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ABSTRACT

High-resolution neural datasets enable foundation models for the next genera-
tion of brain-computer interfaces and neurological treatments. The community
requires rigorous benchmarks to discriminate between competing modeling ap-
proaches, yet no standardized evaluation frameworks exist for intracranial EEG
(iEEG) recordings. To address this gap, we present Neuroprobe: a suite of decod-
ing tasks for studying multi-modal language processing in the brain. Unlike scalp
EEG, intracranial EEG requires invasive surgery to implant electrodes that record
neural activity directly from the brain with minimal signal distortion. Neuroprobe
is built on the BrainTreebank dataset, which consists of 40 hours of iEEG record-
ings from 10 human subjects performing a naturalistic movie viewing task. Neu-
roprobe serves two critical functions. First, it is a mine from which neuroscience
insights can be drawn. The high temporal and spatial resolution of the labeled
iEEG allows researchers to systematically determine when and where computa-
tions for each aspect of language processing occur in the brain by measuring the
decodability of each feature across time and all electrode locations. Using Neu-
roprobe, we visualize how information flows from key language and audio pro-
cessing sites in the superior temporal gyrus to sites in the prefrontal cortex. We
also demonstrate the progression from processing simple auditory features (e.g.,
pitch and volume) to more complex language features (part of speech and word
position in the sentence tree) in a purely data-driven manner. Second, as the field
moves toward neural foundation models trained on large-scale datasets, Neuro-
probe provides a rigorous framework for comparing competing architectures and
training protocols. We found that the linear baseline on spectrogram inputs is sur-
prisingly strong, beating frontier foundation models on many tasks. Neuroprobe
is designed with computational efficiency and ease of use in mind. We make the
code for Neuroprobe openly available and will maintain a public leaderboard of
evaluation submissions, aiming to enable measurable progress in the field of iEEG
foundation models.

1 INTRODUCTION

The human brain constantly engages in a variety of simultaneous processing tasks: parsing speech,
interpreting dynamic visual scenes, performing social reasoning, and integrating multi-modal sen-
sory information (Schurz et al., 2014). However, our understanding of how this processing is orga-
nized across time and brain regions remains incomplete, and decoding the contents of these com-
putations in the brain remains a difficult task (Paninski & Cunningham, 2018). A central challenge
is that traditional approaches have been limited by small-scale datasets and simplified experimental
paradigms that isolate individual tasks (Nastase et al., 2020), rather than study tasks concurrently.

Recent advances in data collection have created new opportunities to address these limitations
through large-scale human intracranial electroencephalography (iEEG) datasets (Peterson et al.,
2022; Evanson et al., 2025; Zada et al., 2025; Wang et al., 2024). These datasets, collected from
neurosurgical patients undergoing clinical monitoring, approach the data volumes that have enabled
breakthroughs in other domains of machine learning. Intracranial EEG differs substantially from
scalp EEG. While scalp EEG suffers from significant signal distortion as neural activity passes
through the skull, cerebrospinal fluid, and scalp tissues (Nunez & Srinivasan, 2006), iEEG elec-
trodes record directly from the brain surface or within brain tissue, offering a substantially higher-
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Figure 1: Overview of Neuroprobe’s goals. Neuroprobe consists of classification tasks derived
from human intracranial recordings aligned with annotated stimuli. It serves two critical roles: first,
by performing a decoding analysis for each task, we can localize various aspects of multimodal lan-
guage processing in the brain and discover their time evolution. Second, Neuroprobe is a rigorous,
standardized benchmark for evaluating neural decoding models, which fills a critical need for the
iEEG foundation model community.

fidelity signal. For example, intracranial EEG preserves high-frequency bands (e.g., high-gamma
activity above 70 Hz) that are largely lost in scalp EEG due to filtering and noise (Ray & Maunsell,
2011; Lachaux et al., 2012). These high-frequency signals are closely linked to local computation
and population spiking, making intracranial recordings essential for many decoding tasks.

The emergence of foundation models of neural activity offers new possibilities for leveraging these
large-scale iEEG datasets. Recent developments such as Neuroformer (Antoniades et al., 2024),
BrainBERT (Wang et al., 2023), PopT (Chau et al., 2024), STNDT (Le & Shlizerman, 2022), NDT2
(Ye et al., 2023), MBrain (Cai et al., 2023), Brant (Zhang et al., 2023), MtM (Zhang et al., 2024b),
and POYO (Azabou et al., 2023), and others demonstrate the potential for self-supervised learn-
ing approaches to extract meaningful representations from neural data. These foundation models
achieve superior decoding performance across multiple tasks, which directly translates to increased
statistical power for experiments that identify when and where specific cognitive processes occur
in the brain. Similar probing experiments have been previously used successfully in the field of
machine learning interpretability to reverse engineer neural networks by identifying where certain
features of stimuli first become decodable (Tenney et al., 2019; Alain & Bengio, 2016). Perfor-
mant iEEG foundation models have the potential to unlock novel insights about the brain, as well as
enable the next generation of brain-computer interfaces and neurological treatments.

However, the iEEG community currently lacks the standardized evaluation frameworks necessary
to rigorously compare these emerging approaches. For example, a recent review by Kuruppu et al.
(2025) identifies this lack of common standardized evaluation and stresses that establishing a com-
mon benchmark is essential for comparing the performance of EEG foundation models performance
and measuring advances in the field.

To address these critical gaps, we introduce Neuroprobe, a benchmark that is designed both to be a
setting in which neuroscience probing experiment may be run and as a measure of progress in the
field of iEEG foundation models (Figure 1). Our benchmark is derived from the publicly available
BrainTreebank dataset (Wang et al., 2024), which consists of intracranial neural recordings aligned
with the corresponding movie stimuli. Neuroprobe turns this dataset into a benchmark by defining
15 decoding tasks that span the audio, vision and language domains.

We have designed Neuroprobe to be computationally efficient and convenient for use by members
of the machine learning community, even if they do not have deep domain expertise in neuroscience.
By lowering the barrier of entry, we hope to create a healthy community and attract more researchers
to these important problems. We standardize a number of aspects of the benchmark. We select
train/test splits in a variety conditions: from training and testing on the same subject and session,
to doing cross-subject and cross-session decoding. Finally, we host a centralized website that ag-
gregates results, and displays a leaderboard that tracks progress in decoding performance of iEEG
foundation models.
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Figure 2: From raw data to decoding tasks. As part of the BrainTreebank dataset, 26 movies (left)
are watched by 10 patients with stereoelectroencephalography intracranial electrodes implanted in
various brain regions (middle), and the local field potential from the implanted electrodes is recorded
(right). Neuroprobe turns this dataset into a standardized evaluation benchmark by segmenting the
aligned data into various audio, language, and vision decoding tasks, such as volume, pitch, average
frame brightness, etc.

In summary:

1. We introduce Neuroprobe, a large-scale multitask decoding benchmark for human intracra-
nial EEG.

2. We standardize splits and metrics to rigorously evaluate iEEG foundation models and en-
courage their development in a direction which benefits decoding across many tasks.

3. We establish a set of strong baselines and compute the performance of state-of-the-art mod-
els on Neuroprobe.

4. Using Neuroprobe, we visualize the spatial distribution of different task processing path-
ways in the brain, and track their evolution across time.

In the long run, we aim for Neuroprobe to enable measurable progress in the field of iEEG founda-
tion models, and lead to an improved understanding of the computations behind multi-modal sensory
processing in the brain.

2 RELATED WORK

Neural recording datasets The most recently developed models for neural data have relied on
several widely accessible datasets. For non-invasive scalp EEG decoding, datasets from Zheng &
Lu (2015); Grootswagers et al. (2022); Bhattasali et al. (2020); Tangermann et al. (2012); Obeid &
Picone (2016); Broderick et al. (2018); Brennan & Hale (2019) have been used in the construction
of models such as those proposed by Jiang et al. (2024); Yang et al. (2023); Défossez et al. (2023).
For fMRI decoding, (Wehbe et al., 2014; LeBel et al., 2023; Nastase et al., 2021; Li et al., 2022;
Allen et al., 2022) have led to models such as those proposed by Scotti et al. (2024); Ozcelik &
VanRullen (2023). For MEG decoding, Jan-Mathijs et al. (2019); Hebart et al. (2023) released data
that have supported training of models such as those proposed by Défossez et al. (2023); Benchetrit
et al.. For neural spike decoding, data by Perich et al. (2025); Churchland et al. (2024); Manley et al.
(2024); IBL (2024) enabled foundation models such as POYO and NDT (Azabou et al., 2023; Zhang
et al., 2024a). Finally, for broadband intracranial neural activity, datasets from (Peterson et al., 2022;
Wang et al., 2024; Nejedly et al., 2020) have fueled the development of iEEG foundation models
proposed by Peterson et al. (2021); Wang et al. (2023); Chau et al. (2024); Yuan et al. (2024); Zhang
et al. (2023). However, these datasets do not provide rigorous splits or testing guidelines, so each
model is difficult to compare to others.

Existing neural data benchmarks In the field of machine learning for neuroscience, benchmarks
exist across various neural data modalities. Some of the earliest involve EEG BCI decoding (Tanger-
mann et al., 2012), but are limited in data quality and scale by today’s standards. The NaturalScenes-
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Figure 3: Neuroprobe allows for evaluating decoding within and across recording sessions and
subjects. We perform analyses on three different types of splits (top row). In the within-session
split, we train on data from one subject and one movie segment, and evaluate on the same subject,
but another segment of the same movie. Performance is measured via cross-validation. In the cross-
session split, we train and evaluate on different movies watched by the same subject. In the cross-
subject split, we train on data from one subject and one movie and evaluate on data from an entirely
different subject and movie. The cross-subject split is the most challenging for all evaluated baseline
models (bottom row): (1) logistic regression either from raw voltage signal of all electrodes to the
labels, or (2) from the spectrogram of the signal to the labels, including laplacian re-referencing (3),
as well as (4) BrainBERT (Wang et al., 2023) and (5) PopulationTransformer (Chau et al., 2024).

Dataset (Allen et al., 2022) includes standardized splits, but uses fMRI data, a non-invasive modality
that suffers from extremely low temporal resolution, and focuses mainly on visual processing. The
clinical-grade Temple University Hospital EEG dataset (Obeid & Picone, 2016) can also be used
as a benchmark, but it only contains scalp EEG data, and its labels are limited to seizure detection.
Benchmarks for single-unit neural spiking data are proposed by Pei et al. (2021); Karpowicz et al.
(2024); Willett et al. (2023); Lueckmann et al. (2025), but they only contain spiking information
rather than broadband signals from iEEG that capture more aggregated neural activity (Parvizi &
Kastner, 2018).

To our knowledge, Neuroprobe is the first standardized benchmark for high fidelity intracranial EEG
signals.

3 APPROACH

The BrainTreebank dataset Neuroprobe uses the raw data from the BrainTreebank (Wang et al.,
2024), a publicly available dataset released under a CC BY 4.0 license. The BrainTreebank is
a large-scale dataset of intracranial electrophysiological recordings (stereoelectroencephalography;
sEEG) collected while 10 human subjects (5 male, 5 female, ages 4–19; Supplementary Table 6)
watched a total of 26 Hollywood movies (Supplementary Table 7). Electrode placements vary be-
tween patients, determined solely by the clinical needs of each neurosurgical patient, and are shown
in Supplementary Figure 6. Spanning 43 hours of neural activity, the dataset aligns recorded brain
signals with transcribed and manually corrected speech, word onsets, and universal dependency
parses across the 223,068 words in 38,572 sentences.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Decoding tasks We use the movie annotations and the alignment with the corresponding neural
data to create a suite of 15 visual, audio, and language decoding tasks (Supplementary Section E).
For every task, the input consists of a 1-second interval of neural data, starting at each word onset.
The annotation label is the target output. We formalize all of the tasks as binary classification by
thresholding the labels according to their percentile in the full distribution of that type of annotation.
For example, for the GPT2 Surprisal task, the positive label corresponds to surprisal annotations
above the 75%th percentile of the distribution within a session, and the negative label to the values
below the 25%th percentile. For non-scalar labels (such as part of speech of the word) we pick
a main target class (i.e. Verb for the part of speech task), and formulate the task as one-versus-
rest classification. Since we are studying realistic language processing with naturalistic stimuli,
there are pre-existing relationships between the tasks in the movies. However, we found that these
relations are actually very weak, (see Supplementary Figure 2); the average correlation between
tasks is r = 0.12 ± 0.02, averaged across all subjects and sessions. For more details, please see
Supplementary Section E.

Evaluation Splits The Neuroprobe benchmark supports three different types of splits (Figure 3):

1. Within-Session. In this split, training and test data both come from a single movie-viewing
session. Decoding results are 2-fold cross-validated with 50-50 train/test splits. Impor-
tantly, the indices for the cross-validation splits are not drawn from the whole movie uni-
formly, but rather the train examples are taken from a single contiguous block and the
validation examples are taken from a separate block. This is done to prevent models from
overfitting to temporal auto-correlation (e.g. see Supplementary Figure I).

2. Cross-Session. The cross-session split even further ensures that no data contamination
due to auto-correlation can occur, and tests the model’s generalization to a novel recording
session. The model is trained on data from one movie session and tested on another movie
from the same subject. Unless otherwise noted, this is the split for most of the Neuroprobe
results reported in this paper and will be the default on the leaderboard.

3. Cross-Subject This split evaluates the model’s ability to generalize across subjects and
stimuli. The training data consists of data from a single session (trial 4), viewed by subject
2, chosen because this is the longest trial in the dataset and since subject 2 contains the most
electrodes in both hemispheres, allowing for maximum overlap with other subjects. Testing
takes place using data from selected sessions for all other subjects (see Supplementary Sec-
tion C). This split in particular presents a demanding test of generalization, especially since
electrode placements vary widely between patients (see Supplementary Figure 6).

Computational efficiency The full dataset of Neuroprobe (Neuroprobe-Full) allows flexibility for
researchers to pick any of the 15 tasks and any of the 26 recording sessions in BrainTreebank. How-
ever, for the purposes of comparing models, running experiments over all sessions and electrodes
is prohibitively expensive and unnecessary. So, when Neuroprobe is used as a benchmark (in text
below, we refer to it simply as Neuroprobe when evaluating models), we subset the data to a smaller
portion of subjects and recording sessions (6 subjects, 2 trials each, for a total of 12 sessions) for
training and evaluation (Supplementary Section D).

Furthermore, to ensure computational efficiency, in the Neuroprobe benchmark, the total number of
electrodes per subject is capped at 120, such that the input for each task is a standardized matrix
which has predictable memory and computational requirements. The electrodes were selected in
groups from complete probes to retain flexibiblity for re-referencing techniques such as bipolar,
common-average, or Laplacian re-referencing, which have been shown to improve the signal to
noise ratio (Vidal et al., 2015; Li et al., 2018; Tsuchimoto et al., 2021). All selected electrodes have
been localized in an average cortex atlas. To maximize the signal to noise ratio, the electrodes with
the highest linear decoding performance were chosen first. The resulting standardized electrode
subsets are available in the Neuroprobe codebase.

Submissions and Leaderboard The primary evaluation metric is the Area Under the Receiver
Operating Characteristic curve (AUROC). We will maintain a public leaderboard which will dis-
play model performance on this benchmark, both on the single-electrode and population level; see
Supplementary Figure 8. The evaluation rules and submission process is outlined in detail on the
Neuroprobe website and in the code repository.
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Sentence Onset Speech Volume

Delta Volume Voice Pitch Word Position

Inter-word Gap GPT-2 Surprisal Head Word Position

Part of Speech Word Length Global Optical Flow

Local Optical Flow Frame Brightness Number of Faces

0.51 0.52 0.54 0.58 0.66 0.82
Decoding AUROC (log scale)

Figure 4: Neuroprobe enables the visualization of how multimodal stimuli are processed
throughout the brain. This figure shows performance of linear decoders trained separately for
every electrode’s data on the cross-session split, averaged across all recording sessions of every
subject. Color denotes AUROC on a logarithmic scale to show trends for tasks that have lower de-
codability. Sentence Onset is decodable throughout the brain, with a hotspot in the temporal lobe.
Language features like Part of Speech and GPT-2 Surprisal are most decodable in the superior tem-
poral lobe. Visual features such as Optical Flow are most decodable near the visual areas in the back
of the brain, with some decodability in the frontal lobe.

4 RESULTS

Spatial analysis To investigate which brain areas are primarily involved in processing each Neu-
roprobe task, we examined the linear decodability of all Neuroprobe features (Figure 4). Using
the single electrode analysis, we find that audio-linguistic tasks such as ‘sentence onset’, ‘speech
vs. non-speech’, ‘delta volume’ are decodable at many sites in the brain, but the highest decoding
performance is found in the superior temporal gyrus, especially close to Herschel’s and Wernicke’s
area, with average AUROCs of 0.77, 0.79, and 0.69, respectively in the gyrus of the temporal trans-
verse. In contrast, visual features such as Optical Flow are most decodable near the visual areas
in the occipital lobe, with some decodability in the frontal lobe. Here region results are given with
respect to the Destrieux atlas; for more region-level analyses, see Supplementary Section N.

Timing analysis To study the time course of linguistic information processing in the brain, we
aligned neural data to word onsets and split it into narrow time-bins (width = 250ms), training a
separate linear decoder on each bin for multiple tasks. Decodability is reported for the cross-session
split. For each task, we restrict our attention to the top 100 electrodes with the highest decodability.
Decoding performance as a function of time shows the course of processing after the word onset
(t = 0, Figure 5). Interestingly, the beginning of a new sentence can be decoded with better-than-
chance AUROC even before the word onset (µ = 0.55, σM = 0.002 at −250ms), hinting at the
predictive nature of processing. Moreover, we can find a time-ranking of features by looking at
when decodability peaks for reach feature (Figure 5). For example, we note that the high-level
semantic feature ‘word head position’ is decodable only later (decodability peaks at t = 0.625s vs.
volume t = 0.375s and pitch t = 0.125s).
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Figure 5: Tracking multimodal sensory processing in the brain across time. Here, we show the
mean performance of the most decodable 100 electrodes per each task across time (top), where t = 0
corresponds to word onset. A linear model is fit on spectrograms of 250ms-long sliding windows
of activity. Shaded regions denote s.e.m. across electrodes. We extract the peak of each decoding
curve to obtain an approximate time ordering (bottom). Audio and linguistic features are most
decodable close to word onset, whereas visual features like Frame Brightness and Optical Flow are
most decodable around 1 second after word onset. Notably, Head Word Position, a semantic feature
that pertains to the position of the dependency parse head, is decoded later than other language
features. Note that we use a window which gives fairly coarse temporal localizations; in addition,
these timings are dependent on the type of decoding analysis being performed, so the ordering may
change once more advanced models are used.
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Figure 6: Time evolution of speech onset decodability across brain areas. The ‘sentence onset’
task is most decodable in the superior temporal gyrus at the first word’s onset (t = 0). Note that
the decoding performance is above chance even before the speech onset, highlighting the predictive
nature of sensory processing in the brain. As time progresses, speech becomes more decodable in
the frontal areas of the brain as well, suggesting a flow of information from primary audio processing
regions to the prefrontal cortex.

Spatio-Temporal analysis We do a deep dive on the sentence-onset feature (Figure 6), investi-
gating the time course of sentence onset decodability across brain areas. We found that right at the
beginning of the sentence onset, it is most decodable in the temporal lobe (AUROC = 0.61 at t = 0
in the transverse temporal), but decodability spreads to the orbitofrontal cortex as time progresses
(AUROC = 0.51 at t = 0.0 and AUROC = 0.54 at t = 0.5). We repeated this analysis for every
task, generating maps of sensory processing: see Supplementary Figure 9 and Supplementary Fig-
ure 10.
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Figure 7: Performance of baseline models on the 15 tasks of Neuroprobe (cross-session). The
performance of four models is displayed: (1) logistic regression either from raw voltage signal of all
electrodes to the labels, or (2) from the spectrogram of the signal to the labels, including laplacian re-
referencing (3), as well as (4) BrainBERT (Wang et al., 2023) and (5) PopulationTransformer (Chau
et al., 2024). For a rigorous and standardized evaluation, neural data was always cut to include one
second following each word onset. Performance across different subjects and trials was averaged
together. Error bars denote s.e.m. across all subjects and trials. These results can be seen in tabular
form in Supplementary Section G.

Comparison of basic decoding methods on Neuroprobe To show the utility of the Neuroprobe
as a benchmark, we establish baselines and evaluate frontier models. The models we benchmark
span the range of simple classifiers to large, pretrained models.

The baselines include three linear regression models, which take as input either the raw voltage
time-series inputs, spectrogram of the signal generated using the short-time Fourier transform (spec-
trogram), or the spectrogram of the Laplacian re-referenced inputs. We performed hyperparameter
sweeps to determine the optimal spectrogram parameters, including number of data samples per
STFT segment, percentage of overlap between consecutive segments, as well as the frequency range
to keep; see Supplementary Figure 3 and Supplementary Figure 4). All inputs are given as a popu-
lation, i.e., the data from all electrodes across all time samples is provided as input, concatenated.

We also decode using off-the-shelf representations from pretrained models, training a regression
on single-channel BrainBERT (Wang et al., 2023) inputs as well as the pretrained PopulationTrans-
former (Chau et al., 2024), a pretrained transformer for encoding arbitrary sets of electrode activities.
More details on the models available in Supplementary Section F.

Perhaps surprisingly, we found that linear decoding on spectrogram inputs with Laplacian-
rereferencing is a very strong baseline (see Supplementary Figure 3), achieving the best overall
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performance on the within-session (0.660±0.005), cross session (0.648±0.004), and cross-subject
split (0.539±0.004). This shows the importance of optimizing the spectrogram parameters. In com-
parison, linear decoding on raw voltage achieves (0.510 ± 0.001) on the cross-subject split, while
BrainBERT improves slightly over this (0.522± 0.002). In general, the aggregated BrainBERT rep-
resentations result in the next best decoding: 0.586± 0.004 on within-session and 0.581± 0.004 on
cross-session. Meanwhile, PopT achieves 0.545 ± 0.006 and 0.566 ± 0.004 on both splits respec-
tively.

Finally, for the cross-session split, a breakdown by task can be seen in Figure 7. The Population-
Transformer, despite being pretrained, underperforms on many tasks, but achieves good performance
on the Sentence Onset and Speech vs. Non-speech tasks.

5 CONCLUSION

Neuroprobe can be used in several ways by different communities. Machine learning researchers
can treat it as any other benchmark and build decoding models that directly optimize for classifica-
tion performance. Meanwhile, practitioners at the intersection of ML and neuroscience can build
foundation models or virtual brains based on principled neuroscience priors and use Neuroprobe to
measure improvements in the learned representations. Finally, neuroscientists can use Neuroprobe
on its own or in tandem with models from the first two communities to uncover relationships be-
tween different aspects of multi-modal sensory processing in the brain. We hope that Neuroprobe
will both drive improvements in decoding and in our ability to draw neuroscience conclusions from
large scale data. Furthermore, as we have seen in other fields, it can also lead to a virtuous cycle in
which neuroscientists are encouraged to develop and release more open neural datasets to the effort.

Perhaps surprisingly, we found that the linear baseline with spectrogram inputs provides a very
strong baseline, outperforming foundation models on many tasks, highlighting the need for a stan-
dardized benchmark to drive progress. Even using this simple baseline, Neuroprobe yields insights
into both the spatial and temporal organization of tasks in the brain. As decoding models improve,
the clarity of such findings will improve and their variance will decrease.

It is our hope that Neuroprobe will drive significant advances in iEEG foundation models by pro-
viding a standardized, multi-task evaluation that encourages development of more performant ar-
chitectures. These improved foundation models could translate into meaningful clinical benefits,
including more precise brain-computer interfaces that offer finer motor control for patients with
paralysis, more accurate seizure prediction algorithms that provide earlier intervention opportuni-
ties, and deeper insights into language processing that could inform rehabilitation strategies for
stroke and brain injury patients, potentially accelerating the development of next-generation neural
prosthetics and therapeutic interventions that could dramatically improve quality of life for patients
with neurological conditions.

Limitations While the BrainTreebank dataset endows Neuroprobe with unprecedented combina-
tion of scale and resolution, it is collected from a clinical population undergoing invasive monitoring,
and results may not be overgeneralized. At the moment, the dataset only contains 10 subjects. This
low number of subjects is due to the fact that iEEG data is difficult to get, as it requires invasive
surgery to implant the electrodes. However, this is a difficulty faced by the field at large; for exam-
ple, the widely used Natural Scenes Dataset Allen et al. (2022) has 8 subjects.

Future work Our framework is general enough to accommodate future annotations, allowing for
investigations of low-level language processing, such as syllable-count, or high-level semantic pro-
cessing such as thematic roles or language model embeddings. We seek, in near-term future work,
to add to the library of tasks and datasets in Neuroprobe. As we continue to build our benchmark,
researchers will be able to study the question of how various tasks interact with each other.

Broader impacts Neuroprobe provides a standardized benchmark for evaluating models of human
brain activity, with potential applications in neuroscience, machine learning, and clinical technolo-
gies such as brain-computer interfaces. By releasing our data, code, and leaderboard, we aim to
democratize access to high-quality neural benchmarks and enable measurable progress in the field
of iEEG foundation models.
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10

https://internationalbrainlab.org
https://aclanthology.org/2020.lrec-1.15/
https://aclanthology.org/2020.lrec-1.15/
https://dandiarchive.org/dandiset/000070/draft
https://ai.meta.com/research/publications/emergence-of-language-in-the-developing-brain/
https://ai.meta.com/research/publications/emergence-of-language-in-the-developing-brain/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tijl Grootswagers, Iris Zhou, Austin K. Robinson, et al. Human eeg recordings for 1,854 concepts
presented in rapid serial visual presentation streams. Scientific Data, 9:3, 2022. doi: 10.1038/
s41597-021-01102-7. URL https://doi.org/10.1038/s41597-021-01102-7.

Martin N Hebart, Oliver Contier, Lina Teichmann, Adam H Rockter, Charles Y Zheng, Alexis Kid-
der, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I Baker. Things-data, a multimodal
collection of large-scale datasets for investigating object representations in human brain and be-
havior. Elife, 12:e82580, 2023.

Schoffelen Jan-Mathijs, Robert Oostenveld, Lam Nietzsche HL, Uddén Julia, Hultén Annika, and
Peter Hagoort. A 204-subject multimodal neuroimaging dataset to study language processing.
Scientific Data, 6(1), 2019.

Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic repre-
sentations with tremendous eeg data in bci. arXiv preprint arXiv:2405.18765, 2024.

Brianna M Karpowicz, Joel Ye, Chaofei Fan, Pablo Tostado-Marcos, Fabio Rizzoglio, Clay Wash-
ington, Thiago Scodeler, Diogo de Lucena, Samuel R Nason-Tomaszewski, Matthew J Mender,
et al. Few-shot algorithms for consistent neural decoding (falcon) benchmark. Advances in Neural
Information Processing Systems, 37:76578–76615, 2024.

Gayal Kuruppu, Neeraj Wagh, and Yogatheesan Varatharajah. Eeg foundation models: A critical
review of current progress and future directions, 2025. URL https://arxiv.org/abs/
2507.11783.

Jean-Philippe Lachaux, Nikolai Axmacher, Florian Mormann, Eric Halgren, and Nathan E. Crone.
High-frequency neural activity and human cognition: Past, present and possible future of intracra-
nial eeg research. Progress in Neurobiology, 98(3):279–301, 2012. doi: 10.1016/j.pneurobio.
2012.06.008.

Trung Le and Eli Shlizerman. STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer, June 2022.

Alexandre LeBel, Laura Wagner, Siddharth Jain, et al. A natural language fmri dataset for voxel-
wise encoding models. Scientific Data, 10:555, 2023. doi: 10.1038/s41597-023-02437-z. URL
https://doi.org/10.1038/s41597-023-02437-z.

G. Li, S. Jiang, S. E. Paraskevopoulou, M. Wang, Y. Xu, Z. Wu, L. Chen, D. Zhang, and G. Schalk.
Optimal referencing for stereo-electroencephalographic (seeg) recordings. NeuroImage, 183:327–
335, Dec 2018. doi: 10.1016/j.neuroimage.2018.08.020. Epub 2018 Aug 17.

Jixing Li, Shohini Bhattasali, Shaolei Zhang, et al. Le petit prince multilingual naturalistic fmri
corpus. Scientific Data, 9:530, 2022. doi: 10.1038/s41597-022-01625-7. URL https://
doi.org/10.1038/s41597-022-01625-7.

Jan-Matthis Lueckmann, Alexander Immer, Alex Bo-Yuan Chen, Peter H Li, Mariela D Petkova,
Nirmala A Iyer, Luuk Willem Hesselink, Aparna Dev, Gudrun Ihrke, Woohyun Park, et al.
Zapbench: A benchmark for whole-brain activity prediction in zebrafish. arXiv preprint
arXiv:2503.02618, 2025.

Jason Manley, Sihao Lu, Kevin Barber, Jeffrey Demas, Hyewon Kim, David Meyer, Fran-
cisca Martı́nez Traub, and Alipasha Vaziri. Simultaneous, cortex-wide dynamics of up to
1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neu-
ron, 112(10):1694–1709.e5, 2024. ISSN 0896-6273. doi: https://doi.org/10.1016/j.neuron.
2024.02.011. URL https://www.sciencedirect.com/science/article/pii/
S0896627324001211.

Samuel A. Nastase, Ariel Goldstein, and Uri Hasson. Keep it real: Rethinking the primacy of
experimental control in cognitive neuroscience. NeuroImage, 222:117254, 2020. doi: 10.1016/
j.neuroimage.2020.117254. URL https://doi.org/10.1016/j.neuroimage.2020.
117254. Open access under CC license.

11

https://doi.org/10.1038/s41597-021-01102-7
https://arxiv.org/abs/2507.11783
https://arxiv.org/abs/2507.11783
https://doi.org/10.1038/s41597-023-02437-z
https://doi.org/10.1038/s41597-022-01625-7
https://doi.org/10.1038/s41597-022-01625-7
https://www.sciencedirect.com/science/article/pii/S0896627324001211
https://www.sciencedirect.com/science/article/pii/S0896627324001211
https://doi.org/10.1016/j.neuroimage.2020.117254
https://doi.org/10.1016/j.neuroimage.2020.117254


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Samuel A. Nastase, Yung-Fang Liu, Harrison Hillman, et al. The “narratives” fmri dataset for evalu-
ating models of naturalistic language comprehension. Scientific Data, 8:250, 2021. doi: 10.1038/
s41597-021-01033-3. URL https://doi.org/10.1038/s41597-021-01033-3.

Petr Nejedly, Vaclav Kremen, Vladimir Sladky, Jan Cimbalnik, Petr Klimes, Filip Plesinger, Filip
Mivalt, Vojtech Travnicek, Ivo Viscor, Martin Pail, et al. Multicenter intracranial eeg dataset for
classification of graphoelements and artifactual signals. Scientific data, 7(1):179, 2020.

Paul L. Nunez and Ramesh Srinivasan. Electric Fields of the Brain: The Neurophysics of EEG.
Oxford University Press, Oxford, UK, 2 edition, 2006. ISBN 9780195050387. doi: 10.1093/
acprof:oso/9780195050387.001.0001.

Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. Frontiers in neuro-
science, 10:196, 2016.

Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using genera-
tive latent diffusion. Scientific Reports, 13(1):15666, 2023.

Liam Paninski and John P. Cunningham. Neural data science: Accelerating the experiment-analysis-
theory cycle in large-scale neuroscience. Current Opinion in Neurobiology, 50:232–241, 2018.
doi: 10.1016/j.conb.2018.04.007. URL https://doi.org/10.1016/j.conb.2018.
04.007. Copyright © 2018 Elsevier Ltd. All rights reserved.

Josef Parvizi and Sabine Kastner. Promises and limitations of human intracranial electroencephalog-
raphy. Nature Neuroscience, 21(4):474–483, 2018. doi: 10.1038/s41593-018-0108-2. URL
https://doi.org/10.1038/s41593-018-0108-2.

Felix Pei, Joel Ye, David M. Zoltowski, Anqi Wu, Raeed H. Chowdhury, Hansem Sohn, Joseph E.
O’Doherty, Krishna V. Shenoy, Matthew T. Kaufman, Mark Churchland, Mehrdad Jazayeri,
Lee E. Miller, Jonathan Pillow, Il Memming Park, Eva L. Dyer, and Chethan Pandarinath. Neu-
ral latents benchmark ’21: Evaluating latent variable models of neural population activity. In
Advances in Neural Information Processing Systems (NeurIPS), Track on Datasets and Bench-
marks, 2021. URL https://arxiv.org/abs/2109.04463.

Matthew G. Perich, Lee E. Miller, Mehdi Azabou, and Eva L. Dyer. Long-term recordings of
motor and premotor cortical spiking activity during reaching in monkeys. Data set, 2025. URL
https://doi.org/10.48324/dandi.000688/0.250122.1735.

Steven M Peterson, Zoe Steine-Hanson, Nathan Davis, Rajesh PN Rao, and Bingni W Brunton.
Generalized neural decoders for transfer learning across participants and recording modalities.
Journal of Neural Engineering, 18(2):026014, 2021.

Steven M Peterson, Satpreet H Singh, Benjamin Dichter, Michael Scheid, Rajesh PN Rao, and
Bingni W Brunton. Ajile12: Long-term naturalistic human intracranial neural recordings and
pose. Scientific data, 9(1):184, 2022.

Supratim Ray and John H. R. Maunsell. Different origins of gamma rhythm and high-gamma ac-
tivity in macaque visual cortex. PLoS Biology, 9(4):e1000610, 2011. doi: 10.1371/journal.pbio.
1000610.

Matthias Schurz, Joaquim Radua, Markus Aichhorn, Fabio Richlan, and Josef Perner. Fractionating
theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehav-
ioral Reviews, 42:9–34, 2014.

Paul S Scotti, Mihir Tripathy, Cesar Kadir Torrico Villanueva, Reese Kneeland, Tong Chen,
Ashutosh Narang, Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman,
et al. Mindeye2: Shared-subject models enable fmri-to-image with 1 hour of data. arXiv preprint
arXiv:2403.11207, 2024.

Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun,
Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot R Müller-Putz, et al.
Review of the bci competition iv. Frontiers in neuroscience, 6:55, 2012.

12

https://doi.org/10.1038/s41597-021-01033-3
https://doi.org/10.1016/j.conb.2018.04.007
https://doi.org/10.1016/j.conb.2018.04.007
https://doi.org/10.1038/s41593-018-0108-2
https://arxiv.org/abs/2109.04463
https://doi.org/10.48324/dandi.000688/0.250122.1735


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Shohei Tsuchimoto, Shuka Shibusawa, Seitaro Iwama, Masaaki Hayashi, Kohei Okuyama, Nobuaki
Mizuguchi, Kenji Kato, and Junichi Ushiba. Use of common average reference and large-
laplacian spatial-filters enhances eeg signal-to-noise ratios in intrinsic sensorimotor activity.
Journal of Neuroscience Methods, 353:109089, 2021. ISSN 0165-0270. doi: https://doi.org/
10.1016/j.jneumeth.2021.109089. URL https://www.sciencedirect.com/science/
article/pii/S0165027021000248.

Franck Vidal, Boris Burle, Laure Spieser, Laurence Carbonnell, Cédric Meckler, Laurence Casini,
and Thierry Hasbroucq. Linking eeg signals, brain functions and mental operations: Advan-
tages of the laplacian transformation. International Journal of Psychophysiology, 97(3):221–232,
2015. ISSN 0167-8760. doi: https://doi.org/10.1016/j.ijpsycho.2015.04.022. URL https:
//www.sciencedirect.com/science/article/pii/S0167876015001737. On
the benefits of using surface Laplacian (current source density) methodology in electrophysiol-
ogy.

Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio
Cases, and Andrei Barbu. BrainBERT: Self-supervised representation learning for intracranial
recordings, February 2023.

Christopher Wang, Adam Uri Yaari, Aaditya K Singh, Vighnesh Subramaniam, Dana Rosenfarb, Jan
DeWitt, Pranav Misra, Joseph R. Madsen, Scellig Stone, Gabriel Kreiman, Boris Katz, Ignacio
Cases, and Andrei Barbu. Brain treebank: Large-scale intracranial recordings from naturalistic
language stimuli, 2024. URL https://arxiv.org/abs/2411.08343.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell.
Simultaneously uncovering the patterns of brain regions involved in different story reading sub-
processes. PLOS ONE, 9(11):e112575, November 2014. ISSN 1932-6203. doi: 10.1371/journal.
pone.0112575. URL http://dx.plos.org/10.1371/journal.pone.0112575.

Francis R Willett, Erin M Kunz, Chaofei Fan, Donald T Avansino, Guy H Wilson, Eun Young
Choi, Foram Kamdar, Matthew F Glasser, Leigh R Hochberg, Shaul Druckmann, et al. A high-
performance speech neuroprosthesis. Nature, 620(7976):1031–1036, 2023.

Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
the wild. Advances in Neural Information Processing Systems, 36:78240–78260, 2023.

Joel Ye, Jennifer L. Collinger, Leila Wehbe, and Robert Gaunt. Neural Data Transformer 2: Multi-
context Pretraining for Neural Spiking Activity, September 2023.

Zhizhang Yuan, Fanqi Shen, Meng Li, Yuguo Yu, Chenhao Tan, and Yang Yang. Brainwave: A
brain signal foundation model for clinical applications. arXiv preprint arXiv:2402.10251, 2024.

Zaid Zada, Samuel A. Nastase, Bobbi Aubrey, Itamar Jalon, Sebastian Michelmann, Haocheng
Wang, Liat Hasenfratz, Werner Doyle, Daniel Friedman, Patricia Dugan, Lucia Melloni, Sasha
Devore, Adeen Flinker, Orrin Devinsky, Ariel Goldstein, and Uri Hasson. The “podcast” ecog
dataset for modeling neural activity during natural language comprehension. Scientific Data, 12:
1135, 2025. doi: 10.1038/s41597-025-03994-7.

Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant: Foun-
dation Model for Intracranial Neural Signal. In Thirty-Seventh Conference on Neural Information
Processing Systems, November 2023.
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A LLM USAGE

LLMs were not used in the ideation or for the bulk of the writing of this work. They were primarily
used to polish the writing on a per-phrase basis.

B ETHICS STATEMENTS

The authors have read and adhered to the ICLR code of ethics. Our work uses existing, publicly
available and anonymized human data.

Reproducibility We publicly release the code required to produce our decoding results. The leader-
board will be hosted online. Submissions will be unverified except for formatting, however, we will
require an accompanying publication and link to a code repository for every submission in order to
receive a “reproducible” designation on the leaderboard.
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C SPLITS

Neuroprobe includes 3 different types of splits.

Within-Session In this split, models are trained and tested within the same subject and the same
movie session. To avoid temporal data leakage, we are using 2-fold cross-validation using non-
overlapping segments of the movie. We found that 2-fold cross-validation yields virtually identical
results to 5-fold cross-validation, while having a 60% lower computational load (r = 0.982, p <
0.001, Supplementary Figure 1).

Cross-Session This is a slightly more difficult split. It ensures completely that no data-
contamination due to auto-correlation has occurred. The model is being trained on data from one
movie session and tested on another movie from the same subject.

Cross-Subject This is the most difficult split. It tests the model’s ability to generalize between
subjects and stimuli. Specifically, the model is trained exclusively on Subject 2, Trial 4 (Guardians
of the Galaxy 2), and evaluated independently on all other subjects and each of their movie sessions.
This is especially challenging considering the variability in electrode placements per subject. Our
current approach for adapting the linear baselines includes initially pre-processing neural data to
represent activity in each cortical region (using averaging per subject/trial pair), as defined from the
34 regions by the Desikan-Killany atlas (Desikan et al., 2006). For every pair of subjects, we only
consider those atlas regions that are present in both subjects. Then, we evaluated different linear
baselines on the preprocessed data.

Supplementary Figure 1: Extremely high correlation between 2-fold and 5-fold cross-validation
results on Neuroprobe, within-session split.

D NEUROPROBE-LITE

The following subject-trial pairs are included in Neuroprobe Lite:

• Subject 1: Trials 1, 2

• Subject 2: Trials 0, 4

• Subject 3: Trials 0, 1

• Subject 4: Trials 0, 1

• Subject 7: Trials 0, 1

• Subject 10: Trials 0, 1

For every task, the number of datapoints was trimmed at 3500 datapoints (i.e. if a specific movie
has more than 3500 annotations for any task, only the first 3500 are taken for the Lite benchmark).
When selecting the subject/trial pairs for Neuroprobe Lite, we selected the trials that contained the
most tasks which hit the 3500 datapoints limit.
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Furthermore, to ensure computational efficiency, the total number of electrodes per subject is capped
at 120, such that the input for each task is a standardized matrix which has predictable memory
and computational requirements. The electrodes were selected in groups from complete probes
to retain flexibiblity for re-referencing techniques such as bipolar, common-average, or Laplacian
re-referencing, which have been shown to improve the signal to noise ratio (Vidal et al., 2015; Li
et al., 2018; Tsuchimoto et al., 2021). All selected electrodes have been localized in an average
cortex atlas. To maximize the signal to noise ratio, the electrodes with the highest linear decoding
performance were chosen first.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E DECODING TASKS

# Feature Description Benchmark Task
1 frame brightness

(visual)
The mean brightness computed as
the average HSV value over all pix-
els

Binary classification: low (per-
centiles 0%-25%) vs high (75%-
100%)

2 global flow
(visual)

A camera motion proxy. The maxi-
mal average dense optical flow vec-
tor magnitude

Same as above

3 local flow
(visual)

A large displacement proxy. The
maximal optical flow vector magni-
tude

Same as above

4 face num
(visual)

The maximum number of faces per
frame during the word

2-way classification: 0, or ≥ 1

5 volume
(auditory)

Average root mean squared watts of
the audio

Binary classification: low (0%-
25%) vs high (75%-100%)

6 pitch
(auditory)

Average pitch of the audio Same as above

7 delta volume
(auditory)

The difference in average RMS of
the 500ms windows pre- and post-
word onset

Same as above

8 speech
(language)

Whether any speech is present in the
given time interval

Binary classification

9 onset
(language)

Whether a new sentence starts in the
interval, or there is no speech at all

Binary classification

10 gpt2 surprisal
(language)

Negative-log transformed GPT-2
word probability (given preceding
20s of language context)

Binary classification: low (0%-
25%) vs high (75%-100%)

11 word length
(language)

Word length (ms) Same as above

12 word gap
(language)

Difference between previous word
offset and current word onset (ms)

Same as above

13 word index
(language)

The word index in its context sen-
tence

2-way classification: 0 (the first
word in the sentence), or other (1)

14 word head pos
(language)

The relative position (left/right) of
the word’s dependency tree head

Binary classification

15 word part speech
(language)

The word Universal Part-of-Speech
(UPOS) tag

2-way classification: verb (0), or
other (1)

Supplementary Table 1: Extracted visual, auditory, and language features used to create the
evaluations for Neuroprobe. For all classification tasks, the classes were rebalanced. The differ-
ence between local and global flow is that global is the averaged optical flow, with the average being
taken over all optical flow vectors on the screen, whereas local is the largest individual optical flow
vector on the screen. The table is adapted from Chau et al. (2024).
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Supplementary Figure 2: Correlations between tasks Averaged across movies, the off-diagonal
correclation between tasks is 0.121± 0.019. Note that the tasks Speech and Sentence Onset are not
represented here, because they do not share the same underlying data samples (specifically, when
the label is 0 for those tasks, it means that there is no speech in the movie, and many of the other
tasks are undefined).
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F MODELS BENCHMARKED

Linear (raw voltage) For this evaluation, raw voltage traces from the BrainTreebank data sampled
at 2048 Hz were fed as input to the linear regression. We found almost identical results when
removing line noise or passing the data raw to the linear regression, so the raw data was used in the
paper. When removing line noise, it was removed at 60± 5 Hz and the 4 harmonics,

Linear (spectrogram) For this baseline evaluation, the features are the spectrogram of the raw
signal with the following parameters (given that the sampling rate is 2048Hz):

• nperseg=512

• noverlap=75%

• window=hann

• Frequency range: 0-150Hz.

After this step, the data turns into an array of arrays where first dimension is the time bin and the
second dimension is the spectrogram result across frequencies; for the downstream regression, all
of these features are concatenated together.

We performed sweeps to determine the optimal hyperparameters for the spectrogram (number of
data samples per STFT segment, percentage of overlap between consecutive segments, as well as
max and min frequency to retain; see Supplementary Figure 3 and Supplementary Figure 4).

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

O
ve

rla
p

Task Mean

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

Sentence Onset

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

Speech

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

Volume

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

Delta Volume

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

O
ve

rla
p

Voice Pitch

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

Word Position

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

Inter-word Gap

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

GPT-2 Surprisal

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

Head Word Position

128 256 400 512 768 1024

0.0%

25.0%

50.0%

75.0%

87.5%

O
ve

rla
p

Part of Speech

128 256 400 512 768 1024
Samples per STFT segment

0.0%

25.0%

50.0%

75.0%

87.5%

Word Length

128 256 400 512 768 1024
Samples per STFT segment

0.0%

25.0%

50.0%

75.0%

87.5%

Global Optical Flow

128 256 400 512 768 1024
Samples per STFT segment

0.0%

25.0%

50.0%

75.0%

87.5%

Local Optical Flow

128 256 400 512 768 1024
Samples per STFT segment

0.0%

25.0%

50.0%

75.0%

87.5%

Frame Brightness

128 256 400 512 768 1024
Samples per STFT segment

0.0%

25.0%

50.0%

75.0%

87.5%

O
ve

rla
p

Number of Faces

0.60

0.61

0.62

0.80

0.82

0.84

0.78

0.80

0.82

0.84

0.68

0.69

0.70

0.71

0.72

0.66

0.67

0.68

0.69

0.70

0.55

0.56

0.57

0.61

0.62

0.63

0.64

0.54

0.55

0.56

0.540

0.545

0.550

0.555

0.560

0.565

0.535

0.540

0.545

0.550

0.555

0.545

0.550

0.555

0.560

0.565

0.545

0.550

0.555

0.560

0.565

0.555

0.560

0.565

0.570

0.575

0.580

0.555

0.560

0.565

0.570

0.575

0.530

0.535

0.540

0.545

0.550

0.52

0.53

0.54

0.55

Supplementary Figure 3: A sweep of the spectrogram hyperparameters: data samples per STFT
segment and the overlap between consecutive segments.

BrainBERT For this evaluation, the BrainTreebank data was Laplacian rereferenced (as described
in the original BrainBERT paper by Wang et al. (2023)), with line noise removed, and then passed
into the BrainBERT model as provided by Wang et al. (2023). The output features were concatenated
and used as input to the linear regression. For the electrodes which could not be Laplacian reref-
erenced, non-rereferenced data was inputted into BrainBERT. The BrainBERT model was frozen
and only the final linear regression layer was fine tuned, in order to compare the quality of features
generated by the foundation model.
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Supplementary Figure 4: A sweep of the spectrogram hyperparameters: data samples per STFT
segment and the maximum frequency that is included as part of the feature vector. The analysis
is done using the 75% overlap between consecutive STFT segments.

For all linear regression, we used the sklearn package, class LinearRegression, with the tolerance
parameter set as 0.001. In all cases, the features were first normalized using the sklearn Standard-
Scaler. We found that it helps with convergence and often produces higher regression values for the
baselines.

Population Transformer Population Transformer (PopT) is a SSL pretrained model for encoding
arbitrary ensembles of iEEG electrode data for general downstream decoding (Chau et al., 2024).
The model consists of a transformer backbone that learns functional and spatial relationships be-
tween input channels whose temporal activity is encoded. We use the publicly available weights
which were pretrained on data from 10 iEEG subjects, using 5s BrainBERT temporal embeddings
from individual channels. For PopT, we followed the implementation and used the weights from
(Chau et al., 2024). The fine-tuning protocol is taken to be directly the same as in the authors’ origi-
nal paper (including linear rate, number of epochs, a factor of 10 between learning rates of the linear
output layer vs the transformer blocks, etc), but reduce the number of steps to steps = 1000. We
finetune PopT in two conditions: either by only finetuning the final linear output layer while keeping
the rest of the model weights frozen (the “frozen” condition), or finetuning through the whole model
(the default PopT condition).

When running linear regressions on the cross-subject splits, in order to arrive at a subject-agnostic
input, we represent neural activity using a single average vector per region for each of the 34 regions
by the Desikan-Killiany atlas (Desikan et al., 2006). We use this same scheme when running cross-
subject decoding with BrainBERT. No accommodation for the cross-subject split was necessary for
the PopulationTransformer, which is designed to handle subject-transfer. For the PopulationTrans-
former, we use only those electrodes in the Neuroprobe subset that can be Laplacian-rereferenced
and are in the set of ‘clean’ electrodes (see Chau et al. (2024)) for evaluation.
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G BENCHMARK RESULTS

G.1 WITHIN-SESSION SPLITS

Model Overall Sentence Onset Speech Volume
Linear (voltage) 0.606 ± 0.004 0.795 ± 0.021 0.656 ± 0.022 0.595 ± 0.015
Linear (spectrogram) 0.630 ± 0.005 0.851 ± 0.025 0.825 ± 0.028 0.726 ± 0.038
Linear (Laplacian+spectrogram) 0.660 ± 0.005 0.891 ± 0.018 0.883 ± 0.018 0.717 ± 0.032
BrainBERT (untrained, frozen) 0.585 ± 0.004 0.750 ± 0.028 0.603 ± 0.020 0.570 ± 0.008
BrainBERT (frozen) 0.586 ± 0.004 0.757 ± 0.027 0.611 ± 0.022 0.583 ± 0.010
PopulationTransformer 0.545 ± 0.006 0.689 ± 0.050 0.677 ± 0.044 0.576 ± 0.018
Model Delta Volume Voice Pitch Word Position Inter-word Gap
Linear (voltage) 0.753 ± 0.019 0.536 ± 0.005 0.742 ± 0.017 0.595 ± 0.015
Linear (spectrogram) 0.718 ± 0.025 0.570 ± 0.011 0.657 ± 0.029 0.579 ± 0.019
Linear (Laplacian+spectrogram) 0.762 ± 0.026 0.578 ± 0.016 0.740 ± 0.028 0.612 ± 0.014
BrainBERT (untrained, frozen) 0.697 ± 0.020 0.524 ± 0.005 0.684 ± 0.027 0.583 ± 0.017
BrainBERT (frozen) 0.706 ± 0.021 0.524 ± 0.007 0.685 ± 0.027 0.584 ± 0.017
PopulationTransformer 0.628 ± 0.025 0.509 ± 0.008 0.519 ± 0.023 0.509 ± 0.009
Model GPT-2 Surprisal Head Word Position Part of Speech Word Length
Linear (voltage) 0.584 ± 0.009 0.570 ± 0.008 0.576 ± 0.012 0.599 ± 0.013
Linear (spectrogram) 0.570 ± 0.017 0.565 ± 0.012 0.559 ± 0.011 0.569 ± 0.017
Linear (Laplacian+spectrogram) 0.613 ± 0.017 0.602 ± 0.012 0.605 ± 0.012 0.618 ± 0.015
BrainBERT (untrained, frozen) 0.581 ± 0.013 0.587 ± 0.012 0.553 ± 0.010 0.571 ± 0.012
BrainBERT (frozen) 0.580 ± 0.015 0.585 ± 0.013 0.556 ± 0.012 0.571 ± 0.013
PopulationTransformer 0.523 ± 0.014 0.519 ± 0.008 0.513 ± 0.004 0.505 ± 0.005
Model Global Optical Flow Local Optical Flow Frame Brightness Number of Faces
Linear (voltage) 0.535 ± 0.009 0.544 ± 0.005 0.507 ± 0.013 0.499 ± 0.007
Linear (spectrogram) 0.604 ± 0.017 0.593 ± 0.020 0.533 ± 0.015 0.525 ± 0.008
Linear (Laplacian+spectrogram) 0.625 ± 0.013 0.607 ± 0.017 0.521 ± 0.025 0.530 ± 0.014
BrainBERT (untrained, frozen) 0.528 ± 0.005 0.528 ± 0.003 0.504 ± 0.005 0.505 ± 0.005
BrainBERT (frozen) 0.521 ± 0.006 0.525 ± 0.003 0.508 ± 0.012 0.503 ± 0.007
PopulationTransformer 0.509 ± 0.008 0.508 ± 0.014 0.499 ± 0.019 0.492 ± 0.010

Supplementary Table 2: Performance comparison across tasks (mean ± SEM) on the within-session
split. Best performing model for each task is shown in bold.
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G.2 CROSS-SESSION SPLITS

Model Overall Sentence Onset Speech Volume
Linear (voltage) 0.576 ± 0.003 0.728 ± 0.021 0.611 ± 0.014 0.564 ± 0.007
Linear (spectrogram) 0.626 ± 0.005 0.861 ± 0.016 0.849 ± 0.020 0.727 ± 0.029
Linear (Laplacian+spectrogram) 0.648 ± 0.004 0.904 ± 0.012 0.889 ± 0.018 0.714 ± 0.023
BrainBERT (untrained, frozen) 0.574 ± 0.004 0.724 ± 0.030 0.603 ± 0.015 0.560 ± 0.008
BrainBERT (frozen) 0.581 ± 0.004 0.743 ± 0.029 0.631 ± 0.016 0.572 ± 0.008
PopulationTransformer 0.566 ± 0.004 0.774 ± 0.028 0.716 ± 0.027 0.574 ± 0.012
Model Delta Volume Voice Pitch Word Position Inter-word Gap
Linear (voltage) 0.707 ± 0.011 0.529 ± 0.005 0.664 ± 0.028 0.554 ± 0.011
Linear (spectrogram) 0.702 ± 0.025 0.564 ± 0.007 0.648 ± 0.029 0.560 ± 0.016
Linear (Laplacian+spectrogram) 0.734 ± 0.020 0.579 ± 0.016 0.691 ± 0.028 0.590 ± 0.016
BrainBERT (untrained, frozen) 0.680 ± 0.019 0.508 ± 0.005 0.664 ± 0.029 0.564 ± 0.016
BrainBERT (frozen) 0.692 ± 0.020 0.509 ± 0.005 0.661 ± 0.031 0.571 ± 0.017
PopulationTransformer 0.646 ± 0.022 0.510 ± 0.008 0.559 ± 0.024 0.531 ± 0.007
Model GPT-2 Surprisal Head Word Position Part of Speech Word Length
Linear (voltage) 0.561 ± 0.011 0.537 ± 0.005 0.569 ± 0.009 0.558 ± 0.011
Linear (spectrogram) 0.567 ± 0.013 0.557 ± 0.011 0.564 ± 0.012 0.564 ± 0.014
Linear (Laplacian+spectrogram) 0.593 ± 0.012 0.580 ± 0.009 0.610 ± 0.013 0.609 ± 0.011
BrainBERT (untrained, frozen) 0.578 ± 0.013 0.573 ± 0.015 0.553 ± 0.012 0.561 ± 0.013
BrainBERT (frozen) 0.580 ± 0.014 0.572 ± 0.014 0.556 ± 0.012 0.559 ± 0.013
PopulationTransformer 0.556 ± 0.015 0.524 ± 0.006 0.502 ± 0.005 0.523 ± 0.006
Model Global Optical Flow Local Optical Flow Frame Brightness Number of Faces
Linear (voltage) 0.528 ± 0.004 0.523 ± 0.003 0.494 ± 0.009 0.509 ± 0.005
Linear (spectrogram) 0.580 ± 0.015 0.576 ± 0.014 0.546 ± 0.018 0.520 ± 0.005
Linear (Laplacian+spectrogram) 0.595 ± 0.012 0.578 ± 0.010 0.535 ± 0.018 0.525 ± 0.010
BrainBERT (untrained, frozen) 0.521 ± 0.003 0.529 ± 0.004 0.500 ± 0.002 0.498 ± 0.002
BrainBERT (frozen) 0.527 ± 0.003 0.534 ± 0.005 0.506 ± 0.006 0.497 ± 0.002
PopulationTransformer 0.529 ± 0.008 0.528 ± 0.009 0.504 ± 0.009 0.512 ± 0.005

Supplementary Table 3: Performance comparison across tasks (mean ± SEM) on the cross-session
split. Best performing model for each task is shown in bold.
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G.3 CROSS-SUBJECT SPLITS

Model Overall Sentence Onset Speech Volume
Linear (voltage) 0.510 ± 0.001 0.539 ± 0.013 0.508 ± 0.006 0.513 ± 0.004
Linear (spectrogram) 0.528 ± 0.003 0.621 ± 0.024 0.585 ± 0.018 0.530 ± 0.008
Linear (Laplacian+spectrogram) 0.539 ± 0.004 0.673 ± 0.037 0.642 ± 0.038 0.527 ± 0.010
BrainBERT (untrained, frozen) 0.527 ± 0.002 0.585 ± 0.014 0.537 ± 0.007 0.524 ± 0.003
BrainBERT (frozen) 0.522 ± 0.002 0.582 ± 0.013 0.537 ± 0.005 0.521 ± 0.003
PopulationTransformer 0.526 ± 0.004 0.638 ± 0.031 0.594 ± 0.035 0.526 ± 0.012
Model Delta Volume Voice Pitch Word Position Inter-word Gap
Linear (voltage) 0.533 ± 0.010 0.503 ± 0.002 0.539 ± 0.009 0.511 ± 0.003
Linear (spectrogram) 0.555 ± 0.011 0.505 ± 0.005 0.552 ± 0.013 0.508 ± 0.006
Linear (Laplacian+spectrogram) 0.568 ± 0.013 0.505 ± 0.002 0.571 ± 0.022 0.515 ± 0.008
BrainBERT (untrained, frozen) 0.590 ± 0.010 0.505 ± 0.003 0.574 ± 0.015 0.513 ± 0.003
BrainBERT (frozen) 0.574 ± 0.010 0.507 ± 0.002 0.549 ± 0.012 0.510 ± 0.003
PopulationTransformer 0.573 ± 0.016 0.509 ± 0.005 0.503 ± 0.007 0.519 ± 0.005
Model GPT-2 Surprisal Head Word Position Part of Speech Word Length
Linear (voltage) 0.510 ± 0.005 0.504 ± 0.003 0.495 ± 0.003 0.502 ± 0.003
Linear (spectrogram) 0.510 ± 0.004 0.511 ± 0.004 0.509 ± 0.003 0.509 ± 0.003
Linear (Laplacian+spectrogram) 0.508 ± 0.003 0.521 ± 0.008 0.508 ± 0.006 0.508 ± 0.005
BrainBERT (untrained, frozen) 0.522 ± 0.005 0.530 ± 0.005 0.517 ± 0.003 0.509 ± 0.004
BrainBERT (frozen) 0.511 ± 0.004 0.524 ± 0.004 0.509 ± 0.004 0.504 ± 0.004
PopulationTransformer 0.522 ± 0.007 0.509 ± 0.007 0.498 ± 0.005 0.498 ± 0.004
Model Global Optical Flow Local Optical Flow Frame Brightness Number of Faces
Linear (voltage) 0.500 ± 0.004 0.500 ± 0.002 0.493 ± 0.002 0.501 ± 0.003
Linear (spectrogram) 0.508 ± 0.007 0.506 ± 0.009 0.514 ± 0.008 0.496 ± 0.003
Linear (Laplacian+spectrogram) 0.515 ± 0.005 0.513 ± 0.005 0.499 ± 0.004 0.508 ± 0.004
BrainBERT (untrained, frozen) 0.503 ± 0.003 0.501 ± 0.006 0.502 ± 0.002 0.500 ± 0.003
BrainBERT (frozen) 0.501 ± 0.002 0.498 ± 0.004 0.506 ± 0.004 0.501 ± 0.004
PopulationTransformer 0.503 ± 0.007 0.500 ± 0.010 0.502 ± 0.009 0.494 ± 0.004

Supplementary Table 4: Performance comparison across tasks (mean ± SEM) on the cross-subject
split. Best performing model for each task is shown in bold.
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H SUBJECT AND MOVIE INFORMATION

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Neuroprobe

1
19 154 Fantastic Mr. Fox 1.35

The Martian 2.43 x
Thor: Ragnarok 1.77 x

2

12 162 Venom 1.54 x
Spider-Man: Homecoming 2.05
Guardians of the Galaxy 1.90
Guardians of the Galaxy 2 2.13 x
Avengers: Infinity War 2.30
Black Panther 1.42
Aquaman 2.19

3
18 134 Cars 2 1.64 x

Lord of the Rings 1 2.25 x
Lord of the Rings 2 (extended
edition)

3.58

4
12 188 Shrek 3 1.38 x

Megamind 1.44 x
Incredibles 0.85

5 6 156 Fantastic Mr. Fox 1.35

6 9 164 Megamind 0.68
Toy Story 1.29
Coraline 0.84

7 11 246 Cars 2 1.64 x
Megamind 1.44 x

8 4.5 162 Sesame Street Episode 0.94

9 16 106 Ant Man 1.80

10 12 216 Cars 2 1.33 x
Spider-Man: Far from Home 1.93 x

Supplementary Table 5: Subject statistics Subjects in the BrainTreebank dataset, and the trials used
in the benchmark tasks. Table adapted from Wang et al. (2023). The second column shows the total
number of electrodes. The average amount of recording data per subject is 4.3 (hrs).
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Subj. Age Sex Movies Time (h) # Sent. # Words # Lemmas # Elec. # Probes
1 19 M 7, 18, 19 5.6 4372 27424 4489 154 13
2 12 M 2, 3, 4, 8, 9, 17, 21 13.5 9870 57731 9164 162 47
3 18 F 5, 11, 12 7.5 5281 31596 4547 134 12
4 12 F 10, 13, 15 3.7 4056 23876 4017 188 15
5 6 M 7 1.35 1282 7908 1481 156 12
6 9 F 6, 13, 20 2.8 3789 20089 3349 164 12
7 11 F 5, 13 3.08 3523 19068 2828 246 18
8 4 M 14 0.94 860 3994 537 162 13
9 16 F 1 1.80 1558 9235 1480 106 12

10 12 M 5, 16 3.08 3981 22147 3004 216 17

Supplementary Table 6: All subjects language, electrodes and personal statistics. Columns
from left to right are the subject’s ID and information (age and gender), the IDs of the movies they
watched (corresponding to Supplementary Table 7), the cumulative movie time (hours), number of
sentences, number of words (tokens) and number of unique lemmas (canonical word forms), as well
as the number of probes the subject had and their corresponding number of electrodes. Table adapted
from Wang et al. (2024).

Unique Unique Unique
# Movie Year Length Sent. Words words Nouns nouns Verbs verbs
1 Antman 2015 7027 1558 9869 1944 1358 705 1545 580
2 Aquaman 2018 8601 1054 7233 1544 1069 520 1104 508
3 Avengers: Infin-

ity War
2018 8961 1523 8529 1750 1083 607 1317 495

4 Black Panther 2018 8073 1254 7580 1606 1093 553 1209 508
5 Cars 2 2011 6377 2051 11407 2037 1572 724 1664 577
6 Coraline 2009 6036 997 5433 1232 784 409 805 348
7 Fantastic Mr. Fox 2009 5205 1282 8461 1864 1229 681 1227 484
8 Guardians of the

Galaxy 1
2014 7251 1174 8295 1779 1096 603 1250 529

9 Guardians of the
Galaxy 2

2017 8146 1290 9405 1824 1224 626 1370 532

10 Incredibles 2003 6926 1521 9430 1954 1226 652 1557 591
11 Lord of the Rings

1
2001 13699 1514 10566 1998 1473 679 1487 598

12 Lord of the Rings
2

2002 14131 1716 11041 2065 1588 743 1619 646

13 Megamind 2010 5735 1472 8891 1726 1172 602 1347 496
14 Sesame Street

Ep. 3990
2016 3440 860 4220 787 717 231 706 217

15 Shrek the Third 2007 5568 1063 7226 1590 977 568 1071 422
16 Spiderman: Far

From Home
2019 7764 1930 12189 1969 1459 668 1785 560

17 Spiderman:
Homecoming

2017 8008 2196 12295 2066 1583 777 1808 572

18 The Martian 2015 9081 1570 11374 2192 1757 812 1677 622
19 Thor: Ragnarok 2017 7831 1583 9683 1789 1195 599 1419 548
20 Toy Story 1 1995 4863 1320 7216 1510 1019 548 1027 395
21 Venom 2018 6727 1379 7937 1513 897 507 1217 433

Supplementary Table 7: Language statistics for all movies. Columns from left to right are the
movie’s ID, name, year of production, length (seconds), number of sentences, number of words
(tokens), number of unique words (types), number of nouns, number of unique nouns, number of
verbs and number of unique verbs. Table adapted from Wang et al. (2024).
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I COMPOSITION OF MOVIES BY VOLUME

Ant Man - 117 min Aquaman - 136 min Avengers Infinity War - 149 min

Black Panther - 134 min Cars 2 - 98 min Coraline - 94 min

Fantastic Mr Fox - 80 min Guardians Of The Galaxy - 121 min Guardians Of The Galaxy 2 - 136 min

Incredibles - 108 min Lotr 1 - 200 min Lotr 2 - 214 min

Megamind - 89 min Sesame Street Episode 3990 - 56 min Shrek The Third - 82 min

Spider Man 3 Homecoming - 133 min Spider Man Far From Home - 129 min The Martian - 145 min

Thor Ragnarok - 123 min

0 20 40 60 80 100 120

Time (minutes)

Toy Story - 77 min

0 20 40 60

Time (minutes)

Venom - 111 min

0 20 40 60 80 100

Time (minutes)

volume low high

Supplementary Figure 5: Volume comparison across movies. The black line shows the normalized
audio volume over time for 18 feature-length films and one TV episode shown to subjects. Below
each volume trace, colored bars indicate periods of relatively low (red) and high (blue) volume,
defined as the bottom 25% and top 25% of volume values respectively.
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J ELECTRODE LOCATIONS

Subject 1   (N=3 sessions; N=130 electrodes) Subject 2   (N=7 sessions; N=135 electrodes)

Subject 3   (N=3 sessions; N=124 electrodes) Subject 4   (N=3 sessions; N=185 electrodes)

Subject 5   (N=1 sessions; N=140 electrodes) Subject 6   (N=3 sessions; N=161 electrodes)

Subject 7   (N=2 sessions; N=240 electrodes) Subject 8   (N=1 sessions; N=153 electrodes)

Subject 9   (N=1 sessions; N=99 electrodes) Subject 10   (N=2 sessions; N=207 electrodes)

Supplementary Figure 6: Electrode locations across subjects. Brain reconstructions showing elec-
trode placement and speech-selective responses for all 10 subjects. Each dot represents an electrode.
Only non-corrupted electrodes are included in this figure.
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K FACE DISTRIBUTION
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Supplementary Figure 7: Distribution of faces detected per frame across different movies. His-
tograms show the number of words (y-axis) that occur during frames containing different numbers
of faces (x-axis) for 18 feature-length films and one TV episode (Sesame Street) used in BrainTree-
bank.

L COMPUTE REQUIREMENTS

Every Linear regression was run on a CPU-only instance, with 2 virtual CPU cores and 64GB RAM
for the population level results and 2 CPU cores with 6GB RAM for the single electrode decoding
results. For BrainBERT, the necessary resources also included a GPU with at least 9GB of memory
along with 128GB of RAM and 2 CPU cores. For the PopulationTransformer, the fine-tuning was
done on 2 GPUs (NVIDIA GeForce GTX TITAN X) with at least 12GB of GPU RAM.

M LEADERBOARD
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Supplementary Figure 8: The leaderboard for the task of classifying sentence onset. The public
webpage link will be made available upon publication. Submissions will be submitted to our github
repository. Once accepted, the performance numbers will be displayed on the public leaderboard.
Submissions will consist of either the single-electrode-level or population-level performances. Sub-
mitters can choose to submit either one or both. Leaderboard placement will be determined by
results on the cross-session split, but the other splits will be displayed as well.
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Supplementary Figure 9: Spatio-temporal course of decodability This is the same information
as Figure 6, but for all tasks. Each row shows the spatio-temporal course of decodability for a given
task. Each column shows one time slice.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Supplementary Figure 10: Supplementary Figure 9 continued.
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N REGION ANALYSIS

Supplementary Figure 11: The same information as in Figure 4 is displayed, but aggregated ac-
cording to the Destrieux atlas.
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