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Abstract

Transformers can implement both generalizable algorithms (e.g., induction heads)
and simple positional shortcuts (e.g., memorizing fixed output positions). In this
work, we study how the choice of pretraining data distribution steers a shallow
transformer toward one behavior or the other. Focusing on a minimal trigger-
output prediction task – copying the token immediately following a special trig-
ger upon its second occurrence – we present a rigorous analysis of gradient-
based training of a single-layer transformer. In both the infinite and finite sample
regimes, we prove a transition in the learned mechanism: if input sequences ex-
hibit sufficient diversity, measured by a low “max-sum” ratio of trigger-to-trigger
distances, the trained model implements an induction head and generalizes to un-
seen contexts; by contrast, when this ratio is large, the model resorts to a posi-
tional shortcut and fails to generalize out-of-distribution (OOD). We also reveal
a trade-off between the pretraining context length and OOD generalization, and
derive the optimal pretraining distribution that minimizes computational cost per
sample. Finally, we validate our theoretical predictions with controlled synthetic
experiments, demonstrating that broadening context distributions robustly induces
induction heads and enables OOD generalization. Our results shed light on the al-
gorithmic biases of pretrained transformers and offer conceptual guidelines for
data-driven control of their learned behaviors.

1 Introduction

Large language models (LLMs) leverage circuits of attention heads [VSP+17] to perform (implicit)
algorithmic reasoning. Certain attention heads implement discrete algorithms — notably induction
heads [ENO+21, OEN+22], which scan for previously seen token patterns in the context to predict
subsequent tokens. Such heads enable in-context learning behaviors [BMR+20], allowing a trans-
former to continue a sequence such as [A,B, . . . , A]→ B purely by leveraging patterns in the con-
text. By contrast, attention can also implement positional mechanisms that select tokens based solely
on their location in the sequence [VTM+19, AWKA24]. These mechanisms can yield contrasting
generalization performance [CBKZ24], and we expect the pretraining data distribution to play a
central role in determining which mechanisms a model learns to rely on: depending on structural
properties of the corpus, a transformer may either discover generalizable strategies (content-based
retrieval) or adopt position-based shortcuts.
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Figure 1: Two mechanisms for the associative copying task [..., t, o, ..., t] 7→ o. In the pretraining
data, the size of irrelevant tokens before the occurrence of the first and second trigger ℓ remains fixed per
sequence, hence allowing two solutions: (i) positional shortcut that outputs the token at position (T +1)/2 for
input length T ; and (ii) induction head using token embedding e, which finds the queried token and returns
the ensuing token. Whereas on OOD sequences with varying ℓ1 ̸= ℓ2, only (ii) remains a valid solution.

Motivation. We theoretically study how pretraining data influences the implemented circuit and
out-of-distribution (OOD) generalization performance of the transformer. This perspective is mo-
tivated from the empirical observation that pretrained models often leverage shortcut solutions that
are brittle beyond the training distribution [MPL19, GJM+20, LAG+22]. For instance, a trans-
former might utilize the aforementioned position-based attention head to memorize that a certain
output tends to occur at a particular position in the training text, instead of learning the underlying
association (induction head); such positional shortcut is a double-edge sword in algorithmic tasks:
transformers can achieve near-perfect accuracy in distribution, but struggle on test sequences of un-
seen lengths or structures. Since it is empirically known that the learned mechanism heavily depends
on the structure of pretraining data [GTLV22, RLIGS22, RPCG23, WNB+25], we ask the following
question.

How does the data structure decide whether a pretrained transformer implements a generalizable
mechanism (e.g.,induction head) or a shortcut that fails OOD (e.g., positional memorization)?

1.1 Our Contributions

Trigger-output Copying. To investigate this question in a controlled setting, we introduce a min-
imal trigger-output copying task inspired by [BCB+23]. In this synthetic task, each input sequence
contains a special trigger token that appears twice. The model must predict the token that imme-
diately follows the first trigger when the trigger appears the second time. For example, given

. . . [trigger][X] . . . [trigger][?] . . . ,

the correct prediction is X . Depending on the structure of the input sequence, this task admits
multiple solutions. We focus on two mechanisms — see Figure 1.
• Induction head. The model attends back to the location of the previous trigger and copies the

token following it; this works for arbitrarily long gaps between trigger occurrences (up to context-
length limit).

• Positional shortcut. When the position of the first trigger is inferable from the second (e.g.,
under periodic structure), the model may copy the token using positional information alone. This
shortcut is valid in-distribution but does not reflect the underlying association.

For this task, we define out-of-distribution (OOD) generalization as performance on test sequence
with altered structure, where the trigger appears at positions not seen during pretraining (e.g., longer
or aperiodic sequences). The induction head mechanism is robust to such shifts as it learns the
correct association, whereas the positional shortcut typically fails OOD. Our goal is to identify a
data-dependent transition between these two mechanisms that governs OOD generalization: intu-
itively, increasing the diversity of pretraining sequences — by varying the distances between trigger
occurrences — dilutes positional signals and discourages the shortcut; conversely, as the number of
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trigger tokens in the data grows, the effective signal for induction weakens. We make these intuitions
precise in our theoretical analysis.

Main Findings. We provide a quantitative account of how pretraining data diversity shapes the
mechanism learned by a pretrained transformer in the trigger-output copying task introduced above.
Specifically, we rigorously analyze the in-distribution and out-of-distribution performance of a shal-
low (single-layer) transformer trained on this synthetic task. By studying an “early-phase” simplifi-
cation of gradient descent in both the infinite-data (population loss) and finite-data (empirical loss)
regimes, we show that the pretraining distribution directly selects the model’s algorithm: when pre-
training data are sufficiently “diverse” – as measured by a max-sum ratio of trigger distances – the
transformer learns an induction head; when diversity is low, the model adopts a positional shortcut
that fails to generalize OOD. Using this diversity measure that governs the phase transition, we dis-
cuss various tradeoffs and how to choose a pretraining distribution that induces the desired induction
mechanism with minimal computational cost. Finally, we empirically probe the learned circuits by
visualizing attention scores, and present evidence that a similar mechanism transition arises under
standard gradient-based training beyond our theoretical setting.

1.2 Related Works

The induction head mechanism in transformers was first presented in the mechanistic interpretability
literature [ENO+21, OEN+22], and followup theory investigates when such circuits emerge under
simplified training dynamics and tasks [BCB+23, ETE+24, NDL24, Red24, CSWY24]. Empirical
studies on algorithmic tasks (copying, arithmetic, sorting) demonstrate that transformers often rely
on spurious “shortcut” solutions that fail to generalize, often due to poor use of positional informa-
tion [ZBB+22, JdDE+23, ZBL+23, GJB+25]; the OOD brittleness of shortcut solution is also doc-
umented in [LAG+22]. A complementary thread links the structure of pretraining data to in-context
behaviors: the function classes a transformer implements in context and the sensitivity of perfor-
mance to data statistics such as corpus coverage and frequency [GTLV22, RLIGS22, MLH+22]
or task diversity [RPCG23, LLZV+25]. Our analysis aligns with this view by making explicit
how diversity in trigger distances steers the learned mechanism. Methodologically, we borrow the
“early-phase” simplification of training dynamics and study the loss improvement after the first few
gradient descent step [BES+22, DLS22, ORST23, BCB+23].

2 Problem Setting

Notations. For a positive integer N , we denote [N ] := {1, 2, . . . , N}. For integers N1 ≤ N2, we
define [N1 : N2] := {N1, N1 + 1, . . . , N2}. The Softmax function for an N -dimensional vector
v ∈ RN is defined as Softmax(v)i := evi∑N

j=1 evj
. For a vector v, we write v = O2(f(N)) if

∥v∥2 = O(f(N)), and v = O∞(f(N)) if maxi |vi| = O(f(N)). Similar notation is used for a
matrix A, where ∥A∥2 and ∥A∥∞ denote its ℓ2 → ℓ2 spectral and max norms, respectively.

2.1 Data Generating Process

We study the trigger-output setting to investigate how transformers acquire the induction head mech-
anism. Let N ∈ N denote the vocabulary size and L ∈ N the maximum input sequence length. We
designate special tokens as trigger tokens. We define our data model as follows:
Definition 1 (Data Distribution). Let ℓ1, ℓ2 ∈ N such that T := ℓ1 + ℓ2 +3 ≤ L− 1. Let Ntrg ≤ N
denote the number of trigger tokens. A sequence z1:T+1 ∈ [N ]T+1 is sampled as follows:

1. Sample a trigger token t ∈ [Ntrg] and an output token o ∈ [Ntrg + 1 : N ] uniformly at random,
where Ntrg = o(N1/3).

2. Construct the sequence:

z1:T+1 = ( z1, . . . , zℓ1︸ ︷︷ ︸
ℓ1 irrelevant tokens

, t, o︸︷︷︸
trigger-output pair

, zℓ1+3, . . . , zℓ1+ℓ2+2︸ ︷︷ ︸
ℓ2 irrelevant tokens

, t, o︸︷︷︸
trigger-output pair

)

where irrelevant token zi (i ∈ [1 : ℓ1]∪ [ℓ1+3 : ℓ1+ ℓ2+2]) is drawn i.i.d. from [Ntrg+1 : N ].

We refer to such a sequence as a trigger-output model with subtext lengths ℓ1 and ℓ2.
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In our data model, the task is to identify the output token zT+1 = o from the sequence z1:T =
(z1, . . . , zℓ1 , t, o, zℓ1+3, . . . , zℓ1+ℓ2+2, t). This can be achieved by implementing the induction
head mechanism [ENO+21, OEN+22], which copies the token that follows the first occurrence of
the trigger token and outputs it upon encountering the second occurrence of the same trigger.
Due to structure of the input sequence, transformer may also rely on positional shortcuts to achieve
low loss; in particular, when the lengths of irrelevant tokens are identical within each sequence, i.e.,
ℓ1 = ℓ2 = ℓ, a transformer can achieve 100% training accuracy simply by inferring the correct
position to attend to (T + 1)/2 = ℓ + 2 from the position of the second trigger T = 2ℓ + 3. Such
positional solution does not make use of the semantic information and generally fails when ℓ1 ̸= ℓ2.
To study the transition between the two mechanisms, we assume the pretraining data consists of a
mixture of sequences with different lengths determined by ℓ = ℓ1 = ℓ2.
Definition 2. Consider a language model pθ(· | z1z2 · · · zT ) that is pretrained on M sequences{
z
(i)

1:T (i)+1

}M
i=1

generated as follows:

• Sample ℓ(i) from a distribution Dℓ.

• Generate z
(i)

1:T (i)+1
according to Definition 1 with ℓ1 = ℓ2 = ℓ(i), i.e.,

z
(i)

1:T (i)+1
= (z1, . . . , zℓ(i) , t, o, zℓ(i)+3, . . . , z2ℓ(i)+2, t, o).

OOD Generalization. Note that the pretraining distribution (defined by Dℓ) may not cover all
possible sequences. We say that pθ generalizes out-of-distribution (OOD) if it implements the cor-
rect copying mechanism across all possible ℓ’s, that is, for any ℓ1, ℓ2 such that ℓ1 + ℓ2 + 3 ≤ L− 1
(possibly ℓ1 ̸= ℓ2), and for any test sequence z1:T+1 generated from the trigger-output unigram
model with subtext lengths ℓ1 and ℓ2 (Definition 1), we have

arg max
k∈[N ]

pθ(k | z1z2 · · · zT ) = zT+1.

2.2 Gradient-based Training of Single-layer Transformer

Architecture and Embedding. We consider a single-layer transformer block fTF defined as
fTF(X1:t;WKQ,WV ) = WV X1:t Softmax(X⊤

1:tWKQxt) ∈ RN , (2.1)

where WKQ ∈ RD×D,WV ∈ RN×D and X1:t = (x1 · · · xt) ∈ RD×t denotes the input
embeddings of z1:t, with embedding dimension D. We define the embedding as follows:
Definition 3. Let D = L+2N . Let pt ∈ RL denote the one-hot vector with a 1 at the t-th position
(representing the positional embedding), and let ez ∈ RN denote the one-hot vector with a 1 at the
z-th position (representing the token identity).

We then construct the input embedding xt as

xt =

[
pt

ezt
ezt−1

]
∈ RL+2N . (2.2)

The prediction probability is given by
p(WKQ,WV )(zT+1 = k | z1 · · · zT ) = [Softmax(fTF(X1:t;WKQ,WV ))]k.

Remark 1. We make the following remarks on the design of our architecture and embedding.

• The architecture (with the FFN is absorbed into the value matrix WV , and tied key and query
projections) is commonly used in theoretical analyses and mechanistic studies [LLR23, BCB+23,
NDL24]; the simplification allows us to focus on the inductive bias by simple attention mecha-
nisms, while retaining sufficient expressiveness to implement algorithmic behaviors.

• Two-layer architecture is typically needed to implement the induction head mechanism, where the
first layer often learns to detect the trigger and identify of the following token via attention to the
previous token [SHT24]. To reflect this inductive step in our simplified single-layer setting, we ex-
plicitly encode the identity of the previous token zt−1 in the third component of the embedding xt.
This choice also echoes recent empirical developments that incorporate information of previous
tokens directly into the current state, such as Mamba [GD23], RWKV [PAA+23], and convolution
augmentations [LZHO25, All25].
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Algorithm 1: Gradient-based training of single-layer transformer
Input : Learning rate ηKQ, ηV
Initialize WKQ(0) = O(L+2N)×(L+2N),WV (0) = ON×(L+2N)

Gradient descent on WV

WV (1)←WV (0)− ηV∇WV

1
MV

∑MV

i=1 L(X
(i)

1:T (i) ;WKQ(0),WV (0))

Gradient descent on WKQ

WKQ(1)←WKQ(0)− ηKQ∇WKQ

1
MKQ

∑MV +MKQ

i=MV +1 L(X
(i)

1:T (i) ;WKQ(0),WV (1))

Output: Prediction fTF(·)

Gradient-based Learning Algorithm. We use gradient descent (Algorithm 1) on the cross-
entropy loss to pretrain our shallow transformer (2.1),

L(X(i)

1:T (i) ;WKQ,WV ) = CrossEntropy(ez
T (i)+1

,Softmax(fTF(X1:T (i) ;WKQ,WV ))).

In Algorithm 1, we apply a single gradient descent step with large learning rate on the value and
key-query matrices. This is motivated by recent studies [ORST23, BCB+23, WS24] showing that
the first gradient step can induce associative memory tied to specific components of the input em-
bedding. In particular, the gradient can often be expressed as a linear combination of outer products
wv⊤, where either w or v corresponds to embedding vectors such as ezt , ezt−1 , or pt. Such a gra-
dient structure is sufficient to construct simple forms of associative memory within the model. We
remark that similar single-step update is commonly used in the analysis of feature learning in shallow
neural networks [BES+22, DLS22, BEG+22] and transformers [OSSW24, NSO+25, WNB+25].

3 Main Result: Data-driven Transition Between Mechanisms

3.1 Positional Shortcut vs. Induction Head

In this section, we illustrate how the diversity of pretraining distribution influences which algorithm
the trained transformer implements — either the positional shortcut or the induction head. The
following quantity plays a central role in our characterization.
Definition 4. For each ℓ, let qℓ denote the probability mass assigned under Dℓ, and S the support
of Dℓ. We define the max-sum ratio as

R(Dℓ) =
maxℓ∈S ℓ−1qℓ∑

ℓ∈S ℓ−1qℓ
.

Interpretation of max-sum ratio. The max-sum ratio can be seen as a diversity measure of Dℓ.
The following example provides an intuitive illustration:
Example 1. Let Dℓ = Unif({ℓ0, ℓ0 + 1, . . . , ℓ0 +K − 1}). Then the max-sum ratio is given by

R(ℓ0,K) =
ℓ−1
0∑K−1

k=0 (ℓ0 + k)−1
, (3.1)

which monotonically decreases with K; hence greater diversity of Dℓ gives smaller max-sum ratio.

Note that the max-sum ratio does not merely capture the width of the distribution: in Example 1, in-
creasing ℓ0 while keeping K fixed decreases the proportion of ℓ−1

0 in [ℓ−1
0 , . . . , (ℓ0+K−1)−1], thus

reducing the max-sum ratio. Hence, even with a narrow range, shifting the distribution rightward –
placing more probability on larger ℓ – naturally yields a smaller max-sum ratio. This is because the
max-sum ratio weights each probability mass qℓ by ℓ−1.

Learning under Population Loss. The next theorem shows the existence of a threshold in the
max-sum ratio that determines whether OOD generalization is achieved, in the infinite-data limit.
Theorem 5 (Infinite Sample Setting). Suppose we run Algorithm 1 on the expected loss
E[L(X1:T ;WKQ,WV )] with learning rates ηV ≲ 1, ηV ηKQ ≳ N3

N3
trg

logN . Then, there exist

ϵ1(Ntrg), ϵ2(Ntrg) = Θ(N−1
trg ) such that:
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• If R(Dℓ) < ϵ1, then the pretrained transformer generalizes OOD, as defined in Definition 2.

• If R(Dℓ) > ϵ2, then there exist OOD test sequences such that the pretrained transformer fails.

Remark 2.
• Note that the training data only contain sequences with ℓ1 = ℓ2, and thus a positional shortcut

(as illustrated in Figure 1) can still achieve 100% training accuracy. However, since the OOD
test data include sequences with ℓ1 ̸= ℓ2, such shortcuts inevitably fail. Our main theorems show
that the pretrained transformer avoids such shortcuts when the max-sum ratio is below a certain
threshold, i.e., when the data distribution is sufficiently diverse.

• We also provide a tight Θ(N−1
trg ) characterization of the max-sum ratio threshold, indicating that

increasing the number of possible triggers makes OOD generalization more difficult. The under-
lying mechanism is discussed in the ensuing subsection.

Learning under Empirical Loss. Our next result establishes (via gradient concentration) similar
transition behavior in the finite-sample setting.

Theorem 6 (Finite Sample Setting). Suppose we run Algorithm 1 with the same learn-
ing rate scaling as in Theorem 5, and with sample sizes MKQ ≳ poly logN ·
N3

N2
trg

(∑
ℓ

√
qℓ
)2

and MV ≳ poly logN · N5

N2
trg

( ∑
ℓ∈S

√
qℓ∑

ℓ∈S qℓℓ−1

)2
. Then, with probability at least 0.99

there exist ϵ′1(Ntrg), ϵ
′
2(Ntrg) = Θ(N−1

trg ) such that the assertion of Theorem 5 holds by substituting
(ϵ′1, ϵ

′
2) for (ϵ1, ϵ2).

3.2 Mechanism of Algorithm Selection

Now we take a closer look at how the positional shortcut and the induction head are implemented
in the attention. We begin with the case where the support of Dℓ is a singleton and Ntrg = 1. After
a single gradient step, the parameter matrix WKQ can be shown to implement a form of associative
memory over the relevant embedding vectors.

Lemma 7 (Informal). Let Dℓ = {ℓ}, and assume the trigger consists of a single token w. After one
gradient step of Algorithm 1, WKQ takes the form

WKQ ∝ T (ℓ)−1

[
(pℓ+2 + pℓ+3)

0
ew

][
p⊤
T (ℓ) e⊤w 0

]
,

where T (ℓ) = 2ℓ+ 3 denotes the position of the second occurrence of the trigger token.

To further simplify the exposition, we ignore the cross terms between p and e and assume that WKQ

takes the following form:

WKQ ∝ T (ℓ)−1

[
(pℓ+2 + pℓ+3)

0
0

][
p⊤
T (ℓ) 0⊤ 0⊤

]
︸ ︷︷ ︸

positional shortcut

+ T (ℓ)−1

[
0
0
ew

][
0 e⊤w 0

]
︸ ︷︷ ︸

induction head

(3.2)

Now consider an OOD test sequence as in Figure 1, whose total length matches the training sequence
but whose first and second subtext lengths differ: ℓ1 + ℓ2 = 2ℓ, ℓ1 ̸= ℓ2. In this case, the two terms
in (3.2) contribute to the attention score

Softmax
(
X⊤

1:Ttest
WKQ xTtest

)
with Ttest = ℓ1 + ℓ2 + 3 = T (ℓ)

as follows (see Figure 2), noting that xTtest
=
[
pT (ℓ) ew ∗

]⊤
:

• 1st term (positional shortcut). Regardless of ℓ1, it attends to the positions ℓ+2 = (Ttest+1)/2
and ℓ + 3 = (Ttest + 3)/2. In particular, for the former, even though ℓ1 ̸= ℓ2, the transformer
incorrectly associates the second trigger position Ttest with (Ttest + 1)/2 as if ℓ1 = ℓ2.2

2For the latter position (Ttest + 3)/2, the model also attends to the same token via the previous-token
embedding. This follows from a detailed computation of W V , which we omit here.
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Figure 2: Attention heatmaps of WKQ when the pretraining sequence diversity is small (left) and large (right).
In the left figure, there is a strong positional shortcut that links position 9 to position 5 (the correct position in
pretraining data), whereas in the right figure, the trigger positions are more dispersed, weakening this shortcut.
Instead, a signal corresponding to induction head – detecting tokens after trigger – becomes dominant.

• 2nd term (induction head). It attends to tokens whose third embedding block equals ew, i.e.,
tokens whose previous token is the trigger w. In other words, it scans for the trigger w = zTtest

and then attends to its next token — this is precisely the desired induction head behavior.

Thus, the learned attention matrix implements a mixture of positional shortcut and induction head,
and the relative strength of these components determines which algorithm is ultimately selected.
Two factors affect this balance: the diversity of irrelevant token length ℓ and the trigger size Ntrg.

Length distribution Dℓ. Equation (3.2) describes the case where ℓ is deterministic. When ℓ is
distributed according to Dℓ, WKQ becomes a superposition over ℓ:

WKQ(1) ∝
∑
ℓ

qℓ T (ℓ)
−1

[
(pℓ+2 + pℓ+3)

0
0

][
p⊤
T (ℓ) 0⊤ 0⊤

]
+ E

[
T (ℓ)−1

][ 0
0
ew

][
0 e⊤w 0

]
.

Here, the first term spreads its mass across multiple positions and is consequently weakened,
whereas the second term does not depend on ℓ and retains its strength. As a result, the magnitude of
the former is at most maxℓ qℓ T (ℓ)

−1, while that of the latter is
∑

ℓ qℓ T (ℓ)
−1. Since T (ℓ) ≍ ℓ, the

ratio between the strengths of positional memory and the induction head is nothing but the max-sum
ratio R(Dℓ). This explains why the max-sum ratio governs algorithm selection.

Trigger size Ntrg. In (3.2), when the trigger size Ntrg ≥ 2, the second term is replaced by

N−1
trg

∑
w∈[Ntrg]

T (ℓ)−1

[
0
0
ew

][
0 e⊤w 0

]
,

while the first term remains unchanged. Hence, the induction-head signal is split across trigger types
and its strength decreases proportionally to N−1

trg . This explains Θ(N−1
trg ) threshold in Theorem 5.

The above intuition is visualized in an experiment reported in Figure 2.

Example 2. In Figure 2, we set N = 16 and Ntrg = 2, train the model with D(ℓ) = 3 and
D(ℓ) = Unif([3 : 8]), and visualize the resulting WKQ. The trigger-token set is {1, 2}. The
training setting is the same as that in Section 4.1.
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• (Left): when D(ℓ) = {3}, WKQ has a strong component that maps position 9 to position 5.
Although it also contains an induction head component that maps between trigger tokens, it is
comparatively weak compared to the positional signal.

• (Right): when D(ℓ) = Unif([3 : 8]), WKQ exhibits a superposition of signals mapping position
k to (k+1)/2, which results in each individual signal being weakened. In contrast, the induction
head signal does not diminish.

3.3 Tradeoff between Context Length and OOD Generalization

As discussed in Section 3.1, the max-sum ratio captures not only the overall “width” of the distri-
bution but also decreases as mass shifts toward larger ℓ. This effect becomes especially pronounced
near the Θ(N−1

trg ) threshold identified in Theorems 5 and 6:
Example 3. Consider the max-sum ratio for the uniform distribution (3.1). If ℓ0 = 1, then
R(ℓ0,K) = Θ((logK)−1). To attain a max-sum ratio of order O(N−1

trg ) – the OOD general-
ization threshold in Theorems 5 and 6 – the support width must satisfy K ≳ exp(Ntrg). By contrast,
if ℓ0 = Θ(Ntrg), then it suffices to take K = Θ(Ntrg) to obtain a max-sum ratio of O(N−1

trg ).

Therefore, merely “widening” the distribution may not be efficient to reduce the max-sum ratio;
biasing pretraining toward longer contexts is substantially more effective. This, in turn, suggests
that reliably learning the induction-head mechanism (and hence achieving OOD generalization) may
incur greater computational cost due to longer training sequences.
We now consider the “optimal” shape of the pretraining sequence (under the constraint in Defini-
tion 2) that learns the induction-head mechanism with minimal compute. Since the forward-pass
cost scales quadratically with context length, we seek short contexts while maintaining a favorable
max-sum ratio. Formally, for U ≥ Ntrg, consider the optimization problem

P :


minimize

∑U
ℓ=1 qℓℓ

2

subject to maxU
ℓ=1 qℓℓ

−1∑U
ℓ=1 qℓℓ−1 ≤ N−1

trg∑U
ℓ=1 qℓ = 1

q1, . . . , qU ≥ 0

This objective is the sample-average forward-pass cost in pretraining; the constraints enforce the
OOD threshold from Theorem 7 and the normalization of (qℓ)Uℓ=1. This problem is a linear program
whose optimizer is characterized below.
Proposition 8. The optimal solution of problem P assigns linearly increasing probability mass to
the first Ntrg context lengths and zero to the remaining ones:

(q1, q2, . . . , qU ) = Z−1(1, 2, . . . , Ntrg, 0, . . . , 0),

where the normalization constant is Z = Ntrg(Ntrg + 1)/2.

In other words, to minimize average forward-pass cost per sample while meeting the OOD general-
ization constraint, the pretraining distribution should be linear in the context length, making qℓℓ

−1

uniform over ℓ ≤ Ntrg. We note that if one optimizes a different objective (e.g., incorporating
sample complexity), the optimal pretraining distribution may change.

4 Numerical Experiments

4.1 Experiments for Theoretical Setting

To observe the transition from positional shortcut to induction head, we first consider the architecture
defined in (2.1) and conduct experiments under the data model described in Definition 1.

4.1.1 Experimental Setup

Dataset. We generate training and test data according to the trigger-output setting in Definition 1.

• In the pretraining data, the lengths of irrelevant tokens ℓ1, ℓ2 are always equal. We choose two
integers ℓmin and ℓmax (ℓmin ≤ ℓmax), and length ℓ is sampled from Unif([ℓmin, ℓmax]).
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Figure 3: Out-of-distribution accuracy map over varying ℓmin (vertical) and ℓmax (horizontal); moving right
indicates greater diversity of ℓ in the pretraining distribution.

• In the OOD test data, we shift the position of the first trigger to produce non-periodic sequences.
Specifically, we first sample ℓ ∼ Unif([ℓmin+1, ℓmax]), and then sample ℓ1 ∼ Unif({1, . . . , 2ℓ−
1} \ {ℓ}), defining ℓ2 = 2ℓ− ℓ1 so that ℓ1 ̸= ℓ2.

Model architecture, embedding, and training. We implement a one-layer transformer architec-
ture as defined in (2.1) with embeddings defined in (2.2). Training follows Algorithm 1, and the
learning rates for W V and WKQ are set to 103 and 104, respectively. Both matrices are trained
with the empirical cross entropy loss computed on 8192 training examples.

4.1.2 Empirical Observations

OOD Accuracy. We conduct experiments for all combinations of ℓmin ∈ [3, 15] and ℓmax ∈
[3, 15] such that ℓmin < ℓmax, and evaluate all models on 1024 OOD test samples. The test accura-
cies (with different trigger size Ntrg) are presented in Figure 3.

• OOD accuracy tends to increase as ℓmax increases (with ℓmin fixed). This suggests that a greater
diversity in the training data biases the model towards the induction head.

• Comparing the left and right figures, we see that as the trigger size increases, the region where
OOD generalization is achieved shifts rightward, suggesting an increased difficulty of induction
head learning with larger Ntrg, as predicted by Theorem 6.

Error Visualization. Our theory predicts two characteristic error modes:

• Pseudo trigger position. For non-periodic OOD evaluation data with ℓ1 + ℓ2 = 2ℓ and ℓ1 ̸= ℓ2,
let ℓ̃ = (ℓ1 + ℓ2)/2. The positional shortcut maps the second-trigger position ℓ1 + ℓ2 + 3 to the
pseudo output position ℓ̃+2. Accordingly, we measure the fraction of instances where the model
outputs zℓ̃+2 and report this frequency as the pseudo accuracy rate.

• Leftmost position. Since the leftmost trigger in the pretraining data typically provides the strongest
positional signal, the model may output zℓmin+2 independent of the second trigger position. This
error mode is especially likely when Ntrg is small. We record its frequency as the leftmost rate.

Figure 5 in Appendix E illustrates the existence of these positional shortcuts. We observe that the
error rate due to the pseudo-trigger mechanism is higher near the diagonal, and both errors decline
as ℓmax increases.

4.2 Experiments for Practical Settings

Next we examine whether a similar transition from positional shortcut to induction head occurs in
more standard gradient-based pretraining beyond our theoretical simplification. We consider a three-
layer transformer architecture with separated key-query matrices, MLPs, and residual connections,
where all parameters are learned jointly using the AdamW optimizer [KB14, LH19]. The dataset
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is generated in the same way as in Section 4.1: we set N = 32 and Ntrg = 1, and varied ℓmin =
4, 8, . . . , 20, ℓmax = 4, 8, . . . , 40. More experimental details can be found in Appendix E.
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Figure 4: Accuracy map over ℓmin (vertical), ℓmax (horizontal) for a 3-layer transformer trained with AdamW.

Empirical Observations. Figure 4 shows the OOD accuracy, pseudo accuracy rate, and leftmost
rate, following the same setup as in Section 4.1. Note that as the diversity of the pretraining dis-
tribution increases, the OOD generalization accuracy improves and the errors due to the positional
shortcut decrease — this is consistent with our theoretical prediction in Section 3. We also observe
that the transition point is less sharp compared to our theoretical setting.

5 Conclusion

In this work, using a simplified trigger–output task, we developed a theoretical analysis showing
that gradient-based training implicitly selects between two distinct mechanisms with different out-
of-distribution generalization properties — an induction head or a positional shortcut. We introduced
the max-sum ratio as a key quantity governing this selection. Our results demonstrate that the
statistical structure of pretraining data critically shapes the algorithms internalized by transformers,
offering quantitative insights into steering learning via data design.
We conclude with several directions for future work. First, beyond absolute positional embed-
dings, it is important to characterize which positional shortcuts can arise under relative position
embeddings and related variants. Second, while our analysis centers on a single-layer architecture,
a two-layer model naturally delegates retrieval to the first layer (recovering the token correspond-
ing to ezt−1 ); analyzing the coupled dynamics that emerge from this decomposition is an intriguing
next step. Finally, developing methods to analyze and quantify richer classes of algorithmic biases
– beyond the induction–shortcut dichotomy – would deepen our understanding of how pretraining
distributions induce specific computational circuits.
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A Preliminaries

Throughout the paper, O(·) notation is taken with respect to the vocabulary size N and we assume
the following scaling:
Assumption 1 (Scaling between problem parameters). Number of triggers Ntrg satisfies Ntrg =

o(N1/3). Context length T satisfies T = o(N/N2
trg) almost surely.

We also assume the following:
Assumption 2. We assume ℓ ≥ 4 almost surely at pretraining and L = poly(N).

I(A) denotes the indicator function of the event A, that is, I(A) = 1 if A holds, and 0 otherwise.
For a ≤ b, 1a:b denotes the vector whose a, a+1, . . . , b-th entries are one and others are zero. For a
matrix A ∈ Rm×n, we use the notation A[:, I :J ] to denote the submatrix consisting of all rows and
columns from index I to J . For an arbitrary matrix A, λi(A) is the i-th largest eigenvalue of A.

B Infinite Sample Analysis

In this section, we analyze Algorithm 1 with infinite sample size. Recall that we defined

fTF(X1:t;WKQ,WV ) = WV X1:t Softmax(X⊤
1:tWKQxt) ∈ RN

and next token prediction loss

L(X(i)

1:T (i) ;WKQ,WV ) = CrossEntropy(ez
T (i)+1

,Softmax(fTF(X1:T (i) ;WKQ,WV ))).

For simplicity, we denote the population loss as L̄(WKQ,WV ) :=
ET [EX1:T

[L(X1:T ;WKQ,WV )]].

B.1 Population Gradient of WV

Note that Softmax(X⊤
1:TWKQxT ) = [1/T, . . . , 1/T ]⊤ and Softmax(fTF(X1:t;WKQ,WV )) =

[1/N, . . . , 1/N ]⊤ is satisfied at initialization, for any X1:t. From [BCB+23, Lemma 1], the popu-
lation loss can be calculated as

∇WV
L̄(WKQ,WV )

=
1

N

N∑
k=1

ekET

[
1

T

T∑
t=1

E[xt]
⊤

]
−

N∑
k=Ntrg+1

ekET

[
1

T

T∑
t=1

E[I(zT+1 = k)x⊤
t ]

]
.

=
1

N

N∑
k=1

ekET

[
1

T

T∑
t=1

E[xt]
⊤

]
− 1

N −Ntrg

N∑
k=Ntrg+1

ekET

[
1

T

T∑
t=1

E[xt|zT+1 = k]⊤

]
.

We conduct block-wise calculation for the population gradient: let

WV =
[
W

(1)
V ,W

(2)
V ,W

(3)
V

]
and let

W ∗
V =

[
W

∗,(1)
V ,W

∗,(2)
V ,W

∗,(3)
V

]
be WV after one GD step, i.e., W ∗

V = −ηV∇WV
L̄(WKQ,WV ), where W

(1)
V ∈ RN×D,

W
(2)
V ,W

(3)
V ∈ RN×N . In this section we show the following, using the rescaling ηV = Nη̃V

for notation simplicity.
Lemma 9. If we use stepsize Nη̃V for WV , then it holds that

⟨ek,W ∗,(1)
V pt⟩ =

{
−αtη̃V (k ∈ [Ntrg]),
αtη̃V Ntrg

N−Ntrg
(k ̸∈ [Ntrg]),

(B.1)
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⟨ej ,W ∗,(2)
V ek⟩ =



−2η̃V E[T−1]N−1
trg (j, k ∈ [Ntrg])

−η̃V 1−2E[T−1]
N−Ntrg

(j ∈ [Ntrg], k ̸∈ [Ntrg])

2η̃V
E[T−1]
N−Ntrg

(j ̸∈ [Ntrg], k ∈ [Ntrg])

η̃V
Ntrg+E[T−1](N(N−1)−Ntrg(N+2))

(N−Ntrg)2
(j = k ̸∈ [Ntrg])

η̃V
Ntrg−E[T−1](N+2Ntrg)

(N−Ntrg)2
(j ̸= k, j, k ̸∈ [Ntrg])

(B.2)

and

⟨ej ,W ∗,(3)
V ek⟩ =



−η̃V E[T−1]N−1
trg (j, k ∈ [Ntrg])

−η̃V 1−2E[T−1]
N−Ntrg

(j ∈ [Ntrg], k ̸∈ [Ntrg])

η̃V
E[T−1]
N−Ntrg

(j ̸∈ [Ntrg], k ∈ [Ntrg])

η̃V
Ntrg+E[T−1](N(N−1)−Ntrg(N+2))

(N−Ntrg)2
(j = k ̸∈ [Ntrg])

η̃V
Ntrg−E[T−1](N+2Ntrg)

(N−Ntrg)2
(j ̸= k, j, k ̸∈ [Ntrg]),

where we defined αt :=
〈
ET

[
T−111:T

]
,pt

〉
: specifically, αt = ET [T

−1I{t ≤ T}] ≤ ET [T
−1] is

satisfied.

Proof. For the first block, we have the following evaluation of the gradient of population loss L̄:

∇
W

(1)
V

L̄(WKQ,WV )

=
1

N

N∑
k=1

ekET

[
1

T

T∑
t=1

E[pt]
⊤

]
− 1

N −Ntrg

N∑
k=Ntrg+1

ekET

[
1

T

T∑
t=1

E[pt|zT+1 = k]⊤

]

=
1

N

N∑
k=1

ekET

[
T−1

T∑
t=1

p⊤
t

]
− 1

N −Ntrg

N∑
k=Ntrg+1

ekET

[
T−1

T∑
t=1

p⊤
t

]
.

This immediately yields (B.1).
Now for the second block, we have

∇
W

(2)
V

L̄(WKQ,WV )

=
1

N

N∑
k=1

ekET

[
1

T

T∑
t=1

E[ezt ]⊤
]
− 1

N −Ntrg

N∑
k=Ntrg+1

ekET

[
1

T

T∑
t=1

E[ezt |zT+1 = k]⊤

]
,

where the first term is evaluated as

1

N

N∑
k=1

ekET

[
1

T

T∑
t=1

E[ezt ]⊤
]
=

1

N

N∑
k=1

ek

Ntrg∑
w=1

1

Ntrg
ET

[
1

T

(
2ew +

T − 2

N −Ntrg
1Ntrg+1:N

)⊤
]
,

and similarly for the second term

1

N −Ntrg

N∑
k=Ntrg+1

ekET

[
1

T

T∑
t=1

E[ezt |zT+1 = k]⊤

]

=
1

N −Ntrg

N∑
k=Ntrg+1

ek
1

Ntrg

Ntrg∑
w=1

ET

[
1

T

(
2ew +

T − 3

N −Ntrg
1Ntrg+1:N + ek

)⊤
]
.

Putting everything together yields (B.2).
The third block can be computed in the same fashion as

∇
W

(3)
V

L̄(WKQ,WV )

=
1

N

N∑
k=1

ekET

[
1

T

T∑
t=1

E[ezt−1
]⊤

]
− 1

N −Ntrg

N∑
k=Ntrg+1

ekET

[
1

T

T∑
t=1

E[ezt−1
|zT+1 = k]⊤

]
,
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where we have the evaluations

1

N

N∑
k=1

ekET

[
1

T

T∑
t=1

E[ezt−1 ]
⊤

]

=
1

N

N∑
k=1

ek
1

Ntrg

Ntrg∑
w=1

ET

[
1

T

(
ew +

T − 2

N −Ntrg
1Ntrg+1:N

)⊤
]
(∵ e0 = 0)

and

1

N −Ntrg

N∑
k=Ntrg+1

ekET

[
1

T

T∑
t=1

E[ezt−1 |zT+1 = k]⊤

]

=
1

N −Ntrg

N∑
k=Ntrg+1

ek
1

Ntrg

Ntrg∑
w=1

ET

[
1

T

(
ew +

T − 3

N −Ntrg
1Ntrg+1:N + ek

)⊤
]
.

B.2 Population Gradient of WKQ

B.2.1 Preparations

We denote the transformer’s predicted probability of token k given an input sequence z after one-step
GD on WV as

p̂(k|z) = Softmax(fTF(X1:T ;WKQ,W
∗
V ))k.

We can approximate p̂(k|z) by considering sufficiently small η̃V : The following corollary is ob-
tained by Lemma 9.
Corollary 10. If we set η̃V ≲ 1/N , then |1/N − p̂(k|z)| = O(E[T−1]/N2) uniformly holds for any
k and z.

Proof. From Lemma 9, it holds that |(fTF(X1:T ;WKQ,W
∗
V ))k| ∈ O(E[T−1]/N + 1/N2) ∈

O(E[T−1]/N) (∵ Assumption 1) for all k. If vi = O(E[T−1]/N) for all i ∈ [N ] where v ∈ RN ,
then it holds that

1

N
exp
(
−O(E[T−1]/N)

)
≤ Softmax(v)i ≤

1

N
exp
(
O(E[T−1]/N)

)
.

From Taylor’s theorem we obtain the assertion.
Following [BCB+23, Lemma 4], starting from WKQ = 0,

∇WKQ
L̄(WKQ,W

∗
V )

=E

[
N∑

k=1

(p̂(k|z)− I{zT+1 = k})∇WKQ=0

〈
ek,W

∗
V X1:TSoftmax(X⊤

1:TWKQxT )
〉]

,

where

∇WKQ=0

(
e⊤k W

∗
V

T∑
t=1

xtSoftmax(X⊤
1:TWKQxT )t

)

=

T∑
t=1

e⊤k W
∗
V xt · ∇WKQ=0Softmax(X⊤

1:TWKQxT )t

=
1

T

T∑
t=1

e⊤k W
∗
V xt · (xt − x̄1:T )x

⊤
T ,

for x̄1:T = 1
T

∑T
t=1 xt. Hence the population gradient simplifies to, assuming η̃V ≲ 1/N ,

∇WKQ
L̄(WKQ,W

∗
V )
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=

N∑
k=1

ET

[
1

T

T∑
t=1

EX

[
p̂(k|z)e⊤k W ∗

V xt · (xt − x̄1:T )x
⊤
T

]]

−
N∑

k=Ntrg+1

ET

[
1

T

T∑
t=1

p(zT+1 = k)EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T |zT+1 = k

]]

=
1

N

N∑
k=1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]]

− 1

N −Ntrg

N∑
k=Ntrg+1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T |zT+1 = k

]]

+

N∑
k=1

ET

[
1

T

T∑
t=1

EX

[(
p̂(k|z)− 1

N

)
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]]
︸ ︷︷ ︸

(∗1)

.

Note that each entry of e⊤k W
∗
V xt ·(xt− x̄1:T )x

⊤
T is of O(η̃V E[T−1]) from Lemma 9, and |p̂(k|z)−

1
N | ≲ E[T−1]/N2 from Corollary 10. Therefore, using |E[ab]| ≤

√
E[a2b2] we can conclude that

(*1) is of O∞(η̃V E[T−1]2/N) ∈ O∞(η̃V E[T−1]Ntrg/N).
Moreover, we have

1

N

N∑
k=1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]]

=
1

N −Ntrg

N∑
k=Ntrg+1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]]

+
1

N −Ntrg

Ntrg∑
k=1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]]

− Ntrg

N(N −Ntrg)

N∑
k=1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]]
.

Here, again using the fact that each entry of e⊤k W
∗
V xt · (xt − x̄1:T )x

⊤
T is of O(η̃V E[T−1]), the

second and third terms can be bounded by O∞(η̃V E[T−1] ·Ntrg/N).
In conclusion, we obtain

∇WKQ
L̄(WKQ,W

∗
V )

=
1

N −Ntrg

N∑
k=Ntrg+1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]]

− 1

N −Ntrg

N∑
k=Ntrg+1

ET

[
1

T

T∑
t=1

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T |zT+1 = k

]]
+O∞(η̃V E[T−1] ·Ntrg/N).

B.2.2 Detailed Calculations

Let

∆(k, T )

:=
1

T

T∑
t=1

(
EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T

]
− EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )x

⊤
T |zT+1 = k

])
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for Ntrg + 1 ≤ k ≤ N . Then, it holds that ∇WKQ
L̄(WKQ,W

∗
V ) =

1
N−Ntrg

∑N
k=Ntrg+1 ET [∆(k, T )] + η̃V E[T−1]O∞(Ntrg/N).

For the first and second (block) columns, we have the following lemma:
Lemma 11. Let W ∗

KQ = −ηKQ∇WKQ
L̄(WKQ,W

∗
V ). Then, it holds that

W ∗
KQ[:, 1 : L+N ]

=η̃V ηKQ
1

Ntrg

Ntrg∑
w=1

∑
ℓ

p(ℓ)

(
T (ℓ)−1

pℓ+2Eℓ′ [T (ℓ
′)−1] + pℓ+3Eℓ′ [T (ℓ

′)−1]
0

ewEℓ′ [T (ℓ
′)−1]

[p⊤
T (ℓ) e⊤w

]

− 2T (ℓ)−2

11:T (ℓ)\{ℓ+2,ℓ+3}Eℓ′ [T (ℓ
′)−1]

2ewEℓ′ [T (ℓ
′)−1]

0

[p⊤
T (ℓ) e⊤w

])
+ η̃V ηKQEℓ′ [T (ℓ

′)−1]O(Ntrg ·N−1).

Here O(Ntrg · N−1) denotes a matrix whose entries are all of O(Ntrg · N−1) and p(ℓ) is the
probability of drawing ℓ at pretraining data.

Proof. [Proof of Lemma 11] Suppose WV is obtained by Lemma 9. Note that

∆(k, T )[:, : L]

=
1

T

T∑
t=1

(
EX

[
e⊤k WV xt · (xt − x̄1:T )

]
− EX

[
e⊤k WV xt · (xt − x̄1:T )|zT+1 = k

])
p⊤
T

=
1

Ntrg

Ntrg∑
w=1

1

T

T∑
t=1

(
EX

[
(xt − x̄1:T )x

⊤
t |xT = w

]
− EX

[
(xt − x̄1:T )x

⊤
t |zT+1 = k,xT = w

])
·WV

⊤ekp
⊤
T

and similarly

∆(k, T )[:, L+ 1 : L+N ]

=
1

Ntrg

Ntrg∑
w=1

[
1

T

T∑
t=1

(
EX

[
(xt − x̄1:T )x

⊤
t |xT = w

]
− EX

[
(xt − x̄1:T )x

⊤
t |zT+1 = k,xT = w

])

·WV
⊤eke

⊤
w

]
.

Now let us consider the difference

1

T

T∑
t=1

(
EX

[
(xt − x̄1:T )x

⊤
t |xT = w

]
− EX

[
(xt − x̄1:T )x

⊤
t |zT+1 = k,xT = w

])
=

1

T

T∑
t=1

(
EX

[
xtx

⊤
t |xT = w

]
− EX

[
xtx

⊤
t |zT+1 = k,xT = w

])
− 1

T 2

T∑
t=1

T∑
t′=1

(
EX

[
xtx

⊤
t′ |xT = w

]
− EX

[
xtx

⊤
t′ |zT+1 = k,xT = w

])
=

(
1

T
− 1

T 2

) T∑
t=1

(
EX

[
xtx

⊤
t

∣∣xT = w]− EX

[
xtx

⊤
t |zT+1 = k,xT = w

])
− 1

T 2

∑
t ̸=t′

(
EX

[
xtx

⊤
t′ |xT = w

]
− EX

[
xtx

⊤
t′ |zT+1 = k,xT = w

])
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Then it suffices to calculate the vector

d(t, t′, k, w) = M(t, t′, k, w)W⊤
V ek

:=
(
E[xtx

⊤
t′ |xT = w]− E[xtx

⊤
t′ |zT+1 = k,xT = w]

)
W⊤

V ek

for each t, t′, k and w. Recall

W⊤
V ek = η̃V



α1Ntrg

N−Ntrg

...
αLNtrg

N−Ntrg

2
N−Ntrg

E[T−1]1Ntrg

(− 1
NE[T−1] +O(Ntrg ·N−2))1k−Ntrg−1

E[T−1] + E[T−1]O(Ntrg ·N−1) +O(Ntrg ·N−2)
(− 1

NE[T−1] +O(Ntrg ·N−2))1N−k

1
N−Ntrg

E[T−1]1Ntrg

(− 1
NE[T−1] +O(Ntrg ·N−2))1k−Ntrg−1

E[T−1] + E[T−1]O(Ntrg ·N−1) +O(Ntrg ·N−2)
(− 1

NE[T−1] +O(Ntrg ·N−2))1N−k



.

For preparation, we define some vectors: let

α(k) =

0, 0, . . . , 0︸ ︷︷ ︸
Ntrg zeros

,
1

N −Ntrg
, . . . ,

1

N −Ntrg
,
N +Ntrg + 1

N −Ntrg︸ ︷︷ ︸
k-th entry

,
1

N −Ntrg
, . . . ,

1

N −Ntrg


⊤

be an N -dimensional vector for Ntrg + 1 ≤ k ≤ N and

β =

0, 0, . . . , 0︸ ︷︷ ︸
Ntrg zeros

,
1

N −Ntrg
, . . . ,

1

N −Ntrg


⊤

∈ RN .

First, if t = t′, then M(t, t′, k, w) is zero unless t = ℓ+ 2 or t = ℓ+ 3, as zT+1 is independent of
zi (i ∈ [T ], i ̸= ℓ+ 2) and only xℓ+2 and xℓ+3 include the information of zℓ+2. For each case, we
have

M(ℓ+ 2, ℓ+ 2, k, w) =

 OL×L pℓ+2α(k)⊤ OL×N

α(k)p⊤
ℓ+2 diag(α(k)) α(k)e⊤w

ON×L ewα(k)⊤ ON×N


and

M(ℓ+ 3, ℓ+ 3, k, w) =

 OL×L OL×N pℓ+3α(k)⊤

ON×L ON×N βα(k)⊤

α(k)p⊤
ℓ+3 α(k)β⊤ diag(α(k))

,
then we obtain

d(ℓ+ 2, ℓ+ 2, k, w) = η̃V

−pℓ+2E[T−1]
−ekE[T−1]
−ewE[T−1]

+ η̃V O∞(E[T−1]
Ntrg

N
+

Ntrg

N2
)

and

d(ℓ+ 3, ℓ+ 3, k, w) = η̃V

−pℓ+3E[T−1]
0

−ekE[T−1]

+ η̃V O∞(E[T−1]
Ntrg

N
+

Ntrg

N2
).

For the case t ̸= t′, deal with the following three cases:
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(i) If (t, t′) = (ℓ+ 2, ℓ+ 3) or (t, t′) = (ℓ+ 3, ℓ+ 2) then we have

M(ℓ+ 2, ℓ+ 3, k, w) +M(ℓ+ 3, ℓ+ 2, k, w)

=

 OL×L pℓ+3α(k)⊤ pℓ+2α(k)⊤

α(k)p⊤
ℓ+3 α(k)β⊤ + βα(k)⊤ diag(α(k))

α(k)p⊤
ℓ+2 diag(α(k)) α(k)e⊤w + ewα(k)⊤


and

d(ℓ+ 2, ℓ+ 3, k, w) + d(ℓ+ 3, ℓ+ 2, k, w)

=η̃V

−pℓ+2E[T−1]− pℓ+3E[T−1]
−ekE[T−1]

−ekE[T−1]− ewE[T−1]

+ η̃V O∞(E[T−1]
Ntrg

N
+

Ntrg

N2
).

(ii) For t ̸= ℓ+ 2, ℓ+ 3 we have

M(t, ℓ+2, k, w)+M(ℓ+2, t, k, w) =

 O ptα(k)⊤ O
α(k)p⊤

t γ(t)α(k)⊤ +α(k)γ(t)⊤ α(k)β⊤

O βα(k)⊤ O


where γ(t) = ew if t = ℓ+ 1 or t = T and γ(t) = β otherwise. To summarize,

d(t, ℓ+2, k, w)+d(ℓ+2, t, k, w) = η̃V

−ptE[T−1]
−ewE[T−1]

0

+η̃V O∞(E[T−1]
Ntrg

N
+
Ntrg

N2
).

if t = ℓ+ 1 or t = T and

d(t, ℓ+2, k, w)+d(ℓ+2, t, k, w) = η̃V

−ptE[T−1]
0
0

+ η̃V O∞(E[T−1]
Ntrg

N
+
Ntrg

N2
).

otherwise.
(iii) For t ̸= ℓ+ 2, ℓ+ 3 we have

M(t, ℓ+3, k, w)+M(ℓ+3, t, k, w) =

 O O ptα(k)⊤

O O γ(t)α(k)⊤

α(k)p⊤
t α(k)γ(t)⊤ βα(k)⊤ +α(k)β⊤


and we obtain

d(t, ℓ+3, k, w)+d(ℓ+3, t, k, w) = η̃V

−ptE[T−1]
−ewE[T−1]

0

+ η̃V O∞(E[T−1]
Ntrg

N
+
Ntrg

N2
)

if t = ℓ+ 1 or t = T and

d(t, ℓ+3, k, w)+d(ℓ+3, t, k, w) = η̃V

−ptE[T−1]
0
0

+ η̃V O∞(E[T−1]
Ntrg

N
+
Ntrg

N2
).

otherwise.

Now we are ready to calculate − 1
N−Ntrg

∑N
k=Ntrg+1 ∆(k, T )[:, : L+N ] as

− 1

N −Ntrg

N∑
k=Ntrg+1

∆(k, T )[:, 1 : L+N ]

=
1

Ntrg

Ntrg∑
w=1

{
− η̃V

N −Ntrg

N∑
k=Ntrg+1

[(
1

T
− 1

T 2

)−pℓ+2E[T−1]
−ekE[T−1]
−ewE[T−1]

+

−pℓ+3E[T−1]
0

−ekE[T−1]


+

1

T 2

pℓ+2E[T−1] + pℓ+3E[T−1]
ekE[T−1]

ekE[T−1] + ewE[T−1]

+
2

T 2

11:T\{ℓ+2,ℓ+3}E[T−1]
2ewE[T−1]

0

][p⊤
T e⊤w

]}
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+ η̃V E[T−1]O(Ntrg ·N−1) + η̃V O(Ntrg ·N−2)

=
1

Ntrg

Ntrg∑
w=1

{
η̃V
T

pℓ+2E[T−1] + pℓ+3E[T−1]
0

ewE[T−1]

[p⊤
T e⊤w

]

− 2η̃V
T 2

11:T\{ℓ+2,ℓ+3}E[T−1]
2ewE[T−1]

0

[p⊤
T e⊤w

]}
+ η̃V E[T−1]O∞(Ntrg ·N−1) + η̃V O∞(Ntrg ·N−2),

which concludes the proof together with E[T−1] ≳ N−1 from Assumption 1.

We can also bound the last column:
Lemma 12. It holds that

W ∗
KQ[:, L+N + 1 :] =− 1

N −Ntrg

N∑
k=Ntrg+1

∆(k, T )[:, L+N + 1 :]

= η̃V ηKQEℓ′ [T (ℓ
′)−1]O∞(Ntrg ·N−1).

Proof. Note that

∆(k, T )[:, L+N + 1 :]

=
1

T

T∑
t=1

(
EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )e

⊤
zT−1

]
− EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )e

⊤
zT−1
|zT+1 = k

])

=
1

N −Ntrg

N∑
l=Ntrg+1

1

T

T∑
t=1

(EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )|zT−1 = l

]
− EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )|zT−1 = l, zT+1 = k

]
)e⊤l .

Then the assertion immediately follows from the fact that each entry of

EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )|zT−1 = l

]
− EX

[
e⊤k W

∗
V xt · (xt − x̄1:T )|zT−1 = l, zT+1 = k

]
is upper bounded by η̃V E[T−1] up to constant, from Lemma 9.

B.3 Max-sum Ratio and Algorithm Selection

Now we are ready to establish analysis on transformer’s algorithm selection based on max-sum ratio.
From Lemmas 11 and 12, it holds that

W ∗
KQ

=η̃
1

Ntrg

Ntrg∑
w=1

E


(T−1 + 2T−2)(pℓ+2 + pℓ+3)

0
T−1ew

− 2T−2

[
11:T

2ew
0

][p⊤
T e⊤w 0⊤

N

]
+O∞(η̃Ntrg ·N−1)

where η̃ = η̃V ηKQE[T−1].
Assume that a test sequence z = [z1, . . . , zT∗ , zT∗+1] is made from subtext lengths (ℓ∗1, ℓ

∗
2) (hence

T ∗ = ℓ∗1 + ℓ∗2 + 3). Now let qλ = P[ℓ = λ] and q∗ = P[2ℓ + 3 = T ∗] respectively (probability is
defined by pretraining distribution). If the trigger xT∗ satisfies xT∗ = w∗, it holds that

W ∗
KQxT∗ =η̃

q∗

Ntrg

Ntrg∑
w=1

((T ∗)−1 + 2(T ∗)−2)(pℓ∗+2 + pℓ∗+3)
0

(T ∗)−1ew

− 2(T ∗)−2

[
11:T∗

2ew
0

]
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+ η̃
1

Ntrg
E

(T−1 + 2T−2)(pℓ+2 + pℓ+3)
0

T−1ew∗

− 2T−2

[
11:T

2ew∗

0

]
+O∞(η̃Ntrg ·N−1),

where ℓ∗ = (T ∗− 3)/2 — if such ℓ∗ is not an integer, then we do not define ℓ∗ (in such case q∗ = 0
holds and we don’t need to define such a quantity).
Hence, for any t we can calculate the attention logit as

st := x⊤
t W

∗
KQxT∗

=η̃
q∗

Ntrg

Ntrg∑
w=1

(
((T ∗)−1 + 2(T ∗)−2)(I(t = ℓ∗ + 2) + I(t = ℓ∗ + 3))

+ (T ∗)−1(I(zt−1 = w))− 2(T ∗)−2(I(t ≤ T ∗) + 2I(zt = w))

)
+ η̃

1

Ntrg

(
(T (t− 2)−1 + 2T (t− 2)−2)qt−2 + (T (t− 3)−1 + 2T (t− 3)−2)qt−3

+ E[T−1]I(zt−1 = w∗)− 2E[T−2I(t ≤ T )]− 4E[T−2]I(zt = w∗)

)
+O∞(η̃Ntrg ·N−1). (B.3)

We begin with showing that if max-sum ratio is not sufficiently large, we can construct an OOD test
sequence z∗ such that transformer mistakenly use the positional shortcut:
Lemma 13. If it holds that

maxℓ qℓℓ
−1∑

ℓ qℓℓ
−1
≥ ϵ(Ntrg)

where ϵ(Ntrg) = Θ(N−1
trg ), there exists an OOD test sequence such that the pretrained transformer

via Algorithm 1 fails to generalize.

Proof. Assume that
z∗ = [u, u, . . . , u︸ ︷︷ ︸

ℓ∗1

, w∗, v, u, u, . . . , u︸ ︷︷ ︸
ℓ∗2

, w∗, v].

and T ∗ = ℓ∗1 + ℓ∗2 + 3 = 2ℓ∗ + 3 where ℓ∗ = argmaxℓ q(ℓ)ℓ
−1. Furthermore, we assume

ℓ∗1 ̸∈ {ℓ∗ − 1, ℓ∗, ℓ∗ + 1, ℓ∗ + 2}. (B.4)

Since we have Assumption 2, there exists ℓ∗1 ≥ 1 such that (B.4) holds. We show the following
sub-lemma:
Lemma 14. There exists ϵ1(Ntrg) = Θ(N−1

trg ) such that if

maxℓ qℓℓ
−1∑

ℓ qℓℓ
−1
≥ ϵ1(Ntrg),

then
sℓ∗1+1, sℓ∗1+2, sℓ∗1+3, sT∗ ≤ 1

2
sℓ∗+2.

Proof. Here we show 2sℓ∗1+2 ≤ sℓ∗+2 — other properties can be deduced in the same vain.
Note that, from (B.3),

sℓ∗1+2 ≤ η̃
q∗

Ntrg

Ntrg∑
w=1

[(T ∗)−1I(w = w∗)]

+
η̃

Ntrg
[((2ℓ∗1 + 3)−1 + 2(2ℓ∗1 + 3)−2)qℓ∗1 + ((2ℓ∗1 + 1)−1 + 2(2ℓ∗1 + 1)−2)qℓ∗1−1
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+ E[T−1]] +O∞(η̃Ntrg ·N−1)

≤ η̃q∗

Ntrg
(T ∗)−1 +

6η̃q∗

Ntrg
(T ∗)−1 +

η̃

Ntrg
E[T−1] +O∞(η̃Ntrg ·N−1).

On the other hand, it holds that

sℓ∗+2

≥ η̃
q∗

Ntrg

Ntrg∑
w=1

[(T ∗)−1 + 2(T ∗)−2 − 2(T ∗)−2(I(ℓ∗ + 2 ≤ T ∗) + 2I(zℓ∗+2 = w))]

+
η̃

Ntrg
[((2ℓ∗ + 3)−1 + 2(2ℓ∗ + 3)−2)qℓ∗ + ((2ℓ∗ + 1)−1 + 2(2ℓ∗ + 1)−2)qℓ∗−1 − 6E[T−2]]

+O∞(η̃Ntrg ·N−1)

≥ η̃q∗(T ∗)−1 − 6η̃q∗(T ∗)−2 − 6
η̃

Ntrg
E[T−2] +O∞(η̃Ntrg ·N−1).

Note that T−2 ≤ 1
10T

−1 holds from Assumption 2. Therefore,

1

2
sℓ∗+2 − sℓ∗1+2 ≥

1

5
η̃q∗(T ∗)−1 − 13

10

η̃

Ntrg
E[T−1]− 7η̃q∗

Ntrg
(T ∗)−1 +O∞(η̃Ntrg ·N−1).

Together with Assumption 1, if the max-sum ratio is Ω(N−1
trg ), we obtain 2sℓ∗1+2 ≤ sℓ∗+2 as

desired.

Since now we have Lemma 14, when

η̃V ηKQ ≳ C logN
N2

N3
trg

≳ C logN · Ntrg

E[T−1]2
(B.5)

for a sufficiently large C we obtain exp st/ exp sℓ∗+2 ≤ exp{−C logN} = N−C

where t = ℓ∗1 + 1, ℓ∗1 + 2, ℓ∗1 + 3 and T ∗. This immediately implies that
X1:T∗Softmax(X⊤

1:T∗WKQxT∗) =
∑

k ̸=ℓ∗+1,ℓ∗+2,ℓ∗+3,T∗ αkxk +O∞(N−C′
) for a sufficiently

large C ′ where
∑

k ̸=ℓ∗+1,ℓ∗+2,ℓ∗+3,T∗ αk ≥ 1−N−C′
. Therefore, we get

X1:T∗Softmax(X⊤
1:T∗WKQxT∗) = (1−N−C′

)

[ ∗
eu
eu

]
+N−C′

[∗
∗
∗

]
.

From the structure of W ∗
V (Lemma 9), we observe that the predicted logit

WV X1:T∗Softmax(X⊤
1:T∗WKQxT∗) has a peak on the token u, meaning that OOD gener-

alization fails.

Remark 3. Here we worked on the ratio between qℓ∗T (ℓ
∗)−1 = maxℓ(2ℓ + 3)−1qℓ and

E[T (ℓ)−1] =
∑

ℓ(2ℓ + 3)−1qℓ. We can immediately show (using Assumption 2) 1
3 maxℓ(ℓ)

−1qℓ ≤
maxℓ(2ℓ + 3)−1qℓ ≤ 1

2 maxℓ(ℓ)
−1qℓ and 1

3

∑
ℓ(ℓ)

−1qℓ ≤
∑

ℓ(2ℓ + 3)−1qℓ ≤ 1
2

∑
ℓ(ℓ)

−1qℓ, then
we do not distinguish these two definitions of max-sum ratio.

Similarly we can show the following upper bound:
Lemma 15. If it holds that

maxℓ qℓℓ
−1∑

ℓ qℓℓ
−1
≥ ϵ(Ntrg)

where ϵ(Ntrg) = Θ(N−1
trg ), the pretrained transformer via Algorithm 1 can generalize OOD.

Proof. In the same vain as the proof of the lower bound, it suffices to show sℓ∗1+2 ≥ 2st for any
t ̸= ℓ∗1 + 2, going the other way around Lemma 13.
First we have

sℓ∗1+2 ≥ η̃
q∗

Ntrg

Ntrg∑
w=1

[−2(T ∗)−2I(ℓ∗1 + 2 ≤ T ∗)]
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+
η̃

Ntrg
[((2ℓ∗1 + 3)−1 + 2(2ℓ∗1 + 3)−2)qℓ∗1 + ((2ℓ∗1 + 1)−1 + 2(2ℓ∗1 + 1)−2)qℓ∗1−1

− 2E[T−2] + E[T−1]] +O∞(η̃Ntrg ·N−1)

≥ η̃

Ntrg
E[T−1]− 2

η̃

Ntrg
E[T−2]− 2η̃max

ℓ
qℓT (ℓ)

−1 +O∞(η̃Ntrg ·N−1).

For all t ̸= ℓ∗1 + 2, observe

st ≤ η̃
q∗

Ntrg

Ntrg∑
w=1

[3(T ∗)−1 · 2] + η̃

Ntrg
[3T (t− 2)−1qt−2 + 3T (t− 3)−1qt−3] +O∞(η̃Ntrg ·N−1)

≤ 6η̃max
ℓ

qℓT (ℓ)
−1 + 6

η̃

Ntrg
max

ℓ
qℓT (ℓ)

−1 +O∞(η̃Ntrg ·N−1).

Therefore, we obtain 1
2sℓ∗1+2 ≥ st as desired, if max-sum ratio is O(N−1

trg ).

B.4 Proof of Theorem 5

Theorem 5 is directly obtained by combining Lemmas 13 and 15: it only remains to adjust the
stepsize.

From Cororally 10 we need η̃V = ηV /N ≲ 1/N , and from (B.5) we need η̃V ηKQ ≳ logN N2

N3
trg

.
Therefore, it suffices to set

ηV ≲ 1 and ηV ηKQ ≳
N3

N3
trg

logN.

C Finite Sample Analysis

Now we turn to make an analysis for finite sample size setting.

Proof Sketch. We explain how to evaluate the concentration of the empirical gradient
∇WV

L̂(fTF). Concentration for∇WKQ
L̂(fTF) can be obtained similarly.

Let
{{

x
(i)
t

}T (ℓ)i

t=1

}MV

i=1

be MV i.i.d. sample sequences, and
{{

x
(iℓ,k)
t

}
t

}Mℓ,k
V

iℓ,k=1
be M ℓ,k

V i.i.d. sub-

samples conditioned on ℓ and zT+1 = k. Note that
∑

ℓ,k M
ℓ,k
V = MV . The empirical gradient

∇WV
L̂(fTF) is expressed as

∇WV
L̂(fTF) ≃ Êℓ∼Dℓ

Êk∼Unif[K]

[
Âℓ,k

]
+ (similar terms omitted)

where Âℓ,k is the empirical average of 1
T

∑T
t=1 1Nx

(iℓ,k)
t

⊤
(iℓ,k = 1, . . . ,M ℓ,k

V ) with the sample
size = M ℓ,k

V . We focus on bounding the first term in this sketch. The gap between the empirical and
population gradients is bounded as

∥∇WV
L̂(fTF)−∇WV

L(fTF)∥2

≲
∥∥∥ÊℓÊk

[
Âℓ,k − E[Âℓ,k|ℓ, k]

]∥∥∥
2
+
∥∥∥Êℓ

(
Êk − Ek

)
E[Âℓ,k|ℓ, k]

∥∥∥
2
+
∥∥∥(Êℓ − Eℓ

)
E[Âℓ,k|ℓ]

∥∥∥
2
.

The first term is bounded by the matrix Hoeffding’s inequality using ∥Âℓ,kÂ
⊤
ℓ,k∥2, ∥Â⊤

ℓ,kÂℓ,k∥2 ≲

1 and M ℓ,k
V ≃ qℓN

−1MV for each pair (ℓ, k). Note that
∑

ℓ

√
qℓ emerges in this bound because

∥Âℓ,k − E[Âℓ,k|ℓ, k]∥2 ≃ q
−1/2
ℓ and Êℓ[·] ≃

∑
ℓ · qℓ. The second and third terms can also be

bounded by ∥Âℓ,k∥2 ≲ 1 and using the standard Hoeffding’s inequality.
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C.1 Value Matrix

We first establish an upper-bound for the difference between empirical and population gradient with
respect to WV .
Lemma 16. Let At = 11:Nx⊤

t = 11:N [p⊤
t e⊤zt e

⊤
zt−1

]. Then we have[
AtA

⊤
t 0

0 A⊤
t At

]
⪯ Σt

where λi(Σt) ≲ N for i = 1, 2 λi(Σt) = 0 for i ≥ 3 and ∥Σt∥2 ≲ N . Similarly, let Bt,k = ekx
⊤
t .

Then, we have [
Bt,kB

⊤
t,k 0

0 B⊤
t,kBt,k

]
⪯ Σ′

t

where ∥Σ′
t∥2 ≲ 1.

Proof. We provide the proof for At. Proof for Bt can be derived in the same vain.

AtA
⊤
t = 11:Nx⊤

t xt1
⊤
1:N = 3

1 . . . 1
...

. . .
...

1 . . . 1

 ⪯ Σ
(a)
t

where λ1(Σ
(a)
t ) = 3N , λi(Σ

(a)
t ) = 0 for i ≥ 2.

A⊤
t At = xt1

⊤
1:N11:Nx⊤

t = Nxtx
⊤
t ⪯ Σ

(b)
t

where λ1(Σ
(b)
t ) = 3N , λi(Σ

(b)
t ) = 0 for i ≥ 2. Using

rank(AtA
⊤
t ) + rank(A⊤

t At) ≤ 2

and

λ1

([
AtA

⊤
t O

O A⊤
t At

])
≲ max{λ1(AtA

⊤
t ), λ1(A

⊤
t At)},

we obtain the conclusion.

Lemma 17. Let
{{

x
(i)
t

}Ti

t=1

}MV

i=1

be i.i.d. sample sequences,
{{

x
(iT )
t

}T

t=1

}MT
V

iT=1

be conditionally

i.i.d. sub-samples with fixed T , and
{{

x
(iT,k)
t

}
t

}MT,k
V

iT,k=1
be conditionally i.i.d. sub-samples with

fixed T and zT+1 = k. Note that
∑

T,k M
T,k
V =

∑
T MT

V = MV . Then, with probability at least
1−O(ϵ),

λmax

(
∇WV

1

MV

MV∑
i=1

L(X(i)

1:T (i) ;WKQ,WV )−∇WV
L̄(WKQ,WV )

)

≲

(∑
ℓ

√
qℓ

)√
N log (NL(N + L)ϵ−1)

MV
.

Proof. The empirical gradient is, noting that T = 2ℓ+ 3 ≥ 5,

∇WV
L̂(fTF) =

1

N

N∑
k=1

ekÊT

[
1

T

T∑
t=1

Ê[xt]
⊤

]

−
N∑

k=Ntrg+1

ekÊT

[
1

T

T∑
t=1

Ê[xtI[zT+1 = k]]⊤

]

=
1

MV

L−1∑
T=5

MT
V∑

iT=1

(
1

TN

T∑
t=1

11:Nx
(iT )
t

⊤
)
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−
L−1∑
T=5

MT
V

MV

N∑
k=Ntrg+1

MT,k
V

MT
V

1

MT,k
V

MT,k
V∑

iT,k=1

(
1

T

T∑
t=1

ekx
(iT,k)
t

⊤
)
.

Let

A(iT ) =

T∑
t=1

11:Nx
(iT )
t

⊤
− E

[
T∑

t=1

11:Nx
(iT )
t

⊤
| T

]
and

B(iT,k) =

T∑
t=1

ekx
(iT,k)
t

⊤
− E

[
T∑

t=1

ekx
(iT,k)

⊤
t | y = k, T

]
.

Using Lemma 16, we can bound the operator norms as

1

T 2

∥∥∥∥∥
[
A(iT )A(iT )⊤ O

O A(iT )⊤A(iT )

]∥∥∥∥∥
2

≲
√
N

and
1

T 2

∥∥∥∥∥
[
B(iT,k)B(iT,k)

⊤
O

O B(iT,k)
⊤
B(iT,k)

]∥∥∥∥∥
2

≲ 1.

By combining the matrix Hoeffding’s inequality and the union bound, we have∥∥∥∥∥ 1

MT
V TN

MV∑
iT=1

A(iT )

∥∥∥∥∥
2

≲
1√

NMT
V

√
log (L(N + L)ϵ−1)

and ∥∥∥∥∥∥ 1

MT,k
V

MT,k
V∑

iT,k=1

1

T (iT,k)
B(iT,k)

∥∥∥∥∥∥
2

≲
1√
MT,k

V

√
log (NL(N + L)ϵ−1).

with probability at least 1 − O(ϵ). Using the union bound MT
V = MV qT (ℓ)(1 ±

M
−1/2
V q

−1/2
T (ℓ)

√
log(Lϵ−1)), the matrix Hoeffding’s inequality, standard Hoeffding’s inequality, and

∥11:Nx
(iT )
t

⊤
∥2 ≲ 1, we obtain∥∥∥∥∥∥ 1

MV

L−1∑
T=5

MT
V∑

iT=1

(
1

TN

T∑
t=1

11:Nx
(iT )
t

⊤
)
− E

(
1

TN

T∑
t=1

11:Nx
(iT )
t

⊤
)∥∥∥∥∥∥

2

≲

∥∥∥∥∥∥
L−1∑
T=5

MT
V

MV

1

MT
V

MT
V∑

iT=1

1

TN
A(iT )

∥∥∥∥∥∥
2

+

∥∥∥∥∥
L−1∑
T=5

(
MT

V

MV
− qT (ℓ)

)
E

(
1

TN

T∑
t=1

11:Nx
(iT )
t

⊤
| T

)∥∥∥∥∥
2

≲
L−1∑
T=5

MT
V

MV︸︷︷︸
≃Prob(T)

∥∥∥∥∥∥ 1

MT
V

MT
V∑

iT=1

1

TN
A(iT )

∥∥∥∥∥∥
2︸ ︷︷ ︸√

log (L(N+L)ϵ−1)
NMV Prob(T)

+

L−1∑
T=5

∣∣∣∣MT
V

MV
− qT (ℓ)

∣∣∣∣︸ ︷︷ ︸
≲

√
qT (ℓ) log(Lϵ−1)

√
MV

∥∥∥∥∥E
(

1

TN

T∑
t=1

11:Nx
(iT )
t

⊤
| T

)∥∥∥∥∥
2︸ ︷︷ ︸

≲N−1/2

≲

∑
ℓ

√
qℓ√

NMV

√
log (L(N + L)ϵ−1).

Let B̄(iT,k) =
∑T

t=1 ekx
(iT,k)
t

⊤
. Using MT,k

V ≃ MT
V (N − Ntrg)

−1(1 ±
(MT

V )−1/2N1/2
√
log(NLϵ−1)), MT

V = MV qT (ℓ)(1 ± M
−1/2
V q

−1/2
T (ℓ)

√
log(Lϵ−1)), the ma-

trix Hoeffding’s inequality, standard Hoeffding’s inequality, and ∥T−1B̄(iT,k)∥2 ≲ 1, we obtain∥∥∥∥∥
L−1∑
T=5

MT
V

MV

N∑
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V

1
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t

⊤
)

26



−
N∑

k=Ntrg+1

1

N −Ntrg
ET

[
E

[(
1

T

T∑
t=1

ekx
(iT,k)
t

⊤
)
| y = k

]]∥∥∥∥∥
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∥∥∥∥∥∥
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∥∥∥∥∥∥
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+

∥∥∥∥∥∥
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T=5

MT
V

MV

N∑
k=Ntrg+1

(
MT,k

V
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− 1

N −Ntrg

)
1

T
E
[
B̄(iT,k) | y = k, T

]
)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
L−1∑
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MT
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MV
− qT (ℓ)

) N∑
k=Ntrg+1

1

N −Ntrg
E[T−1B̄(iT,k)|k, T ]

∥∥∥∥∥∥
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T=5

MT
V

MV︸︷︷︸
qT (ℓ)
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≲

√
N log (NL(N+L)ϵ−1)

MV Prob(T)

+

L−1∑
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MV

N∑
k=Ntrg+1

∣∣∣∣∣MT,k
V

MT
V

− 1

N −Ntrg
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NMV qT (ℓ)

∥∥∥∥ 1T E
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B̄(iT,k) | y = k, T
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)
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+
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− qT (ℓ)
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2

≲
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√
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N log (NL(N + L)ϵ−1)
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.

Note that if MV ≳ poly logN · N5

N2
trg

( ∑
ℓ∈S

√
qℓ∑

ℓ∈S qℓℓ−1

)2
, then we obtain ∥W̄ ∗

V − W ∗
V ∥2 ≲

η̃V E[T−1]NtrgN
−1, where W̄ ∗

V and W ∗
V are WV after one GD step with infinite and finite sample

size, respectively. The following corollary is obtained by combining Lemmas 9 and 17.

Corollary 18. If we set ηV ≲ 1 and MV ≳ poly logN · N5

N2
trg

( ∑
ℓ∈S

√
qℓ∑

ℓ∈S qℓℓ−1

)2
, then it holds that

|1/N−p(k|z)| = O(E[T−1]/N2) for any k and z, where p(k|z) is the transformer output regarding
token k after pretraining WV .

C.2 Key-Query matrix

Now let us consider the KQ-matrix with finite samples

WKQ =− ηKQ

(
L−1∑
T=5

MT
KQ

MKQ

1

MT
KQ

∑
iT

ĈiT −
L−1∑
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N∑
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KQ

MKQ
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KQ
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KQ

1
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KQ

∑
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D̂iT,k

)
+ ηKQη̃V E[T−1]O∞(Ntrg/N)

where
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1

N −Ntrg
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T 2
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t x
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V ekx
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⊤
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−
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 1

T 2

∑
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x
(iT )
t x

(iT )
t′

⊤
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V ekx
(iT )
T

⊤


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and

D̂iT,k
:=

((
1

T
− 1

T 2

)∑
t

x
(iT,k)
t x

(iT,k)
t

⊤
W⊤

V ekx
(iT,k)
T

⊤
)

−

 1

T 2

∑
t ̸=t′

x
(iT,k)
t x

(iT,k)
t′

⊤
W⊤

V ekx
(iT,k)
T

⊤


where

W⊤
V ek = η̃V E[T−1]



0
...
0

0k−1

1
0N−k

0k−1

1
0N−k


+ o(η̃V E[T−1]) · 1L+2N .

Lemma 19. Let Bt,t′,T,k = xt(x
⊤
t′WV ek)x

⊤
T . Then, we have

Bt,t′,T,k =
(
(1[zt′ = k] + 1[zt′−1 = k])η̃V E[T−1] + o(η̃V E[T−1])

)
xtx

⊤
T .

Therefore, [
Bt,t′,T,kB

⊤
t,t′,T,k O

O B⊤
t,t′,kBt,t′,k

]
⪯ Σ

where λi(Σ) = O(η̃V E[T−1])2 for i = 1, 2 and λi(Σ) = 0 for i > 3.

Proof. The proof is straightforward. Note that x⊤
t′1L+2N = O(1) for all t′.

Lemma 20. Let W̄ ∗
KQ be WKQ after one gradient descent step with finite sample size (Al-

gorithm 1) and W ∗
KQ be the counterpart for infinite sample size. Let

{{
x
(i)
t

}Ti

t=1

}MV

i=1

be

i.i.d. sample sequences,
{{

x
(iT )
t

}T

t=1

}MT
V

it=1

be conditionally i.i.d. sub-samples with fixed T , and{{
x
(iT,k)
t

}
t

}MT,k
V

iT,k=1
be conditionally i.i.d. sub-samples with fixed T and zT+1 = k. With probabil-

ity at least 1−O(ϵ),

λmax

(
W̄ ∗

KQ −W ∗
KQ

)
≲ ηKQη̃V E[T−1]

(∑
l

√
qℓ

)√
N log (LN(L+N)ϵ−1)

MKQ

+ ηKQη̃V E[T−1]O∞(Ntrg/N).

Proof. We have ∥∥∥∥[ĈiT Ĉ
⊤
iT

O

O Ĉ⊤
iT
ĈiT

]∥∥∥∥
2

≲ (η̃V E[T−1])2

and ∥∥∥∥∥
[
D̂iT,k

D̂⊤
iT,k

O

O D̂⊤
iT,k

D̂iT,k

]∥∥∥∥∥
2

≲ (η̃V E[T−1])2.

by Lemma 19. Then we obtain the error bound as

1

ηKQ

∥∥WKQ −W ∗
KQ

∥∥
2
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ĈiT − E[ĈiT |T ]

)∥∥∥∥∥
2

+

∥∥∥∥∥
L−1∑
T=5

(
MT

KQ

MKQ
− qT (ℓ)

)
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≲η̃V E[T−1]
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ℓ

√
qℓ

)√
N log ((L+N)ϵ−1)

MKQ
+ η̃V E[T−1]O∞(Ntrg/N)

in the same way as bounding WV . We used MT
KQ ≃ qℓ(T )MKQ, MT,k

KQ ≃ N−1MT
KQ, (matrix-)

Hoeffding’s inequalities, and ∥ĈiT ∥2, ∥D̂iT,k
∥2 ≲ η̃V E[T−1] by Lemma 19.

Based on these finite sample analyses, Theorem 6 can be obtained similarly to Theorem 5.
Proof. [Proof of Theorem 6] Note that, the approximation in Section B.2.1 still applies, if the finite-
sample error with respect to WKQ is falling into η̃O(Ntrg/N). From Lemma 20, it suffices to
set MKQ ≳ poly logN · N3

N2
trg

(∑
ℓ

√
qℓ
)2

. Together with the requirement MV ≳ poly logN ·

N5

N2
trg

( ∑
ℓ∈S

√
qℓ∑

ℓ∈S qℓℓ−1

)2
in Corollary 18 we obtain the assertion.

D Proof of Proposition 8

We first show that

q∗ = (q∗1 , q
∗
2 , . . . , q

∗
U ) =

(1, 2, . . . , Ntrg, 0, . . . , 0)

Z
(Z =

Ntrg(Ntrg + 1)

2
)

satisfies the KKT condition of the LP

P :


minimize

∑U
ℓ=1 qℓℓ

2

subject to maxU
ℓ=1 qℓℓ

−1∑U
ℓ=1 qℓℓ−1 ≤ N−1

trg∑U
ℓ=1 qℓ = 1

q1, . . . , qU ≥ 0

,

and show its uniqueness.
The KKT condition of P is

ℓ2 + (λℓ −
U∑

ℓ′=1

N−1
trgλℓ′)ℓ

−1 − µℓ + ν = 0 (ℓ ∈ [U ]), (D.1)

λℓ(qℓℓ
−1 −N−1

trg

∑
ℓ′

qℓ′(ℓ
′)−1) = 0 (ℓ ∈ [U ]), (D.2)

µℓ(−qℓ) = 0 (ℓ ∈ [U ]), (D.3)

qℓℓ
−1 ≤ N−1

trg

U∑
ℓ′=1

qℓ′ℓ
′−1

(ℓ ∈ [U ]), (D.4)

q1 + . . .+ qU = 1 , (D.5)
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λℓ ≥ 0, µℓ ≥ 0 (ℓ ∈ [U ]). (D.6)

We construct (λ = {λℓ},µ = {µℓ}, ν) such that (q,λ,µ, ν) satisfies these conditions: by con-
struction, (D.4) and (D.5) are already satisfied. Here, note that

qℓℓ
−1 =

{
Z−1 (ℓ ≤ Ntrg),

0 (ℓ > Ntrg).

Thus, from (D.2) and (D.3) we have λℓ = 0 (ℓ > Ntrg) and µℓ = 0 (ℓ ≤ Ntrg).
Now it remains to satisfy (D.1), not braking (D.6). For ℓ ∈ [Ntrg], (D.1) reduces to the following
linear equations:INtrg

−

N
−1
trg · · · N−1

trg
...

. . .
...

N−1
trg · · · N−1

trg



 λ1

...
λNtrg

 = −

 13 + ν · 1
...

N3
trg + ν ·Ntrg

.
Noting that the sum of the all entries in the vector obtained by evaluating left-hand side is zero, we
obtain

ν = −
1 + · · ·+N3

trg

1 + · · ·+Ntrg
=

Ntrg(Ntrg + 1)

2
.

We can also observe λ1 ≥ · · · ≥ λNtrg since the right-hand side is decreasing w.r.t the vector index.

Since w = [1, 1, . . . , 1]⊤ belongs to the right kernel of

INtrg
−

N
−1
trg · · · N−1

trg
...

. . .
...

N−1
trg · · · N−1

trg


, we can

shift λ by this vector to ensure λNtrg
= 1 (then λ ≥ 0), meaning

1− λ̄ = −N3
trg − ν ·Ntrg ⇔ λ̄ =

1

2
N3

trg −
1

2
N2

trg + 1

where λ̄ = N−1
trg

∑Ntrg

ℓ=1 λℓ. We now consider (D.1) with ℓ > Ntrg. Since

µℓ = ν + ℓ2 − ℓ−1λ̄

≥ (Ntrg + 1)2 − Ntrg(Ntrg + 1)

2
− 1

2
N2

trg +
1

2
Ntrg −

1

Ntrg
= 2Ntrg + 1− 1

Ntrg
≥ 1,

and then we can now determine µ satisfying (D.6). Therefore, obtained (q∗,λ,µ, ν) satisfies the
KKT condition.
From [Man79], to show the uniqueness it suffices to show that for any p ∈ RU , there exists ϵ > 0
such that even if we replace the objective function to

∑
ℓ∈[U ](ℓ

2+ϵpℓ)qℓ, q∗ is optimal. We can eas-
ily see this by reconsidering KKT condition—while the only effect by changing the objective is the
nonnegativeness of λ and µ (D.6), these parameters are continuous with respect to the perturbation,
and we can still ensure nonnegativeness since for q = 0 we already obtained positive parameters.

E Detailed Experimental Settings and Results

E.1 Detailed Settings for Section 4.2

We introduce the detailed settings for the full-traning experiment.

Architecture.

• Embedding. We use embeddings obtained by concatenating the positional embedding and the

token embedding, i.e.,
[
pt

ezt

]
where pt and ezt are one-hot vectors with ones at t-th and zt-th

entries, respectively. The previous-token embedding in (2.2) is omitted.
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• Transformer blocks. Each layer consists of a single-head attention module with separate Key-
Query matrices, a GeLU-based MLP, and residual connections:

xt ← xt +MLP
(
xt +WV X1:t Softmax(X⊤

1:tW
⊤
KWQxt)

)
,

where
MLP(x) = WMLP,2GeLU(WMLP,1x+ b1) + b2.

Three such layers are stacked, followed by a linear projection of size (N,D) that maps the final
embeddings (dimension D) to the vocabulary of size N . We initialized WK ,WQ,WV ,WMLP,1

and WMLP,2 using Xavier initialization [GB10], while biases b1 and b2 are initialized from the
zero vector. The size of WMLP,1 and WMLP,2 are (4D,D) and (D, 4D), respectively, where
D = N +L is the embedding dimension. The transformed embedding at the last layer is fed into
the trainable linear output layer WO of size (N,D), initialized using Xavier, before softmax.

Training. Training was performed using AdamW with both the learning rate and weight decay set
to 10−2, using 32,768 training samples. We prepared 1,024 in-distribution samples drawn from the
same distribution as the training data and stopped training once the accuracy exceeded 90% on these
samples.
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Figure 5: Map of two types of errors due to the positional shortcut. Note that both errors can probabilistically
coincide with the correct answer, and such cases are not excluded.

31



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper is primarily a theoretical analysis and its problem setting and con-
clusion are accurately aligned with the statement in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation and future work are summarized in the conclusion section.
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• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
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Justification: The problem setting and assumptions are summarized in Section 2, and the
all complete proofs are provided in the appendix.
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• The answer NA means that the paper does not include theoretical results.
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whether the code and data are provided or not.
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taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experiments are conducted only on toy simulations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our experiments are conducted to see the qualitative tendency of each setting
and thus it is not aimed to report statistical significe.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental details are summarized in Section 4. Since all experiments
are conducted on small size synthetic data, it does not require special computational re-
sources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have checked that the research conforms with the NeurIPS Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is primarily aimed to reveal a specific characteristic of a trans-
former model with a simple structure, and no immediate societal impact is expected.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is primarily theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Execution of the theoretical analyses and numerical experiments in this pa-
per does not involve LLMs in important, original, or non-standard components. We just
exploited them for auxiliary use.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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