
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THINK: THINNER KEY CACHE BY QUERY-DRIVEN
PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have revolutionized the field of natural language
processing, achieving unprecedented performance across a variety of applications.
However, their increased computational and memory demands present significant
challenges, especially when handling long sequences. This paper focuses on the
long-context scenario, addressing the inefficiencies in KV cache memory con-
sumption during inference. Unlike existing approaches that optimize the memory
based on the sequence length, we identify substantial redundancy in the channel
dimension of the KV cache, as indicated by an uneven magnitude distribution and
a low-rank structure in the attention weights. In response, we propose THINK, a
novel query-dependent KV cache pruning method designed to minimize attention
weight loss while selectively pruning the least significant channels. Our approach
not only maintains or enhances model accuracy but also achieves a reduction in
KV cache memory costs by over 20% compared with vanilla KV cache eviction
and quantization methods. For instance, THINK integrated with KIVI can achieve
2.8× peak memory reduction while maintaining nearly the same quality, enabling
a batch size increase from 4× (with KIVI alone) to 5× when using a single GPU.
Extensive evaluations on the LLaMA and Mistral models across various long-
sequence datasets verified the efficiency of THINK, establishing a new baseline
algorithm for efficient LLM deployment without compromising performance.

1 INTRODUCTION

Large language models (LLMs) (Hadi et al., 2023; Brown et al., 2020; OpenAI, 2023; Touvron
et al., 2023a;b; Scao et al., 2022; Reid et al., 2024) have emerged as a dominant paradigm in
natural language processing, achieving state-of-the-art performance across various tasks. A key
principle, the Scaling Law (Kaplan et al., 2020), suggests that LLMs exhibit emergent abilities
as model size increases, improving their capacity to understand complex context and handle long
sequences (Xiong et al., 2023). This growth in capacity enables LLMs to generate coherent, con-
textually accurate responses and supports a variety of downstream applications, such as document
summarization (Zhang et al., 2019; 2024a), code generation (Chen et al., 2021b), solving mathemat-
ical problems (Hendrycks et al., 2021; Zhou et al., 2023; Wang et al., 2023; Lightman et al., 2023),
and conversational AI (OpenAI, 2022; 2023).

Despite their success in various applications, generating outputs with LLMs incurs significant com-
putational and financial costs, which rise with increasing model size and sequence length. Both the
training (Strubell et al., 2020; Hoffmann et al., 2022; Dong et al., 2024a) and inference (Ainslie
et al., 2023) stages involve frequent generation, further contributing to these costs. Consequently,
efficient LLMs have gained traction in recent years (Hu et al., 2021; Wan et al., 2023). To address
these challenges, quantization (Frantar et al., 2022; Lin et al., 2024; Dettmers et al., 2024; Xu et al.,
2023) and pruning methods (Sun et al., 2023; Frantar & Alistarh, 2023) are employed to reduce
model size. Additionally, the key-value (KV) cache, stored in GPU memory alongside model pa-
rameters, scales linearly with both sequence length and batch size, creating a substantial memory
burden when handling long sequences. Consequently, effective management of extended contexts is
essential for the practical deployment of LLMs. In this paper, we focus on the long-context scenario,
aiming to reduce memory consumption associated with processing lengthy sequences.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Query

S

D

5.2
0.1

0.1
0.2
7.8

4.5

Head N-1
 Eviction:

H2O,
SnapKV

....

Cache

1 0 1 0 0 1

Key
Channel Mask

Query

S

D

5.2
0.1

0.1
0.2
7.8

4.5

Head 1
 Eviction:

H2O,
SnapKV

....

Cache

1 0 1 0 0 1

Key
Channel Mask

Query

S

D

obs

5.2
0.1

0.1
0.2
7.8

4.5

Head 0
 Eviction:

H2O,
SnapKV

....

Cache

1 0 1 0 0 1

Key
Channel Mask

Figure 1: An illustration of the pruning procedure of THINK. Within each attention head, scores
are computed for each channel, and only the top T channels out of D are selected for retention. A
binary channel mask, along with the pruned keys, is then stored in the cache memory.

Specifically, the number of KV cache parameters is the product of batch size B, sequence length S,
number of layers L, number of heads N , channel size per head D, i.e., K,V ∈ RB×S×L×N×D,
which need to be stored in the GPU memory during inference. To reduce memory and compu-
tational costs during inference, efficiency can only be achieved by pruning the dimensions across
S,L,N,D or applying quantization to the caches. It is well-acknowledged that token importance
tends to be sparse. Consequently, KV eviction algorithms have been proposed to reduce the memory
footprint by addressing the sequence length dimension S (Xiao et al., 2023b; Li et al., 2024; Zhang
et al., 2024c; Leviathan et al., 2023). Additionally, inter-layer redundancy has been explored (Liu
et al., 2024a; Wu & Tu, 2024; Brandon et al., 2024) to address the layer dimension L. Despite
these advances, existing methods have largely overlooked the channel dimension D. In this paper,
we highlight that the magnitudes across key cache channel dimensions are significantly imbalanced,
and we observe a low-rank structure in attention weights. Based on these findings, we hypothesize
that the channel dimension of the key cache exhibits redundancy. Consequently, we focus on explor-
ing the redundancy in the KV cache along dimension D, aiming to develop strategies that reduce
memory costs without compromising performance.

In this paper, we introduce THINK, a simple yet effective method for KV cache pruning. To pinpoint
the least significant channels, we formulate the problem as an optimization task, aiming to minimize
the loss in attention weights caused by pruning. To effectively address this problem, we propose
a novel query-dependent criterion that assesses the importance of each channel. Using this crite-
rion, we then select the most critical channels in a greedy fashion. We evaluate THINK using the
LLaMA (Meta, 2024) and Mistral (Jiang et al., 2023) models, and validate its effectiveness across
various long-sequence datasets. The results indicate that, when paired with token eviction and KV
cache quantization methods, THINK not only maintains comparable or superior accuracy but also
reduces KV cache memory costs by over 20%.

Contributions. This work pioneers the investigation into the sparsity within the channels of the
KV cache. Specifically, we uncover that the activated key cache is sparse for a given query. This
insight allows us to prune the key cache channels using a query-induced norm. Building on this
insight, we introduce THINK, the first channel pruning method specifically designed for KV cache.
THINK reduces the dimensionality of the cache channels, leading to linear savings in memory usage.
As a plug-and-play technique, THINK is orthogonal to other KV cache compression schemes (e.g.
KV cache eviction, quantization). Our extensive experiments demonstrate THINK’s remarkable
efficiency on the LLaMA and Mistral models. Moreover, we explore the potential extension of
THINK to value cache pruning (THINKV), showcasing the broad applicability of our method.

2 OBSERVATIONS

We identify several key observations that motivate our approach to pruning the channels of the
KV cache. Specifically, we visualize the magnitude of the KV cache and perform singular value
decomposition (SVD) on the attention mechanism of the LLaMA model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Magnitudes of KV cache channels. Figure 4 (in Appendix A) visualizes the absolute values of the
KV cache across tokens in each channel1. Consistent with previous findings (Lin et al., 2024; Xiao
et al., 2023a; Liu et al., 2024b), we observe that only certain channels have significant magnitudes
in the key cache, whereas the value cache lacks obvious patterns. For instance, in layer 14 (Figure 4
(a)), the magnitudes in the key cache are substantially higher around the 50th channel across all
tokens. A similar pattern is observed in the 50th and 150th channels of the first head in layer 20
(Figure 4 (c)). Given such an observation, Liu et al. (2024b) proposed to perform quantization over
the channels of the key cache. Beyond quantization, our findings suggest that certain key cache
channels with smaller contributions to the attention mechanism can be pruned. Moreover, channel
quantization and pruning are orthogonal techniques, meaning they can be applied concurrently to
further improve model efficiency.

Singular value analysis. We conducted singular value decomposition (SVD) (Demmel, 1997) on
the attention weights of the specified layers to investigate their principal components. The singular
values derived from SVD capture the effective rank of the attention matrix, indicating how the
information is distributed across different components.

Figure 5 (a) (in Appendix A) illustrates the energy distribution of the singular values, plotted on
a logarithmic scale to enhance visibility of the differences. Notably, only a few singular values
exhibit high energy levels exceeding 0.01 across all heads and layers, highlighting their relative
significance. This observation aligns with previous findings (Bhojanapalli et al., 2021), where a
small subset of singular values often captures most of the information in attention mechanisms.
In addition, the rapid decay of the energy suggests that a low-rank approximation can effectively
capture the essential information in the key cache.

Figure 5 (b) (in Appendix A), the normalized cumulative energy sum reveals that the top 50 singular
values account for over 90% of the total energy. These findings suggest that the attention matrix is
inherently low-rank (Wang et al., 2020; Chen et al., 2021a; Dong et al., 2024b), indicating that the
key cache can be approximated using low-dimensional vectors (Singhania et al., 2024).

3 THINK

Notations. We use uppercase letters (e.g., X,Y) to denote scalar values and boldface uppercase
letters (e.g., Q,K) to denote matrices and tensors. The notation ∥ · ∥p denotes the lp-norm for
vectors. Unless otherwise specified, ∥ · ∥ denotes the l2-norm. The Frobenius norm is denoted by
∥ · ∥F . The floor function is denoted by ⌊·⌋, and the ceiling function is denoted by ⌈·⌉.

3.1 PRELIMINARY STUDY OF KV CACHE OPTIMIZATION

In scenarios with extended contexts or batch processing, the main limitations in terms of mem-
ory and speed are due to the handling of the KV cache size. Considering a batch of requests to
a Large Language Model (LLM) service that provides a long input prompt consisting of tokens
[xB1, ..., xBS], the total KV cache size can be computed as follows: 2 × B × S × L × N × D,
where L is the number of layers, N is the number of heads, D is the head dimension. The KV cache
size grows linearly as the batch size B and sequence length S. For a model with multihead attention
(MHA) (Vaswani et al., 2017), such as LLaMA2-7B (Touvron et al., 2023b), a context length of
2048 and a batch size of 13 require storing a 13 GB KV cache, which is equivalent to the size of
the model parameters. The KV cache must be transferred from off-chip memory (HBM) (Jia et al.,
2018) to on-chip memory (cache) for each token generated, leading to a memory bottleneck. This
substantial memory demand highlights the challenges in managing large-scale models and the need
for efficient memory utilization strategies. Current methods optimize the KV cache based on the
sequence length S (Xiao et al., 2023b; Zhang et al., 2024c; Li et al., 2024) and precision (Hooper
et al., 2024; Liu et al., 2024b). We will introduce a new method, THINK, to optimize it from the
perspective of the number of head dimensions D.

Magnitude based Pruning: Based on the observations in Figure 4 which depicts the significant
variation in the magnitudes across different channels, one straightforward criterion is to use the

1We use the visualization code from https://github.com/jy-yuan/KIVI/tree/main/vis.

3

https://github.com/jy-yuan/KIVI/tree/main/vis

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of pruning key cache by lp norm on LongBench.

Method λ

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

H2O 0.0 23.52 17.93 34.68 42.11 33.52 19.92 22.11 22.56 23.82 41.00 90.46 40.20 5.87 69.50 56.71 51.69 37.23
+l1 0.3 23.38 17.15 34.99 40.56 31.49 19.90 21.37 22.13 23.44 40.50 90.10 40.65 5.41 69.00 58.64 54.99 37.11
+l1 0.4 23.51 15.40 34.37 40.71 31.28 20.24 21.25 22.29 22.54 38.50 89.22 39.27 5.87 68.33 58.47 54.33 36.60
+l2 0.3 23.98 17.04 35.19 39.27 31.29 20.40 21.62 22.46 23.34 40.50 89.75 40.71 5.54 68.67 60.12 58.52 37.40
+l2 0.4 23.76 16.23 32.19 40.23 32.13 20.69 21.30 22.25 23.20 39.50 89.61 40.24 5.66 69.00 60.09 59.45 37.22

SnapKV0.0 24.84 23.96 38.77 42.75 34.55 20.87 22.26 22.61 23.97 70.00 90.52 40.29 5.81 69.50 59.04 51.81 40.10
+l1 0.3 24.43 24.63 40.11 41.83 33.47 21.22 21.47 22.41 23.73 66.50 90.39 40.20 5.70 68.10 61.04 55.37 40.04
+l1 0.4 24.58 24.87 39.30 42.76 31.95 20.47 20.95 22.22 23.42 55.50 90.22 39.13 5.82 68.39 60.71 56.10 39.15
+l2 0.3 24.47 24.73 38.16 41.86 32.23 20.23 21.59 22.45 23.77 67.50 90.33 40.31 5.70 68.42 62.65 60.07 40.28
+l2 0.4 24.52 23.75 38.35 42.42 32.96 20.39 21.21 22.28 23.41 60.00 90.20 39.59 5.75 68.29 61.96 60.59 39.74

norm of the magnitude to measure the importance of different channels in key cache.

Mn,d =
∥∥K[n, :, d]

∥∥
p
. (1)

Given pruning ratio λ, We only keep T = ⌊(1 − λ)D⌋ most important channels among the D
channels of each head: I = TopT (M,T) where ∥·∥p is the lp norm of each channel. n ∈ [1, N] and
d ∈ [1, D] are indicators of heads and channels in key cache. I ∈ (Z+)

N×T stores the indicators of
the top T values in tensor M per head.

In Table 1, we present the results of key cache pruning with various pruning ratios applied to the
LLaMA-3-8B model. We utilize the l1 and l2 norms as criteria for evaluation, and validate per-
formance using the LongBench benchmark (Bai et al., 2023). Compared to the baseline methods,
H2O (Zhang et al., 2024c) and SnapKV (Li et al., 2024), both with a KV length of 512, we further
prune the channels of the key cache. A 30% pruning ratio can maintain accuracy; however, increas-
ing it to 40% results in significant performance degradation, especially for l1 norm based pruning.
The results of magnitude-based pruning support our assumption that the key cache is redundant in
the channel dimension. These results also indicate the need for a better pruning metrics to achieve
higher pruning ratios effectively.

3.2 QUERY-DRIVEN PRUNING

For each head, the attention scores are computed using the queries and keys, and then applied to
the values. The formula for the attention for head i is: Attention(Qi,Ki,Vi) = softmax(QiKT

i√
D

)Vi,

where Qi,Ki,Vi ∈ RS×D. When one channel of Ki is pruned, the corresponding channel in Qi
will also be removed. We aim to find the optimal subset of channels to prune, denoted by the
selection matrix S ∈ {0, 1}D×D, where S is a diagonal matrix with binary entries (1 for keeping
a channel, 0 for pruning it). To better maintain the performance after pruning the channels, we
minimize the Frobenius norm of the difference between the original and pruned attention weights:
minS ∥QiK

T
i − QiS(KiS)T ∥F . Given a pruning ratio λ, it can further expanded as:

min
S

∥∥QiK
T
i −QiSK

T
i

∥∥
F

(2)

subject to trace(S) = ⌊(1− λ)D⌋
S = diag(s1, s2, . . . , sD), where sj ∈ {0, 1}

For simplicity, we use greedy algorithm to optimize S. To achieve the pruning goal, we define a
criterion for evaluating the importance of each channel and greedily select the channels with largest
scores: Scorei[j] =

∥∥Qi[:, j]Ki[:, j]
T
∥∥
F
, Ii = TopT (Scorei, T). Here’s a detailed explanation

of why it optimizes the selection matrix. The scorei[j] measures the magnitude of the interaction
between the query and key vectors for channel j in each head i. By selecting channels with the
highest interaction magnitudes, we aim to retain the most significant contributions to the attention
mechanism. This criterion ensures that the selected channels preserve the primary information flow
in the attention computation, thereby minimizing the loss of important information.

Observation Window. Following SnapKV (Li et al., 2024), to reduce the computation cost, we
only use the last Sobs window to calculate the score as the last window of input sequence recognizes
highly similar attention pattern with generation: ∥Qi[−Sobs :, j]Ki[:, j]

T ∥F .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of key cache pruning on LLaMA-3-(8B/70B)-Instruct on Long-
Bench. THINK (λ) indicates we prune the key cache channels with a pruning ratio of λ.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

LLaMA-3-8B-Instruct, KV-size Full
ALL KV 25.56 32.27 39.71 43.56 35.09 21.18 28.71 23.26 26.64 73.50 90.48 42.33 4.80 69.25 59.29 54.05 41.86

LLaMA-3-8B-Instruct, KV-size 128
H2O 22.12 13.20 31.61 37.79 32.71 18.45 20.32 22.02 21.10 38.50 87.75 39.14 5.83 69.50 55.06 50.97 35.38
+THINK (0.4) 22.85 14.55 29.49 38.63 30.84 18.90 20.12 21.96 20.68 38.50 86.38 38.40 5.50 69.17 57.93 56.12 35.63
+THINK (0.5) 23.47 14.06 28.67 38.35 30.21 17.87 19.69 21.94 19.95 38.50 87.14 38.07 4.92 69.50 57.99 56.66 35.44
SnapKV 21.19 13.55 32.64 38.75 29.64 18.73 18.98 21.62 20.26 45.00 88.36 37.64 5.13 68.85 55.84 51.82 35.50
+THINK (0.4) 22.11 14.67 32.49 36.25 28.63 18.80 18.93 21.49 20.14 44.50 88.11 38.32 5.75 69.17 58.21 55.89 35.84
+THINK (0.5) 21.79 14.73 32.03 37.52 27.86 18.28 18.50 21.52 19.71 43.50 86.00 38.35 5.59 69.50 57.96 56.96 35.61

LLaMA-3-8B-Instruct, KV-size 512
H2O 23.52 17.93 34.68 42.11 33.52 19.92 22.11 22.56 23.82 41.00 90.46 40.20 5.87 69.50 56.71 51.69 37.23
+THINK (0.4) 23.76 17.80 33.80 40.39 30.70 19.09 21.82 22.51 23.78 41.00 90.16 40.67 5.15 69.25 60.77 57.58 37.39
+THINK (0.5) 24.17 16.96 35.76 39.47 30.29 18.67 21.39 22.59 23.06 41.00 89.81 40.35 5.23 69.33 60.20 58.34 37.29
+THINK (0.6) 23.40 14.83 32.62 38.47 30.97 19.81 20.80 22.04 21.60 40.00 88.79 38.90 5.36 69.50 58.28 57.65 36.44
SnapKV 24.84 23.96 38.77 42.75 34.55 20.87 22.26 22.61 23.97 70.00 90.52 40.29 5.81 69.50 59.04 51.81 40.10
+THINK (0.4) 24.58 25.44 37.03 41.87 33.45 20.58 21.77 22.42 24.16 70.00 90.39 40.29 6.06 69.50 62.05 59.23 40.55
+THINK (0.5) 24.85 25.10 37.06 41.58 32.34 20.60 21.61 22.44 23.66 69.50 90.39 39.70 5.84 69.79 61.57 59.42 40.34
+THINK (0.6) 25.98 22.77 38.37 40.44 33.19 19.90 20.84 22.21 22.55 59.00 90.32 38.12 6.39 69.50 59.14 58.40 39.20

LLaMA-3-8B-Instruct, KV-size 1024
H2O 25.62 22.16 36.81 41.01 33.53 19.41 23.28 22.65 25.41 46.50 90.82 41.78 5.79 69.25 59.69 55.50 38.70
+THINK (0.4) 25.52 21.93 37.17 41.56 31.22 20.17 22.89 22.95 25.21 47.00 90.74 41.34 5.57 69.50 62.58 58.67 39.00
+THINK (0.5) 25.41 22.19 37.64 40.92 31.27 18.66 22.17 22.22 24.84 46.50 90.34 40.59 5.20 69.50 61.71 57.99 38.57
+THINK (0.6) 24.06 17.80 37.85 38.63 29.98 19.40 21.41 22.32 23.42 44.50 90.16 39.43 5.84 69.50 58.31 58.73 37.58
SnapKV 24.62 25.99 37.64 43.84 34.99 20.00 24.28 22.39 25.63 72.5 90.56 40.41 5.36 69.25 60.57 56.11 40.88
+THINK (0.4) 24.88 27.72 38.60 43.16 32.44 20.67 24.21 22.79 25.56 71.50 90.45 40.94 5.93 69.50 62.77 59.45 41.29
+THINK (0.5) 24.82 27.26 39.66 42.82 32.09 19.56 23.52 22.48 25.34 71.50 90.43 40.74 5.20 69.50 62.46 59.75 41.07
+THINK (0.6) 24.46 27.35 38.22 41.96 31.64 20.18 21.89 22.83 23.68 70.00 90.19 38.69 6.10 69.50 58.87 59.26 40.30

LLaMA-3-8B-Instruct, KV-size 2048
H2O 25.56 26.85 39.54 44.30 32.92 21.09 24.68 23.01 26.16 53.00 90.65 41.84 4.91 69.25 58.43 51.31 39.59
+THINK (0.4) 25.56 26.31 39.20 42.96 31.81 20.53 24.23 23.35 25.90 53.50 90.56 41.03 5.52 69.25 62.10 59.00 40.05
+THINK (0.5) 25.01 25.37 38.82 42.32 31.27 20.50 23.78 23.21 26.03 53.00 90.37 40.86 5.13 69.50 61.91 58.95 39.75
+THINK (0.6) 24.37 22.14 37.77 40.13 29.50 20.26 22.09 22.76 24.78 49.50 90.16 39.69 5.56 69.50 59.24 58.78 38.51
SnapKV 25.86 29.55 41.10 44.99 35.80 21.81 25.98 23.40 26.46 73.50 90.56 41.66 5.17 69.25 58.67 51.52 41.58
+THINK (0.4) 25.41 29.79 39.21 43.35 33.96 21.49 25.78 23.11 26.23 73.00 90.56 41.79 5.81 69.50 62.45 59.19 41.91
+THINK (0.5) 25.00 30.25 39.27 43.23 32.93 21.24 25.16 23.01 26.5 73.00 90.37 41.26 5.45 69.50 62.3 59.84 41.77
+THINK (0.6) 24.89 28.88 40.44 41.30 29.99 21.34 23.48 22.9 24.99 72.50 90.36 38.5 5.71 69.50 59.77 59.50 40.88

LLaMA-3-70B-Instruct, KV-size 128
SnapKV 25.91 39.41 43.83 49.60 51.23 27.76 22.14 21.91 23.16 69.00 91.55 43.54 12.50 72.00 48.41 63.49 44.09
+THINK (0.4) 25.64 39.20 43.60 50.22 50.50 29.32 21.70 21.96 23.35 68.00 91.27 43.24 12.50 73.00 48.01 62.43 44.00
+THINK (0.5) 26.31 38.76 44.86 48.54 49.62 28.97 21.46 22.01 22.91 67.00 91.52 43.15 12.50 72.50 47.21 60.82 43.63

LLaMA-3-70B-Instruct, KV-size 512
SnapKV 27.95 45.19 48.50 50.97 54.53 29.78 25.34 22.36 26.03 73.50 92.63 45.07 12.50 72.50 45.21 68.22 46.27
+THINK (0.4) 27.47 45.31 48.57 51.22 54.32 30.05 25.42 22.72 26.20 73.50 92.13 45.53 12.50 73.00 48.32 66.99 46.45
+THINK (0.5) 26.97 44.55 48.16 50.84 53.80 30.57 25.29 22.65 25.53 73.00 92.13 43.66 12.50 73.00 50.52 64.82 46.12

LLaMA-3-70B-Instruct, KV-size 1024
SnapKV 26.80 46.21 49.93 51.70 54.71 29.86 27.61 22.43 27.15 73.50 92.38 46.18 12.50 72.50 42.84 69.89 46.64
+THINK (0.4) 27.04 46.01 50.13 51.96 54.36 29.87 27.74 22.78 27.07 73.50 91.88 46.35 12.50 73.00 45.05 67.87 46.69
+THINK (0.5) 27.62 46.22 48.97 51.79 53.39 30.47 27.45 23.05 26.57 73.50 91.88 43.99 12.50 72.50 47.41 66.84 46.51

LLaMA-3-70B-Instruct, KV-size 2048
SnapKV 27.44 46.51 49.60 51.80 54.77 31.05 29.67 22.44 27.43 73.50 92.38 45.98 12.50 72.50 41.86 68.72 46.76
+THINK (0.4) 27.13 46.26 50.04 51.72 55.03 31.19 29.75 22.47 27.28 73.50 91.88 46.37 12.50 72.50 42.66 67.77 46.75
+THINK (0.5) 27.84 46.86 49.18 51.97 53.58 31.44 29.41 22.89 27.33 73.50 91.88 43.60 12.50 72.50 44.78 66.65 46.62

3.3 IMPLEMENTATION OF THINK

Prompt Length Decoding Length

Update

Recent-sizePruned Query Pruned Key

Key CacheChannel Mask

QueryKey

Concatenate MatMulMatMul

Figure 2: Implementation during decoding.

We opt not to prune the most recent tokens and newly
generated keys. Consequently, our key-value (KV)
cache has two categories: one subset consists of
pruned keys with a reduced channel size, while the
other at their original size. Additionally, we maintain
a binary mask whose memory overhead is negligible
to indicate which channels have been pruned. Fig-
ure 2 illustrates one implementation of THINK dur-
ing the decoding stage. We first prune the query using
the stored mask, ensuring that the query dimensional-
ity and the pruned key cache remain consistent. The
pruned query is then multiplied by the pruned key,
while the unpruned query is applied to the unpruned key. Subsequently, the two outputs are concate-
nated. Our method removes unimportant Key cache channels to get real memory reduction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of key cache pruning on Mistral-7B-Instruct-v0.2 on LongBench.
THINK (λ) indicates we prune the key cache channels with a pruning ratio of λ.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Mistral-7B-Instruct-v0.2, KV-size Full
ALL KV 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 56.93 54.49 42.71

Mistral-7B-Instruct-v0.2, KV-size 128
H2O 21.21 21.81 38.87 30.42 20.36 12.30 20.58 22.61 22.10 39.00 82.37 40.44 2.90 79.56 51.22 48.38 34.63
+THINK (0.4) 21.17 21.90 39.29 29.92 20.99 12.30 20.84 22.91 21.92 39.00 82.70 40.35 2.97 79.21 51.19 48.32 34.69
+THINK (0.5) 21.67 21.80 39.48 28.74 20.65 13.14 20.57 22.83 21.78 39.00 82.54 40.12 3.61 78.39 50.27 48.4 34.56
+THINK (0.6) 21.04 21.30 39.56 28.68 21.29 13.97 20.13 22.52 21.81 39.50 82.05 39.14 4.16 74.23 49.83 47.67 34.18
SnapKV 19.17 21.40 42.93 36.76 22.44 15.86 19.16 21.84 21.55 47.50 84.15 40.24 2.30 68.26 52.31 48.80 35.29
+THINK (0.4) 20.52 21.00 42.65 37.58 22.09 15.23 19.29 22.01 21.22 47.00 83.85 39.64 3.20 67.45 51.48 48.31 35.16
+THINK (0.5) 20.67 20.60 43.37 37.27 21.58 15.66 19.06 21.79 21.02 47.00 83.38 39.77 3.65 67.06 50.80 48.35 35.06
+THINK (0.6) 21.25 20.82 44.20 36.21 21.68 16.47 19.05 21.99 20.73 45.00 83.81 38.79 4.19 66.90 49.99 47.61 34.92

Mistral-7B-Instruct-v0.2, KV-size 512
H2O 21.83 26.00 44.69 32.46 23.05 14.69 23.53 23.06 24.59 42.00 85.22 41.49 3.40 86.20 54.78 51.09 37.38
+THINK (0.4) 21.58 26.15 44.49 32.73 23.99 15.09 23.56 23.28 24.45 42.00 85.58 42.58 3.18 85.7 54.39 51.15 37.49
+THINK (0.5) 22.76 25.74 44.61 31.74 23.25 13.91 23.31 23.13 24.34 41.00 85.39 41.85 2.82 84.36 54.69 50.88 37.11
+THINK (0.6) 22.91 25.57 44.04 29.48 22.88 13.67 23.31 22.64 24.10 41.00 85.31 41.15 2.98 82.34 53.70 50.25 36.58
SnapKV 24.44 27.81 48.98 39.46 25.25 16.98 23.70 22.96 24.37 67.00 85.88 41.26 2.78 86.56 56.46 53.41 40.46
+THINK (0.4) 24.27 28.46 49.26 38.13 24.22 16.92 23.59 23.70 24.46 67.50 85.9 42.51 2.92 85.32 55.89 53.35 40.40
+THINK (0.5) 24.56 29.22 48.59 37.70 24.27 17.39 23.68 23.65 24.58 67.50 86.05 42.01 3.07 86.30 56.49 53.29 40.52
+THINK (0.6) 24.07 28.27 49.10 38.65 24.31 17.52 23.16 23.51 24.23 67.00 86.33 40.78 3.69 83.74 54.94 52.23 40.10

Mistral-7B-Instruct-v0.2, KV-size 1024
H2O 23.67 28.55 46.40 36.99 24.82 15.02 25.21 23.04 25.77 46.00 85.93 41.98 3.24 86.57 56.40 52.75 38.90
+THINK (0.4) 23.97 28.91 45.84 35.78 24.88 14.55 25.11 23.35 25.83 45.50 86.11 42.44 3.23 84.82 56.21 53.02 38.72
+THINK (0.5) 23.89 28.40 46.60 35.57 24.26 14.78 24.98 23.31 25.68 44.50 86.16 42.72 3.38 83.20 55.88 52.63 38.50
+THINK (0.6) 23.87 27.76 46.25 35.28 24.38 14.74 24.35 23.35 25.50 44.50 85.38 41.37 3.34 81.42 55.21 51.89 38.04
SnapKV 25.47 29.57 49.33 40.90 25.53 19.01 25.94 23.89 26.21 69.50 86.48 42.10 2.98 88.56 57.19 53.60 41.64
+THINK (0.4) 25.22 30.48 48.58 41.11 25.28 18.99 25.91 24.00 26.13 70.00 86.64 43.35 2.98 86.3 56.71 54.19 41.62
+THINK (0.5) 25.63 30.08 49.41 40.59 25.13 19.58 25.47 24.23 25.92 69.5 86.67 42.31 2.74 84.78 57.43 53.59 41.44
+THINK (0.6) 24.69 29.3 48.90 40.44 25.33 19.58 25.23 23.6 25.25 69.00 86.85 40.86 3.19 83.70 56.3 53.30 40.97

Mistral-7B-Instruct-v0.2, KV-size 2048
H2O 25.76 31.10 49.06 40.38 26.43 16.78 27.17 23.64 26.69 55.00 86.35 42.48 2.72 86.64 56.98 53.91 40.69
+THINK (0.4) 25.40 30.80 48.45 39.64 26.08 16.82 27.12 23.79 26.65 53.50 86.39 43.03 3.29 86.39 56.61 53.60 40.47
+THINK (0.5) 25.68 31.24 48.69 39.65 25.84 16.72 26.69 23.57 26.78 52.00 86.74 42.85 4.01 83.46 57.12 53.67 40.29
+THINK (0.6) 25.83 31.00 48.23 38.58 25.71 16.54 26.51 23.81 26.28 50.50 86.57 42.05 3.36 82.49 56.04 52.67 39.76
SnapKV 25.89 32.56 48.55 41.68 27.24 18.75 28.90 24.47 26.63 70.00 86.27 42.57 3.09 86.93 57.44 53.83 42.18
+THINK (0.4) 25.77 32.67 48.70 41.06 27.07 19.14 28.91 24.37 26.88 70.00 86.37 42.75 3.61 87.38 57.21 54.44 42.27
+THINK (0.5) 26.44 32.94 49.02 40.86 26.84 19.49 28.46 24.51 26.72 70.00 86.50 41.75 2.78 84.70 56.47 54.15 41.98
+THINK (0.6) 26.00 32.53 48.73 40.95 26.77 18.92 27.40 23.97 26.37 70.00 86.45 41.12 3.31 82.24 56.01 53.53 41.52

4 EXPERIMENT RESULTS

In this section, we conduct comprehensive experiments to evaluate the effectiveness of THINK on
performance and memory reduction. In the experiments, we prune Key cache channels by default,
the value cache results are in Table 8 in Appendix D.

4.1 SETTINGS

Benchmark Datasets. We evaluate our proposed method against state-of-the-art KV cache com-
pression methods on two widely recognized benchmarks: LongBench and Needle-in-a-Haystack.
LongBench (Bai et al., 2023) is designed to comprehensively assess the long context understanding
capabilities of LLMs. It includes 17 datasets covering six different tasks: single-document QA,
multi-document QA, summarization, few-shot learning, synthetic tasks, and code completion. The
average input length of LongBench is 6,711 words, which necessitates reducing the KV cache to
lower memory usage for inference. Needle-in-a-Haystack (Kamradt, 2023) is a recently developed
benchmark that tests a model’s ability to accurately locate a small but crucial piece of information
(the ”needle”) embedded within a lengthy document (the ”haystack”). The random positioning of
the needle in this challenge serves as a critical test to determine whether KV cache compression
methods can retain essential information without loss of accuracy.

Baseline Approaches. The baseline methods in our evaluations include Heavy Hitter Oracle (H2O),
SnapKV and KIVI, all of which are the state-of-the-art KV cache compression methods but use
different strategies. H2O (Zhang et al., 2024c) is designed to reduce memory usage by dynami-
cally managing the balance between recent tokens and Heavy Hitter (H2) tokens. H2 tokens rep-
resent a small set of tokens that contribute most of the value when computing attention scores.
SnapKV (Li et al., 2024) introduces an automated compression mechanism that selects clustered,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Performance evaluation of combining THINK with KIVI Liu et al. (2024b) on LongBench.
THINK (0.4) indicates we prune the key cache channels with a pruning ratio of λ = 0.4.

Method Bit

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

KIVI 2/2 19.47 18.62 30.28 29.42 25.00 10.30 21.34 20.51 25.10 63.00 85.04 40.16 4.00 8.00 58.04 52.48 31.92
+THINK (0.4) 2/2 19.46 19.01 30.52 28.79 25.78 9.53 22.11 20.66 25.73 63.00 84.62 41.54 3.50 7.00 56.51 48.92 31.77

important KV positions for each attention head, optimizing the KV cache without sacrificing per-
formance. KIVI (Liu et al., 2024b) reduces memory overhead by quantizing the KV cache into
lower-precision formats, significantly lowering the memory cost while preserving model accuracy.

Implementation Details. In this paper, we use LLaMA-2-7B-chat, LLaMA-3-8B-Instruct,
LLaMA-3-70B-Instruct (Meta, 2024) and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) as the back-
bone LLMs, both accessible via HuggingFace (Wolf et al., 2020). Our THINK aims to prune chan-
nels of the key cache, which is agnostic to KV cache compression methods. If there is no other
statement, we prune the key cache by default. All the experiments are conducted using NVIDIA
A100 GPUs. To ensure a fair comparison between KV cache compression methods and their inte-
gration with THINK, we applied consistent hyperparameters across both settings. For instance, when
comparing SnapKV and SnapKV integrated with THINK, we used a maximum pooling kernel size
of 7 and an observation window size of 32, maintaining the same KV-size for both configurations.
We compress the Key cache starting from the prefilling stage.

4.2 RESULTS ON LONGBENCH

Tables 2 and 3 present the results of KV compression methods and their integration with our pro-
posed channel pruning technique for the key cache (THINK) across three different base LLMs,
evaluated at various KV-sizes on the LongBench benchmark. The pruning ratio of λ = 0.4 indicate
that 40% of key cache channels are removed ,resulting in a 20% reduction in the total KV cache
memory footprint. The following observations can be drawn: (1) Our method successfully prunes
the channels of the key cache after the KV cache has been compressed using H2O and SnapKV.
For the LLaMA-3-8B-Instruct base model, our approach reduces memory usage while slightly im-
proving performance for both H2O and SnapKV. For the Mistral-7B-Instruct-v0.2 base model, our
method similarly reduces memory usage, with only a minor performance drop in some cases. For the
larger LLaMA-3-70B base model, our method achieves comparable or superior performance after
pruning 40% of the key cache channels, compared to the SnapKV baselines. (2) When Comparing
SnapKV or H2O integrated with THINK in Table 2 to SnapKV or H2O integrated with l1 or l2 norm
in Table 1, our query-driven channel pruning approach demonstrates superior performance when the
pruning ratio of λ = 0.4. (3) Lower pruning ratios generally result in better performance compared
to higher pruning ratios. (4) As the KV-size increases from 128 to 2048, the performance of our
channel pruning method improves. Notably, with a KV-size of 2048 and a pruning ratio of 0.4,
our method even surpasses the performance of LLaMA-3-8B-Instruct with a full KV cache. These
findings suggest that our method is agnostic to the underlying KV cache compression techniques
and can further enhance both performance and memory efficiency. Moreover, query-driven channel
pruning proves more effective than l1 and l2 norm-based methods for channel pruning in LLMs. Ex-
periment results of applying THINK directly to vanilla models are in Table 9 which further validate
the effectiveness of our method.

We further validate the efficacy of our method by applying it to the KV cache quantization technique
KIVI (Liu et al., 2024b), as shown in Table 4. First, we prune 40% of the key cache channels,
followed by quantization of the remaining channels into 2-bit (implementation details provided in
Appendix C.1). Compared to the standard KIVI method, our approach reduces KV cache memory
by 20%, with minimal performance degradation.

4.3 RESULTS ON NEEDLE-IN-A-HAYSTACK

Table 5 presents the results of the Needle-in-a-Haystack test, using the SnapKV (Li et al., 2024)
approach with varying KV-sizes, ranging from 128 to 2048. With a modest pruning ratio of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Needles-in-a-Haystack Test Results

Model Method λ
KV-size

128 512 1024 2048

LLaMA3-8B-Instruct
SnapKV 0.0 79.6 90.2 91.2 91.7
SnapKV+THINK 0.4 79.6 90.3 91.2 91.7
SnapKV+THINK 0.5 77.4 89.6 91.0 91.7

Mistral-7B-Instruct-v0.2

SnapKV 0.0 77.8 89.5 90.4 90.8
SnapKV+THINK 0.4 78.6 90.1 90.6 90.9
SnapKV+THINK 0.5 78.1 90.1 90.8 91.1
SnapKV+THINK 0.6 75.9 89.2 90.6 91.1

Table 6: Performance comparison of key cache pruning with varying recent-sizes.

Recent-Size

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

H2O + THINK (λ = 0.4)
0 24.40 27.50 45.42 35.17 24.45 13.02 27.65 23.88 26.86 53.50 86.06 41.73 3.01 83.42 55.12 51.32 38.91
32 25.40 30.80 48.45 39.64 26.08 16.82 27.12 23.79 26.65 53.50 86.39 43.03 3.29 86.39 56.61 53.60 40.47
128 25.69 30.93 48.32 39.63 26.08 16.82 27.18 23.92 26.62 53.50 86.39 42.96 3.29 86.39 56.77 53.60 40.51

SnapKV + THINK (λ = 0.4)
0 24.94 28.58 45.78 39.59 25.40 15.92 29.50 24.05 26.72 70.00 85.60 41.38 2.97 84.00 55.27 52.39 40.76

32 25.77 32.67 48.70 41.06 27.07 19.14 28.91 24.37 26.88 70.00 86.37 42.75 3.61 87.38 57.21 54.44 42.27
128 25.75 32.49 48.61 41.01 27.18 19.14 28.79 24.64 26.77 70.00 86.37 42.77 3.61 87.13 57.19 54.39 42.24

λ = 0.4, THINK consistently outperforms or matches the accuracy of the original SnapKV across
both LLaMA-3 and Mistral models, regardless of KV-size. These comparisons demonstrate that
the proposed query-driven channel pruning method effectively retains informative channels while
discarding noisy ones. However, when the pruning ratio increases to λ ≥ 0.5, we observe a drop
in accuracy with smaller KV-sizes, particularly for 128 and 512, across both LLaMA-3 and Mistral
models. Despite this, THINK achieves comparable performance with SnapKV when the KV-size is
larger(i.e., 1024 and 2048). Intuitively, a larger pruning ratio with a smaller KV-size may lead to
the loss of more critical information compared to scenarios with a larger KV-size. In addition, the
performance on larger KV-sizes suggests that THINK is robust for long-context tasks.

Figure 6 (a)-(d) (in Appendix B) visualize the Needle-in-a-Haystack test accuracy across varying
token lengths and depths. The KV-sizes are set to 128 and 1024, with pruning ratios of λ = 0.4
and λ = 0.5, respectively. THINK preserves the retrieval capabilities of SnapKV, although there
are minor numerical differences in overall accuracy (e.g., 77.8 vs. 78.6 and 90.4 vs. 90.6). THINK
matches SnapKV in accuracy for the majority of token limits and depths, demonstrating consistency
in performance. Furthermore, THINK successfully retrieves certain ”needles” that SnapKV fails
to capture, resulting in improved overall accuracy. These visualizations highlight the robustness of
THINK from a fine-grained perspective, illustrating its capacity to enhance the original approach.

4.4 ABLATION STUDIES

Impact of Different Recent Sizes. Preserving the most recent KV embeddings (Zhang et al., 2024c;
Li et al., 2024) is important for maintaining the performance of LLMs after KV cache compression.
However, a tradeoff exists: increasing the recent-size allows more information to be retained, but
also increases the cache size. To assess its impact, we evaluate the performance of three recent-size
configurations, namely 0, 32 and 128, on LongBench, using Mistral-7B-Instruct-v0.2 as the baseline
model. The results are summarized in Table 6. As observed, a recent-size of 32 yields superior
performance compared to 0, as indicated by the averaged score on LongBench, demonstrating the
importance of retaining the most recent KVs. On the other hand, the performance difference between
recent-sizes of 32 and 128 is negligible, suggesting that retaining the most recent 32 KVs is sufficient
to maintain optimal performance.

Performance Comparison Under the Same Memory Usage. To ensure a fair comparison, we
adjust the KV-size of H2O or SnapKV to match the memory usage of H2O with THINK or SnapKV
with THINK on Mistral-7B-Instruct-v0.2. For example, the KV-size of H2O with THINK is set
to 128. Due to channel pruning applied to the key cache, the memory consumption of H2O with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Performance comparison of key cache pruning with the same memory consumption.

Methods Memory(M)

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

H2O
Vanilla 54.5 21.29 20.69 37.66 28.65 21.08 14.01 20.20 22.11 21.33 38.50 82.55 39.87 3.66 78.14 50.32 48.54 34.29
THINK 54.4 21.17 21.90 39.29 29.92 20.99 12.30 20.84 22.91 21.92 39.00 82.70 40.35 2.97 79.21 51.19 48.32 34.69
Vanilla 208.0 22.13 23.83 43.24 30.92 23.36 14.56 22.92 22.77 24.23 41.50 85.04 41.26 3.02 86.03 54.91 50.50 36.89
THINK 208.0 21.58 26.15 44.49 32.73 23.99 15.09 23.56 23.28 24.45 42.00 85.58 42.58 3.18 85.7 54.39 51.15 37.49
Vanilla 413.0 22.90 28.45 46.16 35.57 23.86 13.74 24.90 23.19 25.77 44.50 85.54 41.97 3.22 85.82 55.96 52.33 38.37
THINK 412.8 23.97 28.91 45.84 35.78 24.88 14.55 25.11 23.35 25.83 45.50 86.11 42.44 3.23 84.82 56.21 53.02 38.72
Vanilla 822.5 25.51 30.23 48.23 39.72 25.56 16.75 26.98 23.81 26.47 50.50 86.43 42.09 2.78 85.57 57.4 53.42 40.09
THINK 822.4 25.40 30.80 48.45 39.64 26.08 16.82 27.12 23.79 26.65 53.50 86.39 43.03 3.29 86.39 56.61 53.60 40.47

SnapKV
Vanilla 54.5 19.25 19.95 42.80 35.88 21.96 14.59 18.76 21.71 20.70 46.00 84.12 39.43 2.59 65.36 51.39 47.81 34.52
THINK 54.4 20.52 21.00 42.65 37.58 22.09 15.23 19.29 22.01 21.22 47.00 83.85 39.64 3.20 67.45 51.48 48.31 35.16
Vanilla 208.0 23.31 27.45 48.85 38.77 23.93 16.50 23.44 23.63 24.13 66.00 86.05 41.00 2.62 87.01 56.13 52.60 40.09
THINK 208.0 24.27 28.46 49.26 38.13 24.22 16.92 23.59 23.70 24.46 67.50 85.90 42.51 2.92 85.32 55.89 53.35 40.40
Vanilla 413.0 24.24 29.53 49.13 40.48 25.05 18.74 25.46 23.64 25.60 68.00 86.14 41.42 3.03 88.55 57.08 53.86 41.25
THINK 412.8 25.22 30.48 48.58 41.11 25.28 18.99 25.91 24.00 26.13 70.00 86.64 43.35 2.98 86.30 56.71 54.19 41.62
Vanilla 822.5 24.84 31.90 48.16 41.32 26.77 19.49 28.23 24.63 26.41 70.00 86.32 41.83 2.91 88.06 56.98 53.74 41.97
THINK 822.4 25.77 32.67 48.7 41.06 27.07 19.14 28.91 24.37 26.88 70.00 86.37 42.75 3.61 87.38 57.21 54.44 42.27

100 200 300 400 500 600 700 800

KV Cache Memory (M)

34

35

36

37

38

39

40

41

42

L
on

gB
en

ch
P

er
fo

rm
an

ce

H2O + ThinK (0.4)

H2O

SnapKV + ThinK (0.4)

SnapKV

(a)

100 200 300 400 500 600

Batch Size

20

30

40

50

60

70

M
em

or
y

U
sa

ge
(G

B
)

Vanilla

KIVI 4/4

KIVI 4/4, ThinK (0.4)

KIVI 2/2

KIVI 2/2, ThinK (0.4)

(b)

Figure 3: (a) presents the performance comparison with token eviction methods under identical
memory usage for Mistral-7B-Instruct-v0.2, while (b) illustrates the memory usage comparison
with the KV cache quantization method KIVI across different batch sizes for LLaMA-2-7B-chat.
THINK (0.4) indicates we prune the key cache channels with a pruning ratio of λ = 0.4.

THINK at a KV-size of 128 is lower than that of H2O at the same KV-size. Consequently, the
KV-size of H2O is adjusted from 128 to 109 to equalize memory usage. Table 7 and Figure 3a
present the results of these comparisons on the LongBench benchmark. The results demonstrate
that H2O or SnapKV combined with THINK consistently outperforms their counterparts without
THINK while maintaining the same memory footprint. This highlights the effectiveness of inte-
grating query-driven channel pruning with KV cache compression methods, enabling more efficient
memory utilization and improved compression of the KV cache.

Memory Usage Comparison. To evaluate the efficiency of THINK, we follow the methodology
used in KIVI (Liu et al., 2024b). We generate synthetic workloads with an input prompt length of
160 and an output length of 338. The peak memory usage is reported for the vanilla FP16 baseline,
KIVI, and KIVI combined with THINK (0.4) for LLaMA-2-7B-chat. As in Figure 3b, the memory
savings from our method become increasingly evident as the batch size grows, in both the KIVI
2/2 and KIVI 4/4 configurations.Compared to the baseline model, our approach achieves over a
5× (from 4× with KIVI alone) increase in batch size while maintaining the same memory footprint
when integrated with KIVI. Model weights and KV cache are the primary memory components
accessed during generation. By effectively reducing the memory footprint of the KV cache, our
method alleviates the memory bottleneck, enabling faster generation speeds as shown in Table 10.

Pruning Channels of Both Key and Value Cache. In this part, we explore the impact of prun-
ing channels in the value cache (Appendix D). Specifically, for KV cache compression methods,
we apply different pruning ratios to the channels of the key and value caches. Table 8 presents
the results with LLaMA-3-8B-Instruct and Mistral-7B-Instruct-v0.2 on the LongBench benchmark.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

When evaluating the base model LLaMA-3-8B-Instruct, H2O or SnapKV with both key and value
channel pruning perform comparably to H2O or SnapKV without pruning. In certain instances, the
models with key and value channel pruning even outperform their non-pruned counterparts. For the
base model Mistral-7B-Instruct-v0.2, pruning the value cache channels leads to a slight performance
drop. This aligns with the observations in Figure 4, where the Key cache shows highly unbalanced
magnitudes along the channel dimension, while the Value cache exhibits more uniform magnitudes.
This suggests that the Value cache has less channel sparsity, making it harder to identify redun-
dant channels for pruning. Nevertheless, pruning Value cache channels still contributes to further
memory reduction in the KV cache.

5 RELATED WORK

In scenarios involving long contexts, the key-value (KV) cache poses the most significant computa-
tional and memory burden within the attention mechanism of large language models. Reducing the
KV cache is therefore a key priority for optimizing deployment efficiency. To address this challenge,
system-level optimizations, such as FlashAttention (Dao, 2023) and PagedAttention (Kwon et al.,
2023), have been developed to tackle this challenge. In parallel, algorithm-level optimizations are
also being explored to further enhance efficiency.

KV Cache Eviction. StreamingLLM (Xiao et al., 2023b) retains a few initial tokens along with
recent tokens based on the observation of attention sinks, which can leading to the loss of critical in-
formation carried by the dropped tokens. H2O (Zhang et al., 2024c) selectively retains a small subset
of tokens by greedily dropping those with lower contributions to cumulative attention. SnapKV (Li
et al., 2024) selects clustered important KV positions for each attention head from an ‘observation’
window located at the end of the prompts. FastGen (Ge et al., 2023) adaptively evicts tokens from
attention heads that focus on local contexts, discarding non-special tokens that surround key tokens,
while standard KV cache is applied to attention heads that attend more broadly. PyramidKV (Zhang
et al., 2024b) and PyramidInfer (Yang et al., 2024) take a hierarchical approach, adjusting KV cache
sizes across different layers by allocating more cache to lower layers and less to higher ones.

KV Cache Quantization. SmoothQuant (Xiao et al., 2023a) enables the quantization of the KV
cache to 8-bit with minimal performance degradation. Q-Hitter (Zhang et al., 2024c) leverages
accumulated attention scores and ”Quantization Friendliness” metrics to identify tokens that are
crucial for preserving the generalization capabilities of LLMs, making them suitable for KV cache
quantization. Furthermore, recent studies suggest that the key and value caches should be quantized
differently (Liu et al., 2024b; Hooper et al., 2024): the key cache should be quantized per-channel,
while the value cache should be quantized per-token.

Structured Pruning of LLMs. Traditional structured pruning (Ma et al., 2023; Ding et al., 2023)
of LLMs typically focuses on removing unimportant layers, heads, or hidden dimensions, often
leading to significant performance degradation. In contrast, our approach preserves the original
architecture of the LLM and specifically targets the channel dimension within each head’s key cache.
By dynamically identifying unimportant channels using data dependant criterion, our method greatly
reduce the key cache size with minimal performance loss.

6 CONCLUSION

Inspired by the observation that certain channels exhibit significantly larger magnitudes than oth-
ers, and supported by singular value analysis indicating that the key cache is inherently low-rank,
we propose THINK as a pruning method targeting the key cache channels. Our pruning strategy
is query-dependent and optimized based on attention scores, ensuring that essential information is
preserved for each input query. In addition, THINK can be seamlessly integrated with existing token-
level KV cache pruning techniques (Li et al., 2024; Zhang et al., 2024c) and KV cache quantization
methods (Liu et al., 2024b), further enhancing inference efficiency. Extensive experiments on Long-
Bench and Needle-in-a-Haystack benchmarks demonstrate the effectiveness our query-dependent
channel pruning approach. Our method achieves comparable or superior performance to baseline
methods while reducing the key cache size by 40%. Integrated with KIVI, THINK reduces the peak
memory usage from 61.7 GB (KIVI alone) to 53.3 GB while maintaining nearly the same quality,
enabling a batch size increase from 4× (with KIVI alone) to 5× when using a single GPU.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Srinadh Bhojanapalli, Ayan Chakrabarti, Himanshu Jain, Sanjiv Kumar, Michal Lukasik, and An-
dreas Veit. Eigen analysis of self-attention and its reconstruction from partial computation. arXiv
preprint arXiv:2106.08823, 2021.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Uni-
fying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

James W Demmel. Applied numerical linear algebra. SIAM, 1997.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024a.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024b.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. Large language models: A
comprehensive survey of its applications, challenges, limitations, and future prospects. TechRxiv,
2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. Dissecting the nvidia volta
gpu architecture via microbenchmarking. arXiv preprint arXiv:1804.06826, 2018.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023. URL https:
//github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

12

https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024.

OpenAI. OpenAI: Introducing ChatGPT, 2022. URL https://openai.com/blog/
chatgpt.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. arXiv preprint arXiv:2406.02542, 2024.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu,
Quanlu Zhang, Mosharaf Chowdhury, et al. Efficient large language models: A survey. arXiv
preprint arXiv:2312.03863, 1, 2023.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637, 2024.

13

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling
of foundation models. arXiv preprint arXiv:2309.16039, 2023.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532,
2024.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024a.

Xingxing Zhang, Furu Wei, and Ming Zhou. Hibert: Document level pre-training of hierarchical
bidirectional transformers for document summarization. arXiv preprint arXiv:1905.06566, 2019.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024c.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023.

A OBSERVATIONS

Figure 5 and Figure 4 illustrates the observations which motivates our approach THINK to prune
unimportant key cache channels. We conducted singular value decomposition (SVD) (Demmel,
1997) on the attention weights of the specified layers to investigate their principal components.
Note that

U,Σ,V = SVD
(

softmax
(QKT

√
D

))
, Energyi =

σ2
i∑
i σ

2
i

.

B NEEDLE-IN-A-HAYSTACK TEST PERFORMANCE COMPARISON

Figure 6 visualizes the test performance comparison on Needle-in-a-Haystack on Mistral-7B-
Instruct-v0.2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 200 400 600
Token 0

50
100

Cha
nn

els0

5

10

(a) Key Cache (14th

layer)

0 200 400 600
Token 0

50
100

Cha
nn

els0.0
0.5
1.0
1.5
2.0

(b) Value Cache (14th

layer)

0 200 400 600
Token 0

50
100

Cha
nn

els0

5

10

(c) Key Cache (20th

layer)

0 200 400 600
Token 0

50
100

Cha
nn

els0

1

2

(d) Value Cache (20th

layer)

Figure 4: Magnitude of key and value cache for LLaMA-2-7B. The first head of layer 14 and layer
20 of LLaMA-2-7B is selected to visualize the magnitude of the key and value caches. We observe
that the magnitudes of the key cache channels vary differently, whereas the channels of the value
cache do not exhibit such variation.

0 100 200 300 400 500 600
Index

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

En
er

gy

Head
0
10
30

Layer
0
10
30

(a) Energy of singular values

0 100 200 300 400 500 600
Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

ed
 E

ne
rg

y

Head
0
10
30

Layer
0
10
30

(b) Cumulative energy of singular values

Figure 5: The energy and cumulative energy of the singular values.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) KV-size 128, SnapKV, Acc. 77.8

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) KV-size 128, SnapKV + THINK (0.4) Acc. 78.6

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) KV-size 1024, SnapKV, Acc. 90.4

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(d) KV-size 1024, SnapKV + THINK (0.5), Acc. 90.8

Figure 6: Needle-in-a-Haystack test performance comparison with Mistral-7B-Instruct-v0.2.
THINK (λ) indicates we prune the key cache channels with a pruning ratio of λ

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C IMPLEMENTATIONS

C.1 IMPLEMENTATION WITH QUANTIZATION

Figure 7 illustrates the implementation of our method when integrated with the KV cache quanti-
zation method KIVI (Liu et al., 2024b). During the prefill phase, we first prune the unimportant
channels of XK before applying quantization. In the decoding phase, each newly arrived key cache
tK is added to XKr

. Once XKr
reaches G tokens, the residual length hyperparameter in KIVI, we

prune and quantize the data, then concatenate it with the previously quantized Q(P (XKg
)).

Pruning Channels
Quantization by Channel

Quantization by Token

Full Precision Tensor

Low Precision Tensor

Pr
un

in
g

an
d

Q
ua

nt
iz

at
io

n

MatMul

Q_MatMul

Concat

Prefill Phase Decoding Phase

KVCache

Figure 7: Implementations of THINK when incorporated with KIVI.

D VALUE CACHE PRUNING

Similar to the approach used for the Key cache, the pruning of channels in the Value cache can be
guided by two primary criteria: magnitude-based pruning and query-driven pruning. We find that
query-driven pruning is still better than magnitude based pruning.

Scorev,i(Qi,Ki,Vi)[j] = ∥softmax(
Qi[−Sobs :]KT

i√
D

)Vi[:, j]∥F (3)

Ii = TopT (Scorev,i, T) (4)

where Qi,Ki,Vi ∈ RS×D. We define a criterion Scorev,i to indicate the importance of each channel
in the head i of value cache. Then, only top T channels are retained. Table 8 reported the results
of pruning both key and value channels, showing that pruning the Value cache channels is harder
than pruning the Key cache channels. However, pruning 30% of both the Key cache and Value
cache on LLaMA-3-8B-Instruct still results in acceptable performance. This demonstrates that the
Value cache also has potential for pruning in the channel dimension. As depicted in Figure 4,
the magnitude of the Key cache along the channel dimension is highly unbalanced, whereas the
magnitude of the Value cache along the channel dimension is more uniform. This indicates that
the channel sparsity in the Value cache is not as significant as in the Key cache, making it more
challenging to identify redundant channels for pruning. We will investigate the value cache pruning
strategy as part of our future work.

E PRUNING KEY CACHE ON VANILLA MODELS

To furthur demonstrate the effectiveness of our proposed THINK, we conducted additional experi-
ments applying THINK directly to vanilla models, specifically LLaMA-3-8B-Instruct and Mistral-
7B-Instruct-v0.2. The results, as shown in Table 9, demonstrate that our method maintains superior
performance even after pruning 40% of the key cache channels. Furthermore, when the pruning ratio
is increased to 50%, the performance degradation remains within an acceptable range. These find-
ings further validate the effectiveness of THINK, not only for pruned models but also when applied
directly to vanilla models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Performance comparison of pruning both K and V cache with different pruning ratios on
LongBench. H2O + THINKV (λ1+λ2) indicates that the key cache channels of H2O are pruned
with a pruning ratio of λ1 and the value cache channels are pruned of a pruning ratio of λ2.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

L
L

aM
A

-3
-8

B
-I

ns
tr

uc
t

KV-size 128
H2O 22.12 13.20 31.61 37.79 32.71 18.45 20.32 22.02 21.10 38.50 87.75 39.14 5.83 69.50 55.06 50.97 35.38
+THINKV (0.3+0.3) 23.71 13.65 33.08 41.86 29.88 18.04 19.60 21.65 20.26 38.00 86.08 38.61 5.16 69.50 57.59 55.19 35.74
SnapKV 21.19 13.55 32.64 38.75 29.64 18.73 18.98 21.62 20.26 45.00 88.36 37.64 5.13 68.85 55.84 51.82 35.50
+THINK(0.3+0.3) 21.86 13.79 33.26 40.93 29.39 19.22 18.81 21.30 19.26 41.50 87.00 37.95 5.78 69.50 57.84 55.62 35.81

KV-size 512
H2O 23.52 17.93 34.68 42.11 33.52 19.92 22.11 22.56 23.82 41.00 90.46 40.20 5.87 69.50 56.71 51.69 37.23
+THINKV (0.3+0.3) 22.83 17.57 34.18 42.67 33.52 19.95 21.17 22.23 22.82 38.50 90.11 39.08 5.21 69.0 59.99 56.83 37.23
SnapKV 24.84 23.96 38.77 42.75 34.55 20.87 22.26 22.61 23.97 70.00 90.52 40.29 5.81 69.50 59.04 51.81 40.10
+THINKV (0.3+0.3) 24.57 24.59 38.09 44.61 34.37 20.37 21.23 21.95 23.30 66.00 90.69 39.38 5.60 69.00 61.75 58.46 40.25

KV-size 2048
H2O 25.56 26.85 39.54 44.30 32.92 21.09 24.68 23.01 26.16 53.00 90.65 41.84 4.91 69.25 58.43 51.31 39.59
+THINKV (0.3+0.3) 25.03 26.77 39.68 42.12 33.08 19.59 23.00 22.89 25.27 51.00 91.11 40.58 5.23 69.00 61.12 57.95 39.59
+THINKV (0.4+0.4) 24.87 24.31 37.77 43.13 34.42 19.60 21.67 22.70 24.52 49.00 90.81 39.28 6.00 69.00 61.81 58.08 39.19
SnapKV 25.86 29.55 41.10 44.99 35.80 21.81 25.98 23.40 26.46 73.50 90.56 41.66 5.17 69.25 58.67 51.52 41.58
+THINKV (0.3+0.3) 25.13 29.97 40.35 44.12 34.64 19.94 23.62 23.03 25.30 72.50 90.78 39.46 5.35 69.00 61.50 57.91 41.41
+THINKV (0.4+0.4) 25.13 28.85 40.70 44.21 36.36 21.07 22.31 22.89 24.80 72.50 90.88 38.77 6.41 69.00 61.49 58.87 41.52

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

KV-size 128
H2O 21.21 21.81 38.87 30.42 20.36 12.30 20.58 22.61 22.10 39.00 82.37 40.44 2.90 79.56 51.22 48.38 34.63
+THINKV (0.3+0.3) 20.71 21.49 38.01 30.66 22.28 13.87 20.13 22.45 21.07 38.50 82.20 38.69 2.94 78.56 51.55 48.28 34.46
SnapKV 19.17 21.40 42.93 36.76 22.44 15.86 19.16 21.84 21.55 47.50 84.15 40.24 2.30 68.26 52.31 48.80 35.29
+THINKV (0.3+0.3) 19.92 20.61 42.68 37.63 23.19 15.09 18.97 21.93 20.55 45.00 84.06 39.33 2.99 66.00 51.51 47.51 34.81

KV-size 512
H2O 21.83 26.00 44.69 32.46 23.05 14.69 23.53 23.06 24.59 42.00 85.22 41.49 3.40 86.20 54.78 51.09 37.38
+THINKV (0.3+0.3) 22.36 24.26 44.77 30.47 22.94 14.96 22.63 22.90 23.73 41.50 85.30 40.21 3.08 80.07 54.48 50.96 36.54
+THINKV (0.3+0.1) 22.14 25.15 45.29 31.78 23.21 14.62 23.36 22.70 24.51 41.50 85.61 41.58 2.75 84.03 54.50 51.09 37.11
SnapKV 24.44 27.81 48.98 39.46 25.25 16.98 23.70 22.96 24.37 67.0 85.88 41.26 2.78 86.56 56.46 53.41 40.46
+THINKV (0.3+0.3) 24.10 27.04 47.76 38.66 25.45 17.51 22.64 22.81 23.91 66.00 86.62 39.91 3.36 82.24 55.96 52.81 39.80
+THINKV (0.3+0.1) 23.90 28.14 48.35 39.03 24.83 16.68 23.51 23.12 24.34 67.50 86.09 41.69 2.65 84.34 57.29 53.22 40.29

KV-size 1024
H2O 23.67 28.55 46.4 36.99 24.82 15.02 25.21 23.04 25.77 46.00 85.93 41.98 3.24 86.57 56.40 52.75 38.90
+THINKV (0.3+0.3) 23.65 26.54 47.00 35.52 24.79 17.15 23.64 23.12 25.20 44.00 86.38 41.67 3.46 80.14 56.53 52.86 38.23
+THINKV (0.3+0.1) 24.13 28.57 46.31 35.59 24.92 15.34 24.58 23.33 25.93 45.50 85.91 42.97 2.57 83.64 55.39 52.73 38.59
SnapKV 25.47 29.57 49.33 40.90 25.53 19.01 25.94 23.89 26.21 69.50 86.48 42.10 2.98 88.56 57.19 53.60 41.64
+THINKV (0.3+0.3) 25.29 29.25 49.17 41.25 25.75 19.37 24.64 23.02 25.27 69.00 86.70 40.92 3.29 82.06 57.15 54.15 41.02
+THINKV (0.3+0.1) 25.84 29.30 49.56 41.44 25.29 19.02 25.21 23.73 25.72 69.00 86.69 42.55 2.44 85.76 57.55 54.10 41.45

KV-size 2048
H2O 25.76 31.10 49.06 40.38 26.43 16.78 27.17 23.64 26.69 55.0 86.35 42.48 2.72 86.64 56.98 53.91 40.69
+THINKV (0.3+0.3) 25.60 28.74 47.54 38.67 26.25 17.35 24.54 23.27 26.15 51.00 87.01 43.02 2.94 81.46 56.41 54.26 39.64
+THINKV (0.3+0.1) 25.64 30.65 48.95 40.42 26.43 16.65 26.76 23.51 26.59 52.50 86.53 43.45 2.66 83.96 56.55 53.83 40.32
SnapKV 25.89 32.56 48.55 41.68 27.24 18.75 28.90 24.47 26.63 70.00 86.27 42.57 3.09 86.93 57.44 53.83 42.18
+THINKV (0.3+0.3) 27.01 30.72 48.81 41.15 26.93 18.93 25.81 23.59 26.42 70.00 86.82 41.91 3.05 82.65 57.01 54.25 41.57
+THINKV (0.3+0.1) 26.22 32.69 48.96 40.83 26.70 19.02 27.87 24.23 26.64 70.00 86.65 42.63 2.22 85.13 57.00 54.28 41.94

Table 9: Performance comparison of pruning key cache on vanilla models on LongBench.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

LLaMA-3-8B-Instruct, KV-size Full
Vanilla 25.56 32.27 39.71 43.56 35.09 21.18 28.71 23.26 26.64 73.50 90.48 42.33 4.80 69.25 59.29 54.05 41.86
+THINK(0.4) 25.32 32.26 39.81 44.19 34.77 21.10 28.63 23.13 26.38 73.50 90.58 41.69 5.21 69.50 61.94 58.37 42.27
+THINK(0.5) 25.35 32.80 41.64 43.99 31.81 21.58 28.35 23.31 26.80 73.50 90.37 40.81 5.67 69.17 61.90 59.00 42.25
+THINK(0.6) 24.39 31.16 41.80 42.52 31.63 20.70 25.84 23.18 25.46 73.50 90.43 38.97 5.77 68.46 59.63 59.38 41.43

Mistral-7B-Instruct-v0.2, KV-size Full
Vanilla 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 56.93 54.49 42.71
+THINK(0.4) 27.11 33.46 48.73 41.79 28.14 18.87 32.45 24.55 27.09 71.00 86.26 43.02 3.95 86.31 56.99 54.36 42.76
+THINK(0.5) 26.63 33.71 49.38 42.38 26.78 18.76 32.57 24.63 26.92 71.00 86.39 42.82 3.13 84.65 56.75 54.04 42.53
+THINK(0.6) 27.03 33.23 49.49 42.65 26.43 18.14 31.74 24.75 26.57 71.00 86.28 41.40 3.50 83.11 55.93 53.37 42.16

F COMPARISONS OF GENERATION SPEED AND THROUGHPUT

In this section, we provide comparisons of TTFT (Time To First Token), TPOT (Time Per Out-
put Token), memory usage, and throughput in Table 10 and Table 11. We follow the methodology
used in KIVI Liu et al. (2024b). We generate synthetic workloads with an input prompt length of
160 and an output length of 338. We set a batch size 300 for both KIVI and our method. As our
method performs online pruning, there is a slight delay introduced during the prefilling stage due to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 10: Comparisons of TTFT (Time To First Token), TPOT (Time Per Output Token) and mem-
ory usage on LLaMA-2-7B.

Method KIVI(4/4) KIVI(4/4) + THINK(0.4) KIVI (4/4) + THINK(0.5)

Memory (GB) 61.7 53.3 51.2

TTFT (ms) 7.0 10.4 10.2

TPOT (ms/token) 0.27 0.25 0.24

Table 11: Comparisons of throughput on LLaMA-2-7B.

Method Vanilla KIVI(4/4) KIVI(4/4) + THINK(0.4) KIVI (4/4) + THINK(0.5)

Throughput (tokens/s) 2557 5168 5518 5676

the computation of channel importance. However, the reduction in memory usage leads to notable
improvements in TPOT during inference. Specifically, after applying THINK, TPOT improves from
0.27 ms/token to 0.25 ms/token with 40% pruning, and further improves to 0.24 ms/token with a
50% pruning ratio. Regarding throughput, with the same memory usage, THINK (40% pruning)
improves the throughput of KIVI from 5168 tokens/s to 5518 tokens/s. At a pruning ratio of 50%,
throughput increases further to 5676 tokens/s. Model weights and KV cache are the primary mem-
ory components accessed during generation. By effectively reducing the memory footprint of the
KV cache, our method alleviates the memory bottleneck, enabling larger batch sizes and faster gen-
eration speeds. These results highlight the potential of THINK to enhance inference performance
by balancing memory efficiency with computational overhead. We are continuing to optimize the
implementation to further improve performance. Memory bandwidth is a major performance bottle-
neck in the decoding phase of large language models (LLMs).

G COMPARISONS WITH SVD BASED METHODS

In this section, we compare our THINK with SVD based methods (Saxena et al., 2024; Yuan et al.,
2023; Chang et al., 2024). SVD based KV cache compression method decompose the KV cache
weights offline with some calibration data, relying on storing latent representations and recovering
the cache during inference. Our approach is an online pruning strategy that is plug-and-play, re-
quiring no changes to the model’s weights or architecture. This makes THINK lightweight and easy
to integrate into existing systems. Besides, our method dynamically prunes the Key cache chan-
nels directly without requiring any reconstruction. We provide comparisons of our method with
SVD-based approaches in Table 12. Following Palu, we use Mistral-7B-Instruct-v0.2 as the base-
line model. Our results show that when the KV cache is compressed by 80%, our method preserves
performance, whereas Palu experiences an accuracy drop of 1.28%. Similarly, for ASVD, we eval-
uate under the same compression rate. Our method demonstrates significantly better performance,
with only a 0.12% performance drop compared to the 5.21% drop observed for ASVD. The results
demonstrate the effectiveness of THINK, with significantly less performance degradation compared
to SVD-based methods under the same compression rates. Our pruning method has the potential
to be integrated with SVD-based approaches. Exploring such a combination could yield further
advancements in KV cache compression, which we aim to investigate in future work.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 12: Performance comparison of SVD based methods on LongBench.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Mistral-7B-Instruct-v0.2
Vanilla 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 56.93 54.49 42.71
+Palu 27.47 34.11 48.47 44.09 26.33 20.18 31.15 24.30 27.12 70.00 85.80 41.74 2.74 73.18 51.70 54.52 41.43
+THINK(0.4) 27.11 33.46 48.73 41.79 28.14 18.87 32.45 24.55 27.09 71.00 86.26 43.02 3.95 86.31 56.99 54.36 42.76

LLaMA-2-7B-Chat
Vanilla 18.39 20.11 35.67 31.25 25.50 10.14 25.68 20.93 26.27 64.00 83.38 40.99 5.50 10.00 60.81 55.27 33.37
+ASVD 16.46 13.19 28.98 21.94 22.86 8.74 17.73 20.27 22.35 57.00 73.88 38.51 1.50 4.77 53.32 49.13 28.16
+THINK(0.4) 18.39 19.98 35.05 30.85 25.65 10.25 25.98 20.82 26.04 64.00 83.63 41.55 6.00 8.50 60.18 55.18 33.25

20

	Introduction
	Observations
	ThinK
	Preliminary Study of KV Cache Optimization
	Query-Driven Pruning
	Implementation of ThinK

	Experiment Results
	Settings
	Results on LongBench
	Results on Needle-in-a-Haystack
	Ablation Studies

	Related Work
	Conclusion
	Observations
	Needle-in-a-Haystack test performance comparison
	Implementations
	Implementation with quantization

	Value Cache Pruning
	Pruning Key Cache on Vanilla Models
	Comparisons of Generation Speed and Throughput
	Comparisons with SVD based Methods

