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ABSTRACT

Canonicalization, a popular method for generating invariant or equivariant function
classes from arbitrary function sets, involves initial data projection onto a reduced
input space subset, followed by applying any learning method to the projected
dataset. Despite recent research on the expressive power and continuity of functions
represented by canonicalization, its generalization capabilities remain less explored.
This paper addresses this gap by theoretically examining the generalization benefits
and sample complexity of canonicalization, comparing them with group averaging,
another popular technique for creating invariant or equivariant function classes.
Our findings reveal two distinct regimes where canonicalization may outperform
or underperform compared to group averaging, with precise quantification of
this phase transition in terms of sample size, group action characteristics, and a
newly introduced concept of alignment. To the best of our knowledge, this study
represents the first theoretical exploration of such behavior, offering insights into
the relative effectiveness of canonicalization and group averaging under varying
conditions.

1 INTRODUCTION

The goal of learning with invariances is to leverage known symmetries present in data to build
models that are inherently invariant. Such symmetries frequently arise in various machine learning
applications, particularly in the natural sciences (see, e.g., (Batzner et al., 2022; Grisafi et al., 2018;
Unke et al., 2021)). Examples include Euclidean symmetries and equivariances (Smidt, 2021),
among others. These forms of invariance are collectively addressed within the broader framework of
geometric deep learning (Bronstein et al., 2017).

Several approaches are available for embedding invariances into machine learning models, including
designing models with built-in invariance tailored to specific applications. Notable examples include
Graph Neural Networks (GNNs) for graph data (Scarselli et al., 2008; Xu et al., 2019a), Convolutional
Neural Networks (CNNs) for image data (Li et al., 2021; Krizhevsky et al., 2012), and PointNet for
point clouds (Qi et al., 2017a;b). These methods rely on tailoring the network architecture to the
particular type of invariance relevant to the application.

Another common approach to introducing invariances is to use a base function class and augment
it with additional modules to ensure the final representation is invariant with respect to any group.
Techniques in this category include group averaging (Murphy et al., 2019), frame averaging (Puny
et al., 2022), and canonicalization (Kaba et al., 2023), the latter of which forms the central focus of
this paper.

In canonicalization, the data is first mapped onto a lower-dimensional space to reduce redundancies
arising from inherent invariances. A model, such as a neural network, is then trained on this
transformed data (see Figure 2). This contrasts with group averaging, where the model is trained such
that its output, averaged over all group transformations of the data, is plausible.

Given the empirical success of these methods for learning under invariance, there has been significant
interest in understanding their theoretical foundations, particularly in terms of expressive power
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Figure 1: When n ≥ Ncritical, canonicalization demonstrates superior performance over group
averaging in terms of generalization error (sample complexity). In this scenario, the optimal target
function f⋆ aligns with the canonicalization scheme (β > s). Conversely, when n ≤ Ncritical, group
averaging is preferred as it provides a smoother approach to constructing invariant functions.

and benefits like sample complexity and generalization bounds. For example, it has been shown
that group averaging enables strong generalization, allowing models to learn effectively with much
smaller sample sizes compared to cases without invariance. However, much less is known about the
theoretical properties of canonicalization.

In this paper, we aim to address the gap in understanding the generalization properties of canon-
icalization by studying it compared to group averaging, which serves as a baseline. This joint
analysis reveals the strengths of both approaches and provides a theoretical basis for their comparison.
Specifically, we seek to answer the following question:

Under what conditions do canonicalized models generalize well, and when do they outperform
group averaging?

To this end, we introduce the concept of alignment. A target function is said to be aligned with a
canonicalization scheme if it can be well-approximated by end-to-end canonicalized representations
derived from ”simple” base functions. This idea is inspired by algorithmic alignment (Xu et al.,
2019b), which was developed to explain the generalization capabilities of Graph Neural Networks
(GNNs) by demonstrating that they produce functions aligned with dynamic programming-like
distributed algorithms on graphs. Furthermore, prior work has shown that learned canonicalization
can be highly effective in various applications (Kaba et al., 2023). This paper provides a theoretical
foundation for understanding how learned canonicalization may outperform group averaging when
the canonicalization is more aligned with the downstream task.

In particular, we identify a phase transition when comparing the generalization performance of
canonicalization and group averaging (Figure 1). Specifically, if the number of samples available to
the learning algorithm is below a critical threshold, denoted as Ncritical, group averaging exhibits
superior performance. Conversely, when the number of samples exceeds Ncritical, canonicalization
has the potential to outperform group averaging, provided the canonicalized model is well-aligned
with the target function (Definition 2). The improvement offered by canonicalization in such cases
can grow arbitrarily large as the alignment with the target task increases. Furthermore, we derive a
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complete characterization of Ncritical as a function of the properties of the group and the underlying
function space.

To the best of our knowledge, this is the first theoretical investigation into this behavior, offering new
insights into the comparative effectiveness of canonicalization and group averaging under different
conditions.

In summary, this paper makes the following contributions:

• We analyze the generalization bounds and sample complexity advantages of learning with
canonicalized models.

• We conduct a comparative theoretical study with group averaging to identify when canoni-
calization can outperform group averaging in terms of sample complexity.

• We introduce the notion of alignment for canonicalized models and demonstrate that the
superiority of canonicalization or group averaging depends on whether the target task aligns
with the canonicalization scheme. To our knowledge, this is the first detailed exploration of
this behavior for both canonicalization and group averaging.

2 RELATED WORK

Euclidean symmetry and equivariance have garnered significant recent interest in machine learning
applications (Smidt, 2021; Bronstein et al., 2017), although their study dates back to earlier works
(Hinton, 1987; Batzner et al., 2023). These concepts have led to numerous approaches for incor-
porating symmetry into machine learning models, including techniques such as group averaging
(Murphy et al., 2019), frame averaging (Puny et al., 2022), canonicalization (Kaba et al., 2023; Ma
et al., 2024a; Panigrahi & Mondal, 2024), and random projections (Dym & Gortler, 2024). It is worth
noting that canonicalization can face challenges related to discontinuities and stability issues (Dym
et al., 2024).

Moreover, the study of invariances extends beyond learning; recent works have explored learning
invariances in neural networks (Benton et al., 2020), measuring invariances (Goodfellow et al., 2009),
and optimization approaches that account for invariances (Teo et al., 2007); see also (Bloem-Reddy
et al., 2020; Chaimanowong & Zhu, 2024). Specific applications of canonicalization, particularly for
sign and basis invariances, have also been recently proposed (Lim et al., 2023; 2024), with related
work on Laplacian-based approaches (Ma et al., 2024b).

Consequently, the generalization capabilities of invariant classifiers have attracted significant atten-
tion in recent years (Sokolic et al., 2017). For learning with kernels (Scholkopf & Smola, 2018),
several studies have explored group averaging to develop kernel methods for handling invariances,
investigating its generalization error (Tahmasebi & Jegelka, 2023; Bietti et al., 2021; Elesedy, 2021;
Mei et al., 2021).

For equivariance, numerous approaches have also been proposed, such as parameter sharing (Ravan-
bakhsh et al., 2017), with various works examining its generalization properties (Petrache & Trivedi,
2023; Behboodi et al., 2022; Elesedy & Zaidi, 2021). Incorporating equivariances in sampling for
generative models has likewise been shown to be beneficial (Biloš & Günnemann, 2021; Köhler et al.,
2020; Niu et al., 2020). Furthermore, recent work has explored the complexity of learning under
invariances for gradient-based algorithms (Kiani et al., 2024).

3 PROBLEM STATEMENT

We consider a classical learning setup with a dataset of n labeled examples, S =
{
(xi, yi) : i ∈ [n]

}
,

where the inputs xi, i ∈ [n], are i.i.d. samples from a uniform distribution over the manifold input
space X ⊆ Rd. The labels are generated by an unknown continuous target function f⋆, such that
yi = f⋆(xi) + ϵi, where the noise terms ϵi, for i ∈ [n], are independent, zero-mean random variables
with variance bounded by σ2. The objective is to learn f⋆ from the data.
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x ∈ X π f ∈ F f(π(x))

Figure 2: Canonicalization for creating invariant function classes.

Empirical Risk Minimization (ERM) provides an estimator for this problem through the following
optimization program:

min
f∈F

1

n

∑
i∈[n]

ℓ(f(xi), yi), (1)

where ℓ(·, ·) denotes the squared loss, and F represents the function class from which f is selected.

3.1 LEARNING WITH INVARIANCES

In the context of learning with invariances, the optimal target function f⋆ is invariant under the
continuous action of a group G on the input space X . This means that for all x ∈ X and g ∈ G,
the functional equation f⋆(gx) = f⋆(x) holds. Here, gx denotes the transformation of the element
x ∈ X under the action of the group element g ∈ G. For simplicity, we assume throughout this paper
that G is finite.

Note that the invariance of f⋆ does not necessarily imply that the ERM solution is an invariant
estimator. To leverage these invariances in the learning process, various methods can be employed,
such as group averaging, canonicalization, data augmentation, and frame averaging. In this paper,
we focus on the first two methods and provide a brief review of these approaches in the following
subsections.

3.2 GROUP AVERAGING

Group averaging is a method for obtaining invariant functions from a set of base functions F . The
idea is that given an arbitrary function f ∈ F , the function R[f ], defined as

R[f ](x) :=
1

|G|
∑
g∈G

f(gx), (2)

is invariant with respect to the group G. Here, R[·] is sometimes referred to as the Reynolds operator
corresponding to the group G. Given a function space F , let us denote the space of functions
represented via group averaging as FGA which is formally defined as follows:

FGA :=
{
R[f ] : f ∈ F

}
. (3)

3.3 CANONICALIZATION

Canonicalization provides an alternative approach to constructing invariant function classes. Let
X/G denote the quotient space of the action of G on X , formally defined as X/G := {[x] : x ∈ X},
where [x] := {gx : g ∈ G} represents the orbits of the group. We assume X/G is embedded in
the input space X , meaning X/G ⊆ X . The embedding (or projection) map π : X → X/G maps
elements from the input space to their representation in the canonicalized space X/G.

Figure 2 illustrates how canonicalized function classes are constructed from a set of base functions
f ∈ F . In canonicalized models, any x ∈ X is first mapped to the canonicalized (or quotient) space
through the projection function π. The projected data π(x) is then passed to a base function f ∈ F ,
yielding the final output f(π(x)). The set of all canonicalized functions is defined as:

FCAN :=
{
f(π(x)) : f ∈ F

}
. (4)
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3.4 SETUP AND ASSUMPTIONS

As discussed, in learning with invariances, we begin with a base function class F and then employ
a method to construct invariant function classes, such as group averaging FGA or canonicalization
FCAN. We then formulate the problem as an empirical risk minimization (ERM) over the new
invariant function class to achieve an invariant estimator.

It is well known that both function classes FGA and FCAN are universally expressive: under mild
conditions on the set base functions F , both function spaces can approximate any invariant and
continuous function. However, universal expressiveness is not sufficient to ensure learnability. While
expressiveness concerns to the ability of the new function class to approximate any continuous
function, learnability concerns whether an algorithm (such as ERM) can learn the target function with
appropriate sample and computational complexity while maintaining a small generalization error.

In this paper, we study the sample efficiency of canonicalization by comparing it with group averaging.
We explicitly ask:

Which invariant function class (FGA or FCAN) requires a lower number of samples to
generalize? Which one is more sample efficient?

We aim to provide a meaningful answer to this question in the next section.

Assumptions. In this paper, we focus of finite subgroups G of the orthogonal group O(d) acting on
the input space Sd−1 := {x ∈ Rd : ∥x∥2 = 1}. Note that our goal is to learn an appropriate base
function f ∈ F such that, after applying the necessary transformations (either group averaging or
canonicalization), we obtain a highly accurate estimator of f⋆. Therefore, we assume that learning a
base function f ∈ F is feasible. To formalize this, we avoid overly complex functions in the base
space by defining the set of base functions as polynomials of x ∈ Sd−1 with degree at most k ∈ N:

Fk :=
{
f ∈ L2(Sd−1) : f is a polynomial of degree at most k

}
. (5)

The parameter k ∈ N controls the complexity of the base space (i.e., the number of parameters to
learn). For small k, the focus is on low-dimensional (i.e., smoother and simpler) functions, which
are generally easier to learn. Let the invariant function classes for the base space Fk be denoted as
Fk

CAN and Fk
GA.

Target function complexity. We also need to control the complexity of the target function f⋆ ∈
L2(Sd−1). To achieve this, we adopt a common assumption from the literature, namely that f⋆ ∈
Hs(Sd−1), where Hs(Sd−1) represents the Sobolev space with parameter s ≥ 0. Formally, this
space is defined as:

Hs(Sd−1) :=
{
f ∈ L2(Sd−1) : f has square-integrable derivatives (on the sphere) up to order s

}
.

It is well known that to obtain continuous functions, one must assume s > (d − 1)/2, which we
adopt in this work. Additionally, larger values of s correspond to the integrability of higher-order
derivatives, leading to smoother functions.

On the restrictiveness of assumptions. In this paper, we restrict our focus to the sphere and finite
matrix group actions for simplicity. While the setup can be extended to a more general framework, we
prioritize simplicity here. The choice of using low-degree polynomials for the base space is closely
related to Sobolev kernels, which are commonly employed in machine learning and statistics. To
obtain precise convergence rates for the generalization error (or excess population risk), we focus on
low-degree functions, leveraging results from the theory of kernel convergence.

4 MAIN RESULTS

In this section, we study generalization bounds for the problem of learning under invariances via
canonicalization, as discussed in the previous section. We begin by studying and comparing the
expressive powers of canonicalization and group averaging.
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4.1 WARM-UP: EXPLORING EXPRESSIVE POWER

Here, we compare the expressive power of FCAN and FGA, with particular interest in cases where
the class of base functions is not universally expressive (e.g., low-degree polynomials). Intuitively,
we aim to use the next theorem to understand the expressive power for learnable functions, which
constitute a significantly smaller subset of the continuous functions class. Furthermore, the following
result also provides better insights before we present the main generalization bound of the paper.
Theorem 1 (Expressive power of canonicalization). Consider an arbitrary vector space of base
functions F , and assume it is closed under the group action, i.e., f(gx) ∈ F for each f ∈ F and
g ∈ G. Then, it follows that FCAN ⊇ FGA.

We present the proof of Theorem 1 in Appendix B.

The above result indicates that if the set of learnable functions satisfies mild conditions (i.e., being a
vector space and closed under the group action), then canonicalization is always superior to group
averaging in terms of approximation error. This implies that canonicalized models serve as better
approximators of the target function. However, from basic learning theory, we know that while larger
function classes correspond to smaller bias, they also incur larger variance. Specifically, if f⋆ ∈ FGA

(or is close to lying within that space), then canonicalized models introduce more complexity into the
learning task. In such cases, one might expect that

Generalization Error of FGA ≪ Generalization Error of FCAN. (6)
Conversely, if the canonicalized model aligns with the target function—meaning that f⋆ ∈ FCAN (or
is close to lying within it), but f⋆ /∈ FGA—then one should expect that, for large sample sizes, the
canonicalized model generalizes better due to its lower approximation error:

Generalization Error of FCAN ≪ Generalization Error of FGA. (7)
This highlights a dichotomy regarding whether canonicalization outperforms group averaging in terms
of generalization and sample complexity. We will formalize this observation in the next subsection.

For the remainder of this subsection, we formally define the concept of alignment through a more
concrete mathematical formulation in the context of approximation theory.
Definition 2 (Alignment). A G-invariant target function f⋆ ∈ L2(Sd−1) is said to be β-aligned with
the canonicalized models Fk

CAN if and only if

min
f∈Fk

CAN

∥f − f⋆∥L2(Sd−1) ≤ Ck−β , (8)

for all k ∈ N, where C is an absolute constant that does not depend on k.

Observe that a larger value of β corresponds to greater alignment with canonicalized functions.
Indeed, as β → ∞, the function becomes nearly aligned with canonicalized models even for finite k.
For Sobolev target functions f⋆ ∈ Hs(Sd−1), alignment is only non-trivial when β > s.
Proposition 3. Any arbitrary G-invariant Sobolev function f⋆ ∈ Hs(Sd−1) with parameter s is
s-aligned.

The proof of Proposition 3 is provided in Appendix C and is based on an equivalent definition of
Sobolev spaces discussed in Appendix A. According to this result, in the remainder of the paper, we
will always consider cases where β ≥ s > (d− 1)/2.

To conclude this subsection, we provide an example to demonstrate that the inequality in Theorem 1
can be strict, meaning that there exist cases where FGA is a proper subset of FCAN, i.e., FCAN ⊃
FGA and FCAN ̸= FGA.
Example 4. Consider the space of linear functions defined as:

F1 =

∑
i∈[d]

aixi

∣∣ ∀i ∈ [d] : ai ∈ R

 . (9)

Let Pd denote the group of all permutation matrices (i.e., the symmetric group) acting on x ∈ Sd−1.
Note that F1 satisfies the condition stated in Theorem 1. We have

R[f ](x) =
1

d!

∑
σ∈Pd

f(σx) =
∑
i∈[d]

axi, (10)
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where a = 1
d

∑
i∈[d] ai. In other words, F1

GA is a one-dimensional function class consisting solely of
linear functions of the form a

∑
i∈[d] xi for some a ∈ R.

Now, let us consider canonicalized functions with respect to P via the sort mapping: π(x) :=(
xmin, . . . , xmax

)T
. In this case, if we specifically consider functions restricted to Sd−1/Pd, then

F1
CAN can represent any linear function

∑
i∈[d] aixi on the quotient space. In contrast, group

averaging is only able to represent functions of the form a
∑

i∈[d] xi, even when restricted to the
quotient space. For a concrete example, consider the function f(x) = mini∈[d] xi. This function
belongs to F1

CAN but is not in F1
GA because it is not linear on Sd−1. This demonstrates that

F1
CAN ⊃ F1

GA and F1
CAN ̸= F1

GA. The same holds for Fk, for all k ∈ N.
Remark 5. As vector spaces, note that dim(F1

CAN) = d while dim(F1
GA) = 1. In other words, the

gap between the two vector spaces can be arbitrarily large.

4.2 GENERALIZATION AND SAMPLE COMPLEXITY

In this section, we present the primary result of this paper, stated in the following theorem.
Theorem 6 (Generalization bounds for canonicalization). Consider the problem of learning under
invariances with a dataset S =

{
(xi, yi) : i ∈ [n]

}
⊆

(
Sd−1 × R

)n
, consisting of n i.i.d. (labeled)

samples, where yi = f⋆(xi) + ϵi and the independent noise terms ϵi are zero-mean with variance
bounded by σ2 for all i ∈ [n]. Let f̂CAN and f̂GA denote the Empirical Risk Minimization (ERM)
estimators derived from the invariant function classes Fk

CAN and Fk
GA, respectively:

f̂CAN = argmin
f∈Fk

CAN

1

n

∑
i∈[n]

ℓ(f(xi), yi), (11)

f̂GA = argmin
f∈Fk

GA

1

n

∑
i∈[n]

ℓ(f(xi), yi), (12)

where ℓ(·, ·) denotes the squared loss. Additionally, we assume the following conditions:

• The optimal target function f⋆ belongs to the Sobolev space Hs(Sd−1) with s > d−1
2 .

• The function f⋆ is β-aligned with the canonicalization scheme for FCAN, where β ≥ s.

Under these assumptions, we obtain the following bounds with high probability1:∥∥∥f̂CAN − f⋆
∥∥∥2
L2(Sd−1)

≲ L̂CAN :=

k∑
ℓ=0

dim(Yd,ℓ)
σ2

n
+ k−2β , (13)

∥∥∥f̂GA − f⋆
∥∥∥2
L2(Sd−1)

≲ L̂GA :=

k∑
ℓ=0

dim(Y G
d,ℓ)

σ2

n
+ k−2s, (14)

where Yd,ℓ denotes the space of spherical harmonics of degree ℓ over d variables (Appendix A), and
Y G
d,ℓ ⊆ Yd,ℓ denotes its projection onto the space of G-invariant polynomials.

The proof of Theorem 6 can be found in Appendix D, and a comprehensive review of the theory of
spherical harmonics is provided in Appendix A.

The generalization curves obtained for group averaging and canonicalization are illustrated in Figure 1.
Let us interpret the upper bound in Theorem 6. First, note that according to Appendix A, we have the
following bounds:

k∑
ℓ=0

dim(Yd,ℓ) =
2kd−1

(d− 1)!
(1 + ok(1)),

k∑
ℓ=0

dim(Y G
d,ℓ) =

2kd−1

|G|(d− 1)!
(1 + ok(1)), (15)

where ok(1) → 0 as k → ∞. This leads to the following corollary.

1In this paper, all high-probability arguments hold with at least 90% probability.
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Corollary 7. Let us define the critical sample complexity Ncritical as follows:

Ncritical :=
σ2k2s+d−1

(d− 1)!(1− |G|−1)(1− k2(s−β))
. (16)

Then, each of the following implications holds with high probability:

n ≲ Ncritical =⇒ L̂GA ≤ L̂CAN (17)

n ≳ Ncritical =⇒ L̂CAN ≤ L̂GA. (18)

Note that in the absence of alignment (i.e., β = s), we have that Ncritical = ∞ and thus the latter
case cannot occur, meaning that the upper bound obtained for canonicalization cannot outperform
group averaging.

The proof of Corollary 7 can be found in Appendix E.

To intuitively understand this phenomenon, note that when n ≲ Ncritical, we can disregard the second
term in the upper bound and focus solely on the first term, which is the dominating term. This first
term quantifies the generalization error for the functions generated from FCAN or FGA without
any bias. Since FGA represents a relatively smaller vector space (as established in Theorem 1), we
conclude that group averaging is superior in these situations (i.e., it has lower variance).

Another way to interpret this regime is to recognize that group averaging provides a smoother
approach to achieving invariant functions. In contrast, canonicalization involves composing base
functions with the canonicalization (or projection) map π, which can be discontinuous or non-smooth
(see Section 2 for references).

On the other hand, when n ≳ Ncritical, the first term in the upper bound becomes negligible, allowing
us to compare only the second term. If β > s, we can conclude that canonicalization outperforms
group averaging in terms of generalization error. Intuitively, this corresponds to cases where the
canonicalization scheme is aligned with the optimal target function (i.e., β > s). This leads to the
following conclusion:

Canonicalization outperforms group averaging when the sample size is sufficiently large. In
such cases, the marginal gain of canonicalization depends on the degree to which the optimal
target function is aligned with the canonicalization scheme.

It is important to note that the alignment condition can be achieved either through an inductive bias or
through learned canonicalization schemes. In both scenarios, our theory suggests that canonicalization
is superior, a conclusion that is strongly supported by observations from previous tasks, such as those
involving graph neural networks in machine learning.
Remark 8. The upper bound established in Theorem 6 is tight in a minimax sense, and we include a
proof of its optimality within the proof of Theorem 6. To attain this bound, one can utilize kernel
regression within the space of (spherical) polynomials of degree at most k. This approach allows for
achieving the upper bound by employing quadratic optimization to determine the optimal coefficients
of the polynomial within the ERM objective. We provide a brief review of this in the proof of
Theorem 6 as well.
Remark 9. It is important to note that the dependence of Ncritical on the group size |G| and the
alignment parameter β is limited and negligible. In other words, the threshold at which the phase
transition occurs does not significantly depend on the group size or the level of alignment. However,
improved alignment—strongly influenced by the parameter β, the group, and the canonicalization
scheme—enhances the benefits of canonicalization in the large sample size regime.

5 EXPERIMENTS

We present proof-of-concept experiments in this section. The primary focus of this paper is to
understand the generalization behavior of canonicalization and its comparison to group averaging.
However, we aim to demonstrate that even in simple settings, alignment plays a crucial role in
performance.
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Figure 3: Generalization behavior of canonicalization compared to group averaging.

5.1 ALIGNMENT

Consider a linear model built on top of polynomial features of degree at most k = 3 over d = 3
dimensional uniform data from the cube [−1, 1]3. The training data consists of n = 100 independent
and identically distributed samples uniformly drawn from [−1, 1]3, each labeled with the optimal
target function f⋆ and corrupted by Gaussian noise with a standard deviation of σ = 1. We seek a
permutation-invariant estimator f̂ , either via group averaging or canonicalization, obtained through
the least squares method.

The optimal target function, however, is assumed to be:

f⋆(x) = (1− α)
(
x1 + 2x2 + 3x3

)
+ α

(
max(x1, x2, x3)− 20min(x1, x2, x3)

)
, (19)

where α ∈ [0, 1] is a hyperparameter. Note that as α → 0, f⋆(x) becomes a linear but non-
invariant function, making it difficult for both methods to learn. In this scenario, group averaging
performs better, as it at least interpolates a smooth function rather than dealing with the non-smooth
combination of max /min. This case lacks alignment, and we expect group averaging to outperform
canonicalization.

On the other hand, as α → 1, we have f⋆(x) = max(x1, x2, x3)−20min(x1, x2, x3). This function
is better aligned with canonicalization rather than group averaging. The reason is clear: it is already
expressed in terms of max /min functions, which are easier for canonicalization to manage. In other
words, the function is more aligned with canonicalization.

These intuitions are consistent with the results we present in Figure 3. In this figure, we run
experiments based on the above setting with n = 100 training and test samples, and noise level σ = 1.
The results clearly show how alignment influences the distinct performance between group averaging
and canonicalization.

5.2 POINT CLOUDS

In this section, we conduct an additional experiment to examine the theoretical results on the phase
transition in the sample complexity of canonicalization and group averaging.

We use the following setup: assume a training set of n point clouds, each consisting of m points in d-
dimensional Euclidean space, modeled as elements of [−1, 1]m×d. The point clouds are i.i.d. uniform
samples from [−1, 1]m×d. The optimal target function is assumed to be f⋆ (x) = max

ℓ∈[k]
∥xℓ∥1, where

xℓ denotes the ℓ-th row of the point cloud x ∈ [−1, 1]m×d (i.e., the points within the point cloud).
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This target function is invariant to permutations of the points in the point cloud. Let σ = 0.1 denote
the standard deviation of the Gaussian noise added to the training labels.

We train a two-layer ReLU network with a width of 20 on this dataset using mean-squared loss.
Training is performed with SGD, using a learning rate of 0.01 for 100 epochs. Two methods are
compared: group averaging (over all m! permutations of the point clouds) and canonicalization (via
lexicographic sorting of the point cloud rows). The test loss is calculated over 100 uniformly random
point clouds sampled from [−1, 1]m×d as the test set.

For this experiment, we set m = d = 5 and report the average test loss along with the standard
deviation over ten runs for different numbers of samples n, as shown below:

n = 10 n = 100 n = 1000

Group Averaging 0.425±0.132 0.367±0.076 0.365±0.094

Canonicalization 0.471±0.103 0.290±0.061 0.280±0.059

Table 1: Final test loss averaged over ten different random seeds.

The results reveal that when the number of samples n is relatively small, group averaging outperforms
canonicalization, though the test loss remains relatively high for both methods. However, as the
number of samples increases, canonicalization achieves better test loss. This behavior aligns with the
theoretical findings of this paper and provides empirical support for them.

6 CONCLUSION

In this paper, we investigate generalization bounds for canonicalization as a method for constructing
invariant function classes. As a baseline, we compare it with group averaging, a widely used approach
for generating invariant functions. Our findings reveal two distinct regimes where canonicalization
either outperforms or underperforms group averaging, in terms of the convergence of generalization
error (i.e., sample complexity). Specifically, in the low-sample regime, group averaging proves
superior due to its smoother effect on the base function class. However, in the high-sample regime,
canonicalization performs better, as it leverages the canonicalization (or projection) map to achieve
more accurate model approximations. This highlights the importance of aligning the canonicalization
process with the target task, which we demonstrate to be crucial for building models with strong
generalization capabilities. These results align with previous work in machine learning, particularly
in areas like graph neural networks, where algorithmic alignment has been shown to enhance
generalization.
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A BACKGROUND ON SPHERICAL HARMONICS

In this section, we review the theory of spherical harmonics, which provides a solid mathematical
framework for understanding harmonic analysis on the sphere. This framework will be crucial for the
proofs presented later in the paper.

Let Sd−1 := {x ∈ Rd : ∥x∥2 = 1} denote the unit sphere embedded in Rd. For any continuous
function f ∈ C(Sd−1), we define its radial extension on Rd \ {0} as follows:

f̃(x) := f

(
x

∥x∥2

)
.

This extension allows us to analyze the behavior of f not just on the sphere but also in the whole
space Rd.

The spherical Laplacian, denoted by ∆Sd−1 , is defined as:

∆Sd−1f := ∆f̃ ,

where ∆ :=
∑d

i=1 ∂
2
i represents the Euclidean Laplacian operator acting in Rd. The operator ∆Sd−1

plays a pivotal role in spherical harmonic analysis.

A significant property of the spherical Laplacian ∆Sd−1 is that it is a self-adjoint operator on
L2(Sd−1). This self-adjointness ensures that the eigenvalues are real, and the eigenfunctions corre-
sponding to these eigenvalues are orthogonal in the L2 sense.

To explore the spectral properties of ∆Sd−1 , we consider the vector space Vλ consisting of solutions
to the following partial differential equation (PDE):

∆Sd−1ϕ+ λϕ = 0,

defined on the unit sphere. A remarkable result is that the dimension of this vector space is finite:

dim(Vλ) < ∞ for all λ ∈ R.
Moreover, the dimension of Vλ is non-zero if and only if λ takes the specific form:

λ = ℓ(ℓ+ d− 2)

for some non-negative integer ℓ. This indicates that the eigenvalues of ∆Sd−1 are discrete and
non-negative, forming a countable set.

The corresponding eigenfunctions associated with these eigenvalues constitute an orthonormal basis
for the space L2(Sd−1). These eigenfunctions, known as spherical harmonics, are crucial in various
applications, including solving partial differential equations, performing expansions in spherical
coordinates, and analyzing functions on the sphere.

The space Vλ denotes the set of spherical harmonics corresponding to the eigenvalue λ = ℓ(ℓ+d−2).
We let ϕℓ,ℓ′ with ℓ′ ∈ [dim(Vλ)] represent an orthogonal basis of this space. In order to compute the
dimension of Vλ, we refer to the established theory of spherical harmonics.

We know that the space Vλ can be expressed as:

Vλ =
{
h(x) : h is a homogeneous harmonic polynomial of degree ℓ with λ = ℓ(ℓ+ d− 2)

}
,

where a harmonic polynomial h : Rd → R is defined as a polynomial that satisfies the condition
∆h = 0, with ∆ being the Laplacian operator.

Let Pℓ(Rd) denote the ring of homogeneous polynomials of degree ℓ in d variables. It can be shown
that for any non-negative integer ℓ, the relationship between the space of homogeneous polynomials
and the space of spherical harmonics can be expressed as:

Pℓ(Rd) = Vℓ(ℓ+d−2)

⊕
r2Pℓ−2(Rd), (20)

where r2 := x2
1 + x2

2 + . . .+ x2
d is the radial polynomial. This decomposition reveals that the space

of homogeneous polynomials can be broken down into the direct sum of spherical harmonics and a
subspace generated by the radial component multiplied by lower-degree homogeneous polynomials.

Utilizing standard combinatorial arguments, we can derive the following corollary regarding the
dimension of the space of spherical harmonics.
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Corollary 10. Let Yd,ℓ denote the vector space of spherical harmonics of degree ℓ. Specifically, we
define Yd,ℓ as Vℓ(ℓ+d−2). Then, the dimension of this space can be computed as:

dim(Yd,ℓ) =

(
ℓ+ d− 1

d− 1

)
−

(
ℓ+ d− 3

d− 1

)
. (21)

This result provides a clear count of the dimensions of spherical harmonics in d-dimensional space,
illustrating the rich structure of these functions. Moreover, it allows us to derive the dimension of
spherical harmonics of degree at most k ∈ N in the following lemma.

Lemma 11. We have the following asymptotic bounds for the dimension of spherical harmonics:

k∑
ℓ=0

dim(Yd,ℓ) =
2kd−1

(d− 1)!
(1 + ok(1)), (22)

where ok(1) → 0 as k → ∞.

Proof. To establish this result, we begin by computing the sum of dimensions for spherical harmonics
of degrees from 0 to k:

k∑
ℓ=0

dim(Yd,ℓ) =

k∑
ℓ=0

((
ℓ+ d− 1

d− 1

)
−

(
ℓ+ d− 3

d− 1

))
(23)

=

(
k + d− 1

d− 1

)
+

(
k + d− 2

d− 1

)
. (24)

Thus, for large values of k,

k∑
ℓ=0

dim(Yd,ℓ) =

(
k + d− 1

d− 1

)
+

(
k + d− 2

d− 1

)
(25)

=
kd−1

(d− 1)!
(1 + ok(1)) +

kd−1

(d− 1)!
(1 + ok(1)) (26)

=
2kd−1

(d− 1)!
(1 + ok(1)). (27)

This completes the proof.

Let us now compute the dimension of the vector space of spherical harmonics Y G
d,ℓ that remain

invariant under the action of a subgroup G of the orthogonal matrices acting on Sd−1. According
to the spectral theorems for invariant functions (Tahmasebi & Jegelka, 2023), we can derive the
following result:

k∑
ℓ=0

dim(Y G
d,ℓ) =

(1 + ok(1))

|G|

k∑
ℓ=0

dim(Yd,ℓ) =
2kd−1

|G|(d− 1)!
(1 + ok(1)). (28)

Spherical harmonics also play a crucial role in our analysis of polynomial regressions throughout this
paper. Specifically, the direct sum

⊕k
ℓ=0 Yd,ℓ corresponds precisely to the space of polynomials of

degree at most k when we restrict our attention to the unit sphere.

We conclude this section by introducing the space of Sobolev functions Hs(Sd−1) in the context
of spherical harmonics. Let f ∈ L2(Sd−1) be a square-integrable function. From the properties
associated with spherical harmonics, we know that f can be expressed as an infinite series:

f(x) =

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

fℓ,ℓ′ϕℓ,ℓ′(x), (29)
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where ϕℓ,ℓ′(x), with ℓ = 0, 1, . . . and ℓ′ ∈ [dim(Vλ)], form an orthonormal basis for both spherical
harmonics and L2(Sd−1). Indeed, these functions are homogeneous polynomials of degree ℓ as ℓ′
varies.

Since f ∈ L2(Sd−1), we can infer that

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

f2
ℓ,ℓ′ = ∥f∥2L2(Sd−1) < ∞. (30)

The concept of Sobolev spaces involves placing restrictions on this space by imposing conditions on
the rate at which the tail of the above series vanishes. For any non-negative s, we define

Hs(Sd−1) :=
{
f ∈ L2(Sd−1) : ∥f∥2Hs(Sd−1) := ∥f∥2L2(Sd−1) (31)

+

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

ℓs(ℓ+ d− 2)sf2
ℓ,ℓ′ < ∞

}
. (32)

One can prove that this new formulation is equivalent to the definition of Sobolev spaces presented in
the main body of the paper.

B PROOF OF THEOREM 1

Proof. Let F be an arbitrary vector space closed under the group action. We want to prove that
FCAN ⊇ FGA. To this end, fix an arbitrary f ∈ F and note that R[f ] ∈ FGA. Our goal is to show
that R[f ] ∈ FCAN and this completes the proof.

Note that for each g ∈ G, according to the closeness of F under group action, we have f(gx) ∈ F .
Moreover, since F is a vector space, and thus being closed under taking summations, we have that

1

|G|
∑
g∈G

f(gx) ∈ F =⇒ R[f ](x) ∈ F . (33)

Now let f̃ := R[f ](x). Then, according to the definition, we have that

R[f ](x) ∈ F =⇒ R[f ](π(x)) ∈ FCAN. (34)

However, R[f ](x) ∈ FGA is G-invariant, thus we have

R[f ](x) = R[f ](π(x)), (35)

for all x, which means that

R[f ](π(x)) ∈ FCAN =⇒ R[f ](x) ∈ FCAN, (36)

and this completes the proof.

C PROOF OF PROPOSITION 3

Proof. Let f⋆ ∈ Hs(Sd−1) be a G-invariant function. To prove that f⋆ is β-aligned with the
canonicalized models Fk

CAN with β = s, we need to show that

min
f∈Fk

CAN

∥f − f⋆∥L2(Sd−1) ≤ Ck−s, (37)

for all k ∈ N, where C is an absolute constant that does not depend on k.

We begin by using Theorem 1, which implies that Fk
CAN ⊇ Fk

GA for each k ∈ N. The condition
in Theorem 1 holds here because Fk, the space of harmonic polynomials of degree at most k, is a
vector space that is closed under group action.
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Thus, we have
min

f∈Fk
CAN

∥f − f⋆∥L2(Sd−1) ≤ min
f∈Fk

GA

∥f − f⋆∥L2(Sd−1), (38)

for each k ∈ N. Therefore, the proof is complete if we show that
min

f∈Fk
GA

∥f − f⋆∥L2(Sd−1) ≤ Ck−s, (39)

for each k ∈ N.

Let Πk denote the orthogonal projection operator that projects square-integrable functions f ∈
L2(Sd−1) to homogeneous harmonic polynomials (i.e., spherical harmonics) of degree at most
k ∈ N. We claim that Πk[f

⋆] ∈ Fk
GA and that∥∥Πk[f

⋆]− f⋆
∥∥2
L2(Sd−1)

≤ C2k−2s

for a constant C, which completes the proof.

First, since the Reynolds operator R commutes with Πk, we have
R[Πk[f

⋆]] = Πk[R[f⋆]] = Πk[f
⋆], (40)

where we use R[f⋆] = f⋆ since f⋆ is G-invariant. This shows that Πk[f
⋆] ∈ Fk

GA by definition.

Next, we show that
∥∥Πk[f

⋆]− f⋆
∥∥2
L2(Sd−1)

≤ C2k−2s. Let

f⋆(x) =

∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

f⋆
ℓ,ℓ′ϕℓ,ℓ′(x),

where ϕℓ,ℓ′(x) (for ℓ = 0, 1, . . . and ℓ′ ∈ [dim(Yd,ℓ)]) form an orthonormal basis for both spherical
harmonics and L2(Sd−1). Then we have∥∥Πk[f

⋆]− f⋆
∥∥2
L2(Sd−1)

=

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

f2
ℓ,ℓ′ .

Define µℓ := ℓs(ℓ+ d− 2)s for each ℓ ∈ N. We obtain∥∥Πk[f
⋆]− f⋆

∥∥2
L2(Sd−1)

=

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

(f⋆
ℓ,ℓ′)

2 (41)

=

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µ−1
ℓ µℓ(f

⋆
ℓ,ℓ′)

2 (42)

≤ µ−1
k

∞∑
ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (43)

= k−s(k + d− 2)−s
∞∑

ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2. (44)

Since µℓ is increasing in ℓ, it follows that∥∥Πk[f
⋆]− f⋆

∥∥2
L2(Sd−1)

≤ k−s(k + d− 2)−s
∞∑

ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (45)

≤ k−2s
∞∑

ℓ=k+1

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (46)

≤ k−2s
∞∑
ℓ=0

dim(Yd,ℓ)∑
ℓ′=1

µℓ(f
⋆
ℓ,ℓ′)

2 (47)

≤ k−2s∥f⋆∥2Hs(Sd−1). (48)
This completes the proof.
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D PROOF OF THEOREM 6

Proof. In this section, we present the proof of Theorem 6. First, we use a closed-form formula for
the ERM estimator, then decompose the error into its bias and variance components. Finally, we
apply the analysis of random design linear regression to derive the result.

Consider a dataset S =
{
(xi, yi) : i ∈ [n]

}
⊆

(
Sd−1 × R

)n
, consisting of n i.i.d. labeled samples,

where yi = f⋆(xi) + ϵi and the independent noise terms ϵi are zero-mean with variance bounded by
σ2 for all i ∈ [n]. Let

f̂CAN = argmin
f∈Fk

CAN

1

n

∑
i∈[n]

ℓ(f(xi), yi), (49)

f̂GA = argmin
f∈Fk

GA

1

n

∑
i∈[n]

ℓ(f(xi), yi), (50)

where ℓ(·, ·) denotes the squared loss. We aim to prove that for sufficiently large k ∈ N, with high
probability: ∥∥∥f̂CAN − f⋆

∥∥∥2
L2(Sd−1)

≲
k∑

ℓ=0

dim(Yd,ℓ)
σ2

n
+ k−2β , (51)

∥∥∥f̂GA − f⋆
∥∥∥2
L2(Sd−1)

≲
k∑

ℓ=0

dim(Y G
d,ℓ)

σ2

n
+ k−2s. (52)

First, we focus on group averaging. We need to introduce some notation, assuming the background
provided in Appendix A. For any estimator, we have

f(x) =

k∑
ℓ=0

dim(Y G
d,ℓ)∑

ℓ′=1

fℓ,ℓ′ϕ
G
ℓ,ℓ′(x),

where ϕG
ℓ,ℓ′(x) denotes a basis for G-invariant spherical harmonics. We can rewrite the empirical risk

minimization (ERM) loss function as follows:

1

n

∑
i∈[n]

ℓ(f(xi), yi) =
1

n

n∑
i=1

 k∑
ℓ=0

dim(Y G
d,ℓ)∑

ℓ′=1

fℓ,ℓ′ϕ
G
ℓ,ℓ′(xi)− yi

2

. (53)

For simplicity in notation, we flatten our indices to t := (ℓ, ℓ′) ∈ [p], where p :=
∑k

ℓ=0 dim(Y G
d,ℓ).

This avoids unnecessary dependence on previous notation for multiplicities.

Next, we introduce the feature matrix Φ =
(
ϕG
t (xi)

)
n×p

∈ Rn×p. With a slight abuse of notation,
we use f to denote both a candidate estimator and its spherical coefficients. The ERM objective is:

1

n

∑
i∈[n]

ℓ(f(xi), yi) =
1

n
∥Φf − y∥22, f :=

(
ft
)
t∈[p]

∈ Rp. (54)

According to the closed-form solution of the above least-squares objective, we obtain the following
ERM estimator:

f̂ = Σ−1Φ⊤y, Σ := Φ⊤Φ, (55)

assuming Σ is invertible, which is equivalent to n ≥ p in our case.

With a slight abuse of notation, we also use f⋆ to denote the optimal target function and its optimal
spherical coefficients. Replacing this into the population risk, we obtain:∥∥f̂GA − f⋆

∥∥2
L2(Sd−1)

= ∥f̂ − f⋆∥22 ≤ 2∥f̂ −Πk[f
⋆]∥22 + 2∥f⋆

>k∥22, (56)
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where Πk denotes the orthogonal projection operator onto the space of spherical harmonics of degree
at most k. We will treat the two terms on the right-hand side of the above inequality separately.

Let us first focus on the first term. Let f⋆
k := Πk[f

⋆] and note that f⋆ = f⋆
k + f⋆

<k. Moreover,
y = Φf⋆

k + δ + ϵ, where δi := f⋆
<k(xi) for any i ∈ [n].

To obtain upper bounds on the first term, we utilize the derivation of f̂ and write:

∥f̂ −Πk[f
⋆]∥22 = ∥Σ−1Φ⊤y − f⋆

k∥22 (57)

= ∥Σ−1Φ⊤Φf⋆
k +Σ−1Φ⊤δ +Σ−1Φ⊤ϵ− f⋆

k∥22 (58)
(a)
= ∥Σ−1Φ⊤δ +Σ−1Φ⊤ϵ∥22 (59)

≤ 2∥Σ−1Φ⊤δ∥22 + 2∥Σ−1Φ⊤ϵ∥22, (60)

where (a) follows from the definition of Σ.

We note that

Eϵ[∥Σ−1Φ⊤ϵ∥22] = σ2tr(ΦΣ−1Σ−1Φ⊤) (61)

= σ2tr(Φ⊤ΦΣ−1Σ−1) (62)

= σ2tr(Σ−1), (63)

where in the last step, we used the definition of Σ. By a straightforward application of the matrix
Bernstein inequality (Bach, 2024, Proposition 3.12), we obtain that nΣ−1 ⪯ I/4 with high probability
if n ≳ p log(p). Using Markov’s inequality, this leads us to

∥Σ−1Φ⊤ϵ∥22 ≲
σ2p

n
, with probability at least 99%. (64)

Next, we derive upper bounds on ∥Σ−1Φ⊤δ∥22. Note that

Ex[∥Σ−1Φ⊤δ∥22] = E[tr(δ⊤ΦΣ−1Σ−1Φ⊤δ)] (65)

= E[tr(δδ⊤ΦΣ−1Σ−1Φ⊤)] (66)

≤ E[∥δδ⊤∥F ∥ΦΣ−1Σ−1Φ⊤∥F ] (67)

≤ E[∥δδ⊤∥F tr(ΦΣ−1Σ−1Φ⊤)], (68)

where ∥·∥F denotes the Frobenius norm. Note that ∥δδ⊤∥F = ∥δ∥22. Moreover, tr(ΦΣ−1Σ−1Φ⊤) =
tr(Σ−1). Thus, we have

Ex[∥Σ−1Φ⊤δ∥22] ≤ E[∥δ∥22 tr(Σ−1)]. (69)

Similar to the previous case, we know that with high probability, nΣ−1 ⪯ I/4 if n ≳ p log(p). Also,

E[
1

n
∥δ∥22] = E[

1

n

n∑
i=1

f⋆
<k(xi)

2] = ∥f⋆
<k∥22. (70)

This allows us to conclude that:

∥Σ−1Φ⊤δ∥22 ≲ ∥f⋆
<k∥22, with probability at least 99%. (71)

We are now ready to combine all the above high-probability arguments to get:∥∥f̂GA − f⋆
∥∥2
L2(Sd−1)

≲
σ2p

n
+ ∥f⋆

<k∥22, with probability at least 99%. (72)

Now let us compute ∥f⋆
<k∥22. Similar to the proof of Proposition 3, we obtain

∥f⋆
<k∥22 ≤ k−2s∥f⋆∥2Hs(Sd−1). (73)

Therefore, we have∥∥f̂GA − f⋆
∥∥2
L2(Sd−1)

≲
σ2p

n
+ k−2s, with probability at least 90%, (74)

which completes the proof.
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Remark 12. The proof for Fk
CAN is also similar, so we avoid repeating the arguments. The only

difference is that we explore all harmonic polynomials of degree at most k, instead of G-invariants,
which corresponds to having larger first term above. But, the second, term corresponding to the
approximation error is improved, as we use the alignment hypothesis instead of the Sobolev condition.
Remark 13. All these bounds are optimal in minimax sense according to standard bounds in the
literature (Bach, 2024; Wainwright, 2019). As the main focus of this paper is not on serving
optimal bounds and solely on understanding achievable rates for canonicalization, we avoid rewriting
optimality proofs here to keep the paper concise.

E PROOF OF COROLLARY 7

Proof. To derive a formula for the critical sample complexity Ncritical, we note that we have already
shown the following using Lemma 11 to hold with high probability:∥∥∥f̂CAN − f⋆

∥∥∥2
L2(Sd−1)

≲
2kd−1

(d− 1)!

σ2

n
+ k−2β , (75)∥∥∥f̂GA − f⋆

∥∥∥2
L2(Sd−1)

≲
2kd−1

(d− 1)!

σ2

|G|n
+ k−2s. (76)

Therefore, to obtain the phase transition, we solve

2kd−1

(d− 1)!

σ2

Ncritical
+ k−2β =

2kd−1

(d− 1)!

σ2

|G|Ncritical
+ k−2s. (77)

This leads to

Ncritical =
σ2k2s+d−1

(d− 1)!(1− |G|−1)(1− k2s−2β)
. (78)

The proof is thus complete.
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