

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 YOU POINT, I LEARN: ONLINE ADAPTATION OF IN- TERACTIVE SEGMENTATION MODELS FOR HANDLING DISTRIBUTION SHIFTS IN MEDICAL IMAGING

Anonymous authors

Paper under double-blind review

ABSTRACT

Interactive segmentation uses real-time user inputs, such as mouse clicks, to iteratively refine model predictions. Although not originally designed to address distribution shifts, this paradigm naturally lends itself to such challenges. In medical imaging, where distribution shifts are common, interactive methods can use user inputs to guide models towards improved predictions. Moreover, once a model is deployed, user corrections can be used to adapt the network parameters to the new data distribution, mitigating distribution shift. Based on these insights, we aim to develop a practical, effective method for improving the adaptive capabilities of interactive segmentation models to new data distributions in medical imaging. Firstly, we found that strengthening the model’s responsiveness to clicks is important for the initial training process. Moreover, we show that by treating the post-interaction user-refined model output as pseudo-ground-truth, we can design a lean, practical online adaptation method that enables a model to learn effectively across sequential test images. The framework includes two components: (i) a Post-Interaction adaptation process, updating the model after the user has completed interactive refinement of an image, and (ii) a Mid-Interaction adaptation process, updating incrementally after each click. Both processes include a Click-Centered Gaussian loss that strengthens the model’s reaction to clicks and enhances focus on user-guided, clinically relevant regions. Experiments on 5 fundus and 4 brain-MRI databases show that our approach consistently outperforms existing methods under diverse distribution shifts, including unseen imaging modalities and pathologies. Code and pretrained models will be released upon publication.

1 INTRODUCTION

Medical image segmentation facilitates disease analysis, diagnosis, and treatment. Deep-learning methods have driven notable advances in automated medical image segmentation (Azad et al., 2024). However, a major challenge is that the training-data distribution often differs from the test-data distribution—for example, images may be acquired on different scanners—severely hindering model performance. Although models lack knowledge about unseen test data distributions, human users (such as clinicians) are often still able to segment images in the target distribution with reasonable accuracy. Hence, their knowledge can be leveraged to guide models. Can we design an AI framework that enables models to be guided by human users in an easy, immediate, and continuous manner, so that they can effectively adapt to distribution shifts? Although not originally developed for solving data distribution shift problems, a class of deep learning models known as interactive segmentation models is well suited to this challenge.

Interactive segmentation models allow users to provide prompts, such as clicks, scribbles, or bounding boxes, which inform the model’s prediction. A common strategy is to encode user prompts as additional input channels in convolutional networks, as seen in models like DeepIGeoS (Wang et al., 2018) and Interactive FCNN (Sakinis et al., 2019). More recent approaches, such as SAM (Kirillov et al., 2023), MedSAM (Ma et al., 2024), and Med-SA (Wu et al., 2023b), instead employ Transformers to encode user prompts. Both approaches have demonstrated strong performance on natural and medical images, highlighting the usefulness of incorporating user guidance. However, they do not include mechanisms for adapting model parameters from user corrections.

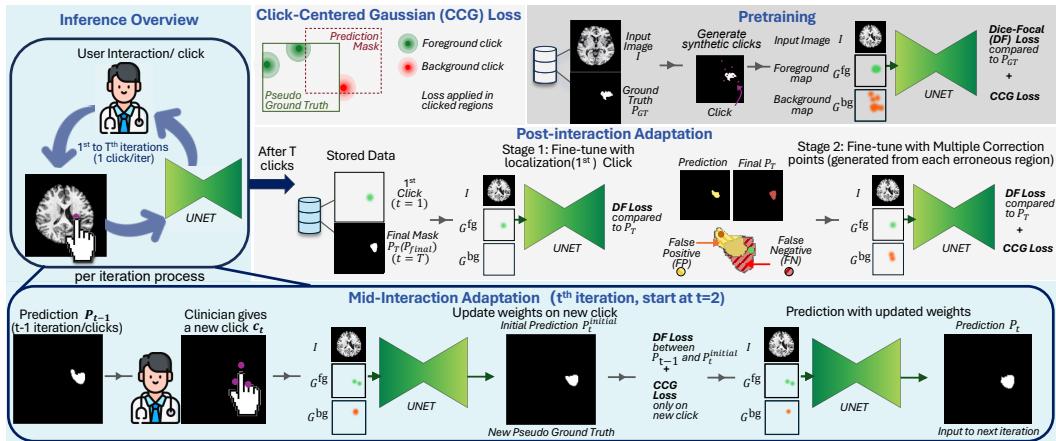


Figure 1: **Method overview.** For **Pretraining**, the model is trained with simulated clicks, provided as additional input channels besides the image. During **Inference** and adaptation, images arrive sequentially. For each image, the user iteratively provides T clicks to correct the segmentation, until the final prediction $P_{\text{final}} = P_T$ is obtained. **Mid-interaction adaptation:** After each corrective click c_t , the model’s output P_t^{initial} is used as pseudo-label compared with the pre-correction output P_{t-1} via the DF and CCG losses, to update model parameters. The updated model then produces refined output P_t , which is then shown to the user, ending iteration t . **Post-interaction adaptation:** Once the final corrected segmentation P_T is obtained, it is used as pseudo-label to first fine-tune the model using a localization click (Stage 1), and then to fine-tune using multiple correction clicks, generated from areas where the prediction of Stage 1 disagrees with P_T (Stage 2).

Our work explores how to leverage user guidance in interactive segmentation to improve performance under distribution shift most effectively. We identify that this requires complementary learning mechanisms for the pre-deployment training and post-deployment adaptation. For pre-deployment stage, we find that adding an optimization objective that enforces model predictions to align with user feedback in areas around given clicks improves performance under distribution shift.

We couple this with post-deployment learning mechanisms. **Post-deployment adaptation** methods for interactive segmentation **optimize a model for the specific data distribution encountered after deployment** using information from user prompts. They use **Online Learning** (Hoi et al., 2021) to update model parameters after each test image is processed sequentially¹. Prior work on online adaptation for interactive medical image segmentation is limited. An early related method is IA+SA (Kontogianni et al., 2020), originally developed for natural images, which combines independent image-level adaptation (IA) and image-sequence adaptation (SA). Another recent related method, TSCA (Atanyan et al., 2024), achieves further improvements in performance after online adaptation. These methods leverage user corrections through sparse cross-entropy or focal loss, applied only to the pixels clicked by the user. This focuses optimization narrowly on a small number of pixels while ignoring surrounding areas. Moreover, additional regularizers are often required to prevent overfitting to the few labeled pixels, increasing model complexity and the number of hyper-parameters that must be tuned.

Our work is based on the insight that, in a real-world interactive segmentation workflow where the user provides clicks to correct a model output, the segmentation predicted at the end of interactions should have sufficient quality to serve as pseudo ground-truth. We propose a Post-Interaction adaptation method based on using that final prediction as optimization target and show it results in effective adaptation without requiring complex regularizers. Furthermore, we generate *artificial* correction clicks from the pseudo-ground-truth mask and use them with the Click-Centered Gaussian (CCG) loss that we introduce to *strengthen the model’s response around clicks* under the new data distribution. This improves performance in all tested distribution-shift scenarios.

¹ Adaptation in this context targets only the distribution seen post-deployment, thus does not need to handle Catastrophic Forgetting of past distributions as Continual Learning (Wang et al., 2024)

108 We further combine this with Mid-Interaction Adaptation, which adapts the model weights after
 109 each user click. We again rely on the segmentation mask predicted by the model and optimize the
 110 CCG loss, which emphasizes the region around the click. Unlike previous works that focus only
 111 on the clicked pixels for such adaptation, our method leverages the whole corrected segmentation
 112 mask together with the CCG loss, thereby optimizing over the greater surrounding region, improving
 113 adaptation performance.

114 We term the proposed method **OAIMS** (Online Adaptation for Interactive Medical-image Segmen-
 115 tation). Experiments under distribution shift across 5 fundus and 4 brain-MRI databases demonstrate
 116 that by using solely the proposed Post-Interaction method already results in adaptation performance
 117 that compares favorably to SOTA adaptation methods. When this is combined with Mid-Interaction
 118 adaptation, OAIMS consistently outperforms all previous methods, especially on brain MRI where
 119 Dice score improvements exceed 10%. Ablation studies show that the proposed CCG loss is con-
 120 sistently useful when employed in all 3 learning processes (pretraining, mid- and post- adaptation).
 121 Further analysis also shows strong robustness to settings that may cause overfitting to other methods.

122

123 2 METHODS

125 2.1 OVERVIEW: INTERACTIVE SEGMENTATION FRAMEWORK

127 We here provide an overview of the whole process, shown in Fig. 1, **with the detailed algorithm of**
 128 **the process provided in the Appendix A.7**. For simplicity, we describe it for binary segmentation,
 129 but it also applies for multiple classes, as shown in Experiments.

130 We define the interactive model as $f(I, C; \theta)$, where I is the input image, C is the set of user
 131 clicks, and θ are model parameters. A click is labeled either as foreground or background class.
 132 A foreground click indicates that the specific pixel belongs to the target object, background click
 133 indicates that it does not. We train the model on a source database with simulated clicks C . During
 134 inference, the model receives a sequence of images $\{I_1, I_2, \dots, I_N\}$ from another database. For a
 135 single image I_n separately, the user (or simulated user) first provides a localization click c_1 to trigger
 136 the interactive process. The *localization click* used to start interaction is simply a foreground click
 137 placed anywhere inside the target foreground object. The model predicts initial segmentation $P_1^n =$
 138 $f(I_n, c_1; \theta)$. Afterwards, multiple iterations of interactions occur. At iteration t the user places a
 139 new click c_t in a region where prediction P_{t-1}^n is wrong. The click set is updated $C_t = C_{t-1} \cup \{c_t\}$,
 140 where $C_1 = \{c_1\}$. The model then predicts $P_t^n = f(I_n, C_t; \theta)$. Next interaction $t+1$ then occurs,
 141 and so forth. After T interactions we obtain the final prediction P_T^n , which we call P_{final}^n . While
 142 here T is given a set value for simplicity, in a real-world setting T would be as much as user requires
 143 to be satisfied with segmentation output. The whole process is then repeated for the next image I_{n+1}
 144 in the sequence. For notational simplicity, we omit the image index n in most formulas below.

145 During inference, we perform two types of online adaptation. The **Post-Interaction adaptation** is a
 146 two-stage method that updates the model after the iterative, interactive corrections for a single image
 147 have finished and the model has produced final segmentation P_{final} . This improves performance for
 148 subsequent images. **Mid-Interaction adaptation** happens after each interaction. It takes place
 149 before the P_{final} is obtained. This strategy benefits both the current and subsequent images.

150

151 2.2 PRETRAINING THE INTERACTIVE MODEL

152 The base interactive model is a U-Net (Ronneberger et al., 2015) modified to accept both the image
 153 and click prompts as input. We use the same strategy as ICNN (Sakinis et al., 2019), where we set
 154 2 guidance maps that encode foreground and background clicks, respectively, each with the same
 155 spatial dimensions as I . The raw guidance maps are zero everywhere except at clicked pixels; we
 156 then apply a Gaussian smoothing kernel and normalize each map to $[0, 1]$. These maps are concate-
 157 nated with the image along the channel dimension. The concatenated tensor (image + foreground
 158 map + background map) is input to the model. We train the base model using simulated clicks and
 159 a compound loss: **Dice-Focal** (Eq. equation 4) and **CCG Loss** (Eq. equation 3). **The CCG Loss**
 160 **proposed herein strengthens the model’s response to user clicks. Combining Dice with Focal loss**
 161 **is beneficial in medical segmentation to handle the imbalanced number of background / foreground**
 162 **pixels.** See Appendix A.2 for details regarding click simulation. **We note that the backbone model,**

162 here a Unet for its proven performance and computational efficiency Isensee et al. (2024), could be
 163 replaced with other architectures, since our online adaptation method is model-agnostic.
 164

165 2.3 CLICK-CENTERED GAUSSIAN (CCG) LOSS 166

167 An interactive model should react to user clicks and update the surrounding region accordingly. We
 168 propose a Click-Centered Gaussian Loss to strengthen the model’s reaction to clicks by penalizing
 169 wrong predictions near each click, weighted by a Gaussian kernel. This loss is employed in all three
 170 stages, pre-training, Post-Interaction adaptation, and Mid-Interaction adaptation.

171 Let c denote a user click at pixel (i', j') with class label $y_{i', j'} \in \{0, 1\}$. For any pixel (i, j) we define
 172 the Gaussian weight and an indicator

$$174 G_c(i, j) = \begin{cases} \exp\left(-\frac{(i-i')^2 + (j-j')^2}{2\sigma^2}\right), & |i - i'| \leq 3\sigma \text{ and } |j - j'| \leq 3\sigma \\ 175 0, & \text{otherwise,} \end{cases} \quad (1)$$

$$177 I_c(i, j) = \begin{cases} 1, & P(i, j) = y_{i', j'}, \\ 178 0, & \text{otherwise.} \end{cases} \quad (2)$$

180 P denotes the ground-truth mask (used for pretraining) or pseudo ground-truth mask (used for
 181 adaptation), and $P(i, j)$ is its pixel value at coordinates (i, j) .

182 Given the current prediction \hat{P} , the **CCG Loss** is

$$184 \mathcal{L}_{CCG} = \frac{\sum_{c \in C} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} G_c(i, j) I_c(i, j) \text{CE}(\hat{P}(i, j), P(i, j))}{185 |C|HW} \quad (3)$$

186 where C is the set of clicks for the current sample, $H \times W$ is the image size, and $\text{CE}(\cdot, \cdot)$ denotes
 187 cross-entropy loss. The penalty is applied only to pixels that *should* share the same class as the
 188 click using the indicator $I_c(i, j)$. For instance, given a foreground click, the loss only applies to
 189 surrounding pixels that are foreground in the ground truth mask.

190 **Why not apply the loss to all surrounding pixels?** Each click only serves to change the surrounding
 191 pixels to a specific target class. The click does not provide information for clusters of pixels
 192 belonging to a different class. Applying extra penalties to pixels annotated as another class in the
 193 ground truth may cause the model to overfit to specific regions or images, ultimately degrading
 194 overall performance when facing distribution shifts or performing online learning.

195 2.4 ONLINE ADAPTATION 196

197 We now describe the online adaptation process, which includes Post-Interaction and Mid-Interaction
 198 adaptation phases. All model parameters are updated in all phases.

200 **Post-Interaction Adaptation:** This process updates the model after a user has completed correcting
 201 the segmentation of an image I using a set C_T of T clicks, resulting to final segmentation mask
 202 $P_{\text{final}} = P_T = f(I, C_T, \theta)$. The key assumption is that P_{final} after the user finished their corrections
 203 is of “good enough” quality to serve as pseudo ground-truth mask for updating the model. In real-
 204 world practice this is rather easy to ensure, if we only adapt based on segmentations for which
 205 the user confirmed that the interactions led to satisfying output. Even if P_{final} is imperfect, it still
 206 provides new information from users to update the model’s knowledge.

207 The user interaction starts with a localization click. We therefore naturally split the post-interaction
 208 updates into: (i) Fine-tune with an initial localization click as input; (ii) Fine-tune with correction
 209 clicks as input.

210 **Stage 1 – Fine-tune with a Localization Click:** To enhance the model’s ability to make a good
 211 initial segmentation on the new data, we first fine-tune it with one localization click c_1 as input,
 212 given by the user in the previous inference step. Given c_1 , we obtain $P_1 = f(I, c_1, \theta)$. We then
 213 update the model by applying **Dice–Focal (DF) loss** (Milletari et al., 2016; Lin et al., 2017) to
 214 penalize deviations of P_1 from the user-corrected mask P_{final} , where

$$215 \mathcal{L}_{DF} = (1 - \alpha) \mathcal{L}_D + \alpha \mathcal{L}_F. \quad (4)$$

216 \mathcal{L}_D , \mathcal{L}_F and α are the Dice loss, Focal loss, and a weighting hyper-parameter respectively. Only
 217 one Gradient Descent update is performed for each image using Eq. 4.
 218

219 **Stage 2 – Fine-tune with Multiple Correction Clicks:** To improve the model’s ability to leverage
 220 correction-clicks, we input a set of artificial correction-clicks \hat{C} , obtain model output $\hat{P} = f(I, \hat{C}, \theta)$
 221 and update the model using P_{final} as target. It is not appropriate to reuse the user’s original correction
 222 clicks C_T , as they were already used to produce $P_{\text{final}} = f(I, C_T, \theta)$ –they would result in \hat{P} being
 223 identical to P_{final} and hence trivial updates. Instead, we generate a set \hat{C} of clicks by comparing
 224 the Stage 1 output P_1 with P_{final} , locate false-positive and false-negative regions, and generate one
 225 artificial click in each erroneous connected component (up to T clicks), without extra human input.
 226 These newly generated clicks \hat{C} are fed to the model, yielding new prediction \hat{P} . We then apply the
 227 proposed CCG loss, along with Dice–Focal loss to penalize deviations of \hat{P} from P_{final} for further
 228 guidance. The total loss is:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{DF} + \beta \mathcal{L}_{CCG}. \quad (5)$$

230 The CCG loss ensures the model **reacts** to each click in its surrounding region during adaptation,
 231 which to our knowledge, no previous work addresses explicitly.

232 **Mid-Interaction Adaptation:** Besides Post-Interaction adaptation, we can also update the model
 233 *after each user click*. In this case, the updated parameters obtained after each click determine the
 234 next prediction, so the update not only improves segmentation of the following images but also of
 235 the current image. This in turn helps achieve a high quality P_{final} after all T interactions, which
 236 facilitates effective Post-Interaction adaptation afterwards, thus complementing and enhancing it.

237 We again leverage the idea of using as pseudo ground truth the model’s output *after correction by a*
 238 *user click*. Let $P_{t-1} = f(I, C_{t-1}, \theta_{t-1})$ be the prediction after $t-1$ clicks. When the next corrective
 239 click c_t is given, we obtain $P_t^{\text{initial}} = f(I, C_t, \theta_{t-1})$. We then optimize CCG plus Dice–Focal loss
 240 (Eq. 5) to penalize differences between P_{t-1} and P_t^{initial} , using P_{t-1} as the prediction and P_t^{initial} as
 241 pseudo ground-truth. This formulation leverages the additional information induced by c_t to the new
 242 state (t) in comparison to the previous state ($t-1$), to optimize model parameters. Here, after each
 243 user click, the loss \mathcal{L}_{CCG} is applied to the latest click c_t . After the model parameters are updated
 244 to θ_t , the model processes C_t again and produces $P_t = f(I, C_t, \theta_t)$. P_t is shown to the user (or
 245 simulator) to get the next click and serves as prediction for the next update. The process is repeated
 246 for each of the T user clicks, until final prediction $P_{\text{final}} = P_T$ is obtained. Finally, Post-Interaction
 247 adaptation on that image is applied.

248 The pseudo ground truth P_t^{initial} in Mid-Interaction adaptation is not perfect, so the CCG loss is
 249 very important. It helps the model to concentrate learning on regions close to the clicks, which are
 250 the most valuable and trustworthy areas. The CCG loss is not intended to strengthen the model’s
 251 reaction here, because the c_t is not used for obtaining P_{t-1} .

253 3 EXPERIMENTS

255 **Databases:** We evaluate our method on two types of data. **Fundus imaging:** We use 5 public
 256 databases: REFUGE2 (Orlando et al., 2020; Fang et al., 2022), G1020 (Bajwa et al., 2020), GS1-
 257 Drishti (Sivaswamy et al., 2014), GAMMA (Wu et al., 2023a), and PAPILA (Kovalyk et al., 2022).
 258 They are 2D RGB images acquired at different clinics with different scanners, hence each represents
 259 a different distribution. We perform multi-class segmentation {0: Background, 1: Outer-ring, 2:
 260 Cup}. We compute evaluation metrics on Cup and Disc, where Disc is the union of Outer-ring and
 261 Cup, as common in literature (Orlando et al., 2020). Unless stated otherwise, we treat *REFUGE2*
 262 as the *source* database on which we pretrain the interactive model. We treat other databases as
 263 different *target* distributions for adaptation and evaluation. **MRIs of Brain Lesions:** We use 4
 264 databases. Each contains a different type of pathology and some contain multiple MRI modalities:
 265 BRATS2023 - Glioma, with Flair, T1, T1c, T2 modalities (Baid et al., 2021); ATLAS v2.0 - Stroke,
 266 with T1 modality (Liew et al., 2022); WMH - white matter hyperintensities, with Flair and T1 (Kuijf
 267 et al., 2022); TBI - Traumatic Brain Injuries, with Flair and T1. TBI is the only non-public data we
 268 use. Each database is acquired from a different clinic, with different scanner. Each database and
 269 modality can therefore be regarded as a different data distribution. Although the MRI scans are
 270 3D images, we test the models using 2D slices, by selecting the slice with the largest lesion area
 271 per case. For multi-class databases (BRATS, TBI), we merge all lesion classes into one label, and

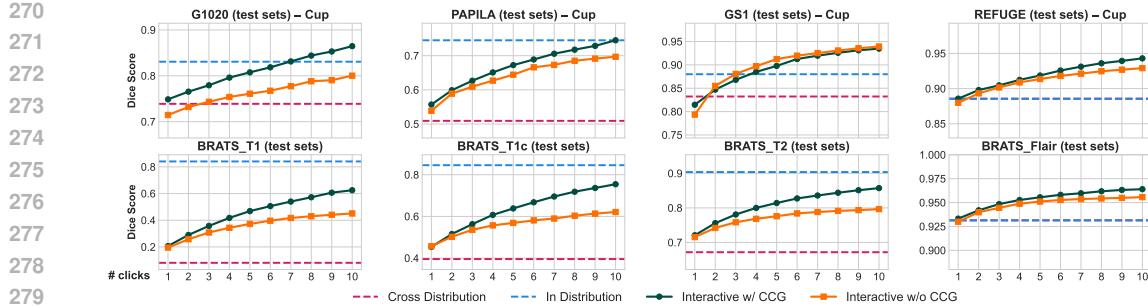


Figure 2: Dice-score performance for automatic and interactive models. All networks, except the in-distribution baseline, are trained on REFUGE (fundus) or BRATS-FLAIR (brain MRI). The x-axis represents the number of clicks. Horizontal lines mark automatic performance of automatic models in cross-distribution and in-distribution settings. Curves show the interactive segmentation model with and without the CCG loss; clicks significantly improve performance in all test cases, with the CCG loss providing additional gains, especially for large distribution gaps (e.g., BRATS-T1).

perform binary classification (healthy tissue VS lesion). We split BRATS into 1002 training cases and 249 test cases. Unless stated otherwise, we pre-train on the train split of BRATS using the Flair modality. We then use the other modalities of BRATS’s test split, and all other databases, as the target distributions for adaptation and evaluation. All interactive models are trained with up to 10 simulated clicks per image, unless stated otherwise.

3.1 INTERACTIVE SEGMENTATION UNDER DISTRIBUTION SHIFT

We start with experiments that test the performance of the base interactive model under data-distribution shift, without any adaptation. We also assess if the proposed CCG loss helps an interactive segmenter to handle distribution shifts. We consider 2 types of distribution shifts. The first is across fundus databases. We consider REFUGE as the *source* distribution, and other fundus databases as *target* distributions. The second is across BRATS modalities. We consider BRATS FLAIR as the *source* distribution, and other BRATS modalities as *target* distributions.

Four models are compared for each of the 2 settings: (1) Automatic (non-interactive) U-Net (same backbone as the interactive model) trained on the source database, and applied to each of the target databases (cross-distribution); (2) Automatic model trained on the target database and applied to the target database (in-distribution). This is to quantify performance on target, without influence of distribution shift; (3) Interactive segmentation model trained on the source database without CCG loss, applied to each target database; (4) Similar to (3) but pretraining also uses CCG loss. Results are shown in Fig.2. We see a large difference between *in-distribution* and *cross-distribution* performance of automatic methods, across all settings, due to distribution shifts between *source* and *target* data. Nonetheless, ten clicks with the interactive segmentation model largely close the gap, confirming that interactive segmentation remains effective under strong shifts. Adding the CCG loss during pretraining yields improvements in most settings. This is because the CCG loss enforces the model to depend more on user input when given, signal unrelated to distribution shift, and less on the image signal where the shift manifests.

3.2 ONLINE ADAPTATION

We then evaluate our online adaptation methods, including *Mid-Interaction* and *Post-Interaction* adaptation. For all following experiments, during online adaptation, a sequence of images is input to the model. Each image is corrected through T iterations (one click per iteration, $T = 10$ by default). For every image, the Dice score is calculated with the prediction mask at each iteration t after *mid-interaction adaptation* is performed in that iteration. We measure average Dice score achieved for each image in the image sequence after 1, 5, and 10 interactions. The adaptation methods update the model after getting the segmentation result after each click and each image.

324
325
326
327
328
329

Table 1: Performance on fundus imaging (average Dice, %). Each image receives 10 clicks; the base interactive model is trained on REFUGE. Each cell reports Disc/Cup Dice at 1, 5, and 10 clicks. While ICNN* and Med-SA are non-adapting models, the other methods perform online adaptation. PI is our Post-Interaction adaptation strategy. PI+MI combines the Post-Interaction with the Mid-Interaction strategy.

No. Cl	G1020			PAPILA			GS1			GAMMA		
	1	5	10	1	5	10	1	5	10	1	5	10
ICNN*	89.4/77.4	93.1/83.1	95.1/88.0	88.3/60.3	92.6/70.2	94.6/77.1	96.6/82.4	97.2/90.4	97.7/94.1	94.4/83.3	96.3/89.8	97.2/93.3
Med-SA	72.2/56.1	75.3/58.6	75.6/58.6	52.5/34.5	56.1/36.7	56.7/36.7	88.6/61.5	89.6/67.0	89.6/67.6	89.8/76.2	90.0/77.5	90.0/77.5
IA+SA	90.5/77.8	94.3/84.5	96.1/90.3	89.4/61.3	93.3/70.5	95.3/77.6	96.8/83.4	97.4/91.5	98.0/94.8	94.7/84.0	96.3/90.2	97.4/93.9
TSCA	89.9/77.6	94.2/85.0	96.1/90.7	89.6/61.7	94.0/72.2	96.1/79.0	96.9/85.4	97.5/92.9	98.0/95.5	94.6/84.2	96.4/90.7	97.5/94.1
PI	93.5/81.9	95.9/88.5	97.0/92.2	94.1/73.0	96.1/80.0	97.0/85.8	97.3/89.5	97.7/94.1	98.2/95.7	95.3/85.9	96.5/91.4	97.5/94.1
PI+MI	93.6/82.2	96.4/90.4	97.5/92.7	94.7/73.0	96.5/81.0	97.5/86.2	97.3/89.3	97.8/94.5	98.4/96.5	95.1/85.8	96.7/91.3	97.9/93.9

330

336

337

Table 2: Performance (Dice%) on different MRI modalities.

338

339

340

341

342

343

344

No. Clicks	BRATS T1			BRATS T1c			BRATS T2		
	1	5	10	1	5	10	1	5	10
ICNN*	20.7	46.8	62.5	45.4	63.8	75.4	72.1	81.4	85.7
Med-SA	23.4	33.4	35.7	38.7	47.0	49.2	75.7	78.8	79.2
IA+SA	28.6	57.0	70.6	48.3	67.1	78.2	76.5	84.1	87.9
TSCA	34.4	60.9	74.0	50.1	70.2	79.6	77.7	85.8	89.0
PI	61.1	72.4	78.9	64.3	74.7	80.4	82.5	88.1	90.9
PI+MI	71.2	83.4	88.0	70.4	82.9	87.5	84.9	90.6	93.0

345

346

347

348

349

350

351

352

353

We set $\alpha = 0.7$ and $\beta = 200$, with $\sigma = 3$ in CCG loss, found adequate in preliminary experiments. The effect of different hyperparameter settings can be seen in Appendix A.3. We implement a base interactive model we denote as ICNN*, using a U-NET with the interactive method proposed by ICNN (Sakinis et al., 2019), and trained with our CCG loss. We implement IA+SA (Kontogianni et al., 2020) and TSCA (Atanyan et al., 2024) using the same pretrained base interactive model (with CCG loss) as our method for fair comparison. **For all online adaptation methods, all model parameters are updated during adaptation.** In addition, we include a SAM-based interactive medical image segmentation model, the Medical SAM Adapter (Med-SA) (Wu et al., 2023b), which is fine-tuned on the source data and frozen during testing (target data).

354

355

356

357

358

359

360

361

362

363

Evaluation on Fundus data. We pretrain the models on REFUGE as the source distribution, for multi-class segmentation. We then adapt and evaluate using each of the 4 other fundus databases separately as *target* distributions. Tab. 1 shows the average Dice for both disc and cup. On G1020 and PAPILA, where the data-distribution shift is large, our fast *Post-Interaction* method outperforms previous methods—especially on cups (disc segmentation is nearly perfect for most models and thus hard to improve)—and all adaptation approaches surpass the frozen base model. On GS1 and GAMMA, where the shift is small, our *Post-Interaction* method remains comparable or better. Using only the *Post-Interaction* adaptation, which requires two back-propagations, already surpasses previous methods that need more than ten back-propagations. Adding the Mid-Interaction adaptation gives slightly better results in most cases. The improvement becomes much more significant when facing large data-distribution shifts in the brain-MRI databases.

364

365

366

367

368

369

370

Evaluation on MRI Modalities: We here adapt our model to scenarios with larger distribution shifts – between different MRI modalities. The model is initially trained using the FLAIR scans of the training split. It is then adapted and evaluated on T1, T1c, and T2 scans of the test split (separate experiment per modality). As shown in Tab. 2, all online-adaptation methods outperform the base interactive model, ICNN*. Largest improvements shown in T1. Among online adaptation methods, our approach surpasses TSCA and IA+SA even with only Post-Interaction adaptation, especially when few clicks are given. Including Mid-Interaction adaptation yields even greater gains.

371

372

373

374

375

376

377

Adapting to Different Brain Pathologies: In addition, we test our model across different brain pathologies. We pretrain 2 models, one on Brats Flair, and one on a combination of Flair/T1/T1c. We then adapt and evaluate the first on TBI-Flair and WMH-Flair, and the second on TBI-T1 and ATLAS-T1. Results are shown in Tab. 3. Even in these challenging settings, online-adaptation methods significantly boost performance, with our approach outperforming previous methods on all tasks. For TBI and WMH on FLAIR, our Post-Interaction method achieves results comparable to TSCA after 10 clicks but attains higher dice scores with fewer clicks. After adding Mid-Interaction adaptation, our method achieves significantly better results. For TBI-T1 and ATLAS, Post-Interaction alone

378

379

Table 3: Performance (Dice%) on different brain pathologies.

No. Clicks	Trained on BRATS (Flair)						Trained on BRATS (Flair, T1, T1c)					
	TBI Flair			WMH Flair			TBI T1			ATLAS T1		
	1	5	10	1	5	10	1	5	10	1	5	10
ICNN*	49.9	64.1	69.6	47.9	61.2	67.6	42.0	49.3	55.3	40.6	46.8	52.1
Med-SA	43.5	47.9	48.5	52.6	60.0	61.5	34.0	41.3	43.1	35.7	42.4	43.9
IA+SA	50.6	66.4	73.9	49.4	64.2	72.0	44.5	52.7	59.8	43.4	53.9	62.6
TSCA	52.7	66.1	73.7	52.8	66.7	72.7	44.4	55.8	63.9	43.4	55.7	64.0
PI	53.8	68.8	73.6	53.7	66.7	72.3	47.7	61.1	68.0	62.7	77.0	81.8
PI+MI	55.2	69.9	76.3	59.0	73.0	78.9	47.7	67.0	74.8	66.4	82.2	86.0

386

387

Table 4: Adapting with maximum 5 or 3 clicks per image.

Method	5 clicks			3 clicks			
	BRATS			TBI	WMH	TBI	ATLAS
	T1	T1c	T2	Flair	Flair	T1	T1
ICNN*	46.8	63.8	81.4	58.9	55.6	45.8	44.6
TSCA	62.9	69.0	86.0	61.9	59.5	52.9	51.4
PI	71.2	72.8	87.4	62.5	61.2	52.6	68.4
PI+MI	80.4	80.5	90.3	65.3	64.3	54.6	73.3

393

394

significantly outperforms previous methods, and Mid-Interaction further improves performance. Although the pseudo ground truth in early iterations is suboptimal, as shown in the table (low Dice score for 1 click), PI+MI can still learn from it and achieve higher scores.

398

399

400

401

402

We also observe that in all three tables, TSCA performs better than IA+SA, consistent with the previous studies (Atanyan et al., 2024). Thus, we compare only with TSCA in subsequent experiments for simplicity. Furthermore, we observe that in most cases, Med-SA performs significantly worse than the base interactive model, ICNN, across all three tables, especially after 10 points. Therefore, we do not employ the computationally expensive SAM-based model further.

403

404

405

406

407

408

409

410

411

412

Adapting with fewer allowed corrections: All previous experiments used $T = 10$ maximum clicks for correction of each image. However, a method should ideally also perform well with fewer maximum performed corrective interactions. Here, we test our online-adaptation methods on brain MRI using maximum $T = 3$ or 5 clicks for interactive correction of each image. This also assesses the capability of our method to adapt using a less optimal pseudo ground-truth. Tab. 4 shows results using 5 or 3 clicks max per image, under the same experiment settings as Tab. 2 and Tab. 3. Even with fewer clicks, online-adaptation methods perform significantly better than the frozen model ICNN*. Our Post-Interaction (PI) adaptation continues to outperform previous methods in most cases. The addition of Mid-Interaction (PI+MI) further improves results. Although the model output after 3/5 clicks may be suboptimal, learning from it as pseudo ground-truth remains effective.

413

414

415

416

Computational latency: We evaluated the computational latency of our method to assess its practicality. On an NVIDIA A5000 GPU, updates are negligible (0.05s for MI; 0.09s for PI). Crucially, even on a CPU, latencies remain imperceptible (0.25s for MI; 0.41s for PI). This ensures a smooth workflow, confirming that our simple, effective design is well-suited for real-world application.

417

418

419

420

Table 5: Ablation study by including different terms in PI and MI, after 1, 5, 10 clicks. CCGL_{MI} and DFL_{MI} represent the Mid-Interaction adaptation. CCGL_{PI} and DFL_{PI} represent the stage 2 of the Post-Interaction adaptation. S1_{PI} represent the stage 1 of the Post-Interaction adaptation.

421

DFL-MI	Loss terms			G1020 (Cup)	ATLAS			BRATS T1			BRATS T2				
	CCGL-MI	CCGL-PI	DFL-PI		1	5	10	1	5	10	1	5	10		
✓	✓	✓	✓	82.2	90.0	92.7	66.4	82.2	86.0	71.2	83.4	88.0	84.9	90.6	93.0
—	✓	✓	✓	82.1	88.9	93.0	65.9	82.0	85.8	69.4	81.9	86.8	84.3	90.4	92.8
✓	—	✓	✓	81.5	87.0	90.0	65.2	80.1	83.8	42.3	46.6	48.9	84.6	90.4	92.6
—	—	✓	✓	81.9	88.5	92.2	62.7	77.0	81.8	61.1	72.4	78.9	82.5	88.1	90.9
—	—	✓	—	82.2	87.6	90.6	58.4	66.2	69.2	60.6	71.7	76.8	82.6	88.1	90.5
—	—	—	✓	81.7	86.8	89.6	60.7	74.7	79.8	55.7	66.3	72.1	81.7	87.3	89.9
—	—	—	—	81.6	87.7	91.4	59.0	73.0	78.7	48.6	61.3	67.9	80.9	86.4	89.4

428

429

430

431

Ablation Study: To evaluate the benefit of each component of our method, we conduct an ablation study on each term of our online adaptation method. The results are shown in Tab. 5. Dice scores are reported on four target databases: G1020 (cup), ATLAS, BraTS-T1, and BraTS-T2. The source databases are as follows: REFUGE2 for G1020 (cup), a combination of BraTS Flair/T1/T1c for

ATLAS, and BraTS Flair for both BraTS-T1 and BraTS-T2. The source-target pairs are consistent with previous experiments. The ablation terms are divided into two groups: PI (Post-Interaction adaptation) and MI (Mid-Interaction adaptation). $\mathbf{S1}_{\mathbf{PI}}$ is the first stage of the Post-Interaction adaptation approach. $\mathbf{DFL}_{\mathbf{PI}}$ and $\mathbf{CCGL}_{\mathbf{PI}}$ are the second stage of the Post-Interaction adaptation processes with the Dice-Focal loss or Click-Centered Gaussian loss. $\mathbf{DFL}_{\mathbf{MI}}$ and $\mathbf{CCGL}_{\mathbf{MI}}$ are the Mid-Interaction adaptation processes with the Dice-Focal loss or Click-Centered Gaussian loss. Overall, the ablation study confirms the contribution of each component and stage in both the Mid-Interaction and Post-Interaction approaches. The two loss terms should be used together in each process. For example, on the challenging BraTS T1 dataset where tumor boundaries are not well defined, performing MI solely with Dice-Focal loss can cause the model to learn incorrect information, as segmentation errors often extend beyond cancer boundaries. Adding the CCG loss effectively mitigates this issue by focusing learning on the corrected areas.

We have seen that MI adds benefits on top of PI. But does the opposite also hold? We evaluate whether adapting with PI offers benefits when MI is already performed. With a budget of five clicks per image, Post-Interaction adaptation improves performance in nearly every scenario as shown in Tab. 6. When the budget rises to ten clicks, Post-Interaction adaptation continues to provide substantial gains in the early iterations, but by the final click, its advantage narrows: WMH still benefits, while others do not. Exact numbers are given in the Appendix A.4. With more clicks, the model leans more heavily on MI, which may partially cover the updates supplied by Post-Interaction adaptation. Even though the influence of PI may diminish with extensive interaction provided, it helps users reach satisfactory results with fewer clicks, which is important for interactive workflows. We therefore recommend deploying both mechanisms in most situations.

Finally, we investigate aspects of the CCG loss in Tab. 7. Column "all" is the proposed version, "no_class" removes the class-limited mechanism of CCG (applies it to all surrounding pixels), and "no_gaussian" replaces the Gaussian kernel with a uniform kernel. Removing the Gaussian kernel or the class-limited mechanism reduces performance for both PI and PI+MI in most cases. Additionally, we investigated different values of σ for the loss. As σ approaches zero, the loss effectively reduces to a single-point focus. Ablation study that explores the effect of this parameter is in Appendix A.8. Results demonstrate the value of using a Gaussian over focusing on a single point.

Table 6: Ablation study for PI under a 5-click budget. (Average Dice% over 3 runs with different seeds.)

	BRATS			WMH	TBI
PI+MI	80.4	80.5	90.3	70.7	68.9
MI	78.4	79.8	89.8	68.0	69.0
No MI/PI	46.8	63.8	81.4	61.2	64.1

Table 7: Ablation study on the design of CCG loss. Performance shown as Dice%.

	all		no_class		no_gaussian	
	PI+MI	PI	PI+MI	PI	PI+MI	PI
BRATS (T2)	93.0	90.9	92.1	87.7	90.6	90.1
WMH	78.9	72.3	77.6	73.1	72.2	69.8
ATLAS	86.0	81.8	80.7	75.7	79.8	80.5

3.3 ROBUSTNESS AND OVERFITTING

In this section, we conduct additional experiments to assess the robustness of our method and potential overfitting. When plenty of clicks are provided for an image, the model may overfit to that image. To explore this, we consider an extreme case where each image receives 50 clicks (TSCA (50), OAIMS (50)). The result is shown in Tab. 8. In this scenario, TSCA (50) exhibits lower performance at the early clicks (e.g., click 1, 3) compared to TSCA(10), indicating potential overfitting to previously seen images. In contrast, our method performs significantly better with 50 clicks compared to 10, and does not exhibit signs of overfitting.

We also examine a challenging scenario, where images from different databases—BraTS T1, BraTS T2, and WMH FLAIR—are randomly shuffled together, with each database contributing 25 images. The result is shown in Tab. 9. Despite substantial domain differences, our method continues to outperform both the ICNN* and TSCA. Notably, while TSCA’s performance approaches that of ICNN*, our method maintains a clear advantage. Removing Post-Interaction adaptation leads to performance drops. Hence our adaptation approach allows clinicians to use a single model that adapts to multiple diseases simultaneously, eliminating the need to manage multiple models.

Because our method uses model predictions as pseudo ground-truth, it is natural to wonder if the process would accumulate errors and corrupt the model over time in scenarios when predictions are

486
487
488
489
490
491

Table 8: Performance on BRATS T1 with (10) or (50) clicks per image. Dice shown at 1, 3, 10, 20, and 50 clicks. Overfitting past images lowers Dice on next image with few clicks (1–3) using TSCA but not our method.

No. Clicks	1	3	10	20	50
ICNN*	22.1	35.8	62.9	78.7	87.1
TSCA(50)	28.9	49.6	75.3	88.4	92.9
TSCA(10)	34.4	51.4	74.0	N/A	N/A
OAIMS (50)	73.9	81.8	89.8	94.3	95.9
OAIMS (10)	61.1	68.9	78.9	N/A	N/A

492
493
494
495
496

bad or the user provides wrong clicks by mistake. We conducted 3 experiments to assess this. First, to evaluate how the method performs when model predictions are of low quality (hence erroneous pseudo ground-truth), we test a scenario with **extreme domain shift**. Specifically, we pretrained the model using only BRATS Flair and apply it on Atlas T1. Results are shown in Table 10 (top). This scenario represents a very large domain gap, where the base interactive model (ICNN*) without online adaptation, achieves very poor initial segmentation: with just 1 localisation click, it achieves only 9.3% Dice. After 3 and 10 clicks, the ICNN* still performs very poorly (12% and 24.3% Dice respectively), although it does improve slightly with each click. We then apply online adaptation to the above model in 3 settings, when only 1, 3, or 10 clicks are allowed. Our method improves performance in all settings, and recovers high 80% Dice when using 10 clicks. To further assess robustness, we make this scenario even more challenging by ordering the images such that **hardest images** (lowest segmentation Dice) are presented first in the sequence. Here, the initial pseudo ground truth of the early images is very poor, with Dice near 0%. Results in Table 10 (bottom) show that performance of our method is comparable to random ordering, indicating that extreme initial failures do not destabilize the model for subsequent images. Finally, we assess robustness to **noisy input**, such as in the case of wrong user clicks. We simulated erroneous clicks by generating clicks in areas that the model assigned correct class, but we assign the opposite class to the click (i.e. ask for wrong class correction). Results in Table 11 show that our online adaptation method improves over a non-adaptive ICNN*, achieving good performance on BRATS T1 even when 40% of clicks are given the wrong class, when first 4 correction clicks per image are given wrong, or when for 40% of images all clicks are given wrong, demonstrating resilience against user errors.

518
519
520
521
522

Table 10: Robustness to pseudo ground-truth of bad quality due to extreme domain shift (top) and “worst case first” ordering (bottom).

No. Clicks	1 click	3 clicks	10 clicks
ICNN* (No Adapt)	9.3	12.8	24.3
TSCA	9.3	40.7	65.6
OAIMS (Ours)	25.6	57.9	80.0
No. Clicks	1	5	10
OAIMS (Random Order)	67.5	82.2	86.0
OAIMS (Worst first)	66.4	81.6	85.3

523
524
525
526
527

4 CONCLUSION

530
531
532
533
534
535
536
537
538
539

This study investigates how to train and adapt an interactive segmentation model for medical imaging to better handle data distribution shifts. We proposed an online adaptation framework that integrates both Post-Interaction and Mid-Interaction approaches, enabling the model to continuously adapt to new data distributions. A Click-Centred Gaussian loss is proposed, which enhances the model’s responsiveness to user inputs. We demonstrate the effectiveness of our method through extensive experiments with diverse distribution shifts. The promising performance underscores the transformative potential of adaptive interactive segmentation in advancing both clinical practice and research applications. The methodology is amenable to other types of user inputs beyond clicks, such as scribbles, and different types of backbone models, which could be explored in future work.

Table 9: Adapting to a database composed of images from BRATS T1, T2, and WMH FLAIR.

No. Clicks	1	5	10
ICNN	50.1	65.6	74.3
TSCA	52.0	67.1	75.3
OAIMS(MI)	52.1	72.1	80.6
OAIMS(PI+MI)	55.5	73.7	81.6

Table 11: Robustness to noisy (wrong) input clicks.

Noise Type	1	5	10	
40% clicks are wrong	ICNN* OAIMS	20.6 67.8	32.9 71.8	43.9 74.6
First 4 clicks wrong on each image	ICNN* OAIMS	N/A N/A	13.3 56.9	43.3 75.1
40% images get only wrong clicks	ICNN* OAIMS	21.0 68.1	40.4 75.2	53.8 76.9

540 REFERENCES

542 Barsegh Atanyan, Levon Khachatryan, Shant Navasardyan, Yunchao Wei, and Humphrey Shi. Continuous adaptation for interactive segmentation using teacher-student architecture. In *Proceedings*
 543 *of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 789–799, 2024.

545 Reza Azad, Ehsan Khodapanah Aghdam, Amelie Rauland, Yiwei Jia, Atlas Haddadi Avval, Afshin
 546 Bozorgpour, Sanaz Karimijafarbigloo, Joseph Paul Cohen, Ehsan Adeli, and Dorit Merhof. Medical
 547 image segmentation review: The success of u-net. *IEEE Transactions on Pattern Analysis*
 548 *and Machine Intelligence*, 2024.

549 Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel Bilello, Evan Calabrese, Errol Colak, Key-
 550 van Farahani, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Sarthak Pati, et al. The rsna-asnr-
 551 miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. *arXiv*
 552 *preprint arXiv:2107.02314*, 2021.

553 Muhammad Naseer Bajwa, Gur Amrit Pal Singh, Wolfgang Neumeier, Muhammad Imran Malik,
 554 Andreas Dengel, and Sheraz Ahmed. G1020: A benchmark retinal fundus image dataset for
 555 computer-aided glaucoma detection. In *2020 International Joint Conference on Neural Networks*
 556 (*IJCNN*), pp. 1–7. IEEE, 2020.

558 Huihui Fang, Fei Li, Junde Wu, Huazhu Fu, Xu Sun, Jaemin Son, Shuang Yu, Menglu Zhang,
 559 Chenglang Yuan, Cheng Bian, et al. Refuge2 challenge: A treasure trove for multi-dimension
 560 analysis and evaluation in glaucoma screening. *arXiv preprint arXiv:2202.08994*, 2022.

561 Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. *Advances*
 562 *in neural information processing systems*, 17, 2004.

564 Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
 565 *Neurocomputing*, 459:249–289, 2021.

567 Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus Maier-
 568 Hein, and Paul F Jaeger. nnu-net revisited: A call for rigorous validation in 3d medical image
 569 segmentation. In *International Conference on Medical Image Computing and Computer-Assisted*
 570 *Intervention*, pp. 488–498. Springer, 2024.

571 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 572 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 573 ings of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.

574 Theodora Kontogianni, Michael Gygli, Jasper Uijlings, and Vittorio Ferrari. Continuous adaptation
 575 for interactive object segmentation by learning from corrections. In *Computer Vision–ECCV*
 576 *2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16*,
 577 pp. 579–596. Springer, 2020.

578 Oleksandr Kovalyk, Juan Morales-Sánchez, Rafael Verdú-Monedero, Inmaculada Sellés-Navarro,
 579 Ana Palazón-Cabanes, and José-Luis Sancho-Gómez. Papila: Dataset with fundus images and
 580 clinical data of both eyes of the same patient for glaucoma assessment. *Scientific Data*, 9(1):291,
 581 2022.

583 Hugo Kuijf, Matthijs Biesbroek, Jeroen de Bresser, Rutger Heinen, Christopher Chen, Wiesje
 584 van der Flier, Barkhof, Max Viergever, and Geert Jan Biessels. Data of the White Matter Hy-
 585 perintensity (WMH) Segmentation Challenge, 2022. URL <https://doi.org/10.34894/AECRSD>.

587 Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
 588 deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3,
 589 pp. 896. Atlanta, 2013.

591 Sook-Lei Liew, Bethany P Lo, Miranda R Donnelly, Artemis Zavaliangos-Petropulu, Jessica N
 592 Jeong, Giuseppe Barisano, Alexandre Hutton, Julia P Simon, Julia M Juliano, Anisha Suri, et al.
 593 A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algo-
 594 rithms. *Scientific data*, 9(1):320, 2022.

594 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 595 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 596 2980–2988, 2017.

597

598 Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in medical
 599 images. *Nature Communications*, 15(1):654, 2024.

600 Fausto Milletari et al. V-net: Fully convolutional neural networks for volumetric medical image
 601 segmentation. In *2016 fourth international conference on 3D vision (3DV)*, pp. 565–571. Ieee,
 602 2016.

603

604 José Ignacio Orlando, Huazhu Fu, João Barbosa Breda, Karel Van Keer, Deepti R Bathula, Andrés
 605 Diaz-Pinto, Ruogu Fang, Pheng-Ann Heng, Jeyoung Kim, JoonHo Lee, et al. Refuge challenge:
 606 A unified framework for evaluating automated methods for glaucoma assessment from fundus
 607 photographs. *Medical image analysis*, 59:101570, 2020.

608

609 Olaf Ronneberger et al. U-net: Convolutional networks for biomedical image segmentation. In *Med-
 610 ical image computing and computer-assisted intervention–MICCAI 2015: 18th international con-
 611 ference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241. Springer,
 612 2015.

613

614 Tomas Sakinis, Fausto Milletari, Holger Roth, Panagiotis Korfiatis, Petro Kostandy, Kenneth
 615 Philbrick, Zeynettin Akkus, Ziyue Xu, Daguang Xu, and Bradley J Erickson. Interactive
 616 segmentation of medical images through fully convolutional neural networks. *arXiv preprint
 arXiv:1903.08205*, 2019.

617

618 Jayanthi Sivaswamy, SR Krishnadas, Gopal Datt Joshi, Madhulika Jain, and A Ujjwaal Syed Tabish.
 619 Drishti-gs: Retinal image dataset for optic nerve head (ohn) segmentation. In *2014 IEEE 11th
 620 international symposium on biomedical imaging (ISBI)*, pp. 53–56. IEEE, 2014.

621

622 Guotai Wang, Maria A Zuluaga, Wenqi Li, Rosalind Pratt, Premal A Patel, Michael Aertsen, Tom
 623 Doel, Anna L David, Jan Deprest, Sébastien Ourselin, et al. Deepigeos: a deep interactive
 624 geodesic framework for medical image segmentation. *IEEE transactions on pattern analysis
 and machine intelligence*, 41(7):1559–1572, 2018.

625

626 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 627 learning: Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine
 628 Intelligence*, 2024.

629

630 Junde Wu, Huihui Fang, Fei Li, Huazhu Fu, Fengbin Lin, Jiongcheng Li, Yue Huang, Qinji Yu,
 631 Sifan Song, Xinxing Xu, et al. Gamma challenge: glaucoma grading from multi-modality images.
Medical Image Analysis, 90:102938, 2023a.

632

633 Junde Wu, Wei Ji, Yuanpei Liu, Huazhu Fu, Min Xu, Yanwu Xu, and Yueming Jin. Medical sam
 634 adapter: Adapting segment anything model for medical image segmentation. *arXiv preprint
 arXiv:2304.12620*, 2023b.

635

636

637 **A APPENDIX**

638

639 **A.1 VISUALIZATION RESULTS**

640

641 Fig. 3 presents the visualization results demonstrating the adaptation performance on the BRATS
 642 dataset. The segmentation map is overlaid in red on the original image. Our OAIS (PI+MI)
 643 method produces segmentations that are closest to the ground truth (GT), with more accurate bound-
 644 aries compared to other methods.

645

646 Fig. 4 illustrates the databases used in our experiments. This visualization helps to better understand
 647 the distribution shifts across different databases and modalities.

648

Fig. 5 illustrates how the predicted segmentation evolves across interaction clicks.

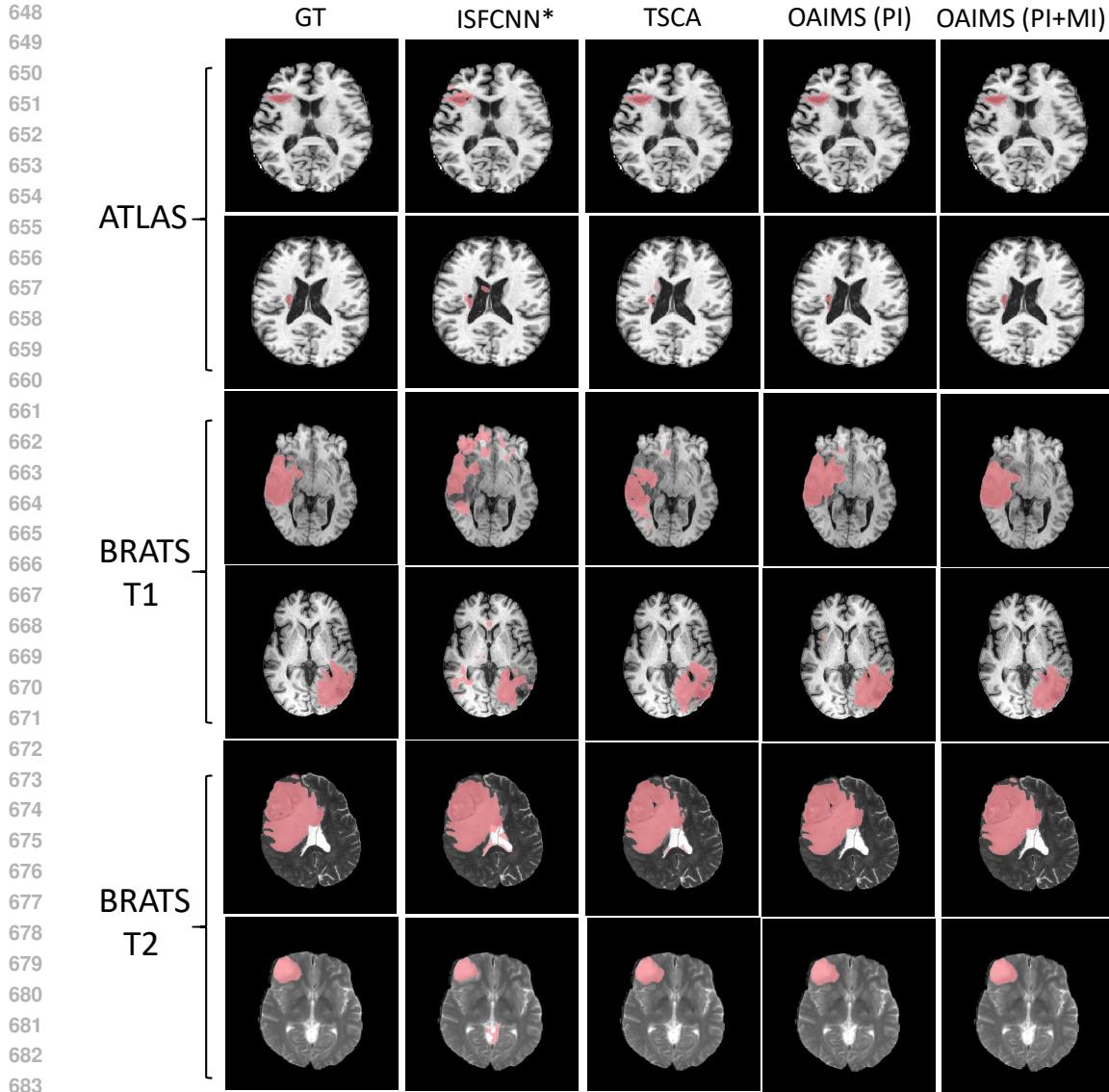


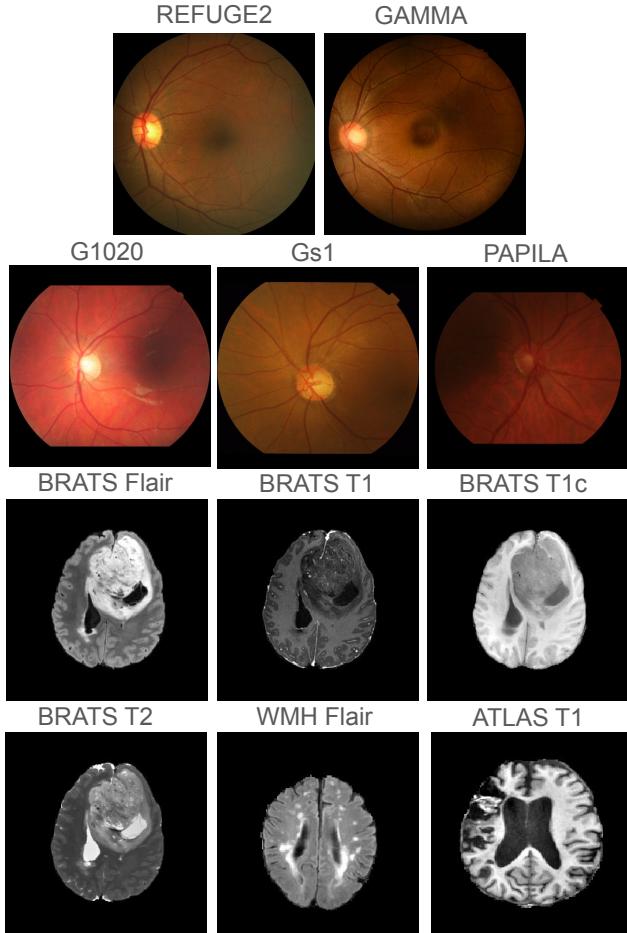
Figure 3: Visualizations on BRATS Databases demonstrating adaptation to different modalities and pathologies (Trained on BRATS Flair for BRATS T1 and BRATS T2, Trained on BRATS Flair/T1/T1c for ATLAS

A.2 DETAILS OF THE SIMULATION PROCESS

To train and evaluate the interactive model, we simulate user interactions with an automatic point-generation procedure that places clicks in incorrectly segmented regions.

During training, we first generate a random click inside the target foreground object as a localization click. Based on the resulting segmentation mask and the ground truth, we identify incorrectly segmented regions with connected components. Each erroneous component is ranked by size, and a random point is generated within each. We then select the first K points from this queue, where K is the desired number of clicks, and feed them into the model simultaneously. In our training, K is randomly sampled for each iteration from a uniform distribution in the range [1, 10].

At inference time, user clicks are simulated iteratively. First, one random click is placed inside the target foreground object. Then, based on the predicted segmentation and the ground truth, a



732
733 Figure 4: Illustration of the databases used. The distribution across different datasets and modalities
734 can be visually observed.

735
736 correction click is placed in the largest erroneous component (including both false positives and
737 false negatives). A new segmentation is generated using all previous clicks, and the process repeats
738 until a total of K clicks is reached.

739 For the simulation process in the Post-Interaction stage, the procedure is similar to training. How-
740 ever, instead of using the real ground truth, this step relies on a pseudo ground-truth mask.
741

742 A.3 EFFECT OF DIFFERENT HYPERPARAMETER SETTINGS

743 In this section, we evaluate the effect of three hyperparameters, α , β , and σ , on the performance of
744 our method. The results are presented in Table 12.

745 We observe that relatively small values of β (e.g., 100) and σ (e.g., 1) lead to noticeable performance
746 drops on the BRATS T1 dataset. This suggests that overly small values can hinder the model's ability
747 to effectively utilize the CCG loss. Therefore, we recommend selecting values greater than 100 for
748 β and greater than 1 for σ . The choice of α also influences performance on BRATS T1, while its
749 impact on WMH is minimal. We do not specifically tune α to achieve the best results on BRATS
750 T1.

751 Overall, performance remains stable in most cases. Note that in our experiments, when comparing
752 with other methods, we did not perform hyperparameter tuning to obtain the best-performing con-
753 figuration for any specific database. This decision was made due to the relatively stable performance
754 of our method across tasks and to better demonstrate its robustness.

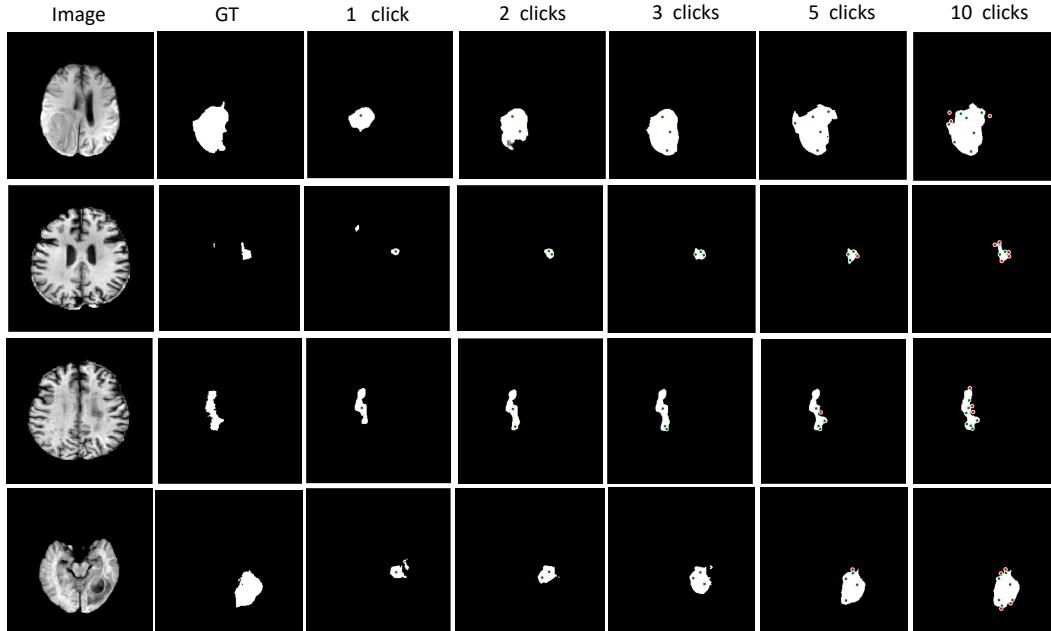


Figure 5: Illustration of how the predicted segmentation from our OAIMS (PI+MI) method evolves as more interaction clicks are provided. The examples are brain MRI images (ATLAS and BRATS T1). From left to right: input image, ground truth, and predictions with 1, 2, 3, 5, and 10 clicks. The results show progressive refinement of the segmentation as more clicks are provided.

Table 12: Dice scores (%) on WMH and BRATS T1 under a 10-click interaction budget. Each value of α , β , and σ is tested in combination with all values of the other two hyperparameters (i.e., $3 \alpha \times 4 \beta \times 3 \sigma$ total combinations). The reported score for a parameter's value is the average over all combinations that include it.

Parameter	Value	BRATS T1 (%)	WMH (%)
α	0.3	85.6	77.7
	0.5	87.0	77.6
	0.7	84.3	78.3
β	100	81.3	77.5
	200	86.9	77.9
	300	87.2	78.1
	400	87.4	78.1
σ	1	81.0	77.2
	3	87.9	78.2
	5	88.1	78.3

A.4 ABLATION STUDY ON PI (10 CLICKS IN TOTAL)

As supplementary information to the main paper, we provide the numerical results of the ablation study of Post-Interaction (PI) adaptation under a budget of 10 clicks. The results are shown in Tab. 13. PI continues to offer substantial performance gains in the early iterations; however, by the final click, its advantage diminishes—WMH still benefits, while other methods do not. We continue to recommend deploying both mechanisms in most situations, with further explanation provided in the main paper.

810
 811 Table 13: Ablation study for PI with a 10-click budget. Dice shown at 1, 3, 10 clicks. PI and MI are
 812 the proposed Post-Interaction process and the Mid-Interaction process of our method.

Dataset	PI+MI			MI		
	1	3	10	1	3	10
BRATS T1	71.2	79.4	88.0	69.1	77.7	87.6
BRATS T1c	70.4	78.9	87.5	68.3	77.9	87.7
BRATS T2	84.9	88.6	93.0	84.6	88.6	93.0
WMH Flair	58.9	68.6	78.9	58.4	68.1	78.0
TBI Flair	55.2	65.6	76.3	53.3	64.4	76.4

820
 821
 822
 823
 824 A.5 DICE SCORE
 825

826 To evaluate segmentation performance, we use the Dice score. It measures the overlap between the
 827 predicted segmentation mask P and the ground truth G , and is defined as:
 828

$$\text{Dice}(P, G) = \frac{2|P \cap G|}{|P| + |G|} = \frac{2TP}{2TP + FP + FN} \quad (6)$$

832
 833 Here, TP , FP , and FN denote the number of true positives, false positives, and false negatives,
 834 respectively. A higher Dice score indicates a greater overlap between the prediction and the ground
 835 truth.

836 The Dice score is particularly well-suited for medical image segmentation, as it emphasizes accurate
 837 delineation of foreground regions—such as lesions—which are often small and sparse. As a result,
 838 we adopt Dice as our evaluation metric.

845
 846 A.6 USE OF LLMs
 847

850 We used a large language model (LLM) only to improve the writing. Specifically, the LLM was
 851 employed to revise some sentences, focusing on grammar and style. The LLM was not used for
 852 generating ideas, searching related work, or contributing to the scientific content of the paper.
 853

854
 855 A.7 ALGORITHMIC DESCRIPTION
 856

857 We here present the algorithmic details of the source training procedure (Algorithm 2) and the test-
 858 time inference/adaptation loop (Algorithm 1).

859 Although Algorithm 1 is formulated with a fixed number of interactions (T) for simplicity, consistent
 860 with the main paper, in clinical practice, the user can provide any number of clicks for each image
 861 until they are satisfied.

864 **Algorithm 1** Online Adaptation for Interactive Segmentation (OAIMS)

865 1: **Input:**

866 2: f : Base interactive Model

867 3: θ^* : Pretrained parameters

868 4: \mathcal{S} : A sequence of images I

869 5: T : Number of user-interaction clicks

870

871 6: $\theta \leftarrow \theta^*$

872 7: **for** $I \in \mathcal{S}$ **do** ▷ Process each image sequentially

873 — **Inference and Mid-Interaction (MI) Adaptation** —

874 8: $t = 1$

875 9: $c_1 \leftarrow \text{LocalizationClick}(I)$ ▷ Get localization click from target foreground object

876 10: $C \leftarrow \{c_1\}$

877 11: $P_1 \leftarrow f(I, C; \theta)$

878 12: **for** $t = 2$ **to** T **do** ▷ User provides new click

879 13: $c_t \leftarrow \text{Getclick}(P_{t-1}, I)$ ▷ User provides new click

880 14: $C \leftarrow C \cup \{c_t\}$

881 15: $P_t^{\text{initial}} \leftarrow f(I, C; \theta)$ ▷ Get P_t^{initial} for updating the model (no gradient calculation)

882 16: $\mathcal{L}_{MI} \leftarrow \mathcal{L}_{DF}(P_{t-1}, P_t^{\text{initial}}) + \beta \mathcal{L}_{CCG}(P_{t-1}, P_t^{\text{initial}}, c_t)$

883 17: $\theta \leftarrow \text{UpdateParameters}(\theta, \mathcal{L}_{MI})$

884 18: $P_t \leftarrow f(I, C; \theta)$

885 19: **end for**

886 20: $P_{final} \leftarrow P_T$ ▷ Final mask after T clicks

887 — **Post-Interaction (PI) Adaptation stage1** —

888 21: $C \leftarrow \{c_1\}$ ▷ Get first click from MI

889 22: $P_1 \leftarrow f(I, C; \theta)$

890 23: $\mathcal{L}_{S1_{PI}} \leftarrow \mathcal{L}_{DF}(P_1, P_{final})$

891 24: $\theta \leftarrow \text{UpdateParameters}(\theta, \mathcal{L}_{S1_{PI}})$

892 — **Post-Interaction (PI) Adaptation stage2** —

893 25: $\hat{C} \leftarrow \text{GenerateClicks}(P_1, P_{final}, T)$ ▷ Generate on each erroneous component (up to T)

894 26: $\hat{P} \leftarrow f(I, \hat{C}; \theta)$

895 27: $\mathcal{L}_{S2_{PI}} \leftarrow \mathcal{L}_{DF}(\hat{P}, P_{final}) + \beta \mathcal{L}_{CCG}(\hat{P}, P_{final}, \hat{C})$

896 28: $\theta \leftarrow \text{UpdateParameters}(\theta, \mathcal{L}_{S2_{PI}})$

897 29: **end for**

898

Algorithm 2 Pretraining the Interactive Model

900 1: **Input:**

901 2: f : Base interactive Model

902 3: $\mathcal{D}_{\text{source}}$: Source (training) dataset (e.g. REFUGE). (I, M_{gt}) : Image and ground-truth mask

903 4: T_{max} : Max number of simulated clicks (e.g. 10)

904

905 5: **for** $(I, M_{gt}) \in \mathcal{D}_{\text{source}}$ **do**

906 6: $c_{loc} \leftarrow \text{SimulateLocalizationClick}(M_{gt})$

907 7: $P_{loc} \leftarrow f(I, \{c_{loc}\}; \theta)$ ▷ Get prediction from localization click

908 8: $E \leftarrow \text{FindErroneousRegions}(P_{loc}, M_{gt})$ ▷ Find all erroneous connected components

909 9: $C_{ranked} \leftarrow \text{RankAndGenerateClicks}(E)$ ▷ Rank components by size, randomly generate one click in each component

910 10: $K \sim \mathcal{U}\{1, T_{\text{max}}\}$ ▷ Sample K from a discrete uniform distribution

911 11: $C \leftarrow \text{SelectFirstM}(C_{ranked}, K)$ ▷ Select the top K error clicks

912 12: $\hat{P} \leftarrow f(I, C; \theta)$

913 13: $\mathcal{L} \leftarrow \mathcal{L}_{DF}(\hat{P}, M_{gt}) + \mathcal{L}_{CCG}(\hat{P}, M_{gt}, C)$

914 14: $\theta \leftarrow \text{UpdateParameters}(\theta, \mathcal{L})$

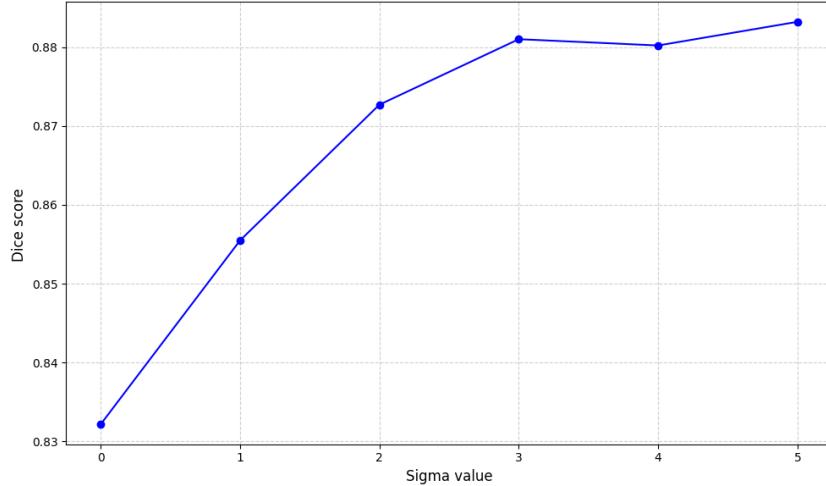
915 15: **end for**

916 16: **return** θ

917

918 A.8 ABLATION STUDY OF σ IN CCG LOSS
919

920 We conducted an ablation study on the BRATS-T1 dataset by varying the standard deviation σ . We
921 evaluated $\sigma \in \{0, 1, 2, 3, 4, 5\}$, where the $\sigma = 0$ case was implemented as applying the CCG loss
922 only on the single pixel. The results are illustrated in Figure 6.



923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Figure 6: Ablation study of the Gaussian parameter σ of CCG Loss on the BRATS-T1 dataset.

As σ increases from 0 to 3, the performance improves significantly, as the model receives more information from surrounding pixels. When σ is large enough (e.g., $\sigma \geq 3$) the method seems robust to the choice of its value, achieving stable performance.

We also observed that for $\sigma = 0$ the adaptation was highly unstable, sometimes resulting in very low performance. For example, over 3 runs (RNG seeds) of the same experiment, the final score was 79.9, 46.9, and 83.2. This instability was only observed for $\sigma = 0$. This is likely because the model can easily overfit a single pixel, which can strongly hinder performance.

A.9 ASSESSING NUMBER OF CLICKS TO REACH TARGET DICE

To further evaluate the clinical efficiency of our method, we measure number of clicks to reach a specified Dice score, which assesses how quickly a user can achieve satisfactory segmentation.

In this experiment, we set a target Dice score of 80% with a maximum of 20 clicks per image. If an image failed to reach the target within 20 clicks, its click count was capped at 20. We compared our proposed method (PI+MI) against the strongest baseline, TSCA, on the BraTS dataset (transferring from Flair to T1, T1c, and T2).

The results are presented in Table 14. Our method requires significantly fewer clicks to reach the target accuracy across all modalities, demonstrating superior efficiency in correcting domain shifts.

Table 14: Average number of clicks required to reach 80% Dice (lower is better), with a maximum of 20 clicks per image

Method	BRATS T1	BRATS T1C	BRATS T2
TSCA	10.60	8.71	3.63
PI+MI (Ours)	4.43	4.59	2.33

A.10 COMPARISON WITH APPLYING UNSUPERVISED LOSSES ON MODEL PREDICTION

Given that our method is based on the idea of using the user-refined model predictions as pseudo-labels, one may wonder if it would be sufficient to simply minimize Cross-Entropy (CE) between

the model prediction and the pseudo-label, a method often used for learning from unlabeled data Lee et al. (2013). Specifically, assume for an input image I , after t corrective clicks by the user, the model with parameters θ_t predicts $p_t \in \mathbb{R}^{H \times W \times K}$ the class-probability maps (output of softmax in our model) and $P_t = \text{argmax}(p_t) \in \mathbb{R}^{H \times W}$ the predicted segmentation. Here, H and W are the height and width of I and these maps, and K the number of classes in the segmentation task. Then, $p_t^k \in \mathbb{R}^{H \times W}$ is the class-probability map for class k , $p_t^k(i, j) \in [0, 1]$ the probability that the pixel with coordinates (i, j) is of class k , and $P_t(i, j)$ the predicted class for the pixel. Then, to optimize model parameters θ_t , this method minimizes for each image the Cross-Entropy loss between predicted class-probabilities p_t and the pseudo-label mask P_t :

$$\mathcal{L}_{\text{CE}} = - \sum_{i,j} \sum_k \mathbb{1}_{[k=P_t(i,j)]} \log p_t^k(i, j), \quad (7)$$

where $\mathbb{1}_{[A]}$ is the indicator function that takes value 1 if A is *True*, i.e. only for k equal to the predicted label) and 0 otherwise.

Another very related method is Entropy-Minimization for learning from unlabeled data Grandvalet & Bengio (2004). Using similar notation as above, the Entropy loss for an image is defined as:

$$\mathcal{L}_{\text{Ent}} = - \sum_{i,j} \sum_k p_t^k(i, j) \log p_t^k(i, j), \quad (8)$$

We experiment with these methods by replacing our own methodology during PI and MI stages instead of our methodology. For PI, we process one image at a time (as for OAIMS) and after T user corrections per image, we obtain the final segmentation predicted by the model $P_{\text{final}} = P_T$ and associated probability maps p_T . We then apply an update to model parameters, similar as in our method, by minimizing one of the two above losses (using P_T as pseudo-label in CE, whereas EM does not require it). We then experiment with using these losses both during MI and PI. In this case, after each user click t , we optimize one of the above losses, and after all T corrections were completed, the losses are also optimized for PI as above.

We performed these experiments based on the Fundus and BRATS datasets. Hyper-parameters of these unsupervised methods were optimized via cross-validation to get optimal performance from them. As shown in Table 15, these losses provide almost no improvement and sometimes even yield worse performance than our non-adaptive backbone model (ICNN*). This is likely because the information gained from unsupervised losses is limited. Our method, OAIMS, outperforms consistently, especially with fewer clicks. When the distribution shift is larger, between BRATS datasets (Table 16), Online learning methods such as IA+SA and our OAIMS outperform unsupervised losses in all cases with much greater difference (5-60% Dice dependent on setting), especially on BRATS T1 and T1c. These experiments show that these unsupervised losses by themselves are not sufficient. Although they take advantage of the corrected model predictions, they do not explicitly use the user clicks. Instead, it is valuable to design frameworks that effectively leverage signal from user interactions to adapt to new data, like our OAIMS framework that explicitly emphasizes areas around user clicks via CCG.

Table 15: Performance on fundus imaging.

No. Clicks	G1020			PAPILA			GSI			GAMMA		
	1	5	10	1	5	10	1	5	10	1	5	10
ICNN*	89.4/77.4	93.1/83.1	95.1/88.0	88.3/60.3	92.6/70.2	94.6/77.1	96.6/82.4	97.2/90.4	97.7/94.1	94.4/83.3	96.3/89.8	97.2/93.3
Entropy-Min PI	89.4/77.2	93.1/83.1	95.0/87.9	88.7/60.4	92.7/70.4	94.9/77.3	96.7/82.5	97.2/90.5	97.7/94.1	94.4/83.5	96.1/89.6	97.2/93.0
Entropy-Min MI+PI	89.7/77.7	93.3/83.0	95.1/87.4	89.6/61.2	93.3/70.4	95.1/76.8	96.6/82.1	97.1/90.0	97.6/93.7	94.5/83.8	96.1/89.7	97.2/93.0
Cross-Entropy PI	89.2/77.4	93.1/83.1	95.1/88.2	88.3/60.3	92.6/70.3	94.8/76.7	96.6/82.6	97.1/90.8	97.6/94.1	94.4/83.5	96.2/89.6	97.1/93.0
Cross-Entropy MI+PI	89.6/77.7	93.3/83.3	95.0/87.4	89.5/61.1	93.1/70.6	95.1/76.8	96.7/83.7	97.1/90.7	97.7/93.9	94.5/83.8	96.2/89.9	97.1/93.1
IA+SA	90.5/77.8	94.3/84.5	96.1/90.3	89.4/61.3	93.3/70.5	95.3/77.6	96.8/83.4	97.4/91.5	98.0/94.8	94.7/84.0	96.3/90.2	97.4/93.9
TSCA	89.9/77.6	94.2/85.0	96.1/90.7	89.6/61.7	94.0/72.2	96.1/79.0	96.9/85.4	97.5/92.9	98.0/95.5	94.6/84.2	96.4/90.7	97.5/94.1
OAIMS (PI+MI)	93.6/82.2	96.4/90.0	97.5/92.7	94.7/73.0	96.5/81.0	97.5/86.2	97.3/89.3	97.8/94.5	98.4/96.5	95.1/85.8	96.7/91.3	97.9/93.9

A.11 EXPERIMENTS ON SOURCE-LIKE DATA

We here conducted additional experiments to evaluate our method’s performance on source-like data, to ensure the adaptation does not degrade performance at the absence of distribution shift.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 16: Performance on different MRI modalities.

No. Clicks	BRATS TI			BRATS T1c			BRATS T2		
	1	5	10	1	5	10	1	5	10
ICNN*	20.7	46.8	62.5	45.4	63.8	75.4	72.1	81.4	85.7
Entropy-Min PI	20.1	48.2	65.6	45.4	65.3	76.3	72.6	82.0	86.5
Entropy-Min MI+PI	13.8	38.1	57.1	42.3	57.8	66.8	70.0	81.2	86.8
Cross-Entropy PI	20.0	49.7	66.0	46.6	65.6	76.7	72.5	82.1	86.6
Cross-Entropy MI+PI	14.0	42.4	61.3	42.5	59.6	68.9	72.0	82.6	87.3
IA+SA	28.6	57.0	70.6	48.3	67.1	78.2	76.5	84.1	87.9
TSCA	34.4	60.9	74.0	50.1	70.2	79.6	77.7	85.8	89.0
OAIMS(PI+MI)	71.2	83.4	88.0	70.4	82.9	87.5	84.9	90.6	93.0

First, we tested the model directly on the exact domain it was trained on (source domain): Train on BraTS Flair (Train set) → Test on BraTS Flair (Test set). In this "no shift" scenario, we want to ensure that the adaptation mechanism does not degrade performance. As shown in Table 17, both our PI and PI+MI variants perform similarly to the non-adaptive baseline ICNN*, demonstrating the stability of our method.

Table 17: Performance on Source Domain (Minor Shift). Trained and Tested on BraTS Flair.

No. Clicks	1	5	10
ICNN*	93.4	95.6	96.4
Ours (PI)	93.4	95.5	96.3
Ours (PI+MI)	93.3	95.8	96.6

Second, we assessed a scenario to see if the model could regain performance on the source domain after adapting to a new domain. We first trained a model on BRATS Flair (train set), then adapted it to a different dataset (TBI Flair), and then applied it back to the original source domain (BraTS Flair). We compare this with performance of our backbone model (ICNN*) without adaptation. The results are shown in Table 18. When OAIMS adapts model parameters to TBI, the middle database, but then we do not allow it to re-adapt to the source data when it's tested on them (No Re-adaptation), it shows a slight drop in performance, especially with 1 click (90.5% vs 93.4%). However, if we allow OAIMS to re-adapt to the source data BRATS Flair via our standard online learning process (OAIMS (Re-adapt)), it recovers its original performance well, even with just 1 click of interaction.

We note that in practice, perhaps the most practical scenario are distribution shifts between training data and the database of deployment. Therefore, we are primarily interested in learning to adapt and perform well on the new domain, whereas continuing to perform well on the training domain is lower priority. However, this experiment shows the flexibility of OAIMS and its effectiveness to re-adapt to the original data easily and effectively.

Table 18: Performance on BraTS Flair after adapting to TBI.

No. Clicks	1	5	10
ICNN*	93.4	95.6	96.4
OAIMS (No Re-adapt)	90.5	94.8	95.7
OAIMS (Re-adapt)	93.5	95.8	96.6