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Abstract

Test-time adaptation (TTA) aims to modulate pa-
rameters of the pre-trained source model utilizing
samples from the target domain without access-
ing the source data. Although recent studies have
revealed the high potential of TTA in different
computer vision tasks, most TTA methods are con-
strained to the uni-modal adaptation tasks, while
the reliability bias caused by uni-modal data cor-
ruption is not sufficiently discussed in multimodal
tasks. Although some most recent methods sup-
pressed the cross-modal information discrepancy
(i.e. reliability bias) via modulating a modality-
sharing module, the domain adaptation for the
modality-specific module was neglected. In this
paper, we propose a two-level test-time adapta-
tion method (namely 2LTTA) considering both
intra-modal distribution shift and cross-modal re-
liability bias in multimodal learning. 2LTTA mod-
ulates all normalization layers and self-attention
modules of the encoder corresponding to the cor-
rupted modality and the modality-sharing block.
Additionally, we adopted a two-level objective
function considering both intra-modal distribution
shift and cross-modal reliability bias in the modal-
ity fusion block. Shannon entropy with sample
reweighting was utilized to reduce the intra-modal
distribution shift caused by data corruption. A
diversity-promoting loss was employed to reduce
the cross-modal information discrepancy. Our ex-
periments demonstrate the superiority of 2LTTA
over baseline methods on various data sets.
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1. Introduction
Multimodal pre-trained models (Li et al., 2023; Radford
et al., 2021) have been widely applied in vision, natural
language and multimodal tasks. Although remarkable per-
formance was achieved with such a paradigm, the distribu-
tion shift between source and target domain was neglected.
To approach domain shift problems in research and indus-
trial applications, many unsupervised domain adaptation
(UDA) methods have been proposed. Test-time adaptation
(TTA) aims to adapt the pre-trained source model to the tar-
get domain utilizing unlabeled target samples, independent
of the source dataset. Some TTA approaches even outper-
form the traditional UDA methods (Wang et al., 2020; Niu
et al., 2022). In our paper, we focus on TTA for multimodal
learning (MML) tasks. Recent TTA approaches mainly deal
with intra-modal domain adaptation via feature alignment
between source and target domain. To the best of our knowl-
edge, MM-TTA (Shin et al., 2022) is the first paper that
applies TTA to MML tasks for joint 2D-3D semantic seg-
mentation, utilizing both intra-modality pseudo-label gen-
eration and cross-modality pseudo-label refinement. Like
most TTA works, MM-TTA only modified the batch nor-
malization (BN) layers of the pre-trained source model in
test time. However, for multimodal tasks, the intra-modality
domain shift may give rise to enlarged information discrep-
ancy in the downstream fusion layers (Yang et al., 2024).
Yang et al. (2024) proposed a reliable fusion and robust
adaptation (READ) method to modulate only the fusion
layer in the attention module of the fusion block, while the
intra-modality feature extractors were frozen. In contrast,
most TTA methods optimize the pre-trained CNN model
by manipulating BN layers only. However, in vision Trans-
formers (ViTs) (Dosovitskiy et al., 2020), there exists no
BN layers, but layer normalization (LN) instead. Different
from BN, LN re-estimates the mean and standard devia-
tion of the input across the dimensions of the input (Ba
et al., 2016). As a result, the dimension of affine trans-
formation parameters for LN are also consistent with that
of the input sample. Specifically for TTA in ViT, Kojima
et al. (2022) propose to re-estimate statistics and modulate
affine parameters of LN. Additionally, according to prior
work (Lee et al., 2022), model fine-tuning works best con-
sidering only the first few convolutional layers. In Lee et al.
(2022), surgical fine-tuning was evaluated within another
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TTA method named MEMO (Zhang et al., 2022) using
CIFAR-10-C (Krizhevsky, 2009; Hendrycks & Dietterich,
2019) with 15 representative corruptions of severity level 5.
In this paper, we propose a novel parameter updating strat-
egy to further improve the model performance for MM tasks.
For the intra-modality level, we propose to modulate atten-
tion modules of the Transformer encoder (Dosovitskiy et al.,
2020), corresponding to a feature extractor (Liang et al.,
2020) in CNN-based model, for the corrupted modality. For
the cross-modality level, attention modules including fusion
layer and projection layer of the fusion block are modified.
Besides, LN modulation is implemented for both the Trans-
former encoder of the corrupted modality and the fusion
block. The parameters of the Transformer encoder for the
uncorrupted modality are fixed.

In our experiments, we evaluate 2LTTA on different
audio-visual datasets using a ViT-based architecture called
Contrastive Audio-Visual Masked Auto-Encoder (CAV-
MAE) (Gong et al., 2022). To conclude, our contributions
are summarized below:

• We propose a two-level test-time adaptation approach
by specifically defining Shannon entropy as objective
for the Transformer encoder of the corrupted modal-
ity and a diversity-promoting loss as objective for the
modality fusion block.

• We adopt a novel fine-tuning strategy that covers shal-
low Attention modules of the Transformer encoder and
LN layers of the pre-trained CAV-MAE.

• The proposed approach significantly improved the test-
time adaptation performance for Transformer-based
models on various data sets.

2. Two-Level Test-Time Adaptation
2.1. Problem Definition

Most TTA-related methods are evaluated on uni-modal
learning scenarios with corruption. In multimodal learning
scenarios, the correlation between uni-modality corruption
and information discrepancy between modalities is often
not considered, which may lead to severe degradation in
modality fusion. Specifically, once some modalities are con-
taminated with distribution shifts, the information discrep-
ancy between modalities is enlarged, leading to multimodal
reliability bias (Yang et al., 2024). However, most exist-
ing objective functions are intended for uni-modal learning
scenarios. For that reason, an objective function needs to
be carefully designed to reduce both intra-modality domain
shift and cross-modality reliability bias.

In terms of parameter updating strategy, T3A (Iwasawa &
Matsuo, 2021) is the only TTA method that adapted classi-
fier layers only. However, according to TTA benchmarks

in Yu et al. (2023), the prediction accuracy of T3A is much
lower than those freezing the FC layers and adapt FE in-
stead. Furthermore, it is shown in Lee et al. (2022) that
tuning only shallow convolutional layers outperforms tun-
ing all layers. Nevertheless, in most MML scenarios, where
ViT-based models are deployed, surgical fine-tuning can not
be directly applied since ViTs have no convolutional layers.
Considering the very different parameter update approaches
of previous works, we seek to obtain an optimal parameter
fine-tuning strategy for ViT-based MML models, in order to
achieve a reliable and satisfactory prediction performance.

2.2. Methodology

Two-Level Objective Function. Inspired by TENT (Wang
et al., 2020), we introduce the Shannon entropy Eent(x; Θ̃)
based on the output embeddings of the Transformer encoder
as objective function at intra-modality level. It is defined as:

Eent(x; Θ̃) = − 1

B

B∑
i=1

∑
ỹ∈C̃

p(ỹ|xi; Θ̃) log p(ỹ|xi; Θ̃),

(1)
where p(ỹ|xi; Θ̃) denotes the softmax of the output em-
bedding of sample xi over the Transformer encoder of the
corrupted modality and C̃ is the corresponding output space
(i.e. the number of elements in the output embedding),
while ỹ ∈ C̃. B is the size of the mini-batch. Following
EATA (Niu et al., 2022), we re-weight the entropy loss
of a mini-batch by a pre-defined weighting function. The
optimization objective for adaptation of the Transformer
encoder at intra-modality level can be written as:

min
Θ̃i,i∈Ŝ

Sent(x)Eent(x; Θ̃), (2)

where Sent is the weighting function (Niu et al., 2022) spec-
ified as:

Sent(x) =
1

exp
(
Eent(x; Θ̃)− 0.4 · Emax

) , (3)

Emax = ln C̃. For cross-modality level, we introduce a
diversity-promoting loss to reduce the influence of the in-
formation discrepancy caused by modality corruption. The
Shannon entropy, as described in Eqn. 1, aims to encourage
the adapted model to shape a discriminative output close
to one-hot encoding. However, in practice, the ideal target
outputs should be similar to one-hot encoding but differ
from each other (i.e. diverse over the samples) (Liang et al.,
2020) (Krause et al., 2010). For this purpose, we propose to
add a regularization term to the objective function to account
for the diversity over the data samples as follows:

Ediv(x;Θ) =
∑
y∈C

p̂y log p̂y, (4)
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Figure 1. Pipeline of 2LTTA framework. The visual modality is corrupted while the audio modality is clean. All transformation parameters
in LN are trainable as proposed by TENT (Wang et al., 2020). Inspired by Lee et al. (2022), shallow Attention modules in the Transformer
encoder of the corrupted modality are learnable while deep Attention modules and deep FC layers are frozen. In the self-attention fusion
block, the Attention-based linear fusion layers are learnable. A two-level objective function is adopted in order to improve prediction
accuracy of the adapted model during test time.

where p̂y is the average of softmax output p̂y =
1
B

∑B
i=1 p(y|xi;Θ) of all test samples in each mini-batch

of size B. C is the output space of the fusion block (i.e.
the set of classes). Ediv is termed as diversity-promoting
objective.
Parameter Updating Strategy. Inspired by surgical fine-
tuning in Lee et al. (2022) we propose fine-tuning of shallow
Attention modules in addition to LN layers in the Trans-
former encoder of the corrupted modality (see Figure 1).
Similarly, the fusion layer, projection layer and all LN in the
fusion block are also learnable. Similar to Lee et al. (2022),
we optimize parameters only with respect to a subset Ŝ of
layers as described in the following:

min
Θi,i∈Ŝ

E(x;Θ), (5)

where Θ = {Θ1,Θ2, ...,Θi, ...,Θn}, Θi denotes param-
eters in the ith layer and E(·; ·) is the objective function.
This means that only those parameters belonging to the
surgery subset Ŝ, i.e. Θi, i ∈ Ŝ are trainable, while the non-
surgery parameters Θj , j /∈ Ŝ, are fixed to the pre-trained
source model. The objective function of 2LTTA is written
as follows:

min
Θi,i∈Ŝ;Θ̃j ,j∈S̃

Sent(x)Eent(x; Θ̃) + αEdiv(x;Θ), (6)

where α > 0 is the diversity-promoting hyper-parameter.
Specifically, Ŝ denotes the subset of trainable parameters in
the whole network, while S̃ is termed as the subset of train-
able parameters in the Transformer encoder of the corrupted
modality only. Results on 2LTTA are reported in Section 3.

3. Experiments
3.1. Experiment Setup

Datasets and Networks. Our study focused on the eval-
uation of the proposed 2LTTA in the context of image
recognition tasks. Empirical studies on the two widely-
used multimodal datasets Kinetics (Kay et al., 2017) and
VGGSound (Chen et al., 2020), were conducted. Follow-
ing Yang et al. (2024), 15 types of corruptions for video
modality and 6 for audio modality were introduced. For
each corruption, 5 different levels of severity were defined.
As a result, the two benchmarks named Kinetics-C and
VGGSound-C (Yang et al., 2024) are generated with either
corrupted audio or corrupted video. We define the clean
benchmarks Kinetics and VGGSound as source domain and
the corrupted benchmarks Kinetics-C and VGGSound-C as
target domain. In our experiments we mainly focus on the
validation with target data of high severity level, in order
to check in which extent the pre-trained source model can
be improved at worst corruption case. The ViT-based CAV-
MAE (Gong et al., 2022) is the backbone of all pre-trained
models utilized in our paper. The CAV-MAE model consists
of 10 modality-specific blocks (i.e. Transformer encoder)
and 1 modality-sharing block (i.e. modality fusion block).
As a result, we define an objective function for the Trans-
former encoder (i.e. intra-modality level) and fusion block
(i.e. cross-modality level), respectively.
Fine-Tuning Details We modulate all LN layers in the
CAV-MAE model. Additionally, projection layers in the
first 5 Attention modules in the Transformer encoder of
the corrupted modality are also modulated. For the fusion
block, we re-estimate not only fusion layers for Q, V and
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Table 1. Results on Kinetics50-C benchmark with corrupted video modality (severity level 5) using CAV-MAE as backbone and comparison
to state-of-the-art. The results are averaged over 5 runs. The best results are highlighted in bold.

Methods Gaussian Shot Impulse Defocus Glas Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average
CAV-MAE (baseline) 46.8 48.0 46.9 67.5 62.2 70.8 66.7 61.6 60.3 46.7 75.2 52.1 65.7 66.5 61.9 59.9

TENT 46.3 47.0 46.3 67.2 62.5 71.0 67.6 63.1 61.1 34.9 75.4 51.6 66.8 67.2 62.7 59.4

EATA 46.8 47.6 47.1 67.2 62.7 70.6 67.2 62.3 60.9 46.7 75.2 52.4 65.9 66.8 62.5 60.1

SAR 46.7 47.4 46.8 67.0 61.9 70.4 66.4 61.8 60.6 46.0 75.2 52.1 65.7 66.4 62.0 59.8

READ 49.4 49.7 49.0 68.0 65.1 71.2 69.0 64.5 64.4 57.4 75.5 53.6 68.3 68.0 65.1 62.5
1LTTA of visual intra-modality (Ours) 49.6 51.5 49.9 66.7 64.7 70.6 67.2 62.1 63.6 48.3 75.0 55.7 67.8 71.9 67.9 62.2

1LTTA of cross-modality (Ours) 53.7 54.3 53.6 69.0 68.0 72.8 70.5 65.4 67.1 62.7 76.4 56.5 70.8 70.8 69.7 65.4

2LTTA (Ours) 54.6 55.6 55.0 68.7 69.5 72.6 70.4 65.6 67.4 62.8 75.3 58.8 72.1 73.1 70.8 66.2

K as proposed in Yang et al. (2024), but also the projec-
tion layer. In Section D.1, a sensitivity study regarding the
number of fine-tuned shallow Attention modules is intro-
duced. Furthermore, to study the contribution of model
adaption at different levels, i.e. intra-modality and cross-
modality, we performed TTA for the Transformer encoder
of the corrupted modality (namely 1LTTA:intra-modality)
using Sent(x)Eent(x; Θ̃) only. For the TTA adaptation
with respect to both the Transformer encoder of the cor-
rupted modality and the fusion block (namely 1LTTA: cross-
modality), we used Ediv(x;Θ) only.
Implementation Details In the experiments, we use the
same hyper-parameters as READ implemented in Yang et al.
(2024). In detail, we update parameters in the source model
using Adam optimizer. The learning rate is 0.0001 for every
mini-batch of size 64 within a single epoch. In all experi-
ments, the hyper-parameter α in Eq. 6 is fixed as 0.5 for all
settings. All evaluations are run on Ubuntu 20.04 platform
with NVIDIA A100 G40 GPU. Due to space limitation,
more implementation details and results are moved to the
Appendix.

3.2. Comparisons with State-of-the-Art

Results on Kinetics50-C with corrupted video modal-
ity. We compared our proposed 2LTTA with state-of-the-art
TTA methods in Table 1 using CAV-MAE (Gong et al.,
2022) on Kinetics50-C with severity level 5. According
to the results, our proposed 1LTTA and 2LTTA achieved
the best performance in all 15 corruption domains. To be
specific, 1LTTA with respect to the visual intra-modality
significantly outperformed all other methods, but slightly
underperformed READ, i.e., 62.2% vs. 62.5% average ac-
curacy over 15 corruption types. In contrast, 1LTTA on
cross-modality level performed 2.9% better than READ and
achieved a prediction accuracy of 65.4% average accuracy
over 15 corruption types. Considering adaption in both intra-
modality and cross-modality level, 2LTTA further improved
the performance up to 66.2%. It indicates that our robust
two-level test-time adaptation method works best, even on
datasets with severe corruption.
Results on Kinetics50-C with corrupted audio modality.
We evaluated our proposed methods on Kinetics50-C with

Table 2. Results on Kinetics50-C benchmark with corrupted audio
modality (severity level 5) using CAV-MAE as backbone and
comparison to state-of-the-art. The results are averaged over 5
runs. The best results are highlighted in bold.

Methods Gaussian noise Traffic Crowd Rain Thunder Wind Average
CAV-MAE (baseline) 73.7 65.5 67.9 70.3 67.9 70.3 69.3

TENT 73.9 67.4 69.2 70.4 66.5 70.5 69.6

EATA 73.7 66.1 68.5 70.3 67.9 70.1 69.4

SAR 73.7 65.4 68.2 69.9 67.2 70.2 69.1

READ 74.1 69.0 69.7 71.1 71.8 70.7 71.1
1LTTA of audio intra-modality (Ours) 73.9 68.7 69.7 70.7 72.6 70.2 71.0

1LTTA of cross-modality (Ours) 74.7 70.0 71.4 71.8 73.4 71.5 72.1

2LTTA (Ours) 75.0 70.7 71.9 71.9 73.7 71.7 72.5

corrupted audio modality. As shown in Table 2, 2LTTA
achieved the best averaged accuracy over 5 independent
runs on 6 different corruption types with severity level 5.
To be specific, 1LTTA applied at intra-modality level per-
formed nearly the same as READ, while 1LTTA in the
cross-modality setting and 2LTTA achieved the best result
compared to state-of-the-art. It is worth mentioning that
the audio modality in the Kinetics dataset contains less
task-specific information for the event classification task,
compared to the visual modality. In other words, adaptation
of the Transformer encoder of the less informative audio
modality led to less performance improvement, compared
to adapting the corrupted video encoder in Table 1.

4. Conclusion
In this paper, we propose a two-level test-time adaptation
method for MML tasks, to improve the transferability of
pre-trained multimodal models to a potentially shifted target
domain via adaptation in test time. We further fine-tune LN
layers and shallow Attention modules in order to adjust the
feature extractor better to the target domain with distribution
shift. Furthermore, we introduced a diversity-promoting
loss for adaptation at the cross-modality level in addition to
the Shannon entropy loss for the intra-modality level. The
experimental results indicate that 1LTTA and 2LTTA outper-
form most state-of-the-art methods on corruption datasets
Kinetics50-C and VGGSound-C with corruption of the vi-
sual and audio modality, respectively. It is worth pointing
out that our method can work on a wide range of ViT-based
MML tasks.
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A. Related Work
Related work on TTA, parameter update strategy and multimodal objective function is discussed. A summary of different
adaptation methods is shown in Table 3.

Table 3. Domain adaptation approaches differ by their accessibility to source/target data and the definition of the loss function. Parameter
update strategies consider either feature extractor (FE), batch normalization (BN) or layer normalization (LN). Sometimes other parameters
are also considered for tuning. X s and X t denote source and target data, while Ys and Yt are the source and target labels.

Setting Applicable Model Source Data Target Data Train Loss Test Loss Parameter Update
Fine-tuning CNN, ViT − X t, Yt L(X t,Yt) − FE

UDA CNN X s, Ys X t L(X s,Ys) + L(X s,X t) − FE

Test-time training (TTT) (Sun et al., 2020) CNN X s, Ys X t L(X s,Ys) + L(X s) L(X t) FE

TENT (TTA) CNN − X t − L(X t) BN

CFA ViT X s X t − L(X s,X t) LN
L2TTA ViT − X t − L(X t) LN + shallow Attention modules

Test Time Adaptation (TTA). Unlike traditional UDA, TTA requires only the pre-trained source model and unlabeled target
data X t for adaptation. Some previous works (Yeh et al., 2021; Kurmi et al., 2021; Li et al., 2020) achieve domain alignment
using generative models without access to source data. In Kurmi et al. (2021) a labeled source dataset is reconstructed
by feature alignment of generated source data and unlabeled target data while maintaining the prediction accuracy of the
pre-trained classifier. However, this approach requires multiple auxiliary networks, which makes the training inefficient.
The prediction results are also not competitive compared to other works. Another popular direction is to optimize the
pre-trained model without domain alignment. Test-time entropy minimization (TENT) (Wang et al., 2020) optimizes the
affine parameters and modulates the normalization statistics in BN layers batch-by-batch. SHOT (Liang et al., 2020) utilizes
both an entropy and pseudo-label-based cross-entropy loss for adaptation. Besides, a diversity regularizer is added to the
objective function to encourage the target output to be diverse. Specifically for TTA using ViTs, Kojima et al. (2022)
proposed a new test-time adaptation method called class-conditional feature alignment (CFA1), which minimizes both the
class conditional distribution differences and the whole distribution differences of the hidden representation between the
source and target.

Parameter Update Strategy. Similar to traditional UDA, there are different parameter update strategies for TTA. AdaBN (Li
et al., 2016) and PredBN+ (Schneider et al., 2020) require no fine-tuning for adaptation. Instead, the normalization statistics of
the pre-trained source model is modulated using target data batch-by-batch while freezing all other parameters. TENT (Wang
et al., 2020), EATA (Niu et al., 2022), SAR (Niu et al., 2023) and CFA (Kojima et al., 2022) require both estimating
normalization statistics µ and σ2 (or higher central momentums for CFA) and fine-tuning the affine parameters via entropy
minimization of the test data for adaptation. Similar to TTT (Sun et al., 2020) and ADDA (Tzeng et al., 2017), SHOT (Liang
et al., 2020) proposed to freeze the domain-invariant classifier of the pre-trained source model and updates the parameters
of the domain-specific feature extractor (FE). In contrast, T3A (Iwasawa & Matsuo, 2021) only adjusts the trained linear
classifier (the last layer of the deep neural network) based on pseudo-prototype representation. Furthermore, some other
works (Zhang et al., 2022; Wang et al., 2022; Chen et al., 2022; Litrico et al., 2023) propose to adapt the parameter of
both feature extractor and classifier. In the work of Yu et al. (2023), the most popular TTA methods were compared and
the prediction accuracy for three corruption datasets (CIFAR-10-C (Krizhevsky, 2009; Hendrycks & Dietterich, 2019),
CIFAR-100-C (Krizhevsky, 2009; Hendrycks & Dietterich, 2019), ImageNet-C (Hendrycks & Dietterich, 2019; Deng et al.,
2009)) and two natural shift datasets (Office-Home (Venkateswara et al., 2017), DomainNet126 (Peng et al., 2019) (Saito
et al., 2019)) were evaluated. T3A (Iwasawa & Matsuo, 2021) adjusting only the linear classifier performed worst, while
EATA (Niu et al., 2022) and SAR (Niu et al., 2023) optimizing only BN layer outperform other methods on corruption
datasets CIFAR10-C, CIFAR100-C and ImageNet-C.

Multimodal Objective Function. To the best of our knowledge, MM-TTA and READ are the only works specifying
TTA for MML tasks. MM-TTA adopted the traditional cross-entropy loss objective based on pseudo-labeling. However,
when the data corruption in target domain is severe, the performance improvement with pseudo-labeling is limited (Yu
et al., 2023). Compared to cross-entropy, Shannon entropy is more noise-resistant and the model performance utilizing
Shannon entropy is superior to cross-entropy. However, according to Yang et al. (2024), the Shannon entropy only works for

1Although CFA doesnot require the complete source domain data set, the mean and higher order central moments of overall distribution
on source data need to be calculated and stored in memory (Kojima et al., 2022).
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adapting uni-modality tasks, while in multimodal tasks, the Shannon entropy is not efficient any more. For that reason, a
confidence-aware objective function is proposed in READ to hinder the model from overfitting noise.

B. Details about the Benchmarks
Our experiments are based on the two widely-used multimodal datasets Kinetics (Kay et al., 2017) and VGGSound (Chen
et al., 2020) with corrupted visual or audio modality (Yang et al., 2024). To be specific,

• Kinetics50 is a subset of the Kinetics (Kay et al., 2017) dataset. It mainly contains videos with human motion-related
action classes, sampled from Kinetics400. Each video clip lasts around 10 seconds and is labeled with a single action
class. All the videos are collected from YouTube. Following Peng et al. (2022), 50 classes are randomly selected out
of Kinetics400 to construct Kinetcis50, with 29204 training pairs and 2466 test pairs (Yang et al., 2024). According to
the characteristic of this dataset, the visual modality contains more information compared to its audio modality.

• VGGSound is an audio-visual correspondent dataset consisting of short audio clips extracted from videos uploaded
to YouTube (Chen et al., 2020). It covers every day audio events consisting of 309 classes. Each video clip has a
fixed duration of 10 seconds. Different from Kinetics50, the audio modality of VGGSound contains more information
compared to its visual modality. Following Yang et al. (2024), 14046 testing visual-audio pairs are utilized for TTA.

The visual and audio modality of both datasets are extracted from the original videos following the method proposed in Gong
et al. (2022). To comprehensively study the distribution shift of each modality, different corruption types are introduced into
the visual and audio modalities. Following Yang et al. (2024), 15 corruption types are applied for visual modality. Each
corruption contains 5 severity levels for extensive validations. The 15 corruptions include ”gaussian noise”, ”shot noise”,
”impulse noise”, ”defocus blur”, ”glass blur”, ”motion blur”, ”zoom blur”, ”snow”, ”frost”, ”fog”, ”brightness”, ”contrast”,
”elastic transform”, ”pexelate” and ”jpeg compression”. Similarly, the audio modality is corrupted by 6 different corruptions,
namely ”gaussian noise”, ”traffic noise”, ”crowd noise”, ”rain”, ”thunder” and ”wind”. For each audio corruption, 5 different
severity levels are included. The corrupted benchmarks are called Kinetics50-C and VGGSound-C. The visualization of an
example of corrupted video frames and audio spectrograms are shown in Figure 2 and Figure 3, respectively.

C. CAV-MAE Architecture
CAV-MAE is utilized as pre-trained model for multimodal learning. The CAV-MAE encoder consists of 11 Transformer
(Attention) blocks for the modality-specific feature extraction, followed by one Transformer for cross-modal fusion. For the
video streams, 10 frames are sampled from each video clip and then a single frame is randomly selected and fed into the
Transformer encoder of the visual modality. For the audio streams, the original 10-second waveform audio file is firstly
converted into a 2 dimensional spectrogram and then fed into the Transformer encoder of the audio modality. More details
about the CAV-MAE architecture are provided in Gong et al. (2022).

D. Additional Experimental Results
D.1. Ablation Study

Surgical fine-tuning for Attention modules in the Transformer encoder. The ablation study of surgical fine-tuning for
Attention modules in the Transformer encoder of the corrupted modality is shown on Kinetics50-C, where all LN layers are
trainable in all the experiments and the so called ”surgical” adaptation only involves projection layers of shallow Attention
modules in the Transformer encoder. The results are shown in Table 4. First of all, we observe that fine-tuning of all
Attention modules underperformed surgical fine-tuning. The results indicate that surgical fine-tuning works best with 5
learnable Attention modules for Kinetics50-C, obtaining 66.5% average accuracy.
Sensitivity study on loss hyper-parameter α. We further investigate the influence of the diversity-promoting loss using
hyper-parameter α. As described in Table 5, our 2LTTA achieved the best performance with α = 0.5 for Kinetics50-C with
corrupted video modality.

D.2. Results on VGGSound-C with Corrupted Audio Modality

Similarly, we implemented our approaches on VGGSound-C with corrupted audio modality. Different from Kinetics, the
audio modality in VGGSound contains more task-specific information for the event classification task than the visual
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Figure 2. Visualization of a clean video frame from the Kinetis50-C benchmark and the 15 corresponding visual corruption types with
severity level 5.

modality. This is reflected in the results as shown in Table 6. The performance improvement of adapting the pre-trained
model on VGGSound with corrupted audio modality is remarkable. The best average result of 36.5% was achieved by 1LTTA
at cross-modality level. However, 2LTTA is 1% lower than 1LTTA (cross-modality), but still significantly outperforms other
methods. It indicates that the Shannon entropy objective does not always work for all dataset with different corruption types.

D.3. Averaged Performance Across All Severity Levels.

To evaluate the robustness of our method against mixed severity levels, the averaged performance across all severity levels
is compared with that of READ (Yang et al., 2024) and the source model, respectively. The results with all corruption
types for the visual and audio modality are summarized. As shown in Figure 4, for TTA with corrupted visual modality,
2LTTA outperforms READ and the source model in noise and digital corruptions, while the averaged performance on blur
and weather corruptions is almost indistinguishable compared to READ. According to Figure 5, the averaged performance
accross severity levels of audio modality using 2LTTA is not superior to READ although it performs better than READ on
corruption types with severity level 5 (see the main paper).
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Figure 3. Visualization of a clean audio from the Kinetics50-C benchmark and the 6 corresponding audio corruption types with severity
level 5.

Table 4. Accuracy of surgical fine-tuning on Kinetics50-C using pre-trained model CAV-MAE. Surgical fine-tuning is performed with
2LTTA. The surgical fine-tuning is restricted to the Attention module of the Transformer encoder for the corrupted modality only. The
results are averaged over 5 runs. The best results are highlighted in bold.

Number of Attention modules
in the Transformer encoder for adaptation Gaussian Shot Impulse Defocus Glas Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

0 53.4 54.0 53.3 69.1 68.3 72.8 70.2 65.5 66.7 61.8 76.2 56.8 70.9 71.3 69.6 65.3

1 53.8 54.6 53.8 69.3 68.9 72.9 70.8 65.9 67.3 63.2 76.3 57.4 71.7 71.7 70.1 65.9

3 54.6 55.6 55.0 68.7 69.5 72.6 70.4 65.6 67.4 62.8 75.3 58.8 72.1 73.1 70.8 66.2

5 54.7 56.1 55.5 69.2 70.1 72.8 70.6 65.0 67.2 62.3 75.1 58.7 72.7 73.9 71.1 66.3

7 54.4 54.7 54.8 68.6 69.5 72.5 70.0 63.5 65.0 59.8 74.6 57.99 73.1 73.7 70.3 65.5

ALL 52.5 52.8 51.7 63.3 65.1 67.4 65.1 60.0 61.7 55.7 70.2 54.0 70.1 69.1 64.3 61.5

D.4. Averaged Performance Across All Corruption Types.

To evaluate the robustness of our method against mixed distribution shifts, the averaged performance across all corruption
types is compared with that of READ and the source model, respectively. The results with severity level varying from 1 to 5
for the visual and audio modality are summarized in Figure 6 and 7. 2LTTA performs the best over all severity levels of the
visual modality. The more severe the data corruption, the more significant our method is superior to the other methods, i.e.
2LTTA is more robust against corruption severity. However, for the audio modality in Figure 7 we see that the increase of
severity level did not lead to significant degradation of averaged performance across corruption types for all 3 methods. That
is mainly due to the fact that the audio modality contains fewer information related to the action recognition compared to the
visual modality.

D.5. Results on Severity Level 3.

In the main paper, the experimental results are based on corruption types with severity level 5 only. To evaluate the
performance of our model on other severity levels, results on severity level 3 are reported in Table 7 - 9 for Kinetics50-C
with corrupted visual/audio modality and VGGSound with corrupted audio modality.

Table 5. Sensitivity study for diversity-promoting hyper-parameter α in Eq. 6 on Kinetics50-C benchmark with corrupted video modality
(severity 5). The results are averaged over 5 runs. The best result is highlighted in bold.

α 0 0.2 0.5 1.0 3.0
Kinetics50-C with visual corruption 64.5 65.5 65.9 65.8 65.6
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Table 6. Results on VGGSound-C benchmark with corrupted audio modality (severity level 5) using CAV-MAE as backbone and
comparison to state-of-the-art. The results are averaged over 5 runs. The best results are highlighted in bold.

Methods Gaussian noise Traffic Crowd Rain Thunder Wind Average
CAV-MAE (baseline) 37.0 25.5 16.8 21.6 27.3 25.5 25.6

TENT 10.6 2.6 1.8 2.8 5.3 4.1 4.5

EATA 39.2 26.1 22.9 26.0 31.7 30.4 29.4

SAR 37.4 9.5 11.0 12.1 26.8 23.7 20.1

READ 40.4 28.9 26.6 30.9 36.7 30.6 32.4
1LTTA of audio intra-modality (Ours) 31.8 28.6 27.5 28.4 30.1 29.0 29.2

1LTTA of cross-modality (Ours) 40.5 33.6 35.8 33.1 41.5 34.6 36.5

2LTTA (Ours) 39.3 33.0 35.0 32.0 39.6 33.9 35.5

Figure 4. Averaged performance across all severity levels for 2LTTA, READ and the source model on the dataset Kinetics50-C for
different corruption types in visual modality.

Table 7. Results on Kinetics50-C with corrupted video modality and severity level 3 using CAV-MAE as backbone and comparison to
state-of-the-art. The results are averaged over 5 runs. The best results are highlighted in bold.

Methods Gaussian Shot Impulse Defocus Glas Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average
CAV-MAE (baseline) 54.1 54.8 54.6 73.5 68.3 76.6 71.5 69.2 64.7 69.5 79.3 72.1 77.6 79.4 75.4 69.4

TENT 54.2 55.1 55.2 73.6 69.6 76.8 71.9 69.5 65.6 70.2 79.4 72.9 78.3 79.2 75.3 69.8

EATA 54.4 54.9 55.0 73.4 69.1 76.5 71.6 69.2 65.1 69.5 79.5 72.3 77.7 79.1 75.2 69.5

SAR 54.2 54.8 55.0 73.1 68.2 76.4 71.1 69.1 64.8 69.4 79.1 72.0 77.4 79.1 75.0 69.2

READ 56.1 56.9 56.4 73.9 70.5 76.6 72.8 70.0 68.1 70.8 79.3 73.3 78.2 79.6 75.6 70.5
1LTTA of visual intra-modality (Ours) 65.7 65.6 66.5 74.0 71.8 77.2 72.4 70.8 66.9 69.7 79.0 72.1 79.0 79.5 78.5 72.6

1LTTA of cross-modality (Ours) 63.7 64.2 65.0 73.6 69.6 77.2 71.8 70.9 66.7 70.0 79.5 72.3 78.6 79.0 78.4 72.0

2LTTA (Ours) 66.4 66.2 67.0 74.3 72.5 77.2 72.5 71.6 68.2 70.5 79.0 72.7 79.5 79.4 78.9 73.1
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Figure 5. Averaged performance across all severity levels for 2LTTA, READ and the source model on the dataset Kinetics50-C for
different corruption types in audio modality.

Figure 6. Averaged performance across all corruption types using 2LTTA, READ and the source model on the dataset Kinetics50-C with
different severity levels in visual modality.

Figure 7. Averaged performance across all corruption types using 2LTTA, READ and the source model on the dataset Kinetics50-C with
different severity levels in audio modality.
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Table 8. Results on Kinetics50-C with corrupted audio modality and severity level 3 using CAV-MAE as backbone and comparison to
state-of-the-art. The results are averaged over 5 runs. The best results are highlighted in bold.

Methods Gaussian noise Traffic Crowd Rain Thunder Wind Average
CAV-MAE (baseline) 75.9 64.4 68.7 70.3 67.9 70.3 69.3

TENT 73.9 67.4 69.2 69.3 69.0 72.1 70.1

EATA 76.0 65.7 68.9 69.8 69.1 72.1 70.3

SAR 76.0 64.6 68.7 69.3 68.6 72.2 69.9

READ 76.4 69.6 70.8 72.0 72.6 72.3 72.3
1LTTA audio intra-modality (Ours) 76.5 64.3 67.8 69.8 69.3 71.9 69.9

1LTTA of cross-modality (Ours) 76.4 69.8 70.7 72.0 72.8 71.9 72.2

2LTTA (Ours) 76.2 69.7 70.7 71.9 72.8 72.2 72.3

Table 9. Results on VGGSound-C with corrupted audio modality and severity level 3 using CAV-MAE as backbone and comparison to
state-of-the-art. The results are averaged over 5 runs. The best results are highlighted in bold.

Methods Gaussian noise Traffic Crowd Rain Thunder Wind Average
CAV-MAE (baseline) 42.1 29.4 19.5 27.6 31.2 29.4 29.9

TENT 8.1 4.0 2.3 4.7 4.8 6.1 5.5

EATA 46.7 30.5 28.0 31.4 35.4 33.8 34.3

SAR 43.1 17.3 8.3 29.0 31.6 30.5 26.6

READ 47.3 32.7 29.9 33.2 38.3 33.7 35.8
1LTTA of audio intra-modality (Ours) 33.6 29.3 28.9 29.4 30.9 29.9 30.3

1LTTA of cross-modality (Ours) 47.2 36.6 38.4 37.5 43.1 37.1 40.0

2LTTA (Ours) 46.8 35.9 37.6 35.4 41.3 36.1 38.8
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