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Abstract

The echo state property (ESP) represents a fundamental concept in the reservoir
computing framework that ensures stable output-only training of reservoir net-
works. However, the conventional definition of ESP does not aptly describe pos-
sibly non-stationary systems, where statistical properties evolve. To address this
issue, we introduce two new categories of ESP: non-stationary ESP designed for
possibly non-stationary systems, and subspace/subset ESP designed for systems
whose subsystems have ESP. Following the definitions, we numerically demon-
strate the correspondence between non-stationary ESP in the quantum reservoir
computer (QRC) framework with typical Hamiltonian dynamics and input en-
coding methods using nonlinear autoregressive moving-average (NARMA) tasks.
These newly defined properties present a new understanding toward the practical
design of QRC and other possibly non-stationary RC systems.

1 Introduction

Physical reservoir computing Tanaka et al. (2019); Nakajima (2020), which utilizes non-linear nat-
ural dynamics of physical substrate for temporal information processing, has garnered much atten-
tion because it can mitigate the massive need for computational resources for sophisticated machine
learning methods, such as deep learning. However, not all physical systems can be effectively
used as reservoir substrates because of possible initial-state sensitivity in natural dynamics, such as
chaotic systems. One precondition to exclude such a system beforehand is the echo state property
(ESP), which requires the initial state dependency to vanish over time.

Quantum systems have been attracting attention as one of the promising substrates for physical
reservoir computing. However, we here argue that the quantum system, in general, is not always
stationary and that, in some cases, the traditional definition of ESP is not helpful for ensuring its
capability of temporal information processing. In this manuscript, we define and analyze new con-
ditions that secure such a possibly non-stationary system to behave as a practical reservoir.

1.1 Quantum reservoir computing

In the NISQ Preskill (2018) era, non-universal quantum computation schemes gained much atten-
tion because of their near-term feasibility on physical devices. Such computational procedure in-
cludes, for instance, variational quantum computation (VQC) McClean et al. (2016); Mitarai et al.
(2018) and quantum reservoir computing (QRC) Fujii and Nakajima (2017); Ghosh et al. (2019a).
VQC and QRC apply to one-shot and autoregressive quantum machine learning algorithms, which
also became a general prospective application of quantum computation. Recent works on QRC in-
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Figure 1: Inclusion relationship of conventional ESP and the one defined in this paper. NS stands
for non-stationary, SS stands for subset and SSP stands for subspace ESP, respectively.

clude proposals of QRC in various physical apparatus Negoro et al. (2018); Ghosh et al. (2019b);
Chen et al. (2020); Nokkala et al. (2021); Govia et al. (2021); Spagnolo et al. (2022), with some of
them performing actual physical experiments, and theoretical analyses Martínez-Peña and Ortega
(2023). Specifically, some works Chen et al. (2020); Suzuki et al. (2022); Sannia et al. (2022);
Kubota et al. (2023); Fry et al. (2023) focus on the dissipative nature of the natural quantum system
to find a relationship between the existence of dissipation and the trainability of QRC. Kubota et al.
(2023) analyzed the behavior of QRC driven by natural noise in quantum processing unit (QPU).
The work of Martínez-Peña and Ortega (2023) further examined this research direction to describe
ESP from the standpoint of a time-independent filter and dynamical systems that the authors call
state affine systems (SAS).

1.2 Echo state property

Reservoir computing (RC) Nakajima and Fischer (2021) is a temporal information processing
method that incorporates a dynamical system as a feature map generator. The ESP Gallicchio (2019);
Yildiz et al. (2012); Manjunath and Jaeger (2013); Jaeger (2002) is known to be one of the necessary
conditions for RC to perform information processing tasks through diminishing initial state sensi-
tivity. The ESP is a condition of an input-driven dynamical system to have a fading memory. It can
be experimentally checked by the following conditions.
Definition 1.1. Echo state property

Let a system state space be S , an input space be X and a set of time index be T . For an input-driven
dynamical system with dynamical map st = f({uτ}τ<t; s0) such that f : X T × S → S , where s0
is the initial state and {uτ} is a sequence of inputs indexed by time τ , the ESP holds if and only if

∀{uτ}, ∀(s0, s′0), ∥f({uτ}τ≤t; s0)− f({uτ}τ≤t; s
′
0)∥ →

t→∞
0. (1)

1.3 Contributions

In this paper, we define a two-way extension of conventional ESP. One direction is non-stationary
ESP, which requires finite variance output signals relative to initial-state difference decay. Another
direction is subset/subspace non-stationary ESP, which focuses on a situation in which a part of the
system has a non-stationary ESP. However, the entire system is possibly initial state dependent. Our
analysis includes numerical analysis of non-stationary ESP in a typical QRC setup with a specific
type of the system Hamiltonian.

Our contributions are as follows.

• Defined non-stationary and subspace/subset versions of ESP, which could be practical for
QRC and other non-conventional systems.

2



• Numerically showed a relationship between non-stationary ESP and the information pro-
cessing capability of QRC.

2 Main results

2.1 Non-stationary ESP

(a) Non-stationary ESP (b) ESP that is not non-stationary ESP

Figure 2: Schematics of two types of ESPs. State space is illustrated as a circle, and different states
are illustrated as red arrows. (a) Non-stationary ESP. State difference decays, but the state space
remains finite. (b) With ESP but not with non-stationary ESP. The state difference decays as fast as
the state decay.

Although ESP is supposed to work on stationary systems, a quantum system, for instance, is not
always stationary, even if the system dynamics map does not depend on time. A trivial example is
the case in which a Pauli noise exists. Let us depict an example where uniform depolarization of rate
ϵ exists. When the depolarization is the only noise that exists in the system, the norm of the system
state ρ measured using trace norm; D(ρ, I) vanishes when t → ∞, namely, D(ρ, I) ∝ (1− ϵ)t. In
this case, ESP does not mean forgetting memory, because the state difference ∥f({uτ}τ≤t; s0) −
f({uτ}τ≤t; s

′
0)∥ relative to ∥f({uτ}τ≤t; s

′
0)∥ does not change. The following modified definition

of ESP was made to handle such a non-stationary system in our analysis.

Definition 2.1. Non-stationary ESP

Given a system dynamics f : X T × S → S , where S is bounded, f has non-stationary ESP if the
following condition holds:

∀{uτ}, ∀(s0, s′0), ∃w ∈ N < +∞ s.t.

lim inf
t→∞

[
Vartw({uτ})

]
> 0 ⇒ ∥f({uτ}τ≤t; s0)− f({uτ}τ≤t; s

′
0)∥√

min
[
Var

t

w(f ; s0),Var
t

w(f ; s
′
0)
] →

t→∞
0, (2)

where

Et
w({uτ}) ≡

1

w

w−1∑
k=0

ut−k

Vartw({uτ}) ≡ Et
w

(
{∥uτ − E

t

w({uτ})∥2}
)

E
t

w(f ; s0) ≡
1

w

w−1∑
k=0

f({uτ}τ≤t−k; s0)

Var
t

w(f ; s0) ≡ E
t

w

(
∥f − E

t

w(f, s0)∥2; s0
)
.

(3)

The normalizing part on the denominator makes a non-stationary system, such as one that has a
strong depolarizing channel, not satisfy the condition. Therefore, checking the system property for
machine learning tasks is helpful. Additionally, it follows that if non-stationary ESP holds, then ESP
holds.
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(a) Subspace ESP (b) Subset ESP

Figure 3: (a) In the subspace ESP, the full state space S has an invariant subspace S ′ ⊆ S under the
input-driven system dynamics f . Furthermore, S ′ satisfies the non-stationary ESP under f |S′ . (b)
In the subset ESP, the subspace is limited to a subset of the S element.

2.2 Subspace and subset non-stationary ESP

In the RC setup, we can post-process output signals from the reservoir. Simple post-processing
methods include linear transformation and subset selection. Here, subset selection denotes the se-
lection of m ≤ n elements from the system output x ∈ Rn.

For instance, if an invariant subspace of the input-driven dynamics exists, that subsystem holds non-
stationary ESP. Then, we have non-stationary ESP-compatible output signals by post-projecting the
outputs to that invariant subspace. On the other hand, if the system dynamics has a disjoint structure
among its elements and there exists a non-stationary ESP-compatible subset of the outputs, then we
can post-restrict them to that subset to obtain non-stationary ESP-compatible output signals.

By following the observation above, we now formally define a weak version of non-stationary ESP
to preclude a situation in which only a part of the system is initial-state sensitive.

The subspace non-stationary ESP holds if only a linear system subspace holds non-stationary ESP.
Definition 2.2. Subspace non-stationary ESP

Given a system dynamics f : X T × S → S where S is bounded, f has subspace non-stationary
ESP if there exists a linear transformation P : S → S ′ such that S ′ ⊆ S and P ◦ f holds the
non-stationary ESP.

Specifically, to treat cases in which a subset S ′ of S holds the non-stationary ESP, we define the
following version.
Definition 2.3. Subset non-stationary ESP

Given a system dynamics f : X T × S → S where S is bounded. f has subset non-stationary ESP
if there exists a subset selection procedure P : S → S ′ such that S ′ ≤ S and P ◦ f holds the
non-stationary ESP.

The expression A ≤ B denotes that A is a non-void element-wise subset of B. If A ≡ Rn, then
B = Rm (m ≤ n) for instance.

It follows that if subset non-stationary ESP holds, then subspace non-stationary ESP holds because
we can define P as a diagonal matrix such that it has 1 in the dimension included in S ′ and 0
otherwise. In addition, if non-stationary ESP holds, then every element of the system state has non-
stationary ESP. Therefore, the subset non-stationary ESP holds. These relationships can be written
as

NS-ESP ⊊ Subset NS-ESP ⊊ Subspace NS-ESP. (4)
More generally, we have the inclusion relationship of the ESP variants, as seen in Fig. 1.

The definition of the subset non-stationary ESP is natural for practical QRC because we can se-
lect any observable for our system output. That is usually a subset of all Pauli strings or a linear
combination of them, which can be reconstructed by measuring some of the observables.
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If the subset non-stationary ESP holds, linear regression with sparsity regularization likely yields
a stationary result for its task because including an ESP-incompatible subset of the signal into the
regression should result in performance degradation.

Using the definitions above, we target systems in which some parts of the system have ESP while
the remaining portion does not. An example of such a system in a quantum case is when the system
dynamics is a tensor product of unitary and dissipative evolution. Ensuring a subset non-stationary
ESP guarantees that such a system can be used as a reservoir with a simple transformation of output
signals.

2.3 Non-stationary ESP of QRC

We have numerically examined whether the defined non-stationary ESP corresponds to temporal
information processing capability using nonlinear autoregressive moving-average (NARMA) tasks
Atiya and Parlos (2000). A NARMA sequence {yt} of order k, given an input sequence {ut}, is
defined as a nonlinear combination of {yt} and {ut} in the past:

yt = 0.3yt−1 + 0.05yt−1

t−1∑
i=t−k

yi + 1.5ut−1ut−k + 0.1. (5)

We use the QRC of the following Sherrington–Kirkpatrick (SK) Hamiltonian
Sherrington and Kirkpatrick (1975) with external field:

H =

N∑
i>j=1

Jijσ
x
i σ

x
j +

1

2

N∑
i=1

hiσ
z
i , (6)

where N is the number of qubits in the system, σx
i and σz

i are Pauli X and Y operator of i-th qubit, re-
spectively, Jij and hi are sampled from some distribution. The input sequence U ≡ {ut}t∈T ∈ R|T |

are fed into the reservoir using the following input encoding method named reset-input encoding:
ρ′ = E(ρ,u; θ)

= trA(ρ)⊗ σA(u; θ),
(7)

where A is the subsystem that we use for qubit state replacement by subsystem state σA(u) of form

σA(u; θ) ≡ U(u; θ)
(
|0⟩⟨0|⊗|A|

)
U†(u; θ). (8)

Therefore, the overall state update is
ρt+1 = e−iHE(ρt,ut; θ)e

iH . (9)
Here, we parametrize the input encoding unitary U(· ; θ) by a parameter θ to explore different
configurations to ensure that the QRC has different non-stationary ESP, while system Hamiltonian
H is fixed. The actual experiment was done on a 2-qubit setup, with |A| = 1, while θ stands for the
axis of single-qubit rotation in the Bloch sphere.

Reservoir output signals are
{
tr(Pρt) | P ∈ {I,X, Y, Z}⊗N

}
for each t. The first 80% of {ut}

are used to fit a linear regression to optimize MSE against the first 80% of {yt}. The test results
are computed using remaining 20% of the sequences. We have 5 NARMA sequences for each
order k and the results in Fig.4 are averaged over the sequences. We can observe that the RNMSE
results of both NARMA2 and NARMA10 tasks in Fig. 4e and Fig. 4f, respectively, almost perfectly
corresponds to the non-stationary ESP results in Fig. 4d. It should be noted that the red line at the
top and bottom of Fig. 4d, which corresponds to the large RNMSE in Fig. 4e and Fig. 4f, cannot be
reproduced by conventional ESP value Eq. (1), as shown in Fig. 4c.

3 Conclusion

This paper proposes a non-stationary and subspace/subset ESPs that are considered helpful in real-
world RC scenarios. As a concrete application, we have numerically analyzed a QRC with a well-
known SK Hamiltonian and a reset-input encoding method. We found a good correspondence be-
tween non-stationary ESP and information processing capability using NARMA tasks.

In a follow-up study, we conducted an in-depth theoretical analysis of non-stationary ESP to enhance
our understanding of the QRC dynamics Kobayashi et al.. Our theoretical framework provides novel
perspectives for the practical design of QRC and other non-stationary RC systems.
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(d) Non-stationary ESP (expanded surface)
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Figure 4: Grid search result of input rotation axis θ for a QRC with SK Hamiltonian with external
field and qubit-reset for input encoding. Each spherical coordinate corresponds to the input rotation
axis θ as described in the main text. Expanded surface plot is the plainer surface of the Bloch
sphere, in which top line and bottom line corresponds to north and south pole, respectively. a,c)
ESP. b, d) Non-stationary ESP, where the value is cut-off to be upper bounded by 0.5. Dt ≡
D(ρ

(i)
t , ρ

(j)
t ) stands for the trace distance of two different states starting from different initial states

ρ
(0)
i and ρ

(0)
j but fed the same input sequence. Vt stands for the denominator of Eq. (2) at time t.

At t = 0, variance calculation is done looking forward instead of backward for simplicity. e-f) Root
normalized mean squared error (RNMSE) of e) NARMA2. f) NARMA10 tasks with the same setup.
Our experiments are done with T = 200 and w = 10 where T and w are variables defined in Eq. (2).
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