] ¢ 3B [Bac[Frat)] )

h=1

H-1
< (Hd§ + 1) (EG,W~M l Z 12A%AUA . D%I (PgILOW)PE}LOW)1>
h=0

—12(Hdy + )H - NBAUAEq - [ (B 2]

where the third inequality is due to Cauchy-Schwarz inequality, and the fourth inequality is due to
Proposition F.2. This completes the proof of Proposition I.1. O

1.2 PROOF OF THEOREM H.2 (THEOREM 10)

According to Theorem H.1, in order to prove Theorem H.2 (Theorem 10), we only need to bound
the coefficients edec, (©) for v > 0.

In the following, we bound edec by psc®t using the idea of Chen et al. (2022, Proposition 6). Recall
that edec is defined in (4.2). By strong duality (c.f. Theorem C.2), we have

edec (0, 7)

2IThe boundedness of {ys, j.x} s trivially satisfied, because o is finitely supported.
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= f E, Vi Vi —Ef - Ere D2 (P73 PT
pex}}gA(H)zgg pout Vo (0) = Vo(m)] = VEg i Brpe, [ DE (P, Pj)]
PomEA(H)
= sup inf  EgyErpon [Vo(mo) = Vo(m)] = VEo~BgpBrnpe., [DH (PG, PF)] .
pEN(O) pexpegggg
poute

(53)
Note that |Vy(m) — Vy(m)| < Dyv (P5,P5) < Dy (Pj,Pj). Therefore, we can take pout = Py
where p,, is defined as p,, (1) = ({6 : m9 = 7}). Then for a fixed « € (0,1), we have
Eo~pBErnp, [Vo(me) — Vo(m)]
<E6"’:U']E9~[L T~Pu [ ( )] + E9~uE§~ﬁE7r~pu [Vo(me) — Va(m)]
=By By Bryp, [Du (P5,P5)] + Eo~ gz [Va(mo) — V(7o) (54)

1 us 7T
gm + YEo~ uEggErp, [DIQ—I ( 9aP9‘)] + Eg~ g [Vo(mo) — V(mo)],

where the equality is due to our choice of p,,:
E9~HE7T~;D“ [Vé(ﬁ)] = Ewwou [Vé(ﬂ)] = E9~M [Vé(ﬂ'ﬁ)] ,
and the last inequality is due to AM-GM inequality.
Therefore, we can take pexp, = ap,, + (1 — a)pe € A(II), where p. is given by pe(7) = ({6 :
pomy = 7r}),22 and using this choice of pexp and poyt in Eq. (53) and using Eq. (54), we get

edec, (0,71) < sup_ {Eg z[Eovy [Volma) = V(o))
HEAQ(O)

— aVEg~yEnvy [DH (P57, PET] ]} +
< max pscgy (O, 0) + !
X Ve EE———
o 41— a)y
Recall that psc‘EYSt has been bounded in Theorem H.6. Taking o = 3/4 yields edec,(O,1) <
(8ARdAU4H? + 1)/~. This completes the proof of Theorem H.2. O

1

i1 an 2

1.3 PROOF OF THEOREM H.4

To prove Theorem H.4, due to Theorem H.3, we only need to bound the coefficients amdec., (0, ji)
for all ;1 € A(©). By strong duality (c.f. Theorem C.2), we have

dec., (O, 7 nf Eg,. [Drv (P5,PE)] = VErep E; [D(”,IP’I)]
e (O = eathcnan 528 2eh B~ ey (B FD)] =B B D (75,5

N ueAil(l(ng) poxpeA(Hl)I};iuteA(H) B0 1~ B ot [Drv (P B5) | = Ve B [DH ( H’Pf;)]
< inf E;_-[Epa[D 5P| — VEr~per Eo~w [ DF (P5, PT
ueASol(l(}))xH)Pexpl?A(H) f H[ ©m [ TV( ? 0)] ! pes 0 [ H( ’ 0)]]

< swp By (B~ [Drv (PFPF)] — YEr~wEony [ D (B, P57)]]
veAo(©xII)

< sup  supEg .z [Drv (PF,PF)] = vEx~vEony [ Dy (P77, P7)],
Ve (O XII) he©

where the first inequality is because we take fion = [& in inf,, ., and the second inequality is
because we can take peyp, € A(II) corresponds to ¢ o m with 7 ~ v. Applying Proposition 1.2 gives

A2dz AU H? AZdAU 4 H?
amdec, (0O, i) < sup 6Adp AUA < 6A5dAUA )
fe© Y 0

and thus the proof of Theorem H.4. O

22Here, Pe 1s technically a distribution over the set of mixed policies A(II), and can be identified with a
mixed policy in A(II).
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