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Abstract
Denoising Diffusion Probabilistic Models
(DDPMs) have emerged as powerful tools for
generative modeling. However, their sequential
computation requirements lead to significant
inference-time bottlenecks. In this work, we
utilize the connection between DDPMs and
Stochastic Localization to prove that, under an
appropriate reparametrization, the increments of
DDPM satisfy an exchangeability property. This
general insight enables near-black-box adaptation
of various performance optimization techniques
from autoregressive models to the diffusion
setting. To demonstrate this, we introduce
Autospeculative Decoding (ASD), an extension of
the widely used speculative decoding algorithm
to DDPMs that does not require any auxiliary
draft models. Our theoretical analysis shows
that ASD achieves a Õ(K1/3) parallel runtime
speedup over the K step sequential DDPM. We
also demonstrate that a practical implementation
of autospeculative decoding accelerates DDPM
inference significantly in various domains.

1. Introduction
Diffusion models have emerged as one of the leading tools
in generative modeling (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021b). They are widely used
to generate samples in continuous spaces, such as when
an image (Dhariwal & Nichol, 2021; Nichol et al., 2021;
Kingma et al., 2021; Rombach et al., 2022) or a sequence of
continuous actions (Reuss et al., 2023; Chi et al., 2023) is
desired. A major limitation of diffusion models, particularly
limiting in real-time applications such as continuous control
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or robotics, is their slow inference time. Standard imple-
mentations of Denoising Diffusion Probabilistic Models
(DDPMs) take a large number of denoising steps, ≈ 1000
steps in image models (Ho et al., 2020; Rombach et al.,
2022), and≈ 100 steps in robotics models (Chi et al., 2023),
to generate samples. Using fewer steps empirically results
in a loss of quality; theoretical analysis of DDPMs suggests
that ≈ Õ(d) steps are needed for high-fidelity samples from
d-dimensional distributions (Benton et al., 2023).

Numerous works have attempted to address slow inference.
Works like DDIM (Song et al., 2021a) and DPMSolver (Lu
et al., 2022) have lowered the number of steps by altering
the inference method to a deterministic one, barring the ini-
tialization, and utilizing ODE solvers. Other works (Meng
et al., 2022; Song et al., 2023; Watson et al., 2022; Lu &
Song, 2024) have changed the underlying model, requiring
new training, to enable fewer steps during inference. These
speedups are all achieved by trading off the quality of the
generated samples. Recently, Shih et al. (2024) showed that
instead of trading off quality for speed, one can trade com-
pute for speed by leveraging parallelization (e.g., utilizing
multiple GPUs). However, the proposed method in (Shih
et al., 2024) still leaves a small but tunable error as it utilizes
a fixed point iteration method with early stopping.

Our work also focuses on accelerating inference in DDPMs
via parallelization—albeit without changing the quality of
the generated samples. Surprisingly, we show that it is
possible to produce samples identically distributed as the
sequential process, i.e., thereby ensuring zero quality loss,
while also achieving a theoretically guaranteed speedup
over sequential sampling. We prove that our method needs
≈ Õ(d2/3) parallel calls to the model, much smaller than
≈ Õ(d) in sequential sampling (Benton et al., 2023).

Our algorithm adapts speculative decoding, an acceleration
technique for autoregressive models such as large language
models (LLMs), to the setting of diffusion models. Tra-
ditionally speculative decoding uses an additional smaller
LLM (or model), called the draft, to accelerate sampling
from the main LLM. The draft model produces tokens that
are then in parallel verified by the main model – leading
to possible parallel speedup. At first sight, adapting specu-
lative decoding to diffusion models seems challenging for
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two reasons: first, the space is continuous; and second, a
draft diffusion model is likely to follow very different tra-
jectories from the main diffusion model, unlike two LLMs
which can plausibly predict a few similar tokens at a time.
We overcome these challenges by eschewing a draft model
altogether, and instead show how to use the main diffusion
model itself as its own draft. Our main insight enabling this
autospeculation behavior is that the distribution of denoising
trajectories in a diffusion model exhibits certain time sym-
metries. In technical terms, we show that after a syntactic
time/scale change, the increments yt+dt − yt of a denois-
ing trajectory (yt)t∈[0,T ] form an exchangeable sequence
of random variables – in other words, their distribution re-
mains unchanged under any permutation. This allows us to
use independent samples from the distribution of the next
denoising step as speculations for all future denoising steps.

We emphasize that this secret property of diffusion models,
which we refer to as hidden exchangeability is surprising.
For example, in LLMs, a similar property would only hold
if the sequences of tokens in the underlying distribution are
permutation-invariant; that is the probability of “hello world”
in the language is the same as “world hello.” In addition to
enabling autospeculation, we use exchangeability to derive
our theoretically guaranteed ≈ Õ(d1/3) speedup.

Our contributions can be summarized as follows:

Hidden Exchangeability in DDPMs: We leverage the
equivalence between DDPMs and Stochastic Localization
(Eldan, 2013; Chen & Eldan, 2022), recently established
by Montanari (2023) to uncover a fundamental hidden ex-
changeability property for the trajectories of DDPM. In
particular, we show that, after an appropriate transforma-
tion, the increments of the DDPM process are exchangeable,
i.e., their joint law is permutation-invariant. This insight
enables us to view DDPMs through the lens of any-order au-
toregressive models (Shih et al., 2022), potentially allowing
the adaptation of performance optimization techniques pre-
viously limited to traditional autoregressive architectures.

Autospeculative Decoding for DDPMs: We use the hidden
exchangeability property to design an efficient inference
algorithm, which, at any given timestep a, makes a single
call to the DDPM model to predict future increments, and
subsequently makes calls to the same model, all in one par-
allel step to verify these predictions via rejection sampling.
Our algorithm extends the Speculative Decoding (Leviathan
et al., 2023) paradigm, widely used for LLM inference, to
the diffusion model setting. Unlike traditional speculative
decoding, our algorithm eschews an auxiliary draft model
and instead leverages the hidden exchangeability property
to make the original DDPM speculate about itself. Hence,
we call our algorithm Autospeculative Decoding (ASD) and
show that it performs error-free DDPM inference with mas-
sive parallelization.

Theoretical Guarantees: We prove that ASD is an error-
free parallelization algorithm, whose output is identically
distributed as sequential samples from the DDPM. Further-
more, under a minimal second-moment assumption, we
prove that ASD makes at most Õ(d2/3) parallel calls to the
model on d-dimensional distributions, as compared to Õ(d)
calls needed in the sequential implementation of DDPM
(Benton et al., 2023). To the best of our knowledge, our
result is the first parallel inference algorithm for DDPMs
that shows empirical speedups and has a theoretically guar-
anteed speedup without any restrictive assumptions on the
score function such as Lipschitz continuity.

Empirical Evaluation: We complement our theoretical
contributions with extensive empirical evaluations on diffu-
sion models for image generation and robot control tasks.
ASD leads to 1.8-4× speedup in wall-clock time without
any loss in quality.

1.1. Notation

We analyze diffusion models defined on Euclidean spaces
Rd. We use x,y to represent vectors and M to represent
matrices. I is the identity matrix. For a random variable
z, we use Law(z) to denote its distribution. For random
variables x and y, we use x

d
= y to denote Law(x) =

Law(y). For any measure µ, Cov[µ] denotes its covariance.
We use TV (., .) and KL (.||||||.) to denote the Total Variation
distance and KL divergence. Bt and Wt denote standard
Brownian motions on Rd unless stated otherwise. We use
the O,Ω,Θ notation to suppress dependence on numerical
and problem specific constants and Õ, Ω̃, Θ̃ to suppress
logarithmic factors. ≲,≳ and≍ denote≤,≥ and = modulo
universal constants.

2. Related Work
Several prior works, notably Shih et al. (2024) and Pokle
et al. (2022), have shown how to use parallelization to em-
pirically accelerate sampling from diffusion models. These
works use a fixed point iteration, also called the Picard itera-
tion or the collocation method, to break the sequential nature
of denoising steps in diffusion models. These methods use
heuristics to stop the fixed point iteration when approximate
convergence is detected, and thus leave a small error in the
samples, unlike our results. Later works of Gupta et al.
(2024); Chen et al. (2024) provided theoretical convergence
guarantees for these parallelization techniques, but under
the very restrictive assumption that the score functions of
the underlying distribution and all of its evolutions under
the forward process of DDPM satisfy L-Lipschitzness for a
very small L. In particular, when the underlying distribution
is not smooth, or even when L is a small polynomial of the
dimension d, the guarantees become vacuous.
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The work of Benton et al. (2023) provides the best-known
theoretical analysis for the runtime of diffusion models in
the sequential setting, namely Õ(d) denoising steps for d-
dimensional distributions. Without restrictive assumptions
on the underlying distribution, such as Lipschitzness of
scores, this Õ(d) guarantee remained the best-known theo-
retical result even in the parallel setting. Our work provides
a parallel speedup under the minimal assumption of bound-
edness of second moments, essentially the same assumption
as in the work of Benton et al. (2023).

Our work adapts speculative decoding (Leviathan et al.,
2023; Chen et al., 2023), a parallelization technique widely
used for LLMs and autoregressive models, to the setting
of diffusion models. In the special setting of any-order
autoregressive models (Shih et al., 2022), which excludes
most LLMs, Anari et al. (2024a) provided the first the-
oretically guaranteed speedup for speculative decoding.
This, combined with our insight on the exchangeability
of diffusion models, was the main source of inspiration
for our work. Anari et al. (2024a) showed a speedup of
Õ(d1/3/poly log(q)) for generating a sequence of d tokens,
if the token space is of size q. We note that, while our
proof adopts many elements from the work of Anari et al.
(2024a), there are significant challenges that we overcome:
first, diffusion models live in a continuous space, roughly
speaking this corresponds to q =∞, for which the speedup
guarantees of Anari et al. (2024a) become meaningless; and
second, in diffusion models, even the sequential sampling
process is a discretization of a Stochastic Differential Equa-
tion (SDE), and the error resulting from the discretization
makes the analysis particularly challenging.

The concurrent and independent work of De Bortoli et al.
(2025), which came to our notice post-submission, also
proposes the idea of parallelizing diffusion models via spec-
ulative decoding. In particular, their idea of a Frozen Target
Draft Model corresponds to Autospeculative Decoding. To
the best of our understanding, De Bortoli et al. (2025) does
not establish any parallel speedup guarantees for their algo-
rithm, and their algorithm design is not based on the hidden
exchangeability property.

3. Exchangeability in Diffusion Models
We first present a brief introduction to DDPMs and refer
the readers to Song et al. (2021b); Chen et al. (2022) for a
broader discussion. For an unknown target distribution µ on
Rd, we consider the following forward or noising process
x̄→t for time t ∈ [0, T ].

dx̄→t = h(t)x̄→t dt+
√
u(t) dWt, x̄

→
0 ∼ µ (1)

where h(t), u(t) are arbitrary continuous functions with
u(t) > 0. Notable special cases include the Variance Pre-
serving SDE (VP-SDE) which sets h(t) = − 1

2u(t) and the

Variance Exploding SDE (VE-SDE) which sets h(t) = 0.
Under mild conditions, µt = Law(x̄→t ) converges to a
tractable distribution which is easy to sample from. For
instance, the choice u(t) = 2 and h(t) = −1 corresponds
to the Ornstein Uhlenbeck (OU) SDE, which converges to a
standard Guassian at an exponential rate (Bakry et al., 2014),
and hence, satisfies µT ≈ N (0, I).

The reverse process, i.e., the denoising process x̄←t ∼ µT−t
is governed by the following SDE

dx̄←t = f(t, x̄←t ) dt+
√
u(T − t) dWt

f(t, x̄←t ) = −h(T − t)x̄←t + u(T − t)∇ lnµT−t(x̄
←
t )

(2)

The working principle behind DDPMs is as follows: Since
µT is easy to approximately sample from (e.g µT ≈ N (0, I)
for the OU DDPM), access to an (approximate) oracle
for the score function ∇ lnµT−t(x̄

←
t ) gives us a genera-

tive model for µ which involves sampling y0 ∼ ν (where
ν ≈ µT ) and then following the dynamics of (2). Algo-
rithmically, this is implemented via the following Euler
discretization:

yi+1 = yi + ηif(ti,yi) + σi+1ξi+1, ξi+1 ∼ N (0, I)
(3)

Where t0 ≤ t1 ≤ . . . tK−1 are discretization points, ηi =
ti+1 − ti is the step-size and σi+1 =

√
ηig(T − ti).

3.1. Hidden Exchangeability of DDPMs

We now introduce Stochastic Localization (SL), an analytic
tool developed by Eldan (2013), which has led to several
breakthroughs in probability and theoretical computer sci-
ence (Chen, 2021; El Alaoui et al., 2022; Benton et al., 2023;
Anari et al., 2024b). Given a target distribution µ on Rd, SL
is defined by the following process ȳt:

ȳt = m(t, ȳt) dt+ dBt, ȳ0 = 0

m(t,y) = Ex⋆∼µ, ξ∼N (0,I)[x
⋆ | tx∗ +

√
tξ = y] (4)

It is known that Law(ȳt/t) = µ∗N (0, I/t) and in particular
as t → ∞, we have Law(ȳt/t) → µ (El Alaoui & Monta-
nari, 2022). To this end, stochastic localization resembles
the reverse process in DDPMs as it can also function as
a generative model for µ given oracle access to m(t,y).
This similarity was demystified by Montanari (2023), who
proved that the OU DDPM is equivalent to the SL process.
In Appendix B, we extend their result to show that arbitrary
DDPMs are equivalent reparametrizations of Stochastic Lo-
calization. In particular, we prove the following
Theorem 1 (Equivalence of DDPM and SL). Let x̄←t denote
the DDPM reverse process defined in (2) and let ȳt denote
the SL process defined in (4). Then, there exist continuous
invertible functions γ(t), ζ(t) that are uniquely determined

by h(t) and u(t) such that ȳt
d
= γ(t)x̄←ζ(t)
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The key insight behind our algorithm comes from the fol-
lowing time-invariance property of SL. We present a proof
of this result and a detailed discussion on the properties of
SL in Appendix B.
Theorem 2 (Exchangeability in SL increments). Let ȳt
denote the SL process defined above. Consider any t1 ≤
t2 ≤ . . . ≤ tm and let ηi = ti+1 − ti. Then, the increments
of the SL process satisfies the following time-invariance
property for any π ∈ Sm−1:

Law((yti+ηi − yti)i∈[m−1]) = Law((ytπ(i)+ηi − ytπ(i)
)i∈[m−1])

In particular, if the time increments ηi are all equal, then
the increments ∆i = yti+1

− yti are exchangeable, i.e.,
Law((∆i)i∈[m−1]) = Law((∆π(i))i∈[m−1]) ∀ π ∈ Sm−1

Since DDPMs and SL are equivalent reparametrizations of
each other, we refer to Theorem 2 as the hidden exchange-
ability property of DDPMs. In essence, Theorem 2 allows
us to use the DDPM increments at any given timestep as a
proposal distribution for sampling the increments of future
timesteps. As we shall demonstrate, this proposal and its
subsequent verification can each be performed in parallel,
leading to a highly efficient inference algorithm.

Note that, assuming a fine discretization, calls to the func-
tion m(·), equivalent to the trained model in DDPMs, pre-
cisely allow us to find the conditional distributions of the
increments: Law(∆i | ∆<i). So in a way, one can view dif-
fusion models as autoregressive models for the increments,
with the major caveat that the token space here, Rd, is infi-
nite. Theorem 2 shows that Law(∆j | ∆<i) is the same for
all j ≥ i. So in particular at any point in the denoising pro-
cess we can produce the marginal distribution of all future
increments – it is the same as the immediately next incre-
ment. Independent samples from these marginals form the
proposal/speculation in our algorithm, as was done by Anari
et al. (2024a) for any-order autoregressive models.

4. Autospeculative Decoding
In this section, we describe AutoSpeculative Decoding
(ASD), our main algorithmic contribution. We consider
the general problem of sampling from Euler discretizations
of SDEs of the following form:

yi+1 = yi + ηig(ti,yi) + σi+1ξi+1, ξi+1 ∼ N (0, I)
(5)

where t0 ≤ . . . ≤ tk denotes a sequence of time-steps
and ηi = ti+1 − ηi denotes the step-size. We note that
it this includes the Euler discretization of SL as a special
case. Although typical discretizations of the DDPM don’t
directly fit into equation (5), this can be easily remedied by
first translating the DDPM iterate to an SL iterate via the
reparametrization discussed in Section 3, incrementing by

one time-step in the SL formulation and then mapping it
back to the DDPM formalism.

At any iteration i, the conditional distribution of the next
iterate q(yi+1|yi), which we call the target distribution at
step i, is of the following form:

q(yi+1|yi) = N (yi+1 | b(ηi,yi), σi)

b(ηi,yi) = yi + ηig(ti, yi) (6)

We refer to b(ηi,yi) as the target mean at step i. Computing
b involves calling an (approximate) oracle for g, typically im-
plemented via a neural network. Oracle calls to g, which we
refer to as model calls, represent the primary computational
bottleneck to sampling from equation Eq. (5). Note that
for the SL process, g(·) is the same as the mean-predicting
function m(·) from Eq. (4).

To leverage the hidden exchangeability property of DDPMs,
our algorithm does the following: At any given step a, it
tries to predict or speculate the target mean of the future
timesteps by sampling from a proposal distribution p, de-
fined as follows. The proposal distribution is explicitly
designed such that speculating the mean of future timesteps
requires only one call to g (i.e., one model call).

p ((yi+1)i≥a|ya) =
∏
i≥a

p(yi+1|yi,ya)

p(yi+1|yi,ya) = N (yi+1|b̂(ηi,yi,ya), σi)

b̂(ηi,yi,ya) = yi + ηig(ta,ya) (7)

We call b̂(ηi,yi,ya) the proposal mean for step i at step a,
and note that it requires only one call to g. In fact, it can
even be computed in Õ(1) parallel time via prefix sums.

Equipped with the above definitions, we present Autospec-
ulative Decoding in Algorithm 1. The algorithm, which
resembles Speculative Decoding (Leviathan et al., 2023;
Chen et al., 2024) has three key steps: 1) Sampling from
the proposal distribution via one model call, 2) Speculating
the means of the future target distributions via the proposal
samples, 3) Verifying the accuracy of the speculations via
rejection sampling and resampling at the first disagreement.
The verification procedure, stated in Algorithm 2 uses Gaus-
sian Rejection Sampler, Algorithm 3, to simultaneously
sample from the conditional target distribution and check
if the proposal agrees with the target. Algorithm 3 is mo-
tivated by the reflection coupling technique of Bou-Rabee
et al. (2020) and runs in O(1) time by leveraging the fact
that the proposal and target are Gaussians with the same
variance.
Remark 3. Although the speculated means for the DDPM
process can be derived by following the recipe described
before for SL and using the equivalence of SL and DDPM,
the end result has an intuitive form. One can rewrite the
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Algorithm 1: Autospeculative Decoding (ASD)
Input: Steps K, Step-sizes (ηk)k<K , Variances

(σ2
k)k∈[K], Initial y0, Speculation length θ

1 sample (u1, . . . , uK) ∼ Uniform([0, 1]K)

2 sample (ξ1, . . . , ξK)
i.i.d.∼ N (0, I)

3 a← 0
4 while a < K do
5 ŷa ← ya, b← min(K, a+ θ)

// compute proposal means and
proposal samples

6 va ← g(ta,ya)
7 for i = a, . . . , b− 1 do
8 m̂i+1 ← ŷi + ηiva

9 ŷi+1 ← m̂i+1 + σi+1ξi+1

// speculate target means in
parallel

10 for i = a, . . . , b− 1 in parallel
11 mi+1 ← ŷi + ηig(ti,yi)

// verify speculations via
rejection sampling

12 [(zi)a<i≤b, j]← Verifier((ui, ξi, m̂i,mi)a<i≤b)
// advance until first rejection

13 if j < b then
14 yi ← zi ∀i ∈ [a+ 1, j + 1]
15 a← j + 1

16 else
17 yi ← zi ∀i ∈ [a+ 1, j]
18 a← j

19 return (y0, . . . ,yK)

DDPM process (3) by expanding out f to get the form

yi+1 = αiyi + βi E[x̄→0 | yi] +
√
ηiξi+1

for some coefficients αi, βi. In many implementations of
DDPM, the model is trained to output this E[x̄→0 | yi]
directly instead of f . At step a, to speculate the means of
future steps i, we simply need to plugin E[x̄→0 | ya] for
E[x̄→0 | yi] in the above formula.

Parallelization in Algorithm 1 In each iteration, ASD
makes one model call in line 6 to compute the proposal
means and samples, and one parallel round of model calls
in line 11 to speculate the target means. Beyond this, the
remaining internal computation of ASD is also highly par-
allelizable. In particular, each for loop in Algorithm 1 and
Algorithm 2 is parallelizable and Algorithm 3 takes O(1)
time.

Algorithm 2: Verifier
Input: Uniform Random Seeds (ua+1, . . . , ub),

Speculated Means (m̂a+1, . . . , m̂b), Target
Means (ma+1, . . . ,mb), Variance Schedule
(σ2

a+1, . . . , σ
2
b )

1 j ← a+ 1
2 for i = a+ 1, . . . , b in parallel

// GRS defined separately in
Algorithm 3

3 (zi, bi)← GRS(ui, ξi, m̂i,mi, σ
2
i )

4 if bi = True and j < i then
5 j ← i

6 return [(za+1, . . . , zb), j]

Algorithm 3: Gaussian Rejection Sampler (GRS)
Input: u ∼ Uniform([0, 1]), ξ ∼ N (0, I), Proposal

mean m̂, Target mean m, Variance σ2

1 v← m̂−m

2 b← 1
[
u ≤ min

(
1, N (ξ+σ−1v|0,I)

N (ξ|0,I)

)]
3 if b = True then
4 x← m̂+ σξ
5 else
6 x←m+ σ

(
ξ − 2v · ⟨v,ξ⟩∥v∥2

)
7 return (x, b)

5. Theoretical Guarantees
In this section, we present our theoretical guarantees for Al-
gorithm 1. Our first result, which is proved in Appendix C.2,
guarantees that ASD is an error-free parallelization method,
i.e. it always samples exactly from the target distribution.

Theorem 4 (Correctness of Algorithm 1). Algorithm 1 ter-
minates in at most K steps and its outputs are always dis-
tributed exactly according to the target distribution of the
stochastic process (5).

We now analyze the parallel runtime of Algorithm 1 for the
Euler discretization of the SL process, and prove the follow-
ing bound on the adaptive complexity, i.e., the number of
parallel model calls, in Appendix C.3. While our proof is
specific to the SL process, our result implies a similar guar-
antee for DDPMs due to its equivalence to SL, as discussed
in Section 3.1

Theorem 5 (Adaptive Complexity of Algorithm 1). Sup-
pose the data distribution satisfies Tr(Cov[µ]) ≤ βd and
the step-sizes of the DDPM satisfy ηk ≤ η. Then, for θ ≍
(K/βηd)1/3, Algorithm 1 makes at most O(K2/3(βdη)1/3)
parallel calls to the DDPM in expectation. In fact, for any
δ ∈ (0, 1), the number of parallel calls to the DDPM is
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•

step a+ 1

•

step a+ 2

•
step a+ 3

•

step a+ 4

••

step a+ 5

Figure 1: A depiction of AutoSpeculative Decoding. Spec-
ulated Gaussians with proposal means m̂i are shown in
dashed and Gaussians with target means mi are shown in
solid. Green and orange points are proposed samples ŷi.
The verifier accepts the first four proposals, rejects the fifth,
and replaces the fifth proposed sample with its reflection.
Proposed samples for steps beyond the fifth are ignored.

bounded by O(K2/3(βdη)1/3 log(1/δ)) with probability at
least 1− δ.

Õ(K1/3) Parallel Speedup: In accordance with prior works
analyzing DDPMs, ηd = O(1) is usually required to ensure
convergence to the target distribution (Chen et al., 2022;
Benton et al., 2023). Moreover, β is typically O(1). Under
this setting, the number of parallel DDPM calls made by
Algorithm 1 is O(K2/3) which represents a O(K1/3) parallel
speedup over the vanilla sequential DDPM.

Comparison to Prior Works: The work of (Shih et al.,
2024) proposed a parallel algorithm for DDPMs based on
Picard iterations but did not provide any theoretical guaran-
tees. Along similar lines, the works of (Gupta et al., 2024;
Chen et al., 2024) combined Picard iterations with the Ran-
domized Midpoint Method to design a parallel algorithm
for DDPMs with O(polylog(d)) parallel runtime, assuming
bounded second moments and O(1) uniform Lipschitzness
of the score function, a stringent assumption which is satis-
fied for very restricted distribution families. As discussed
before, these approaches are not error-free parallelization
schemes due to the use of Picard iterations. On the contrary,
ASD is a perfect sampler with guaranteed speedups even
in the absence of any smoothness assumptions on the score
function.

From Adaptive Complexity to Parallel Runtime: While
Theorem 5 upper bounds the number of parallel calls to the
DDPM, we note that the parallel runtime (i.e., time taken
on a PRAM) of the Algorithm satisfies the same guarantee
modulo logarithmic factors. This is because the internal
computation of Algorithm 1 is easily parallelizable. For
instance, the proposal and the target means can be computed
in Õ(1) parallel time via prefix sums, and the for loop in
Algorithm 2 is also parallelizable.

6. Experiments
In the experiments, we empirically demonstrate the practi-
cal benefits of autospeculative decoding (ASD). We focus
on two key properties of ASD: 1) accelerating inference
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Speedup on Latent Diffusion Model

Algorithmic
Wall-clock

Figure 2: Speedup of ASD over DDPM on StableDiffusion-
v2 with different speculation length θ. The algorithmic
speedup measures the reduction in the number of calls to
the noise prediction network while wall-clock speedup mea-
sures the reduction in wall-clock time of the denoising pro-
cess by running ASD.

through multi-step speculation and parallel verification and
2) producing truthful samples of the underlying diffusion
models. We consider a diverse set of real-world applications
where diffusion models are used, including image gener-
ation with both latent- and pixel-space diffusion models
(Rombach et al., 2022; Ho et al., 2020) and robot control
with diffusion policies (Reuss et al., 2023; Chi et al., 2023).
ASD offers 2-7× reduction in the number of sequential
neural network predictions via speculation and our practi-
cal implementation achieves 1.8-4× speedup measured in
wall-clock time. We emphasize that our goal is not to claim
any state-of-the-art acceleration results for diffusion models
but to provide empirical evaluations complementary to our
theoretical contributions that enables fast, exact sampling
without approximation.

To measure the speedup of ASD over vanilla DDPM, we
consider two scenarios referred to as algorithmic and wall-
clock throughout the paper. For the algorithmic speedup,
we divide the total number of denoising steps (e.g. 1000
in DDPM for image generation and 100 in diffusion policy
for robot control) by the number of times ASD invokes the
internal neural network to make predictions. This mainly
helps us understand the rate at which ASD progresses. It
also corresponds to the ideal speedup assuming perfect par-
allelization where parallel predictions take the same amount
of time as a single prediction, and ignoring the minor over-
heads of other non-neural network computations such as
speculation and rejection sampling. The wall-clock speedup
measures the reduction in the wall-clock time of full denois-
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DDPM ASD-2 ASD-4 ASD-6 ASD-8 ASD-∞
32.1 32.2 32.0 32.2 32.3 32.1

Table 1: CLIP score (the higher the better) of images gen-
erated from DDPM and ASD-θ with different speculation
length θs.The CLIP scores are computed over 1000 captions
from the COCO2017 captions validation dataset. ASD does
not affect the quality of generated images.

DDPM ASD-4 ASD-6 ASD-8 ASD-∞
14.3 13.2 13.2 13.2 14.3

Table 2: FID score (the lower the better) of images sampled
from DDPM and ASD with different speculation length.
The underlying diffusion model is trained on the LSUN
Church dataset. Each score is computed with 5000 image
samples. Samples from ASD have the same quality as the
ones from non-speculative DDPM.

ing loops, accounting for all extra overheads such as data
transferring cost when parallelizing over multiple GPUs or
the additional time for batched prediction.

6.1. Accelerating Diffusion for Image Generation

Latent Diffusion Models: We first evaluate ASD on image
generation with latent diffusion models (LDM). Specifi-
cally, we use open-sourced StableDiffusion-v2 (Rombach
et al., 2022; Schuhmann et al., 2022) model from the dif-
fusers (von Platen et al., 2022) library. To implement ASD
with parallelization, we first produce θ proposals following
lines 8-9 in Algorithm 1 and then distribute the θ model pre-
diction steps in line 11 over θ GPUs with multi-processing.
Finally, we transfer the results back to the main process and
run the acceptance and rejection sampling of lines 12-18.
Similar to Shih et al. (2024), we choose to implement par-
allel prediction through multiple GPUs instead of batching
because the network is large enough that the time it takes to
make a prediction grows linearly with the batch size even
when the batch is small. In cases where the network is
smaller, such as in the robot control experiments discussed
later, batching may still be a valid solution to achieve high
acceleration without incurring additional hardware cost.

Fig. 2 shows the algorithmic and wall-clock speedup of
ASD relative to DDPM under 1000 denoising steps. We
evaluate ASD with different speculation length θ including
infinity to understand the upper limit of ASD. As expected,
longer speculation length in ASD leads to higher algorith-
mic speedup as it allows for more parallelism. ASD-∞
achieves 1.9× speedup, which corresponds to reducing the
number of sequential predictions by nearly a factor of 2
when counting predictions that happen in parallel as 1. In
practice, θ = 6 or θ = 8 is sufficient to achieve a similar

algorithmic speedup as ASD-∞. We measure the wall-clock
speedup on a machine with 8 NVIDIA A40 GPUs. Our im-
plementation achieves a peak speedup of 1.82× with θ = 6.
In our specific implementation and hardware setup, the over-
head of creating and transferring data for more speculation
steps outweighs the marginal benefit of bigger θ.

To verify that ASD produces truthful samples from the un-
derlying distribution, we compute the CLIP score (Hessel
et al., 2021) using 5000 images generated with languages
from COCO2017 captions validation dataset. Results in Ta-
ble 1 show that the samples from ASD have the same quality
as the ones generated by original DDPM. Fig. 3 shows the
generated images from vanilla DDPM and ASD-∞ using
the same prompts side by side.

Pixel Diffusion Models: We also evaluate ASD on the
LSUN Church model from Ho et al. (2020), which directly
generates images of resolution 3 × 256 × 256. We use
the same ASD implementation as in the latent diffusion
case with up to 8 GPUs for parallel computation. Fig. 4
shows the algorithmic and wall-clock speedup of ASD on
this model. ASD achieves higher speedup here than in the
previous latent diffusion model, reducing the number of
neural network prediction calls up to 3.1×. However, we
also notice that the gap between the wall-clock and algorith-
mic speedup is more significant in this case for two reasons.
First, despite being a pixel space diffusion model, the com-
putation cost per forward of this specific model is actually
50% cheaper than the latent model from the previous section.
Second, the overhead of transferring inputs and predictions
between processes is roughly 10× higher due to higher reso-
lution and higher floating point precision. These two factors
lead to a more prominent overhead and thus bigger gap be-
tween wall-clock and algorithmic speedup than in previous
experiment. A faster implementation on systems with faster
inter-connection between GPUs may further close the gap.
The FID scores in Table 2, computed over 5,000 samples
for each method, confirm that ASD produces samples of the
same quality as DDPM.

6.2. Accelerating Diffusion for Robot Control

Diffusion models have become a popular method in learn-
ing robot control policies from demonstrations (Chi et al.,
2023; Reuss et al., 2023). It models the conditional distri-
bution of an action sequence π(at:t+k|ot) where ot is the
observations from cameras attached to the robot. Concep-
tually, the process can be viewed as generating a small 2D
vector of size k × d where k is the length of the action
sequence and d is the action dimension. We consider three
hard Robomimic (Mandlekar et al., 2021) simulation en-
vironments namely Square, Transport and Tool Hang. We
follow prior works to set k = 16 in all environments. The
action dimension d = 7 in the single arm Square and Tool

7
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(a) DDPM: a beautiful castle,
matte painting

(b) DDPM: a photo of an astro-
naut riding a horse on mars

(c) ASD-∞: a beautiful castle,
matte painting

(d) ASD-∞: a photo of an as-
tronaut riding a horse on mars

Figure 3: Image generated by StableDiffusion-v2 with different sampling method, DDPM and ASD-∞.

Env DDPM ASD-8 ASD-12 ASD-16 ASD-20 ASD-24 ASD-∞
Square 88.67 ± 0.27 93.00 ± 1.70 91.67 ± 1.66 93.00 ± 0.47 93.00 ± 0.47 90.00 ± 1.89 90.33 ± 0.27
Transport 89.00 ± 1.25 90.00 ± 1.25 91.33 ± 1.52 90.00 ± 0.47 91.00 ± 0.00 90.00 ± 0.82 90.00 ± 1.25
Tool Hang 70.00 ± 2.94 69.33 ± 2.60 66.00 ± 2.62 71.00 ± 2.49 70.00 ± 2.36 68.67 ± 1.19 73.67 ± 0.27

Table 3: Performance on Robomimic Tasks. ASD with different speculation length achieves similar performance as the
vanilla DDPM. The number in each cell is obtained by evaluating the diffusion policy on 100 random seeds (random initial
configurations of the scene) and repeating 3 times. We report the mean ± standard error of mean.

Hang tasks and d = 14 in the bi-manual Transport task.

The denoising neural network in the diffusion policies is
considerably more lightweight than the ones from image
diffusion models in the previous section. Therefore, we opt
for a batching implementation for the parallel prediction
step instead of parallelizing over multiple GPUs. We simply
batch the proposal samples ŷi and call the network on the
batch to predict the noise ϵ using one GPU.

Fig. 5 shows the speedup results of ASD on diffusion poli-
cies in all three tasks, relative to the vanilla DDPM that
runs for 100 steps. Emperically, we find that ASD has a
much higher acceptance rate for the speculated samples
in these cases, leading to a 6-7× algorithmic speedup for
ASD-∞. Due to the high acceptance rate, it requires a larger
speculation length of 20 or 24 to match the efficiency of
ASD-∞. The practical implementation achieves roughly 4×
wall-clock speedup across the three tasks. The gap between
algorithmic and wall-clock is noticeably larger than the gap
in image generation experiments because the overhead for
speculation and rejection sampling is more prominent given
the cheaper compute cost of the neural network prediction.
The extra cost of forwarding the network on batched input
over a single input also contributes to the gap.

We unroll the sampled actions in each environment to verify
that the quality of samples from ASD remains the same
as the ones from original DDPM. Table 3 summarizes
the results. In each environment, we evaluate the same
diffusion policy with different sampling schemes over the

same set of 100 seeds (100 random initial configurations)
and repeat three times to account for other randomness in the
evaluation process. ASD variants achieve a similar success
rate as vanilla DDPM across all three environments.

7. Conclusion and Future Work
We introduce ASD, an error-free parallelization framework
for DDPMs that achieves a guaranteed Õ(K1/3) parallel
speedup under minimal assumptions and delivers 1.8-4×
acceleration in practical domains. Our work establishes a
fundamental bridge between efficient inference techniques
for LLMs and diffusion models, enabling cross-pollination
between these seemingly disjoint areas. Future directions in-
clude extending our framework to discrete diffusion models
like SEDD (Lou et al.) and developing theoretical guar-
antees for speculative decoding in language models under
realistic assumptions.
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Figure 4: Speedup of ASD over DDPM using diffusion
model from Ho et al. (2020). The model directly generates
images with resolution 3×256×256. ASD achieves up to
3.1× algorithmic speedup. However, compared to LDM,
the overhead of data transfer between processes/GPUs is
bigger while the computation cost is cheaper, leading to a
wider gap between wall-clock and algorithmic speedup.
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A. Mathematical Preliminaries
In this section, we state some standard results from probability that we use

Lemma 6 (Pinsker’s Inequality (Van Handel, 2014)). For any two distributions P and Q,

TV (P,Q) ≤
√

KL (P ||||||Q)

2

Lemma 7 (Doob’s Maximal Inequality (Le Gall, 2016)). Let x1, . . . ,xm be an Rd valued submartingale. Then for any
p > 1,

E[ sup
i∈[m]

∥yi − y0∥p] ≤
(

p

p− 1

)p

E [∥ym − y0∥p]

Lemma 8 (Ito’s Lemma (Oksendal, 2013)). Let f : R× Rd → R be a differentiable function and let xt be a stochastic
process governed by the following SDE:

dxt = at dt+ σtdBt

Then yt = f(t,xt) satisfies the following SDE:

dyt = (∂tf(t,xt) + ⟨∇xf(t,xt), at⟩+
1

2
Tr(∇2

xf(t,xt)σtσ
2
t )) dt+ ⟨∇f(t,xt), σt dBt⟩

We also make use of the following result, which is a direct corollary of Girsanov’s theorem (Oksendal, 2013) :

Lemma 9 (Girsanov Bound for KL Divergence). For t ∈ [0, T ], let xt and yt be two stochastic processes governed by the
following SDEs:

dxt = at(x≤t) dt+ σ dBt

dyt = bt(y≤t) dt+ σ dBt

Let P [0,T ] and Q[0,T ] denote the path measures of x and y in the time interval [0, T ]. Then,

KL
(
P [0,T ]||||||Q[0,T ]

)
= KL (x0||||||y0) +

σ2

2

∫ T

0

Ex0:T∼P [0,T ]

[
∥at(x≤t)− bt(x≤t)∥2

]
dt

We also use the following time transformation identity for SDEs, which follows directly from Theorem 8.5.7 of (Oksendal,
2013)

Lemma 10 (Time Transformation for SDEs). Let xt denote the solution of the following SDE:

dxt = b(t,xt) dt+ σ(t,xt) dBt

and let r : R≥0 → R≥0 be a continuously differentiable non-decreasing function with r(0) = 0. Then yt = xr(t) satisfies
the following SDE:

dyt = b(r(t),yt)r
′(t) dt+ σ(r(t),yt)

√
r′(t) dBt

B. Properties of Stochastic Localization
In this section, we state some additional properties of the Stochastic Localization (SL) process that we use in our analysis,
and also present a proof of Theorem 2 in Appendix B.2. Let µ be a target measure on Rd whose covariance satisfies
Tr(Cov[µ]) ≤ βd for some β ≥ 0. Recall the SL process from Section 3 defined as follows:

ȳt = m(t, ȳt) dt+ dBt, ȳ0 = 0

m(t,y) = Ex⋆∼µ, ξ∼N (0,I)

[
x⋆ | tx∗ +

√
tξ = y

]
(8)
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In addition, we define µt, mt and Σt as follows:

µt = Lawx⋆∼µ(x
⋆ |yt) (9)

mt = mean(µt) (10)
Σt = Cov[µt] (11)

It is easy to see that µ0 = µ. Our proof of the hidden exchangeability property makes use of the following result, which is
proved in El Alaoui & Montanari (2022); Montanari (2023)

Theorem 11 (Alternate Representation of SL). The stochastic localization process admits the following alternate represen-
tation:

dyt = x⋆ dt+ dWt

where x⋆ ∼ µ and Wt is a standard Brownian motion on Rd.

Our analysis also uses the following result on the evolution of mt and Σt which is proved in (Eldan, 2013; Chen, 2021;
Chen & Eldan, 2022)

Theorem 12 (Evolution of Mean and Covariance Along SL). mt and Σt satisfies the following

dmt = Σt dWt

dE[Σt]

dt
= −E[Σ2

t ]

where Wt is a Brownian motion on Rd and the expectation is wrt the randomness of the localization process

To illustrate an application of Theorem 12, we show how to control the error incurred due to Euler discretization of the SL
process. An adaptation of this argument in (Benton et al., 2023) was used to analyze the convergence of DDPMs.

Theorem 13 (Euler Discretization of SL). Consider any sequence of times 0 ≤ t1 ≤ · · · ≤ tK < ∞ satisfying
ηi = ti+1 − ti ≤ η. Let ȳt = m(t, ȳt) dt + dBt denote the SL process and let P ȳ denote its path measure in [t1, tK ].
Define the Euler discretization of the SL process as:

dyt = m(ti,yti) dt+ dBt , t ∈ [ti, ti+1], i ∈ [K − 1]

and let Py denote its path measure in [t1, tK ]. Suppose the initial distribution µ has finite second moments and satisfies
Cov[µ] ⪯ βI. Then, the KL divergence between the path measures is bounded as KL (Py||||||P ȳ) ≤ ηβd

2 .

Proof. By Lemma 9,

KL
(
P ȳ||||||Py

)
=

1

2

∫ tK

t0

Eȳ∼P ȳ [∥mt(ȳ)− m̂t(ȳ)∥] dt

=
1

2

K−1∑
i=1

∫ ti+1

ti

Eȳ∼P ȳ [∥mt(yt)−mti(yti)∥] dt

=
1

2

K−1∑
i=1

∫ ti+1

ti

Eȳ∼P ȳ

[∥∥∥∥∫ t

ti

Σs dWs

∥∥∥∥2
]
dt

=
1

2

K−1∑
i=1

∫ ti+1

ti

∫ t

ti

E[Tr(Σ2
s)] dsdt

where the third step uses Theorem 12 and the last step applies the Ito isometry. From Theorem 12, we note that dTr(E[Σt])
dt =
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−E[Tr(Σt)
2] ⪯ 0, which implies the following:

KL
(
P ȳ||||||Py

)
=

1

2

K−1∑
i=1

∫ ti+1

ti

∫ t

ti

E[Tr(Σ2
s)] dsdt

=
1

2

K−1∑
i=1

∫ ti+1

ti

Tr(E[Σti ]− E[Σt]) dt

≤ 1

2

K−1∑
i=1

(ti+1 − ti)Tr(E[Σti − Σti+1
])

≤ hd

2
E[Tr(Σt1)] ≤

ηβd

2

where we use the fact that E[Σt] is a non-increasing function (in the PSD order).

Our adaptive complexity analysis of Algorithm 1 relies on an argument similar to the proof of the above theorem.

B.1. Equivalence between DDPM and SL

The following result by (Montanari, 2023) proves that the OU Process defined in Section 3 is equivalent to Stochastic
Localization

Theorem 14 (Equivalence of OU Process and SL). Let ȳt denote the SL process as defined above and let zt denote the OU
process defined by the following SDE:

dzt = −ztdt+
√
2 dBt

Then, the following holds:

ȳt
d
= tes(t)zs(t)

where s(t) = 1
2 ln(1 +

1/t)

Equipped with the above result, we now present a proof of Theorem 1 below

B.1.1. PROOF OF THEOREM 1

Proof. Let x←t denote the DDPM forward process as defined in equation (1), which satisfies the following SDE :

dx→t = h(t)x→t dt+
√
u(t)dWt,x

→
0 ∼ µ

Now, let zt denote the following OU process:

zt = −zt dt+
√
2 dBt, z0 = x→0 (12)

We now define the functions α(t) and r(t) as follows:

α(t) =
1

2
ln

(
1 +

∫ t

0

u(τ) exp(−2
∫ τ

0

h(s) ds) dτ

)
r(t) = exp(α(t) +

∫ t

0

h(τ) dτ)

Since u(t) ≥ 0, it is easy to check that α(t) is a non-decreasing function with α(0) = 0. Furthermore, r(t) > 0 with
r(0) = 1. We shall now prove that x→t = r(t)zα(t). Note that our claim holds for t = 0 since x→0 = z0 = r(0)zα(0).

To prove this claim for t > 0, we show that z→t and r(t)zα(t) follow the same SDE. Since α(t) satisfies the conditions of
Lemma 10, we conclude the following:

d(zα(t)) = −α′(t)zα(t) dt+
√
2α′(t) dBt

14
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Using the above and Ito’s Lemma, we obtain the following:

d(r(t)zα(t)) = [r′(t)− α′(t)r(t)] zα(t) dt+ r(t)
√
2α′(t) dBt

=

[
r′(t)

r(t)
− α′(t)

]
r(t)zα(t) dt+

√
2α′(t)r(t)2 dBt

Taking derivatives of ln r(t) and e2α(t), it is easy to see that the r′(t)
r(t) = α′(t) + h(t) and 2α′(t)r(t)2 = u(t), i.e.,

d(r(t)zα(t)) = h(t)r(t)zα(t) dt+
√

u(t) dBt

From Eq. (12) and the above, we note that x→t and r(t)zα(t) satisfy the same SDE. Since x→0 = r(0)zα(0), we conclude
that x→t = r(t)zα(t). Then, by definition of the reverse process,

zt =
x→α−1(t)

r(α−1(t))
=

x←T−α−1(t)

r(α−1(t))

From Theorem 14, we know that yt
d
= tes(t)zs(t) where where s(t) = 1

2 ln(1+
1/t). Substituting this into the above identity

gives us the following:

ȳt
d
= γ(t)x←ζ(t)

γ(t) =
tes(t)

r(α−1(s(t)))

ζ(t) = T − α−1(s(t))

B.2. Proof of Theorem 2

Proof. By Theorem 11, we know that the stochastic localization process satisfies:

ȳt = tx∗ +Wt

where x∗ ∼ µ and Wt is a standard Brownian motion on Rd. By the properties of Brownian increments, the following holds
for any i ∈ [m− 1] and π ∈ Sm−1

Law((ȳti+ηi
− ȳti)i∈[m−1]|x∗) =

⊗
i∈[m−1]

N (ηix
∗, ηiI)

= Law((ytπ(i)+ηi
− ytπ(i)

)i∈[m−1]|x∗)

By marginalizing x∗, we complete the proof of the first claim. The second claim directly follows by setting the time
increments ηi to be equal.

C. Theoretical Guarantees for Auto-Speculative Decoding
In this section, we present our theoretical guarantees for Auto-Speculative decoding. To begin with, we prove the correctness
of the Gaussian Rejection Sampler in Algorithm 3. We note that this result implies that the Verifier in Algorithm 2 always
outputs samples (za+1, . . . , zb) ∼ q(.|y≤a) that are distributed according to the conditional target distribution.

C.1. Correctness of Algorithm 3

Theorem 15. Let ξ ∼ N (0, I). Then, for any m̂,m ∈ Rd and σ > 0, GRS(u, ξ, m̂,m) outputs (x, b) such that
x ∼ N (m, σ2I) and P[b = False] = TV

(
N (m̂, σ2I),N (m, σ2I)

)
15



Diffusion Models are Secretly Exchangeable: Parallelizing DDPMs via Autospeculation

Proof. Without loss of generality, we consider σ = 1 and observe that

P[b = True] =

∫
min

(
1,
N (ξ + v|0, I)
N (ξ|0, I)

)
N (ξ|0, I) dξ

=

∫
min(N (ξ|0, I),N (ξ + v|0, I)) dξ

=

∫
min(N (ξ|m, I),N (ξ|m̂, I)) dξ

= 1− TV (N (ξ|m, I),N (ξ|m̂, I))

which proves the second claim. Now, let g = x−m and e1, . . . , ed be an orthonormal basis of Rd with v = ∥v∥e1. Then,

g =


ξ + v w.p. min

(
1, N (ξ+v|0,I)

N (ξ|0,I)

)
(I− 2e1e

T
1 )v w.p. max

(
0, 1− N (ξ+v|0,I)

N (ξ|0,I)

) (13)

Then, the law of g satisfies the following:

Law(g) =

∫
δξ+v(g)min (N (ξ|0, I),N (ξ + v|0, I)) dξ

+

∫
δ(I−2eeT )ξ(g)max (N (ξ|0, I),N (ξ|0, I)−N (ξ + v|0, I)) dξ

= min (N (g − v|0, I),N (g|0, I)) +
∫

δ(I−2eeT )ξ(g)max (0,N (ξ|0, I)−N (ξ + v|0, I)) dξ (14)

where δx denotes the Dirac measure supported at x. To bound the integral on the RHS, we note that the matrix M = I−2e1eT1
is a reflection operator along the e1 axis, i.e., for any x ∈ Rd and y = Mx, ⟨y, e1⟩ = −⟨x, e1⟩ and ⟨y, ej⟩ − ⟨x, ej⟩ for
any j ̸= 1. Hence, it follows that ∥y∥ = ∥x∥ and x = My∫

δMξ(g)max (0,N (ξ|0, I)−N (ξ + v|0, I)) dξ = max (0,N (Mg|0, I)−N (Mg + v|0, I)) (15)

Now, N (Mg|0, I) = N (g|0, I) since ∥Mg∥ = ∥g∥. Moreover, since M = MT

∥Mg + v∥2 = ∥Mg∥2 + ∥v∥2 + 2 ⟨Mg,v⟩
= ∥g∥2 + ∥v∥2 + 2 ⟨g,Me1⟩ ∥v∥
= ∥g∥2 + ∥v∥2 − 2 ⟨g, e1⟩ ∥v∥
= ∥g − v∥

where we use the fact that Me1 = −e1 and v = ∥v∥e1. Hence, N (Mg + v|0, I) = N (g − v|0, I). Substituting into
equation (15), we have:∫

δMξ(g)max (0,N (ξ|0, I)−N (ξ + v|0, I)) dξ = max (0,N (g|0, I)−N (g − v|0, I))

Substituting this into (14), we get

Law(g) = min (N (g − v|0, I),N (g|0, I)) + max (0,N (g|0, I)−N (g − v|0, I))
= N (g|0, I)

Since x = m+ g, x ∼ N (m, I) which completes the proof.

C.2. Proof of Theorem 4

In this section, we present our analysis of Autospeculation for the Stochastic Localization Process. We use at to denote the
value of the index a at the end of the tth iteration in Algorithm 1.

16
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Lemma 16. (y0, . . . ,yat
) is distributed correctly according to the target distribution q(y0, . . . ,yat

). Furthermore, at is a
strictly increasing sequence in t

Proof. We prove this claim by induction. Clearly, the claim holds for t = 0. Now, suppose it holds for some t. By definition
of the proposal means and the target means in equations (7) and (6), m̂at+1 = mat+1. Then, by Theorem 15, Algorithm 2
does not reject the index at + 1, thereby ensuring that at+1 > at + 1 as per lines 13-18 of Algorithm 1. Since the verifier’s
outputs are always distributed according to the conditional target distribution, Law(yat+1, . . . ,yat+1 |y0, . . . ,yat) =
q(yat+1|y0, . . . ,yat). The proof is completed by removing the conditioning on y0, . . . ,yat by applying the induction
hypothesis.

Since Algorithm 1 terminates when a ≥ K, Lemma 16 implies Theorem 4

C.3. Adaptive Complexity of Algorithm 1

In this section, we analyze the adaptive complexity of Algorithm 1 for the SL process. Our proof combines arguments
from Anari et al. (2024a) with a careful analysis of speculations of the SL process motivated by the hidden exchangeability
property. We first define the a⋆i (u1:K , ξ1:K) as the maximum possible value of a such that the parallel rejection sampler
does not accept the ith proposal. Formally

a⋆i (u1:K , ξ1:K) = max {a ∈ [K] | Verifier(ua+1:K , ξa+1:K , m̂a+1:K ,ma+1:K) < i }

where mi, m̂i are defined as in Algorithm 1 (with b = K). We use R to denote the round complexity (i.e. the number of
iterations) taken by Algorithm 1. Since Algorithm 1 makes exactly two parallel model calls per iteration, bounding R is
equivalent to bounding the adaptive complexity. We first prove a worst case bound on R as a function of a⋆i
Lemma 17. The following holds for any integer θ ∈ N, u1:K ∈ [0, 1]K and σ1:K ∈ RK .

R ≤ 1 +
K

θ
+ |{i ∈ [K] | a⋆i (u1:K , ξ1:K) ≥ i− θ}|

Proof. Let t be denoted a good iteration if at − at−1 > θ and a bad iteration otherwise. Since the algorithm halts whenever
a ≥ K, the number of good iterations is bounded by K

θ + 1. Since at is a monotonically increasing sequence by Lemma 16,
any bad iteration satisfies a⋆at

(u1:K , ξ1:K) ≥ at−1 ≥ at − θ, i.e., at ∈ {i ∈ [K] | a⋆i (u1:K , ξ1:K) ≥ i− θ}. Since t→ at is
a bijection, we conclude that the number of bad rounds is upper bounded by |{i ∈ [K] | a⋆i (u1:K , ξ1:K) ≥ i− θ}|

We now use the above Lemma and the time-invariance properties of the SL process to prove an expectation bound on the
round complexity, which establishes the first claim of Theorem 5
Theorem 18 (Expected Round Complexity of Algorithm 1). Under the assumptions and parameter settings of Theorem 5,
Algorithm 1 run for the discretization of the SL process with θ ≍ (K/βηd)1/3 makes O(K2/3(βdη)1/3) parallel model calls in
expectation.

Proof. From Lemma 17, we note that

E[R] ≤ 1 +
K

θ
+

K∑
i=θ

P[a⋆i (u1:K , ξ1:K) ≥ i− θ] (16)

Note that a⋆i (u1:K , ξ1:K) ≥ i− θ implies that there exists some a ∈ [i− θ, i− 1] such that the proposal for step i made at
step a was rejected by the Verifier. Then, by Theorem 15,

K∑
i=θ

P[a⋆i (u1:K , ξ1:K) ≥ i− θ] ≤
∑
i≥θ

Eu,ξ

[
max

a∈[i−θ,i−1]
TV (q(yi|ya), p(yi|ya))

]

≤
√
K

√√√√∑
i≥θ

Eu,ξ

[
max

a∈[i−θ,i−1]
TV (q(yi|ya), p(yi|ya))

2

]
(17)

17
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By our choice of the proposal and target distributions, p(yi|ya) and q(yi|ya) are Gaussians with the same variance. To this
end, their TV distance is an increasing concave function of the difference of their means. Also, note that for a ∈ [i− θ, i−1]
p(yi|ya) and q(yi|ya) are Doob Martingales with respect to the filtration generated by (uj , ξj)j≤i, we conclude via the
Doob Maximal Inequality for p = 2

Eu,ξ

[
max

a∈[i−θ,i−1]
TV (q(yi|ya), p(yi|ya))

2

]
≲ E

[
TV (q(yi|yi−θ), p(yi|yi−θ))

2
]

(18)

We now bound the above quantity for each index i. To this end, let l = i− θ and define the following stochastic processes
associated with the proposal and target.

dy
(P)
tl+t = m(tl,y

(P)
tl

) dt+ dBtl+t

dy
(T)
ti+t = m(ti,y

(T)
ti ) dt+ dBti+t

Then, by the data processing inequality and equation (18), we obtain:

E
[

max
a∈[i−θ,i−1]

TV (q(yi|ya), p(yi|ya))
2

]
≲ E

[
TV

(
Py(P)

, Py(T)
)2

]
(19)

We now define the following auxiliary processes:

dȳ
(P)
tl+t = m(tl + t, ȳ

(P)
tl+t) dt+ dBtl+t

dȳ
(T)
ti+t = m(ti + t, ȳ

(P)
tl+t) dt+ dBti+t

Similarly, let P ȳ(P)

and P ȳ(T)

denote their respective path measures for t ∈ [0, ηl]. We observe that: 1. The differential
increments of ȳ(P)

t and ȳ
(T)
t match that of the SL process modulo a time-shift, 2. y(P)

t and y
(T)
t are Euler discretizations of

ȳ(P) and ȳ(T) respectively. By Pinsker’s and Cauchy Schwarz Inequality,

E
[
TV

(
Py(P)

, Py(T)
)2

]
≲ E

[
TV

(
Py(P)

, P ȳ(P)
)2

+ TV
(
Py(T)

, P ȳ(T)
)2

+ TV
(
P ȳ(P)

, P ȳ(T)
)2

]
≲ E

[
KL

(
P ȳ(P)

||||||Py(P)
)
+ KL

(
Py(T)

||||||P ȳ(T)
)
+ KL

(
P ȳ(P)

||||||P ȳ(T)
)]

(20)

To upper bound KL
(
P ȳ(P)||||||Py(P)

)
, we use the fact that y(P) corresponds to the Euler discretization of ȳ(P) and follow the

same steps as the proof of Theorem 13:

E[KL
(
P ȳ(P)

||||||Py(P)
)
] ≲

∫ tl+ηl

tl

E[∥mt −mtl∥2] dt

≲
∫ tl+ηl

tl

∫ t

tl

E[Tr(Σ2
s)]dsdt

≲
∫ tl+ηl

tl

Tr(E[Σtl ]− E[Σt])

≲ ηi−θTr(E[Σti−θ
]− E[Σti−θ+1

]) (21)

By a similar computation, we also have

E[KL
(
P ȳ(T)

||||||Py(T)
)
] ≤ ηi−θTr(E[Σti ]− E[Σti+ηi−θ

]) (22)

Using the fact that the increments of ȳ(P) and ȳ(T) are time-shifted versions of the SL process increments via Girsanov’s

18
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theorem and Theorem 12:

E[KL
(
P ȳ(P)

||||||P ȳ(T)
)
] ≲

∫ ηl

0

E[∥mtl+t −mti+t∥2] dt

≲
∫ ηl

0

∫ ti+t

tl+t

E[Tr(Σ2
s)] dsdt

≲
∫ ηl

0

Tr(E[Σtl+t]− E[Σti+t]) dt

≲ ηi−θTr(E[Σti−θ
]− E[Σti+ηi−θ

]) (23)

where we use the fact that E[Σt] is non-increasing in the PSD order.

Substituting equations (20) (21), (22) and (23) into equation (19) and summing over i, we obtain the following:

E
[

max
a∈[i−θ,i−1]

TV (q(yi|ya), p(yi|ya))
2

]
≲

∑
i≥θ

ηi−θTr(E[Σti−θ
]− E[Σti−θ+1

]) +
∑
i≥θ

ηi−θTr(E[Σti ]− E[Σti+ηi−θ
])

+
∑
i≥θ

ηi−θTr(E[Σti−θ
]− E[Σti+ηi−θ

])

≲ 2ηTr(E[Σ0]) + θhTr(E[Σ0]) ≲ θηβd (24)

Substituting (24) in (17) and (16), we conclude the following:

E[R] ≲
K

θ
+

∑
i≥θ

TV
(
Py(P)

, Py(T)
)

≲
K

θ
+
√
K

√∑
i≥θ

E
[
TV

(
Py(P) , Py(T)

)2]
≲

K

θ
+

√
Kθηβd

θ = (K/ηβd)1/3, we obtain the desired expected round complexity.

We now boost the expected round complexity guarantee of Theorem Theorem 18 into a high probability guarantee, thereby
proving the second claim of Theorem 5. The proof adapts the arguments of (Anari et al., 2024a), Theorem 28.

Theorem 19 (High Probability Bound for Round Complexity). Let δ ∈ (0, 1) be arbitrary. Consider Algorithm 1 for the SL
process run under the assumptions and parameter settings of Theorem 18. Then, with probability at least 1− δ, Algorithm 1
makes at most O(K2/3(βdh)1/3 ln(1/δ)) parallel model calls.

Proof. By Theorem 18 and Markov’s inequality, there exists a constant M such that P[R > MK2/3(ηβd)1/3] ≤ 1/2. We
shall now prove via induction that the following holds for any integer c ≥ 1 and K ≥ 1:

P[R > cMK
2/3(ηβd)

1/3] ≤ 2−c

The case c = 1 holds via Markov’s inequality and the case K = 1 is trivially true.

Now, suppose the statement holds for any K < K1 and consider an instance with K = K1. For i ∈ [K − 1] let
Ei be the event that Algorithm 1 doesn’t terminate and has a = i after running for MK2/3(ηβd)1/3 rounds. Clearly,∑

i≤K−1 P[Ei] ≤ 1/2. Moreover, by Lemma 16, running the algorithm for MK2/3(ηβd)1/3 ensures a ≥MK2/3(ηβd)1/3.
Hence, P[E0] = 0 and for any c > 1:

P[R > cMK
2/3(ηβd)

1/3] =
∑

i≥K−1

P[R > cMK
2/3(ηβd)

1/3|Ei]P[Ei]

≤ 1/2 max
i∈[K−1]

P[R > cMK
2/3(ηβd)

1/3|Ei] (25)
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Note that for any i ∈ [K − 1], Ei is measurable w.r.t the filtration generated by (uj , ξj)j≤i, i.e., whether or not Ei occurs is
determined exactly by these random variables variables, and thus Ei is independent of (ul, ξl)l>i. Furthermore, if Ei occurs
Algorithm 1 fixes the random variables (uj , ξj)j≤i and moves forward with a = i, Therefore, the law of the remaining
iterations is equal to that of a fresh run of the algorithm on the iterates (yl)l>i conditioned on the iterates (yj)j≤i being
fixed to their current values (as determined by the (uj , ξj)j≤i). By our induction hypothesis for and the definition of Ei, the
number of remaining rounds (upon conditioning on Ei) exceeds (c− 1)MK2/3(ηβd)1/3 with probability at most 2−c+1,
i.e., P[R > cMK2/3(ηβd)1/3|Ei] ≤ 2−c+1. Substituting this into equation (25) proves our claim by induction. The desired
O(MK2/3(ηβd)1/3 ln(1/δ)) bound on the round complexity is obtained by setting c ≍ ln(1/δ)
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