Published as a conference paper at ICLR 2022

EFFICIENT SHARPNESS-AWARE MINIMIZATION FOR
IMPROVED TRAINING OF NEURAL NETWORKS

Jiawei Du'? , Hanshu Yan? , Jiashi Feng? , Joey Tianyi Zhou'; Liangli Zhen* ,
Rick Siow Mong Goh* , Vincent Y. F. Tan?2

LCentre for Frontier AI Research (CFAR), A*STAR, Singapore,

?Department of Electrical and Computer Engineering, National University of Singapore
3Department of Mathematics, National University of Singapore

“Institute of High Performance Computing (IHPC), A*STAR, Singapore

{dujiawei, hanshu.yan}Qu.nus.edu,vtan@nus.edu.sg
jshfeng@gmail.com, Joey.tianyi.zhou@gmail.com
{zhen_liangli, gohsm}@ihpc.a-star.edu.sg

ABSTRACT

Overparametrized Deep Neural Networks (DNN5s) often achieve astounding per-
formances, but may potentially result in severe generalization error. Recently,
the relation between the sharpness of the loss landscape and the generalization
error has been established by Foret et al. (2020), in which the Sharpness Aware
Minimizer (SAM) was proposed to mitigate the degradation of the generaliza-
tion. Unfortunately, SAM’s computational cost is roughly double that of base
optimizers, such as Stochastic Gradient Descent (SGD). This paper thus proposes
Efficient Sharpness Aware Minimizer (ESAM), which boosts SAM’s efficiency at
no cost to its generalization performance. ESAM includes two novel and effi-
cient training strategies—Stochastic Weight Perturbation and Sharpness-Sensitive
Data Selection. In the former, the sharpness measure is approximated by per-
turbing a stochastically chosen set of weights in each iteration; in the latter, the
SAM loss is optimized using only a judiciously selected subset of data that is
sensitive to the sharpness. We provide theoretical explanations as to why these
strategies perform well. We also show, via extensive experiments on the CIFAR
and ImageNet datasets, that ESAM enhances the efficiency over SAM from re-
quiring 100% extra computational overhead to 40% vis-a-vis base optimizers,
while test accuracies are preserved or even improved. Our codes are avaliable
athttps://github.com/dydjw9/Efficient_SAM.

1 INTRODUCTION

Deep learning has achieved astounding performances in many fields by relying on larger numbers of
parameters and increasingly sophisticated optimization algorithms. However, DNNs with far more
parameters than training samples are more prone to poor generalization. Generalization is arguably
the most fundamental and yet mysterious aspect of deep learning.

Several studies have been conducted to better understand the generalization of DNNs and to train
DNNSs that generalize well across the natural distribution (Keskar et al., 2017; Neyshabur et al., 2017;
Chaudbhari et al., 2019; Zhang et al., 2019; Wu et al., 2020; Foret et al., 2020; Zhang et al., 2021). For
example, Keskar et al. (2017) investigate the effect of batch size on neural networks’ generalization
ability. Zhang et al. (2019); Zhou et al. (2021) propose optimizers for training DNNs with improved
generalization ability. Specifically, Hochreiter & Schmidhuber (1995), Li et al. (2018) and Dinh
et al. (2017) argue that the geometry of the loss landscape affects generalization and DNNs with a
flat minimum can generalize better. The recent work by Foret et al. (2020) proposes an effective
training algorithm Sharpness Aware Minimizer (SAM) for obtaining a flat minimum. SAM employs
a base optimizer such as Stochastic Gradient Descent (Nesterov, 1983) or Adam (Kingma & Ba,
2015) to minimize both the vanilla training loss and the sharpness. The sharpness, which describes

*corresponding author

https://github.com/dydjw9/Efficient_SAM

Published as a conference paper at ICLR 2022

the flatness of a minimum, is characterized using eigenvalues of the Hessian matrix by Keskar et al.
(2017). SAM quantifies the sharpness as the maximized change of training loss when a constraint
perturbation is added to current weights. As a result, SAM leads to a flat minimum and significantly
improves the generalization ability of the trained DNNs. SAM and its variants have been shown
to outperform the state-of-the-art across a variety of deep learning benchmarks (Kwon et al., 2021;
Chen et al., 2021; Galatolo et al., 2021; Zheng et al., 2021). Regrettably though, SAM and its vari-
ants achieve such remarkable performance at the expense of doubling the computational overhead
of the given base optimizers, which minimize the training loss with a single forward and backward
propagation step. SAM requires an additional propagation step compared to the base optimizers to
resolve the weight perturbation for quantifying the sharpness. The extra propagation step requires
the same computational overhead as the single propagation step used by base optimizers, resulting
in SAM’s computational overhead being doubled (2x). As demonstrated in Figure 1, SAM achieves
higher test accuracy (i.e., 84.46% vs. 81.89%) at the expense of sacrificing half of the training speed
of the base optimizer (i.e., 276 imgs/s vs. 557 imgs/s).

In this paper, we aim to improve the efficiency of

=y 700 SAM but preserve its superior performance in general-

ization. We propose Efficient Sharpness Aware Mini-

mizer (ESAM), which consists of two training strategies

Stochastic Weight Perturbation (SWP) and Sharpness-

sensitive Data Selection (SDS), both of which reduce

computational overhead and preserve the performance of

SAM. On the one hand, SWP approximates the sharp-

ness by searching weight perturbation within a stochasti-

SGD SAM Esam 1O cally chosen neighborhood of the current weights. SWP

preserves the performance by ensuring that the expected

Figure 1: Training Speed vs. Accuracy of weight perturbation is identical to that solved by SAM.

SGD, SAM and ESAM evaluated by Pyra- QOn the other hand, SDS improves efficiency by ap-

midNet on CIFAR100. ESAM improves the roximately optimizing weights based on the sharpness-

efficiency with better accuracy compared to - ¢epgifive subsets of batches. These subsets consist of

SAM. . .

samples whose loss values increase most w.r.t. the weight

perturbation and consequently can better quantify the

sharpness of DNNs. As a result, the sharpness calculated over the subsets can serve as an upper
bound of the SAM’s sharpness, ensuring that SDS’s performance is comparable to that of SAM’s.

We verify the effectiveness of ESAM on the CIFAR 10, CIFAR100 (Krizhevsky et al., 2009) and Im-
ageNet (Deng et al., 2009) datasets with five different DNN architectures. The experimental results
demonstrate that ESAM obtains flat minima at a cost of only 40% (vs. SAM’s 100%) extra com-
putational overhead over base optimizers. More importantly, ESAM achieves better performance in
terms of the test accuracy compared to SAM. In a nutshell, our contributions are as follows:

BWE Training Speed

-3
a

3
i

Accuracy (%)
8 8

oo
Training Speed (images/s)

80

* We propose two novel and effective training strategies Stochastic Weight Perturbation
(SWP) and Sharpness-sensitive Data Selection (SDS). Both strategies are designed to im-
prove efficiency without sacrificing performance. The empirical results demonstrate that
both of the proposed strategies can improve both the efficiency and effectiveness of SAM.

* We introduce the ESAM, which integrates SWP and SDS. ESAM improves the generaliza-
tion ability of DNNs with marginally additional computational cost compared to standard
training.

The rest of this paper is structured in this way. Section 2.1 introduces SAM and its computational
issues. Section 2.2 and Section 2.3 discuss how the two proposed training strategies SWP and SDS
are designed respectively. Section 3 verifies the effectiveness of ESAM across a variety of datasets
and DNN architectures. Section 4 presents the related work and Section 5 concludes this paper.

2 METHODOLOGY

We start with recapitulating how SAM achieves a flat minimum with small sharpness, which is
quantified by resolving a maximization problem. To compute the sharpness, SAM requires addi-
tional forward and backward propagation and results in the doubling of the computational overhead

Published as a conference paper at ICLR 2022

Algorithm 1 Efficient SAM (ESAM)

Input: Network fp with parameters § = (01,02, ...,0y); Training set S; Batch size b; Learning
rate > 0; Neighborhood size p > 0; Number of iterations A; SWP hyperparameter (3; SDS
hyperparameter ~.

Qutput: A flat minimum solution 0.
fora =1to A do

1:

2 Sample a mini-batch B C S with size b.

3 forn =1to N do

4 if 6,, is chosen by probability S then

5: €p $VQ7L L[gg(fg) > SWPin B,
6: else

7: €n <+ 0

8 €4+ (€1,..y€N) > Assign Weight Perturbation
9 Compute £(fo1e, T;,y;) and construct BT with selection ratio v (Equation 6)
10 Compute gradients g = Vg Lg+ (fo+e) > SDS in B>
11: Update weights 6 < 0 — ng

compared to base optimizers. Following that, we demonstrate how we derive and propose ESAM,
which integrates SWP and SDS, to maximize efficiency while maintaining the performance. We in-
troduce SWP and SDS in Sections 2.2 and 2.3 respectively. Algorithm 1 shows the overall proposed
ESAM algorithm.

Throughout this paper, we denote a neural network f with weight parameters 6 as fy. The weights
are contained in the vector § = (01,60s,...,0y), where N is the number of weight units in the
neural network. Given a training dataset S that contains samples i.i.d. drawn from a distribution D,

the network is trained to obtain optimal weights 0 via empirical risk minimization (ERM), i.e.,

R . 1
§ = argmin {Ls(fe) -y 12<fe,xi,yi>}. M)
0 S|
(zi,yi)€S
where ¢ can be an arbitrary loss function. We take ¢ to be the cross entropy loss in this paper.
The population loss is defined as Lp(fs) = Ey, yi)op [€(fo, i, y:)]. In each training iteration,
optimizers sample a mini-batch B C S with size b to update parameters.

2.1 SHARPNESS-AWARE MINIMIZATION AND ITS COMPUTATIONAL DRAWBACK

To improve the generalization capability of DNNs, Foret et al. (2020) proposed the SAM training
strategy for searching flat minima. SAM trains DNNs by solving the following min-max optimiza-
tion problem,

min max L). 2
an aeoc, Le(fore) @

Given 0, the inner optimization attempts to find a weight perturbation € in Euclidean ball with radius
p that maximizes the empirical loss. The maximized loss at weights 6 is the sum of the empirical
loss and the sharpness, which is defined to be Rs(fy) = max|c|,<,[Ls(fo+e) — Ls(fo)]. This
sharpness is quantified by the maximal change of empirical loss when a perturbation ¢ (whose norm
is constrained by p) is added to §. The min-max problem encourages SAM to find flat minima.

For a certain set of weights 6, Foret et al. (2020) theoretically justifies that the population loss of
DNNSs can be upper-bounded by the sum of sharpness, empirical loss, and a regularization term on
the norm of weights (refer to Equation 3). Thus, by minimizing the sharpness together with the
empirical loss, SAM produces optimized solutions for DNNs with flat minima, and the resultant
models can thus generalize better (Foret et al., 2020; Chen et al., 2021; Kwon et al., 2021). Indeed,

we have))
Lp(fo) < Rs(fo) + Ls(fo) + A0z = A Ls(fo+e) + AlO]l3- 3)
In practice, SAM first approximately solves the inner optimization by means of a single-step gradient
descent method, i.e.,
¢ = argmax Ls(fo1c) = pVoLs(fo)- 4)

ellell2<p

Published as a conference paper at ICLR 2022

The sharpness at weights 6 is approximated by Rs(f9) = Ls(fo+e) — Ls(fo). Then, a base opti-
mizer, such as SGD (Nesterov, 1983) or Adam (Kingma & Ba, 2015), updates the DNNs’ weights to
minimize Ls(fg+e). We refer to Ls(fo1e) as the SAM loss. Overall, SAM requires two forward and
two backward operations to update weights once. We refer to the forward and backward propagation
for approximating ¢ as F; and B; and those for updating weights by base optimizers as F5 and B»
respectively. Although SAM can effectively improve the generalization of DNNG, it additionally re-
quires one forward and one backward operation (F} and Bj) in each training iteration. Thus, SAM
results in a doubling of the computational overhead compared to the use of base optimizers.

To improve the efficiency of SAM, we propose ESAM, which consists of two strategies—SWP
and SDS, to accelerate the sharpness approximation phase and the weight updating phase. Specif-
ically, on the one hand, when estimating ¢ around weight vector 6, SWP efficiently approximates
€ by randomly selecting each parameter with a given probability to form a subset of weights to
be perturbed. The reduction of the number of perturbed parameters results in lower computational
overhead during the backward propagation. SWP rescales the resultant weight perturbation so as
to assure that the expected weight perturbation equals to €, and the generalization capability thus
will not be significantly degraded. On the other hand, when updating weights via base optimizers,
instead of computing the upper bound Lg(fy+¢) over a whole batch of samples, SDS selects a subset
of samples, BT, whose loss values increase the most with respect to the perturbation €. Optimizing
the weights based on a fewer number of samples decreases the computational overhead (in a linear
fashion). We further justify that Lg(fs+¢) can be upper bounded by L+ (fg-e) and consequently
the generalization capability can be preserved. In general, ESAM works much more efficiently and
performs as well as SAM in terms of the generalization capability.

2.2 STOCHASTIC WEIGHT PERTURBATION

This section elaborates on the first efficiency enhancement strategy, SWP, and explains why SWP
can effectively reduce computational overhead while preserving the generalization capability.

To efficiently approximate ¢ (0,S) during the sharpness estimation phase, SWP randomly chooses a
subset 6 = {0r,,0r,,...} from the original set of weights ¢ = (1, ...,0y) to perform backprop-

agation B;. Each parameter is selected to be in the subvector # with some probability 3, which
can be tuned as a hyperparameter. SWP approximates the weight perturbation with pV;Ls(fs).

To be formal, we introduce a gradient mask m = (mq,..., my) where m; bR Bern(p) for all
i € {1,...,N}. Then, we have pV;Ls(fs) = m'é(0,B). To ensure the expected weight per-
turbation of SWP equals to ¢, we scale pV;Ls(fs) by a factor of % Finally, SWP produces an
approximate solution of the inner maximization as

m'é(0,B)
B

Computation Ideally, SWP reduces the overall computational overhead in proportion to 1 —
in By. However, there exists some parameters not included in 6 that are still required to be updated
in the backpropagation step. This additional computational overhead is present due to the use of the
chain rule, which calculates the entire set of gradients with respect to the parameters along a prop-
agation path. This additional computational overhead slightly increases in deeper neural networks.
Thus, the amount of reduction in the computational overhead is positively correlated to 1 — 5. In
practice, (3 is tuned to maximize SWP’s efficiency while maintaining a generalization performance
comparable to SAM’s.

a(0,B) = . &)

Generalization We will next argue that SWP’s generalization performance can be preserved when
compared to SAM by showing that the expected weight perturbation a(,B) of SWP equals to
the original SAM’s perturbation é(6,B) in the sense of the /5 norm and direction. We denote the
expected SWP perturbation by a(6,B), where

_ 1 . .
a(G,IB%)[i] = E[G(Q,B)M] = E . ﬂe(@,B)m = E(Q,B)M,
fori € {1,..., N}. Thus, it holds that

|a(0.B)ll> = |é(6,B)|l and CosSim(a(6,B),é(6,B)) =1,

4

Published as a conference paper at ICLR 2022

showing that the expected weight perturbation of SWP is the same as that of SAM’s.

2.3 SHARPNESS-SENSITIVE DATA SELECTION

In this section, we introduce the second efficiency enhance- L+ (f@ + g)
ment technique, SDS, which reduces computational overhead
of SAM linearly as the number of selected samples decreases.
We also explain why the generalization capability of SAM is
preserved by SDS.

m>

In the sharpness estimation phase, we obtain the approximate

solution € of the inner maximization. Perturbing weights along

this direction significantly increases the average loss over a a=

batch B. To improve the efficiency but still control the upper

bound L (fg+e), we select a subset of samples from the whole Lp- (fe + g-)

batch. The loss values of this subset of samples increase most

when the weights are perturbed by €. To be specific, SDS splits Figure 2: Illustration on the loss

the mini-batch B into the following two subsets changes of samples in B and B~
+._ o .) o along the weight perturbation €. The

]]37 . {(xzyyz) €eB: K(f0+67x17 yz) g(f@: «rzyyz) > Oé}, (6) average loss of samples in B+ in-

B~ = {(zi,9:) € B: L(fore, i yi) — U fo, wi, i) < a}, creases the most along the perturbation

where BT is termed as the sharpness-sensitive subset and the direction &

threshold « controls the size of BT. We let v = [B*|/|B| be the ratio of the number of selected
samples with respect to the batch size. In practice, v determines the exact value of « and serves as
a predefined hyperparameter of SDS. As illustrated in Figure 2, when o = 0, the gradient of the
weights evaluated on B aligns with the direction of € and the loss values of the samples in Bt will
increase with respect to the weight perturbation €.

Computation SDS reduces the computational overhead in F5 and By. The reduction is linear
in 1 — v. The hyperparameter y can be tuned to meet up distinct requirements in efficiency and
performance. SDS is configured the same as SWP for maximizing efficiency with comparable per-
formance to SAM.

Generalization For the generalization capability, we now justify that the SAM loss computing
over the batch B, Lg(fg+¢), can be approximately upper bounded by the corresponding loss evalu-
ated only on BT, Lg+ (fo1¢). From Equation 3, we have

Ly(fore) = vLp+ (fore) + (1 —) Le-(fore)
= Lp+(foe) + (1 —v)[Lp- (fot+e) — Lp+ (fote)] (7N
= Lg+(fote) + (1 =)[Re- (fo) + L~ (fo) — R+ (fo) — L+ (fo)].

On the one hand, since Rg(fy) = IT%EI (s yyenll(fores wi,yi) — €(fo, i, y;)] represents the aver-
age sharpness of the batch B, by Equation 6, we have Rg- (fy) < Rp(fy) < Rg+(fy), and

Ry~ (fo) — Re+(fs) <0. ®)
On the other hand, B* and B~ are constructed by sorting £(for¢, zi,v:) — £(fo, ®i,), which is

positively correlated to I(fp, z;,y;) (Li et al., 2019) (more details can be found in Appendix A.2).
Thus, we have

Lg-(fo) — L+ (fo) < 0.)
Therefore, by Equation 8 and Equation 9, we have
Ly(fore) < Lp+ (fo+e)- (10)

Experimental results in Figure 5 corroborate that R (o) — Rp+ (fg) < 0and Lg- (fo)—Lg+ (fo) <
0. Besides, Figure 6 verifies that the selected batch BT is sufficiently representative to mimic the
gradients of B since BT has a significantly higher cosine similarity with B compared to B~ in terms
of the computed gradients. According to Equation 10, one can utilize Ly+ (fg4¢) as a proxy to the
real objective to minimize of the overall loss Lg(fg4e) with a smaller number of samples. As a
result, SDS improves SAM’s efficiency without performance degradation.

Published as a conference paper at ICLR 2022

3 EXPERIMENTS

This section demonstrates the effectiveness of our proposed ESAM algorithm. We conduct experi-
ments on several benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009), using various model architectures: ResNet (He et al.,
2016), Wide ResNet (Zagoruyko & Komodakis, 2016), and PyramidNet (Han et al., 2017). We
demonstrate the proposed ESAM improves the efficiency of vanilla SAM by speeding up to 40.3%
computational overhead with better generalization performance. We report the main results in Ta-
ble 1 and Table 2. Besides, we perform an ablation study on the two proposed strategies of ESAM
(i.e., SWP and SDS). The experimental results in Table 3 and Figure 3 indicate that both strategies
improve SAM’s efficiency and performance.

3.1 RESULTS

CIFAR10 and CIFAR100 We start from evaluating ESAM on the CIFAR-10 and CIFAR-100 image
classification datasets. The evaluation is carried out on three different model architectures: ResNet-
18 (He et al., 2016), WideResNet-28-10 (Zagoruyko & Komodakis, 2016) and PyramidNet-110
(Han et al., 2017). We set all the training settings, including the maximum number of training
epochs, iterations per epoch, and data augmentations, the same for fair comparison among SGD,
SAM and ESAM. Additionally, the other hyperparameters of SGD, SAM and ESAM have been
tuned separately for optimal test accuracies using grid search.

We train all the models with 3 different random seeds using a batch size of 128, weight decay 104
and cosine learning rate decay (Loshchilov & Hutter, 2017). The training epochs are set to be 200
for ResNet-18 (He et al., 2016), WideResNet-28-10 (Zagoruyko & Komodakis, 2016), and 300 for
PyramidNet-110 (Han et al., 2017). We set 8 = 0.6 and v = 0.5 for ResNet-18 and PyramidNet-
110 models; and set 5 = 0.5 and v = 0.5 for WideResNet-28-10. The above-mentioned 3 and ~y
are optimal for efficiency with comparable performance compared to SAM. The details of training
setting are listed in Appendix A.7. We record the best test accuracies obtained by SGD, SAM and
ESAM in Table 1.

The experimental results indicate that our proposed ESAM can increase the training speed by up to
40.30% in comparison with SAM. Concerning the performance, ESAM outperforms SAM in the six
sets of experiments. The best efficiency of ESAM is reported in CIFAR10 trained with ResNet-18
(Training speed 140.3% vs. SAM 100%). The best accuracy is reported in CIFAR100 trained with
PyramidNet110 (Accuracy 85.56% vs. SAM 84.46%). ESAM improves efficiency and achieves
better performance compared to SAM in CIFAR10/100 benchmarks.

Table 1: Classification accuracies and training speed on the CIFAR-10 and CIFAR-100 datasets. Compu-
tational overhead is quantified by #images processed per second (images/s). The numbers in parentheses (-)
indicate the ratio of ESAM’s training speed w.r.t. SAM.

| CIFAR-10 | CIFAR-100
ResNet-18 | Accuracy images/s | Accuracy images/s
SGD 95.41+ 003 3,387 78.17+005 3,483
SAM 96.52+013 1,717(100.0%) | 80.17+0.7 1,730 (100.0%)
ESAM 96.56+008 2,409 (140.3%) | 80.41+0.0 2,423 (140.0%)
Wide-28-10 | Accuracy images/s | Accuracy images/s
SGD 96.34+012 801 81.56+013 792
SAM 97.27+0.11 396 (100.0%) 83.424+ 004 391 (100.0%)
ESAM 97.29+ 011 550 (138.9%) 84.51+001 545 (139.4%)
PyramidNet-110 ‘ Accuracy images/s ‘ Accuracy images/s
SGD 96.62+010 580 81.89+017 555
SAM 97.30 0.0 289 (100.0%) 84.46+ 004 276 (100.0%)
ESAM 97.81+001 401 (138.7%) 85.56+005 381 (137.9%)

ImageNet To evaluate ESAM’s effectiveness on a large-scale benchmark dataset, we conduct ex-
periments on ImageNet Datasets. The 1000 class ImageNet dataset contains roughly 1.28 million

Published as a conference paper at ICLR 2022

Table 2: Classification accuracies and training speed on the ImageNet dataset. The numbers in parentheses (-)
indicate the ratio of ESAM’s training speed w.r.t. SAM’s. Results with * are referred to Chen et al. (2021)

| ResNet-50 | ResNet-101
ImageNet \ Accuracy images/s \ Accuracy images/s
SGD 76.00* 1,327 77.80* 891
SAM 76.70% 654 (100.0%) | 78.60* 438 (100.0%)
ESAM 77.05 846 (129.3%) | 79.09 564 (128.7%)

training images and 50, 000 validation images with 469 x 387 averaged resolution. The ImageNet
dataset is more representative (of real-world scenarios) and persuasive (of a method’s effectiveness)
than CIFAR datasets. We resize the images on ImageNet to 224 x 224 resolution to train ResNet-50
and ResNet-101 models. We train 90 epochs and set the optimal hyperparameters for SGD, SAM
and ESAM as suggested by Chen et al. (2021), and the details are listed in appendix A.7. We use
B = 0.6 and v = 0.7 for ResNet-50 and ResNet-101. We employ the m-sharpness strategy for both
SAM and ESAM with m = 128, which is the same as that suggested in Zheng et al. (2021).

The experimental results are reported in Table 2. The results indicate that the performance of ESAM
on large-scale datasets is consistent with the two (smaller) CIFAR datasets. ESAM outperforms
SAM by 0.35% to 0.49% in accuracy and, more importantly, enjoys 28.7% faster training speed
compared to SAM. As the v we used here is larger than the one used in CIFAR datasets, the training
speed of ESAM here is slightly slower than that in the CIFAR datasets.

These experiments demonstrate that ESAM outperforms SAM on a variety of benchmark datasets
for widely-used DNNs’ architectures in terms of training speed and classification accuracies.

3.2 ABLATION AND PARAMETER STUDIES

To better understand the effectiveness of SWP and SDS in improving the performance and efficiency
compared to SAM, we conduct four sets of ablation studies on CIFAR-10 and CIFAR-100 datasets
using ResNet-18 and WideResNet-28-10 models, respectively. We consider two variants of ESAM:
(1) only with SWP, (ii) only with SDS. The rest of the experimental settings are identical to the
settings described in Section 3.1. We conduct grid search over the interval [0.3,0.9] for 5 and the
interval [0.3,0.9] for ~, with a same step size of 0.1. We report the grid search results in Figure 3.
We use 8 = 0.6,y = 0.5 for ResNet-18; and set § = 0.5, v = 0.5 for WideResNet-28-10 in the
four sets of ablation studies. The ablation study results are reported in Table 3.

Table 3: Ablation Study of ESAM on CIFAR-10 and CIFAR100. The numbers in brackets [-] represent the
accuracy improvement in comparison to SGD. The numbers in parentheses (-) indicate the ratio of ESAM’s
training speed to SAM’s. Green color indicates improvement compared to SAM, whereas red color suggests a
degradation.

CIFAR-10 CIFAR-100
ResNet-18 Accuracy images/s Accuracy images/s
SGD 95.41 3,387 78.17 3,438
SAM 96.52 [+1.11] 1,717 (100.0%) | 80.17 [+2.00] 1,730 (100.0%)
+ESAM-SWP | 96.74 [+1.33] 1,896 (110.5%) | 80.53 [+2.36] 1,887 (109.1%)
+ESAM-SDS | 96.45 [+1.04] 2,105 (122.6%) | 80.38 [+2.21] 2,103 (121.5%)
ESAM 96.56 [+1.15] 2,409 (140.3%) | 80.41 [+2.24] 2,423 (140.9%)
Wide-28-10 | Accuracy images/s | Accuracy images/s
SGD 96.34 801 81.56 792
SAM 97.27 [+0.93] 396 (100.0%) 83.42 [+1.86] 391 (100.0%)
+ESAM-SWP | 97.37 [+1.03] 430 (108.5%) | 84.44 [+2.88] 423 (108.3%)
+ ESAM-SDS | 97.24 [+0.90] 495 (124.8%) 84.46 [+2.90] 492 (125.8%)
ESAM 97.29 [+0.95] 551 (138.9%) | 84.51[+2.95] 545 (139.4%)

Published as a conference paper at ICLR 2022

Resnet18 on CIFAR10

Resnet18 on CIFAR100

® SGD 810 @ SGD
97.00 'V SAM V sAM g-04
® ESAM-SWP B=06 @® ESAM-SWP y=05 -
9675 $8 ESAM-SDS o 805 o2 Esam-sDs) o= PR
@ ESAM . 1 & @ ESAM o v
y=05 9
§96.50 %3:030?3 % 8V §80.0 B=03
o =03 =
96.25
3 3795
Q Q
< 96.00 <
79.0
95.75 ®
y=03
95.50 785
* *
95.25 78.0
4 16 18 20 22 24 26 28 30 14 16 18 20 22 24 26 28 30
Elapsed Time Per Epoch Elapsed Time Per Epoch
Wide-28-10 on CIFAR10 Wide-28-10 on CIFAR100
® SGD @ sGD
976y sam g5 ¥ SAM
@ ESAM-SWP B=05 ® ESAM-SWP y=05 -05
97.4 9 ESAM-SDS . J=05 52 98 ESAM-SDS . % . B
@ ESAM RN @ ESAM S-G9
5.97.2 F T .84 & %% e
[$) b4 [$]
o o
5970 5 v
3 Se3
<968 <
96.6 8
y=03 82
96.4 S * y=03
8

81

60 70 90 100 110

Time Per Epoch

120 130 60 70 80 90 100 110

Elapsed Time Per Epoch

120 130

80
Elapsed

Figure 3: Parameter study of SWP and SDS. The connected dots refer to SWP and SDS with different param-
eters; the isolated dots refer to the final results of SGD, SAM, and ESAM.

ESAM-SWP As shown in Table 3, SWP improves SAM’s training speed by 8.3% to 10.5%, and
achieves better performance at the same time. SWP can further improve the efficiency by using a
smaller 5. The best performance of SWP is obtained when 5 = 0.6 for ResNet-18 and § = 0.5
for WideResNet-28-10. The four sets of experiments indicate that 3 is consistent among different
architectures and datasets. Therefore, we set 5 = 0.6 for PyramidNet on CIFAR10/100 datasets and
ResNet on ImageNet datasets.

ESAM-SDS SDS also significantly improves the efficiency by 21.5% to 25.8% compared to SAM.
It outperforms SAM’s performance on CIFAR100 datasets, and achieves comparable performance
on CIFAR10 datasets. SDS can outperform SAM on both datasets with both architectures with little
degradation to the efficiency, as demonstrated in Figure 3. Across all experiments, v = 0.5 is the
smallest value that is optimal for efficiency while maintaining comparable performance to SAM.

Visualization of Loss Landscapes To visualize the sharpness of the flat minima obtained by ESAM,
we plot the loss landscapes trained with SGD, SAM and ESAM on the ImageNet dataset. We display
the loss landscapes in Figure 4, following the plotting algorithm in Li et al. (2018). The z- and y-
axes represent two random sampled orthogonal Gaussian perturbations. We sampled 100 x 100
points for 10 groups random Gaussian perturbations. The displayed loss landscapes are the results
we obtained by averaging over ten groups of random perturbations. It can be clearly seen that both
SAM and ESAM improve the sharpness significantly in comparison to SGD.

To summarize, SWP and SDS both reduce the computational overhead and accelerate training com-
pared to SAM. Most importantly, both these strategies achieve a comparable or better performance
than SAM. In practice, by configuring the 5 and ~, ESAM can meet a variety of user-defined effi-
ciency and performance requirements.

4 RELATED WORK

The concept of regularizing sharpness for better generalization dates back to (Hochreiter & Schmid-
huber, 1995). By using an MDL-based argument, which clarifies that a statistical model with fewer

Published as a conference paper at ICLR 2022

Training Loss
Training Loss
Training Loss

O H N W A& G

£1.0
10 g5 0.0 0095 10 g5 0.0 0.0 10 g5 0.0 0.0705

=05_39 1003 =05_349 1003 =05_349 1003

SGD SAM ESAM

Figure 4: Cross-entropy loss landscapes of the ResNet50 model on the ImageNet dataset trained with SGD,
SAM, and ESAM.

bits to describe can have better generalization ability, Hochreiter & Schmidhuber (1995) claim that
a flat minimum can alleviate overfitting issues. Following that, more studies were proposed to in-
vestigate the connection between the flat minima with the generalization abilities (Keskar et al.,
2017; Dinh et al., 2017; Liu et al., 2020; Li et al., 2018; Dziugaite & Roy, 2017; Jiang et al., 2019;
Moosavi-Dezfooli et al., 2019). Keskar et al. (2017) starts by investigating the phenomenon that
training with a larger batch size results in worse generalization ability. The authors found that the
sharpness of the minimum is critical in accounting for the observed phenomenon. Keskar et al.
(2017) and Dinh et al. (2017) both argue that the sharpness can be characterized using the eigenval-
ues of the Hessian. Although they also define specific notions and methods to quantify sharpness,
they do not propose complete training strategies to find minima that are relative “flat”.

SAM (Foret et al., 2020) leverages the connection between “flat” minima and the generalization error
to train DNNGs that generalize well across the natural distribution. Inspired by Keskar et al. (2017)
and Dinh et al. (2017), SAM first proposes the quantification of the sharpness, which is achieved by
solving a maximization problem. Then, SAM proposes a complete training algorithm to improve the
generalization abilities of DNNs. SAM is demonstrated to achieve state-of-the-art performance in
a variety of deep learning benchmarks, including image classification, natural language processing,
and noisy learning (Foret et al., 2020; Chen et al., 2021; Kwon et al., 2021; Pham et al., 2021; Yuan
etal.,, 2021; Jia et al., 2021).

A series of SAM-related works has been proposed. A work that was done contemporaneously SAM
(Wu et al., 2020) also regularizes the sharpness term in adversarial training and achieves much more
robust generalization performance against adversarial attacks. Many works focus on combining
SAM with other training strategies or architectures (Chen et al., 2021; Wang et al., 2022; Tseng
et al., 2021), or apply SAM on other tasks (Zheng et al., 2021; Damian et al., 2021; Galatolo et al.,
2021). Kwon et al. (2021) improves SAM’s sharpness by adaptively scaling the size of the nearby
search space p in relation to the size of parameters. Liu et al. (2022) leverages the past calculated
weight perturbations to save SAM’s computations. However, most of these works overlook the fact
that SAM improves generalization at the expense of the doubling the computational overhead. As
a result, most of the SAM-related works suffer from the same efficiency drawback as SAM. This
computational cost prevents SAM from being widely used in large-scale datasets and architectures,
particularly in real-world applications, which motivates us to propose ESAM to efficiently improve
the generalization ability of DNNs.

5 CONCLUSION

In this paper, we propose the Efficient Sharpness Aware Minimizer (ESAM) to enhance the efficiency
of vanilla SAM. The proposed ESAM integrates two novel training strategies, namely, SWP and
SDS, both of which are derived based on theoretical underpinnings and are evaluated over a variety
of datasets and DNN architectures. Both SAM and ESAM are two-step training strategies consisting
of sharpness estimation and weight updating. In each step, gradient back-propagation is performed
to compute the weight perturbation or updating. In future research, we will explore how to combine
the two steps into one by utilizing the information of gradients in previous iterations so that the
computational overhead of ESAM can be reduced to the same as base optimizers.

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENT

Jiawei Du and Joey Tianyi Zhou are suppored by Joey Tianyi Zhou’s A*STAR SERC Central Re-
search Fund.

Hanshu Yan and Vincent Tan are funded by a Singapore National Research Foundation (NRF) Fel-
lowship (R-263-000-D02-281) and a Singapore Ministry of Education AcRF Tier 1 grant (R-263-
000-E80-114).

We would like to express our special thanks of gratitude to Dr. Yuan Li for helping us conduct
experiments on ImageNet, and Dr. Wang Yangzihao for helping us implement Distributed Data
Parallel codes.

REFERENCES

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing gradi-
ent descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019
(12):124018, 2019.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pretraining or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global minimizers.
Advances in Neural Information Processing Systems, 34, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pp. 1019-1028. PMLR, 2017.

Jiawei Du, Hu Zhang, Joey Tianyi Zhou, Yi Yang, and Jiashi Feng. Query-efficient meta attack to
deep neural networks. In International Conference on Learning Representations, 2019.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2020.

Alessio Galatolo, Alfred Nilsson, Roderick Karlemstrand, and Yineng Wang. Using early-learning
regularization to classify real-world noisy data. arXiv preprint arXiv:2105.13244, 2021.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 5927-5935, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Simplifying neural nets by discovering flat minima. In
Advances in neural information processing systems, pp. 529-536, 1995.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International Conference on Machine Learning, pp. 4904-4916.
PMLR, 2021.

10

Published as a conference paper at ICLR 2022

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2019.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima.
In 5th International Conference on Learning Representations, ICLR 2017, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR (Poster),
2015.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 and CIFAR-100 datasets. URI:
https://www. cs. toronto. edu/kriz/cifar. html, 6(1):1, 2009.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905-5914. PMLR, 2021.

Buyu Li, Yu Liu, and Xiaogang Wang. Gradient harmonized single-stage detector. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 8577-8584, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Siisstrunk. On the loss landscape
of adversarial training: Identifying challenges and how to overcome them. Advances in Neural
Information Processing Systems, 33:21476-21487, 2020.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. arXiv preprint arXiv:2203.02714, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Robust-
ness via curvature regularization, and vice versa. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9078-9086, 2019.

Yurii E Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k?). In Dokl. akad. nauk Sssr, volume 269, pp. 543-547, 1983.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557-11568, 2021.

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein
Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local
linearization. Advances in Neural Information Processing Systems, 32, 2019.

Ching-Hsun Tseng, Shin-Jye Lee, Jia-Nan Feng, Shengzhong Mao, Yu-Ping Wu, Jia-Yu Shang,
Mou-Chung Tseng, and Xiao-Jun Zeng. Upanets: Learning from the universal pixel attention
networks. arXiv preprint arXiv:2103.08640, 2021.

Pichao Wang, Xue Wang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, Fan Wang, Hao Li, and Rong Jin.
Scaled relu matters for training vision transformers. 2022.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
alization. Advances in Neural Information Processing Systems, 33:2958-2969, 2020.

Hanshu Yan, Jiawei Du, Vincent Tan, and Jiashi Feng. On robustness of neural ordinary differential
equations. In International Conference on Learning Representations, 2019.

11

Published as a conference paper at ICLR 2022

Hanshu Yan, Jingfeng Zhang, Gang Niu, Jiashi Feng, Vincent YF Tan, and Masashi Sugiyama.
CIFS: Improving adversarial robustness of CNNs via channel-wise importance-based feature se-
lection. International Conference on Machine Learning, 2021.

Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker for
visual recognition. arXiv preprint arXiv:2106.13112,2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107—
115,2021.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in Neural Information Processing Systems, 32, 2019.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8156-8165, 2021.

Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understanding
why lookahead generalizes better than SGD and beyond. In Proc. Conf. Neural Information
Processing Systems, 2021.

12

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 THE ALGORITHM OF SAM

The algorithm of SAM is demonstrated in Algorithm 2.

Algorithm 2 SGD vs. SAM

Input: Network fg, 0§ = (61,61,...,0n), Training set S, Batch size b, Learning rate 7, Neighbor-
hood size p, Iterations A.

Output: A minimum solution 6.

1: fora=1to A do
2: Sample B with size b that B C S,
3 if SGD then
4: €+ 0 > No addtional computational overhead for ¢
5: else if SAM then
6.
7
8

€+ VoLg(fo) > additional F; and Bj to compute €

Compute g = Vo Lp(fo1e) > Fy and By
update the weights 0 < 6 — ng

A.2 OPTIMIZING OVER SUBSET B IS REPRESENTATIVE

The sharpness-sensitive subset B is constructed by sorting £(fo ¢, x;,y;) — £(fo, T4, yi), which is
positively correlated to I(fg, x;, y;). By a first-order Taylor series approximation,

U foresiryi) — U fo, vi,yi) = €- Vol(fo, xi, ys) + o([[€]])-
By Equation 4, € is the aggregated gradients of each instance in the complete dataset B, i.e.,

B|
¢ = argmax Lg(forc) = pVoLs(fo) = Y Vol(fo, @i, ys),

ellell2<p i=1

which indicates that ¢(foie, i, y:) — (fo,xs,y;) is positively correlated to the gradient
Vol(fo, i, y;). Lietal. (2019) claims that the difficult examples in deep learning (the training sam-
ples with high training loss) produce gradients with larger magnitudes. Therefore, ¢(fo4¢, i, yi) —
0(fg,x;,y;) is positively correlated to I(fg, x4, y;). We also demonstrate the correlation empirically.

We conduct experiments to verify Equation 9 and Equation 10. In Figure 5, We plot the four losses,
Ly+(fo), Le-(fo), Le+(fote), and Lg-(fg4e) w.r.t the epochs. The experimental results verify
that Equation 9 and Equation 10 hold for every training epoch.

Moreover, we conduct experiments to demonstrate that optimizing over the subset B is much more
representative than the subset B~. We compare the updating gradients computed from B+,B~ and a
random subset By,nq that |Brang| = [BT| = |B~| to those computed from B by calculating the cosine
similarity inspired by (Du et al., 2019), i.e.

CosSim(VgLg+ (fo1e), VoLr(fore)),
CosSim(VgLg- (fore), VoLn(fore)),

CosSim(VyLg,,(for¢), VoLr(fore))-

In Figure 6, we plot the cosine similarities in each training epoch evaluated with ResNet-18, Wide-
28-10 on CIFAR10. In terms of the computed gradients, the experimental results show that BT has
the highest cosine similarities with B than B~ and the random set B,;4.

A.3 LINEARITY MEASUREMENT OF SWP

As the experimental results in Figure 3 demonstrated, SWP can also improve the accuracy of ESAM
compared to SAM. We will investigate the advantage of SWP in terms of generalization in the

13

Published as a conference paper at ICLR 2022

Resnet18 on CIFAR10 Resnet18 on CIFAR100
3.0
Lg+(fe) . Lg+(fa)

25 Ly~ (fe) Ly~ (fe)
220 —o— Lp+(fo+2) 2, —o Lp+(fo+2)
S —u Lg-(fo12) S —w Lg-(fo12)
215 2
= g2
E10 =

4
0.5
0.0 0
0 25 50 75 _ 100 125 150 175 200 0 25 50 75 _ 100 125 150 175 200
Epochs Epochs
Wide-28-10 on CIFAR100
4 L+ (fg)

20 Lg-(fp)
) 3 —o— Lg+(fo+e)
815 8
- - —*— Lp-(fg+e))
2 A
E10 €2 *\
© ©
£ =

05 1

0.0 0

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 5: The SAM loss and the empirical loss calculated over the selected subsets BT, B, w.r.t the epochs,
as evaluated with ResNet-18, Wide-28-10 on CIFAR10 and CIFAR100. The subset B* selected by SDS has
much higher SAM loss and empirical loss than B~ among all the four groups of experiments.

Resnet18 on CIFAR10 Resnet18 on CIFAR100
T r— ey ~r—r //\,_,,M

A g
e

e
©
o
©

MG S R SIS MM gt S S SN EPARR APPAP SPON

o
o

Cosine Similarity
; o o
N =
Z
Cosine Similarity
o
N
—
a8

o
2

I
~

o
=)
=3
=)

—t— CosSim(VeL+
—®@— CosSim(VeL,~(
—4- CosSim(VeLs,,,,|

—r— CosSim(VeLg+ (fa), VL a(foé))
~@— CosSim(VeL - (fo.+2), VelLolfo+ é))
)

-02 0.2 @~ CosSim(VeLs,,,(fa+), Vela(fo s 2))
0 25 50 75 100 125 150 0 25 50 75 100 125 150 175 200
Epochs Epochs
10 Wide-28-10 on CIFAR10 10 Wide-28-10 on CIFAR100
B ~ T
R VNN /‘”/(k e A R
08 7 wlww‘w R i 8 0 W SV SNPDRY 08 i”‘w
- ¥ . QWWV@QW«.‘wm,owm,»@,,wwu
T 06 T 06
o o
£ £
» 04 » 04
@ ®
c c I
g o2 B oz / %
() Mm “"«WMW IS) L %
00| o / —t— CosSim(Vol.s+ (fo+2), Yol o(fo+ &) 0.0 —r— CosSim(VeL+ (fo), Yol o(fo)
\/ —@— CosSim(Velo-(fo+¢), VeLalfo 4 ¢)) —@— CosSim(VeLo-(fo+¢), VoLalfo+ ¢))
—02| | & CosSIm(VaLs,,(fo+2), VoLolfo-) -0.2 & CosSim(VaLs,, (fo+2), VoLalfo)
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 6: The cosine similarity between the gradients computed from subsets Bt, B™, and Byng with B,
as evaluated with ResNet-18, Wide-28-10 on CIFAR10 and CIFAR100. The gradients from the subset B
selected by SDS has much higher cosine similarity with the gradients from B than the gradients from B~ and
Brana among all the four groups of experiments.

14

Published as a conference paper at ICLR 2022

future research. Here we provide a discussion about the accuracy improvement contributed by SWP.
A plausible reason for such improvement is that SWP leads to a better inner maximization solved
in equation 2. The current solution of ¢ is approximated by assuming Lg(fy) is a linear function.
Therefore, the ¢ would result in a better inner maximization if Lg(fp) is “more linear” with respect
to 6. Inspired by (Qin et al., 2019; Yan et al., 2019; 2021), we measure the linearity of the loss
function by

(e, B) = |Lg(fore) — Le(fo) — € VoLg(fo)].
We conduct experiments on the CIFAR10 dataset with ResNet-18 model to verify that SWP can
improve the linearity (e, B) of the loss function Lg(fy). We compare the linearity of ESAM with
the (3 ranging from {0.2,0.3,...,0.9} to the SAM. The results are demonstrated in Figure 7. It can

Linearity Measure of SWP

0.030

0.028

0.026

¢
o
o
IN

Linearity

0.022

0.020 SWP,B=0.8

SWP,B=0.6
0.018| —— SWP,B=0.5
—— SWP,B=0.4
—— SWP,B=03
0.016| —— Swp,B=02

0 25 50 75 100 125 150 175 200
Epochs

Figure 7: The linearity measurement of SWP evaluated with the ResNet18 model on the CIFAR10 dataset
compared with SAM. The experimental results indicate that a smaller 8 can result in better linearity.

be shown that SWP will result in a better linearity as the 5 decreases. However, decreasing 3 will
also reduce the magnitude of ¢ and thus result in a worse inner maximization in equation 2. We
observe that 8 = {0.5,0.6} is optimal to balance the accuracy and efficiency of ESAM.

A.4 REDUCED COMPUTATIONAL OVERHEAD CONTRIBUTED BY SWP

Formulation We formulate the saved computational overhead contributed by SWP here. We dis-
cuss and examine the computational overhead in the PyTorch framework. Suppose that the NN we
discussed here has N layers. The most unit of parameters (D x C' x H x W) is the entire param-
eters of a layer in NN, where D is the number of kernels, C' is the number of channels, H and W
are the height and width of the input. SWP select each basic parameter unit to compute gradients
(i.e. requries_grad = True) with probability 8. We use g(NN, 3) to measure the saved computational
overhead in terms of percentage contributed by SWP compared to the vanilla SAM.

The computational overhead g(N,) is reduced not just by calculating gradients, but also by the
storing and hooking gradients. Because the storing and hooking operations of each parameter’s
gradients are independent to each other, the computational overhead saved from storing and hooking
are proportional to 1 — /3 and irrelevant to the depth N of NN. In addition, the storing and hooking
gradients are the dominant factor that result in the reduced computational overhead according to our
toy example in the following.

Next we discuss the saved computational overhead that stems from the calculation operations in the
general case. Some layers in the DNNs with complicated architectures such as DenseNet and ViT,
may have multiple basic parameter units in the same layer and be connected across any other layers.
Suppose the n,, layer has K (n) basic parameter units, let p™ be the calculation-free rate of a certain

parameter unit in 74, layer, we have p” = (1 — 8)X(™) .p»~1_ Therefore, p" = (1 — B)ELI KG)

15

Published as a conference paper at ICLR 2022

(1—B)"K, where K = + Zjvzl K (j). Assumed that the computations of each layer are the same,
by summing up the saved computational overhead of all parameters, we have

N n
9IN.B) = k(1= B) + ks Y oo

kao(1—B)
~ k(1) + -
N[1—(1-p8)"]
k(1 —)
~ k(1 — S 11
1(1=5)+ NG (11)
where k1, ko are determined by the computing time of calculation, &} = %

However, the commonly used DNNs’ architectures such as ResNet only have one basic parameter
unit in each layer. Besides, each layer of them is connected in serial with the next layer. Then, we
have p" = (1 — 62 - p"~1. Therefore, p" = (1 — 3)". The saved calculation contributed by the
parameter unit is ;-p". By summing up the saved computational overhead of all parameters, we
have

N 71,
9N B) = k(1= B) + ko Y

n=i

_ A _ _ N
:k1(1—6)+%1 o él A)
~ki(l—B)+ kz(jlvg 8, (12)

where k1, ko are determined by the computing time of calculation, storing and hooking gradients.

Toy Example We conducted a toy example on the CIFAR10 dataset with two MLPs. Each fully
connected layer of MLP is the same with a size of 3, 000 for both in and out features. The first mlp is
for the special case that /' = 1, where each layer has only one basic parameter unit and is connected
in serial with the next layer. We examined N = {50, 75,100, 125} and 8 = {0.1,...,0.9,1.0} to
record the saved computational overhead in percentage. Part of the results are reported in Table A.4.
By linear regression, we have k; = 0.3185,k2 = 0.1310, and the returned R? = 0.9983. The
second mlp is for the general case that K > 1, where each layer may have multiple basic parameter
units in the same layer and be connected across any other layers. We examined N = {35, 50, 65, 75}
and § = {0.1,...,0.9,1.0} to record the saved computational overhead in percentage. Part of the
results are reported in Table A.4. By linear regression, we have k; = 0.3143, k2 = 0.0737, and
the returned R? = 0.9989. The above experimental results verify the formulation of the reduced
computational overhead contributed by SWP in equation 11 and equation 12.

N | B | 9N, B) N | B | gN,p)
50 [09| 342% 25109 | 2.88%
50 | 0.5 | 16.28% 25 | 0.5 | 15.54%
50 | 0.1 | 30.08% 25 1 0.1 | 30.03%
75 109 | 3.44% 50| 09| 2.34%
75 | 0.5 | 15.79% 50 | 0.5 | 15.10%
75 | 0.1 | 30.42% 50 | 0.1 | 29.83%
100 | 0.9 | 3.37% 65| 09 | 223%
100 | 0.5 | 15.86% 65 | 0.5 | 14.95%
100 | 0.1 | 29.56% 65 | 0.1 | 29.22%
125 | 0.9 | 2.94% 75109 | 2.22%
125 | 0.5 | 14.87% 75 | 0.5 | 15.10%
125 | 0.1 | 29.42% 75 | 0.1 | 28.68%

Table 4: The special case that K = 1. By linear Table 5: The general case that K > 1. By linear
regression, k1 = 0.3185, k2 = 0.1310, and the regression, k; = 0.3143, k, = 0.0737, and the
returned R? = 0.9983. returned R? = 0.9989.

16

Published as a conference paper at ICLR 2022

A.5 VISUALIZATION OF LOSS LANDSCAPES WITH RESPECT TO ADVERSARIAL WEIGHT
PERTURBATIONS

We visualize the sharpness of the flat minima with respect to adversarial weight perturbations of
SGD,SAM and ESAM on the Cifarl0 dataset. The x- and y-axes represent two orthogonal ad-
versarial weight perturbations, which are nVyLg, (fs) and nVeLg, (fg) respectively, where 7 is
the learning rate during training. B, and B, are the randomly sampled subsets of batch B, and
IB.| = [B,| = |B|, B, UB, = B. We display the loss landscape in Figure 8, which demonstrates
that both SAM and ESAM improve the sharpness significantly in comparison to SGD.

0.10 0.10 0.08
w ” w
0.08 § 0.08 § §
0.06 o 0.06 o > 0.06
£ £ £
0.04 £ 0.04 £ £
£ c S | tooa
~ 0.02 © V 0.02 = = :
0.00 0.00
1005 0510 105 0.5-1.0 002
70.0_ 0.0 7% T0.0_ 0.0 7%
0310 10 05 0310 10 05

Figure 8: Cross-entropy loss landscapes of the ResNet18 model respect to adversarial weight perturbations on
the CIFAR10 dataset trained with SGD, SAM, and ESAM.

A.6 EVALUATION OF ESAM ON VIT-S/16

SAM has also been demonstrated to be effective on the new vision Transformer(ViT) architecture
(Chen et al., 2021). Therefore, we also evaluate ESAM with ViT-S/16 on ImageNet Datasets. We
use S = 0.5 and v = 0.7 for ViT-S/16, which share the same hyperparameters as ResNet-50 and
ResNet-101 in section 3.1. The results are reported in Table 6, which indicate that ESAM can still be
effective to improve efficiency in ViT-S/16 architecture. In particular, ESAM-SWP achieves much
better accuracy than SAM (80.88% v.s. 80.34%).

Table 6: Classification accuracies and training speed of ViT-S/16 on the ImageNet dataset.

| ViT-S/16
ImageNet \ Accuracy images/s
SGD 79.72 1,133
SAM 80.34 581
ESAM-SWP | 80.88 616
ESAM-SDS | 79.97 693
ESAM 80.46 734

A.7 TRAINING DETAILS

We tune the training parameters of SGD, SAM, and ESAM, by using grid searches. The learning rate
is chosen from the set {0.01,0.05,0.1,0.2}, the weight decay from the set {5 x 1074, 1 x 1073},
and the batch size from the set {64,128,256}. This is done to attain the best accuracies. The
exact training hyperparameters are reported in Table 7. On the ImageNet datasets, limited by the
computing resource, we follow and slightly modify the optimal hyperparameters as suggested by
Chen et al. (2021) for SGD, SAM and ESAM. The exact training hyperparameters are reported in
Table 8.

17

Published as a conference paper at ICLR 2022

Table 7: Hyperparameters for training from scratch on CIFAR10 and CIFAR100

CIFAR-10 CIFAR-100
ResNet-18 SGD SAM ESAM SGD SAM ESAM
Epoch 200 200
Batch size 128 128
Data augmentation Basic Basic
Peak learning rate 0.05 0.05
Learning rate decay Cosine Cosine
Weight decay 5x 107 1x107® 1x107® | 5x107* 1x107® 1x1073
p - 0.05 0.05 - 0.05 0.05
Wide-28-10 | SGD SAM ESAM | SGD SAM ESAM
Epoch 200 200
Batch size 256 256
Data augmentation Basic Basic
Peak learning rate 0.05 0.05
Learning rate decay Cosine Cosine
Weight decay 5x 107" 1x107% 1x107® | 5x 107" 1x107* 1x107?
p - 0.1 0.1 - 0.1 0.1
PyramidNet-110 | SGD SAM ESAM | SGD SAM ESAM
Epoch 300 300
Batch size 256 256
Data augmentation Basic Basic
Peak learning rate 0.1 0.1
Learning rate decay Cosine Cosine
Weight decay 5x 1074 5x 1074
p - 0.2 0.2 - 0.2 0.2

Table 8: Hyperparameters for training from scratch on ImageNet

ResNet-50 ResNet-110
ImageNet SGD SAM ESAM | SGD SAM ESAM
Epoch 90 90
Batch size 512 512
Data augmentation Inception-style Inception-style
Peak learning rate 0.2 0.2
Learning rate decay Cosine Cosine
Weight decay 1x107* 1x107*
p - 0.05 0.05 - 0.05 0.05
Input resolution 224 x 224 224 x 224

18

	Introduction
	Methodology
	Sharpness-aware minimization and its computational drawback
	Stochastic Weight Perturbation
	Sharpness-sensitive Data Selection

	Experiments
	Results
	Ablation and Parameter Studies

	Related work
	Conclusion
	Appendix
	The algorithm of SAM
	Optimizing over subset B+ is representative
	Linearity measurement of SWP
	Reduced computational overhead contributed by SWP
	Visualization of Loss Landscapes with respect to adversarial weight perturbations
	Evaluation of ESAM on ViT-S/16
	Training Details

