
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

YOU POINT, I LEARN: ONLINE ADAPTATION OF IN-
TERACTIVE SEGMENTATION MODELS FOR HANDLING
DISTRIBUTION SHIFTS IN MEDICAL IMAGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Interactive segmentation uses real-time user inputs, such as mouse clicks, to iter-
atively refine model predictions. Although not originally designed to address dis-
tribution shifts, this paradigm naturally lends itself to such challenges. In medical
imaging, where distribution shifts are common, interactive methods can use user
inputs to guide models towards improved predictions. Moreover, once a model is
deployed, user corrections can be used to adapt the network parameters to the new
data distribution, mitigating distribution shift. Based on these insights, we aim
to develop a practical, effective method for improving the adaptive capabilities
of interactive segmentation models to new data distributions in medical imaging.
Firstly, we found that strengthening the model’s responsiveness to clicks is im-
portant for the initial training process. Moreover, we show that by treating the
post-interaction user-refined model output as pseudo-ground-truth, we can design
a lean, practical online adaptation method that enables a model to learn effectively
across sequential test images. The framework includes two components: (i) a
Post-Interaction adaptation process, updating the model after the user has com-
pleted interactive refinement of an image, and (ii) a Mid-Interaction adaptation
process, updating incrementally after each click. Both processes include a Click-
Centered Gaussian loss that strengthens the model’s reaction to clicks and en-
hances focus on user-guided, clinically relevant regions. Experiments on 5 fundus
and 4 brain-MRI databases show that our approach consistently outperforms exist-
ing methods under diverse distribution shifts, including unseen imaging modalities
and pathologies. Code and pretrained models will be released upon publication.

1 INTRODUCTION

Medical image segmentation facilitates disease analysis, diagnosis, and treatment. Deep-learning
methods have driven notable advances in automated medical image segmentation (Azad et al., 2024).
However, a major challenge is that the training-data distribution often differs from the test-data dis-
tribution—for example, images may be acquired on different scanners—severely hindering model
performance. Although models lack knowledge about unseen test data distributions, human users
(such as clinicians) are often still able to segment images in the target distribution with reason-
able accuracy. Hence, their knowledge can be leveraged to guide models. Can we design an AI
framework that enables models to be guided by human users in an easy, immediate, and continuous
manner, so that they can effectively adapt to distribution shifts? Although not originally developed
for solving data distribution shift problems, a class of deep learning models known as interactive
segmentation models is well suited to this challenge.

Interactive segmentation models allow users to provide prompts, such as clicks, scribbles, or bound-
ing boxes, which inform the model’s prediction. A common strategy is to encode user prompts as
additional input channels in convolutional networks, as seen in models like DeepIGeoS (Wang et al.,
2018) and Interactive FCNN (Sakinis et al., 2019). More recent approaches, such as SAM (Kirillov
et al., 2023), MedSAM (Ma et al., 2024), and Med-SA (Wu et al., 2023b), instead employ Trans-
formers to encode user prompts. Both approaches have demonstrated strong performance on natural
and medical images, highlighting the usefulness of incorporating user guidance. However, they do
not include mechanisms for adapting model parameters from user corrections.
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Figure 1: Method overview. For Pretraining, the model is trained with simulated clicks, provided
as additional input channels besides the image. During Inference and adaptation, images arrive
sequentially. For each image, the user iteratively provides T clicks to correct the segmentation, until
the final prediction Pfinal =PT is obtained. Mid-interaction adaptation: After each corrective click
ct, the model’s output P initial

t is used as pseudo-label compared with the pre-correction output Pt−1

via the DF and CCG losses, to update model parameters. The updated model then produces refined
output Pt, which is then shown to the user, ending iteration t. Post-interaction adaptation: Once
the final corrected segmentation PT is obtained, it is used as pseudo-label to first fine-tune the model
using a localization click (Stage 1), and then to fine-tune using multiple correction clicks, generated
from areas where the prediction of Stage 1 disagrees with PT (Stage 2).

Our work explores how to leverage user guidance in interactive segmentation to improve perfor-
mance under distribution shift most effectively. We identify that this requires complementary
learning mechanisms for the pre-deployment training and post-deployment adaptation. For pre-
deployment stage, we find that adding an optimization objective that enforces model predictions to
align with user feedback in areas around given clicks improves performance under distribution shift.

We couple this with post-deployment learning mechanisms. Post-deployment adaptation methods
for interactive segmentation optimize a model for the specific data distribution encountered af-
ter deployment using information from user prompts. They use Online Learning (Hoi et al., 2021)
to update model parameters after each test image is processed sequentially 1. Prior work on online
adaptation for interactive medical image segmentation is limited. An early related method is IA+SA
(Kontogianni et al., 2020), originally developed for natural images, which combines independent
image-level adaptation (IA) and image-sequence adaptation (SA). Another recent related method,
TSCA (Atanyan et al., 2024), achieves further improvements in performance after online adaptation.
These methods leverage user corrections through sparse cross-entropy or focal loss, applied only to
the pixels clicked by the user. This focuses optimization narrowly on a small number of pixels while
ignoring surrounding areas. Moreover, additional regularizers are often required to prevent overfit-
ting to the few labeled pixels, increasing model complexity and the number of hyper-parameters that
must be tuned.

Our work is based on the insight that, in a real-world interactive segmentation workflow where the
user provides clicks to correct a model output, the segmentation predicted at the end of interac-
tions should have sufficient quality to serve as pseudo ground-truth. We propose a Post-Interaction
adaptation method based on using that final prediction as optimization target and show it results in
effective adaptation without requiring complex regularizers. Furthermore, we generate artificial
correction clicks from the pseudo-ground-truth mask and use them with the Click-Centered Gaus-
sian (CCG) loss that we introduce to strengthen the model’s response around clicks under the new
data distribution. This improves performance in all tested distribution-shift scenarios.

1Adaptation in this context targets only the distribution seen post-deployment, thus does not need to handle
Catastrophic Forgetting of past distributions as Continual Learning (Wang et al., 2024)
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We further combine this with Mid-Interaction Adaptation, which adapts the model weights after
each user click. We again rely on the segmentation mask predicted by the model and optimize the
CCG loss, which emphasizes the region around the click. Unlike previous works that focus only
on the clicked pixels for such adaptation, our method leverages the whole corrected segmentation
mask together with the CCG loss, thereby optimizing over the greater surrounding region, improving
adaptation performance.

We term the proposed method OAIMS (Online Adaptation for Interactive Medical-image Segmen-
tation). Experiments under distribution shift across 5 fundus and 4 brain-MRI databases demonstrate
that by using solely the proposed Post-Interaction method already results in adaptation performance
that compares favorably to SOTA adaptation methods. When this is combined with Mid-Interaction
adaptation, OAIMS consistently outperforms all previous methods, especially on brain MRI where
Dice score improvements exceed 10%. Ablation studies show that the proposed CCG loss is con-
sistently useful when employed in all 3 learning processes (pretraining, mid- and post- adaptation).
Further analysis also shows strong robustness to settings that may cause overfitting to other methods.

2 METHODS

2.1 OVERVIEW: INTERACTIVE SEGMENTATION FRAMEWORK

We here provide an overview of the whole process, shown in Fig. 1 , with the detailed algorithm of
the process provided in the Appendix A.7. For simplicity, we describe it for binary segmentation,
but it also applies for multiple classes, as shown in Experiments.

We define the interactive model as f(I, C; θ), where I is the input image, C is the set of user
clicks, and θ are model parameters. A click is labeled either as foreground or background class.
A foreground click indicates that the specific pixel belongs to the target object, background click
indicates that it does not. We train the model on a source database with simulated clicks C. During
inference, the model receives a sequence of images {I1, I2, . . . , IN} from another database. For a
single image In separately, the user (or simulated user) first provides a localization click c1 to trigger
the interactive process. The localization click used to start interaction is simply a foreground click
placed anywhere inside the target foreground object. The model predicts initial segmentation Pn

1 =
f(In, c1; θ). Afterwards, multiple iterations of interactions occur. At iteration t the user places a
new click ct in a region where prediction Pn

t−1 is wrong. The click set is updated Ct = Ct−1∪{ct},
where C1 = {c1}. The model then predicts Pn

t = f(In, Ct; θ). Next interaction t+ 1 then occurs,
and so forth. After T interactions we obtain the final prediction Pn

T , which we call Pn
final. While

here T is given a set value for simplicity, in a real-world setting T would be as much as user requires
to be satisfied with segmentation output. The whole process is then repeated for the next image In+1

in the sequence. For notational simplicity, we omit the image index n in most formulas below.

During inference, we perform two types of online adaptation. The Post-Interaction adaptation is a
two-stage method that updates the model after the iterative, interactive corrections for a single image
have finished and the model has produced final segmentation Pfinal. This improves performance for
subsequent images. Mid-Interaction adaptation happens after each interaction. It takes place
before the Pfinal is obtained. This strategy benefits both the current and subsequent images.

2.2 PRETRAINING THE INTERACTIVE MODEL

The base interactive model is a U-Net (Ronneberger et al., 2015) modified to accept both the image
and click prompts as input. We use the same strategy as ICNN (Sakinis et al., 2019), where we set
2 guidance maps that encode foreground and background clicks, respectively, each with the same
spatial dimensions as I . The raw guidance maps are zero everywhere except at clicked pixels; we
then apply a Gaussian smoothing kernel and normalize each map to [0, 1]. These maps are concate-
nated with the image along the channel dimension. The concatenated tensor (image + foreground
map + background map) is input to the model. We train the base model using simulated clicks and
a compound loss: Dice–Focal (Eq. equation 4) and CCG Loss (Eq. equation 3). The CCG Loss
proposed herein strengthens the model’s response to user clicks. Combining Dice with Focal loss
is beneficial in medical segmentation to handle the imbalanced number of background / foreground
pixels. See Appendix A.2 for details regarding click simulation. We note that the backbone model,
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here a Unet for its proven performance and computational efficiency Isensee et al. (2024), could be
replaced with other architectures, since our online adaptation method is model-agnostic.

2.3 CLICK-CENTERED GAUSSIAN (CCG) LOSS

An interactive model should react to user clicks and update the surrounding region accordingly. We
propose a Click-Centered Gaussian Loss to strengthen the model’s reaction to clicks by penalizing
wrong predictions near each click, weighted by a Gaussian kernel. This loss is employed in all three
stages, pre-training, Post-Interaction adaptation, and Mid-Interaction adaptation.

Let c denote a user click at pixel (i′, j′) with class label yi′,j′ ∈ {0, 1}. For any pixel (i, j) we define
the Gaussian weight and an indicator

Gc(i, j) =


exp

(
− (i−i′)2+(j−j′)2

2σ2

)
, |i − i′| ≤ 3σ and |j − j′| ≤ 3σ

0, otherwise,
(1)

Ic(i, j) =

1, P (i, j) = yi′,j′ ,

0, otherwise.
(2)

P denotes the ground-truth mask (used for pretraining) or pseudo ground-truth mask (used for
adaptation), and P (i, j) is its pixel value at coordinates (i, j).

Given the current prediction P̂ , the CCG Loss is

LCCG =

∑
c∈C

∑H−1
i=0

∑W−1
j=0

Gc(i, j) Ic(i, j) CE
(
P̂ (i, j), P (i, j)

)
|C|HW

(3)

where C is the set of clicks for the current sample, H ×W is the image size, and CE(·, ·) denotes
cross-entropy loss. The penalty is applied only to pixels that should share the same class as the
click using the indicator Ic(i, j). For instance, given a foreground click, the loss only applies to
surrounding pixels that are foreground in the ground truth mask.

Why not apply the loss to all surrounding pixels? Each click only serves to change the surround-
ing pixels to a specific target class. The click does not provide information for clusters of pixels
belonging to a different class. Applying extra penalties to pixels annotated as another class in the
ground truth may cause the model to overfit to specific regions or images, ultimately degrading
overall performance when facing distribution shifts or performing online learning.

2.4 ONLINE ADAPTATION

We now describe the online adaptation process, which includes Post-Interaction and Mid-Interaction
adaptation phases. All model parameters are updated in all phases.

Post-Interaction Adaptation: This process updates the model after a user has completed correcting
the segmentation of an image I using a set CT of T clicks, resulting to final segmentation mask
Pfinal =PT = f(I, CT , θ). The key assumption is that Pfinal after the user finished their corrections
is of “good enough” quality to serve as pseudo ground-truth mask for updating the model. In real-
world practice this is rather easy to ensure, if we only adapt based on segmentations for which
the user confirmed that the interactions led to satisfying output. Even if Pfinal is imperfect, it still
provides new information from users to update the model’s knowledge.

The user interaction starts with a localization click. We therefore naturally split the post-interaction
updates into: (i) Fine-tune with an initial localization click as input; (ii) Fine-tune with correction
clicks as input.

Stage 1 – Fine-tune with a Localization Click: To enhance the model’s ability to make a good
initial segmentation on the new data, we first fine-tune it with one localization click c1 as input,
given by the user in the previous inference step. Given c1, we obtain P1 = f(I, c1, θ). We then
update the model by applying Dice–Focal (DF) loss (Milletari et al., 2016; Lin et al., 2017) to
penalize deviations of P1 from the user-corrected mask Pfinal, where

LDF = (1 − α)LD + αLF . (4)

4
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LD, LF and α are the Dice loss, Focal loss, and a weighting hyper-parameter respectively. Only
one Gradient Descent update is performed for each image using Eq. 4.

Stage 2 – Fine-tune with Multiple Correction Clicks: To improve the model’s ability to leverage
correction-clicks, we input a set of artificial correction-clicks Ĉ, obtain model output P̂ =f(I, Ĉ, θ)
and update the model using Pfinal as target. It is not appropriate to reuse the user’s original correction
clicks CT , as they were already used to produce Pfinal = f(I, CT , θ) –they would result in P̂ being
identical to Pfinal and hence trivial updates. Instead, we generate a set Ĉ of clicks by comparing
the Stage 1 output P1 with Pfinal, locate false-positive and false-negative regions, and generate one
artificial click in each erroneous connected component (up to T clicks), without extra human input.
These newly generated clicks Ĉ are fed to the model, yielding new prediction P̂ . We then apply the
proposed CCG loss, along with Dice–Focal loss to penalize deviations of P̂ from Pfinal for further
guidance. The total loss is:

Ltotal = LDF + β LCCG. (5)

The CCG loss ensures the model reacts to each click in its surrounding region during adaptation,
which to our knowledge, no previous work addresses explicitly.

Mid-Interaction Adaptation: Besides Post-Interaction adaptation, we can also update the model
after each user click. In this case, the updated parameters obtained after each click determine the
next prediction, so the update not only improves segmentation of the following images but also of
the current image. This in turn helps achieve a high quality Pfinal after all T interactions, which
facilitates effective Post-Interaction adaptation afterwards, thus complementing and enhancing it.

We again leverage the idea of using as pseudo ground truth the model’s output after correction by a
user click. Let Pt−1 = f(I, Ct−1, θt−1) be the prediction after t−1 clicks. When the next corrective
click ct is given, we obtain P initial

t = f(I, Ct, θt−1). We then optimize CCG plus Dice–Focal loss
(Eq. 5) to penalize differences between Pt−1 and P initial

t , using Pt−1 as the prediction and P initial
t as

pseudo ground-truth. This formulation leverages the additional information induced by ct to the new
state (t) in comparison to the previous state (t− 1), to optimize model parameters. Here, after each
user click, the loss LCCG is applied to the latest click ct. After the model parameters are updated
to θt, the model processes Ct again and produces Pt = f(I, Ct, θt). Pt is shown to the user (or
simulator) to get the next click and serves as prediction for the next update. The process is repeated
for each of the T user clicks, until final prediction Pfinal=PT is obtained. Finally, Post-Interaction
adaptation on that image is applied.

The pseudo ground truth P initial
t in Mid-Interaction adaptation is not perfect, so the CCG loss is

very important. It helps the model to concentrate learning on regions close to the clicks, which are
the most valuable and trustworthy areas. The CCG loss is not intended to strengthen the model’s
reaction here, because the ct is not used for obtaining Pt−1.

3 EXPERIMENTS

Databases: We evaluate our method on two types of data. Fundus imaging: We use 5 public
databases: REFUGE2 (Orlando et al., 2020; Fang et al., 2022), G1020 (Bajwa et al., 2020), GS1-
Drishti (Sivaswamy et al., 2014), GAMMA (Wu et al., 2023a), and PAPILA (Kovalyk et al., 2022).
They are 2D RGB images acquired at different clinics with different scanners, hence each represents
a different distribution. We perform multi-class segmentation {0: Background, 1: Outer-ring, 2:
Cup}. We compute evaluation metrics on Cup and Disc, where Disc is the union of Outer-ring and
Cup, as common in literature (Orlando et al., 2020). Unless stated otherwise, we treat REFUGE2
as the source database on which we pretrain the interactive model. We treat other databases as
different target distributions for adaptation and evaluation. MRIs of Brain Lesions: We use 4
databases. Each contains a different type of pathology and some contain multiple MRI modalities:
BRATS2023 - Glioma, with Flair, T1, T1c, T2 modalities (Baid et al., 2021); ATLAS v2.0 - Stroke,
with T1 modality (Liew et al., 2022); WMH - white matter hyperintensities, with Flair and T1 (Kuijf
et al., 2022); TBI - Traumatic Brain Injuries, with Flair and T1. TBI is the only non-public data we
use. Each database is acquired from a different clinic, with different scanner. Each database and
modality can therefore be regarded as a different data distribution. Although the MRI scans are
3D images, we test the models using 2D slices, by selecting the slice with the largest lesion area
per case. For multi-class databases (BRATS, TBI), we merge all lesion classes into one label, and
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Figure 2: Dice-score performance for automatic and interactive models. All networks, except the
in-distribution baseline, are trained on REFUGE (fundus) or BRATS-FLAIR (brain MRI). The x-
axis represents the number of clicks. Horizontal lines mark automatic performance of automatic
models in cross-distribution and in-distribution settings. Curves show the interactive segmentation
model with and without the CCG loss; clicks significantly improve performance in all test cases, with
the CCG loss providing additional gains, especially for large distribution gaps (e.g., BRATS-T1 ).

perform binary classification (healthy tissue VS lesion). We split BRATS into 1002 training cases
and 249 test cases. Unless stated otherwise, we pre-train on the train split of BRATS using the Flair
modality. We then use the other modalities of BRATS’s test split, and all other databases, as the
target distributions for adaptation and evaluation. All interactive models are trained with up to 10
simulated clicks per image, unless stated otherwise.

3.1 INTERACTIVE SEGMENTATION UNDER DISTRIBUTION SHIFT

We start with experiments that test the performance of the base interactive model under
data-distribution shift, without any adaptation. We also assess if the proposed CCG loss helps an
interactive segmenter to handle distribution shifts. We consider 2 types of distribution shifts. The
first is across fundus databases. We consider REFUGE as the source distribution, and other fundus
databases as target distributions. The second is across BRATS modalities. We consider BRATS
FLAIR as the source distribution, and other BRATS modalities as target distributions.

Four models are compared for each of the 2 settings: (1) Automatic (non-interactive) U-Net (same
backbone as the interactive model) trained on the source database, and applied to each of the target
databases (cross-distribution); (2) Automatic model trained on the target database and applied to
the target database (in-distribution). This is to quantify performance on target, without influence of
distribution shift; (3) Interactive segmentation model trained on the source database without CCG
loss, applied to each target database; (4) Similar to (3) but pretraining also uses CCG loss. Results
are shown in Fig.2. We see a large difference between in-distribution and cross-distribution per-
formance of automatic methods, across all settings, due to distribution shifts between source and
target data. Nonetheless, ten clicks with the interactive segmentation model largely close the gap,
confirming that interactive segmentation remains effective under strong shifts. Adding the CCG loss
during pretraining yields improvements in most settings. This is because the CCG loss enforces the
model to depend more on user input when given, signal unrelated to distribution shift, and less on
the image signal where the shift manifests.

3.2 ONLINE ADAPTATION

We then evaluate our online adaptation methods, including Mid-Interaction and Post-Interaction
adaptation. For all following experiments, during online adaptation, a sequence of images is input
to the model. Each image is corrected through T iterations (one click per iteration, T = 10 by
default). For every image, the Dice score is calculated with the prediction mask at each iteration
t after mid-interaction adaptation is performed in that iteration. We measure average Dice score
achieved for each image in the image sequence after 1, 5, and 10 interactions. The adaptation
methods update the model after getting the segmentation result after each click and each image.
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Table 1: Performance on fundus imaging (average Dice, %). Each image receives 10 clicks; the
base interactive model is trained on REFUGE. Each cell reports Disc/Cup Dice at 1, 5, and 10 clicks.
While ICNN∗ and Med-SA are non-adapting models, the other methods perform online adaptation.
PI is our Post-Interaction adaptation strategy. PI+MI combines the Post-Interaction with the Mid-
Interaction strategy.

G1020 PAPILA GS1 GAMMA
No. Cl 1 5 10 1 5 10 1 5 10 1 5 10
ICNN* 89.4/77.4 93.1/83.1 95.1/88.0 88.3/60.3 92.6/70.2 94.6/77.1 96.6/82.4 97.2/90.4 97.7/94.1 94.4/83.3 96.3/89.8 97.2/93.3
Med-SA 72.2/56.1 75.3/58.6 75.6/58.6 52.5/34.5 56.1/36.7 56.7/36.7 88.6/61.5 89.6/67.0 89.6/67.6 89.8/76.2 90.0/77.5 90.0/77.5
IA+SA 90.5/77.8 94.3/84.5 96.1/90.3 89.4/61.3 93.3/70.5 95.3/77.6 96.8/83.4 97.4/91.5 98.0/94.8 94.7/84.0 96.3/90.2 97.4/93.9
TSCA 89.9/77.6 94.2/85.0 96.1/90.7 89.6/61.7 94.0/72.2 96.1/79.0 96.9/85.4 97.5/92.9 98.0/95.5 94.6/84.2 96.4/90.7 97.5/94.1
PI 93.5/81.9 95.9/88.5 97.0/92.2 94.1/73.0 96.1/80.0 97.0/85.8 97.3/89.5 97.7/94.1 98.2/95.7 95.3/85.9 96.5/91.4 97.5/94.1
PI+MI 93.6/82.2 96.4/90.0 97.5/92.7 94.7/73.0 96.5/81.0 97.5/86.2 97.3/89.3 97.8/94.5 98.4/96.5 95.1/85.8 96.7/91.3 97.9/93.9

Table 2: Performance (Dice%) on different MRI modalities.
BRATS T1 BRATS T1C BRATS T2

No. Clicks 1 5 10 1 5 10 1 5 10
ICNN* 20.7 46.8 62.5 45.4 63.8 75.4 72.1 81.4 85.7
Med-SA 23.4 33.4 35.7 38.7 47.0 49.2 75.7 78.8 79.2
IA+SA 28.6 57.0 70.6 48.3 67.1 78.2 76.5 84.1 87.9
TSCA 34.4 60.9 74.0 50.1 70.2 79.6 77.7 85.8 89.0
PI 61.1 72.4 78.9 64.3 74.7 80.4 82.5 88.1 90.9
PI+MI 71.2 83.4 88.0 70.4 82.9 87.5 84.9 90.6 93.0

We set α = 0.7 and β = 200, with σ = 3 in CCG loss, found adequate in preliminary experiments.
The effect of different hyperparameter settings can be seen in Appendix A.3. We implement a base
interactive model we denote as ICNN∗, using a U-NET with the interactive method proposed by
ICNN (Sakinis et al., 2019), and trained with our CCG loss. We implement IA+SA (Kontogianni
et al., 2020) and TSCA (Atanyan et al., 2024) using the same pretrained base interactive model
(with CCG loss) as our method for fair comparison. For all online adaptation methods, all model
parameters are updated during adaptation. In addition, we include a SAM-based interactive medical
image segmentation model, the Medical SAM Adapter (Med-SA) (Wu et al., 2023b), which is fine-
tuned on the source data and frozen during testing (target data).

Evaluation on Fundus data. We pretrain the models on REFUGE as the source distribution, for
multi-class segmentation. We then adapt and evaluate using each of the 4 other fundus databases
separately as target distributions. Tab. 1 shows the average Dice for both disc and cup. On G1020
and PAPILA, where the data-distribution shift is large, our fast Post-Interaction method outperforms
previous methods—especially on cups (disc segmentation is nearly perfect for most models and
thus hard to improve)—and all adaptation approaches surpass the frozen base model. On GS1
and GAMMA, where the shift is small, our Post-Interaction method remains comparable or better.
Using only the Post-Interaction adaptation, which requires two back-propagations, already surpasses
previous methods that need more than ten back-propagations. Adding the Mid-Interaction adaptation
gives slightly better results in most cases. The improvement becomes much more significant when
facing large data-distribution shifts in the brain-MRI databases.

Evaluation on MRI Modalities: We here adapt our model to scenarios with larger distribution
shifts – between different MRI modalities. The model is initially trained using the FLAIR scans of
the training split. It is then adapted and evaluated on T1, T1c, and T2 scans of the test split (separate
experiment per modality). As shown in Tab. 2, all online-adaptation methods outperform the base
interactive model, ICNN∗. Largest improvements shown in T1. Among online adaptation methods,
our approach surpasses TSCA and IA+SA even with only Post-Interaction adaptation, especially
when few clicks are given. Including Mid-Interaction adaptation yields even greater gains.

Adapting to Different Brain Pathologies: In addition, we test our model across different brain
pathologies. We pretrain 2 models, one on BraTS Flair, and one on a combination of Flair/T1/T1c.
We then adapt and evaluate the first on TBI-Flair and WMH-Flair, and the second on TBI-T1 and
ATLAS-T1. Results are shown in Tab. 3. Even in these challenging settings, online-adaptation meth-
ods significantly boost performance, with our approach outperforming previous methods on all tasks.
For TBI and WMH on FLAIR, our Post-Interaction method achieves results comparable to TSCA
after 10 clicks but attains higher dice scores with fewer clicks. After adding Mid-Interaction adapta-
tion, our method achieves significantly better results.For TBI-T1 and ATLAS, Post-Interaction alone
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Table 3: Performance (Dice%) on different brain pathologies.
Trained on BRATS (Flair) Trained on BRATS (Flair, T1, T1c)

TBI Flair WMH Flair TBI T1 ATLAS T1
No. Clicks 1 5 10 1 5 10 1 5 10 1 5 10
ICNN* 49.9 64.1 69.6 47.9 61.2 67.6 42.0 49.3 55.3 40.6 46.8 52.1
Med-SA 43.5 47.9 48.5 52.6 60.0 61.5 34.0 41.3 43.1 35.7 42.4 43.9
IA+SA 50.6 66.4 73.9 49.4 64.2 72.0 44.5 52.7 59.8 43.4 53.9 62.6
TSCA 52.7 66.1 73.7 52.8 66.7 72.7 44.4 55.8 63.9 43.4 55.7 64.0
PI 53.8 68.8 73.6 53.7 66.7 72.3 47.7 61.1 68.0 62.7 77.0 81.8
PI+MI 55.2 69.9 76.3 59.0 73.0 78.9 47.7 67.0 74.8 66.4 82.2 86.0

Table 4: Adapting with maximum 5 or 3 clicks per image.
5 clicks 3 clicks
BRATS TBI WMH TBI ATLAS

Method T1 T1c T2 Flair Flair T1 T1
ICNN* 46.8 63.8 81.4 58.9 55.6 45.8 44.6
TSCA 62.9 69.0 86.0 61.9 59.5 52.9 51.4
PI 71.2 72.8 87.4 62.5 61.2 52.6 68.4
PI+MI 80.4 80.5 90.3 65.3 64.3 54.6 73.3

significantly outperforms previous methods, and Mid-Interaction further improves performance. Al-
though the pseudo ground truth in early iterations is suboptimal, as shown in the table (low Dice
score for 1 click), PI+MI can still learn from it and achieve higher scores.

We also observe that in all three tables, TSCA performs better than IA+SA, consistent with the pre-
vious studies (Atanyan et al., 2024). Thus, we compare only with TSCA in subsequent experiments
for simplicity. Furthermore, we observe that in most cases, Med-SA performs significantly worse
than the base interactive model, ICNN, across all three tables, especially after 10 points. Therefore,
we do not employ the computationally expensive SAM-based model further.

Adapting with fewer allowed corrections: All previous experiments used T = 10 maximum
clicks for correction of each image. However, a method should ideally also perform well with fewer
maximum performed corrective interactions. Here, we test our online-adaptation methods on brain
MRI using maximum T = 3 or 5 clicks for interactive correction of each image. This also assesses
the capability of our method to adapt using a less optimal pseudo ground-truth. Tab. 4 shows results
using 5 or 3 clicks max per image, under the same experiment settings as Tab. 2 and Tab. 3. Even with
fewer clicks, online-adaptation methods perform significantly better than the frozen model ICNN∗.
Our Post-Interaction (PI) adaptation continues to outperform previous methods in most cases. The
addition of Mid-Interaction (PI+MI) further improves results. Although the model output after 3/5
clicks may be suboptimal, learning from it as pseudo ground-truth remains effective.

Computational latency: We evaluated the computational latency of our method to assess its prac-
ticality. On an NVIDIA A5000 GPU, updates are negligible (0.05s for MI; 0.09s for PI). Crucially,
even on a CPU, latencies remain imperceptible (0.25s for MI; 0.41s for PI). This ensures a smooth
workflow, confirming that our simple, effective design is well-suited for real-world application.

Table 5: Ablation study by including different terms in PI and MI, after 1, 5, 10 clicks. CCGLMI
and DFLMI represent the Mid-Interaction adaptation. CCGLPI and DFLPI represent the stage 2 of
the Post-Interaction adaptation. S1PI represent the stage 1 of the Post-Interaction adaptation.

Loss terms G1020 (Cup) ATLAS BRATS T1 BRATS T2
DFLMI CCGLMI DFLPI CCGLPI S1PI 1 5 10 1 5 10 1 5 10 1 5 10
✓ ✓ ✓ ✓ ✓ 82.2 90.0 92.7 66.4 82.2 86.0 71.2 83.4 88.0 84.9 90.6 93.0
– ✓ ✓ ✓ ✓ 82.1 88.9 93.0 65.9 82.0 85.8 69.4 81.9 86.8 84.3 90.4 92.8
✓ – ✓ ✓ ✓ 81.5 87.0 90.0 65.2 80.1 83.8 42.3 46.6 48.9 84.6 90.4 92.6
– – ✓ ✓ ✓ 81.9 88.5 92.2 62.7 77.0 81.8 61.1 72.4 78.9 82.5 88.1 90.9
– – ✓ – ✓ 82.2 87.6 90.6 58.4 66.2 69.2 60.6 71.7 76.8 82.6 88.1 90.5
– – – ✓ ✓ 81.7 86.8 89.6 60.7 74.7 79.8 55.7 66.3 72.1 81.7 87.3 89.9
– – – – ✓ 81.6 87.7 91.4 59.0 73.0 78.7 48.6 61.3 67.9 80.9 86.4 89.4

Ablation Study: To evaluate the benefit of each component of our method, we conduct an ablation
study on each term of our online adaptation method. The results are shown in Tab. 5. Dice scores
are reported on four target databases: G1020 (cup), ATLAS, BraTS-T1, and BraTS-T2. The source
databases are as follows: REFUGE2 for G1020 (cup), a combination of BraTS Flair/T1/T1c for
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ATLAS, and BraTS Flair for both BraTS-T1 and BraTS-T2. The source-target pairs are consistent
with previous experiments. The ablation terms are divided into two groups: PI (Post-Interaction
adaptation) and MI (Mid-Interaction adaptation). S1PI is the first stage of the Post-Interaction
adaptation approach. DFLPI and CCGLPI are the second stage of the Post-Interaction adapta-
tion processes with the Dice-Focal loss or Click-Centered Gaussian loss. DFLMI and CCGLMI
are the Mid-Interaction adaptation processes with the Dice-Focal loss or Click-Centered Gaussian
loss. Overall, the ablation study confirms the contribution of each component and stage in both
the Mid-Interaction and Post-Interaction approaches. The two loss terms should be used together
in each process. For example, on the challenging BraTS T1 dataset where tumor boundaries are
not well defined, performing MI solely with Dice-Focal loss can cause the model to learn incorrect
information, as segmentation errors often extend beyond cancer boundaries. Adding the CCG loss
effectively mitigates this issue by focusing learning on the corrected areas.

We have seen that MI adds benefits on top of PI. But does the opposite also hold? We evaluate
whether adapting with PI offers benefits when MI is already performed. With a budget of five
clicks per image, Post-Interaction adaptation improves performance in nearly every scenario as show
in Tab. 6. When the budget rises to ten clicks, Post-Interaction adaptation continues to provide
substantial gains in the early iterations, but by the final click, its advantage narrows: WMH still
benefits, while others do not. Exact numbers are given in the Appendix A.4. With more clicks, the
model leans more heavily on MI, which may partially cover the updates supplied by Post-Interaction
adaptation. Even though the influence of PI may diminish with extensive interaction provided, it
helps users reach satisfactory results with fewer clicks, which is important for interactive workflows.
We therefore recommend deploying both mechanisms in most situations.

Finally, we investigate aspects of the CCG loss in Tab. 7. Column ”all” is the proposed version,
”no class” removes the class-limited mechanism of CCG (applies it to all surrounding pixels), and
”no gaussian” replaces the Gaussian kernel with a uniform kernel. Removing the Gaussian kernel
or the class-limited mechanism reduces performance for both PI and PI+MI in most cases. Addi-
tionally, we investigated different values of σ for the loss. As σ approaches zero, the loss effectively
reduces to a single-point focus. Ablation study that explores the effect of this parameter is in Ap-
pendix A.8. Results demonstrate the value of using a Gaussian over focusing on a single point.

Table 6: Ablation study for PI under a 5-click
budget. (Average Dice% over 3 runs with
different seeds.)

BRATS WMH TBI
PI+MI 80.4 80.5 90.3 70.7 68.9
MI 78.4 79.8 89.8 68.0 69.0
No MI/PI 46.8 63.8 81.4 61.2 64.1

Table 7: Ablation study on the design of CCG loss.
Performance shown as Dice%.

all no class no gaussian
PI+MI PI PI+MI PI PI+MI PI

BRATS (T2) 93.0 90.9 92.1 87.7 90.6 90.1
WMH 78.9 72.3 77.6 73.1 72.2 69.8
ATLAS 86.0 81.8 80.7 75.7 79.8 80.5

3.3 ROBUSTNESS AND OVERFITTING

In this section, we conduct additional experiments to assess the robustness of our method and po-
tential overfitting. When plenty of clicks are provided for an image, the model may overfit to that
image. To explore this, we consider an extreme case where each image receives 50 clicks (TSCA
(50), OAIMS (50)). The result is shown in Tab. 8. In this scenario, TSCA (50) exhibits lower
performance at the early clicks (e.g., click 1, 3) compared to TSCA(10), indicating potential overfit-
ting to previously seen images. In contrast, our method performs significantly better with 50 clicks
compared to 10, and does not exhibit signs of overfitting.

We also examine a challenging scenario, where images from different databases—BraTS T1, BraTS
T2, and WMH FLAIR—are randomly shuffled together, with each database contributing 25 images.
The result is shown in Tab. 9. Despite substantial domain differences, our method continues to
outperform both the ICNN∗ and TSCA. Notably, while TSCA’s performance approaches that of
ICNN∗, our method maintains a clear advantage. Removing Post-Interaction adaptation leads to
performance drops. Hence our adaptation approach allows clinicians to use a single model that
adapts to multiple diseases simultaneously, eliminating the need to manage multiple models.

Because our method uses model predictions as pseudo ground-truth, it is natural to wonder if the
process would accumulate errors and corrupt the model over time in scenarios when predictions are
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Table 8: Performance on BRATS T1 with (10)
or (50) clicks per image. Dice shown at 1, 3,
10, 20, and 50 clicks. Overfitting past images
lowers Dice on next image with few clicks (1–3)
using TSCA but not our method.

No. Clicks 1 3 10 20 50
ICNN∗ 22.1 35.8 62.9 78.7 87.1
TSCA(50) 28.9 49.6 75.3 88.4 92.9
TSCA(10) 34.4 51.4 74.0 N/A N/A
OAIMS (50) 73.9 81.8 89.8 94.3 95.9
OAIMS (10) 61.1 68.9 78.9 N/A N/A

Table 9: Adapting to a database composed
of images from BRATS T1, T2, and WMH
FLAIR.

No. Clicks 1 5 10
ICNN 50.1 65.6 74.3
TSCA 52.0 67.1 75.3
OAIMS(MI) 52.1 72.1 80.6
OAIMS(PI+MI) 55.5 73.7 81.6

bad or the user provides wrong clicks by mistake. We conducted 3 experiments to assess this. First,
to evaluate how the method performs when model predictions are of low quality (hence erroneous
pseudo ground-truth), we test a scenario with extreme domain shift. Specifically, we pretrained the
model using only BRATS Flair and apply it on Atlas T1. Results are shown in Table 10 (top). This
scenario represents a very large domain gap, where the base interactive model (ICNN*) without
online adaptation, achieves very poor initial segmentation: with just 1 localisation click, it achieves
only 9.3% Dice. After 3 and 10 clicks, the ICNN∗ still performs very poorly (12% and 24.3% Dice
respectively), although it does improve slightly with each click. We then apply online adaptation
to the above model in 3 settings, when only 1, 3, or 10 clicks are allowed. Our method improves
performance in all settings, and recovers high 80% Dice when using 10 clicks. To further assess
robustness, we make this scenario even more challenging by ordering the images such that hardest
images (lowest segmentation Dice) are presented first in the sequence. Here, the initial pseudo
ground truth of the early images is very poor, with Dice near 0%. Results in Table 10 (bottom) show
that performance of our method is comparable to random ordering, indicating that extreme initial
failures do not destabilize the model for subsequent images. Finally, we assess robustness to noisy
input, such as in the case of wrong user clicks. We simulated erroneous clicks by generating clicks
in areas that the model assigned correct class, but we assign the opposite class to the click (i.e. ask
for wrong class correction). Results in Table 11 show that our online adaptation method improves
over a non-adaptive ICNN∗, achieving good performance on BRATS T1 even when 40% of clicks
are given the wrong class, when first 4 correction clicks per image are given wrong, or when for
40% of images all clicks are given wrong, demonstrating resilience against user errors.

Table 10: Robustness to pseudo ground-truth of
bad quality due to extreme domain shift (top)
and “worst case first” ordering (bottom).

No. Clicks 1 click 3 clicks 10 clicks
ICNN∗ (No Adapt) 9.3 12.8 24.3
TSCA 9.3 40.7 65.6
OAIMS (Ours) 25.6 57.9 80.0

No. Clicks 1 5 10
OAIMS (Random Order) 67.5 82.2 86.0
OAIMS (Worst first) 66.4 81.6 85.3

Table 11: Robustness to noisy (wrong) input
clicks.

Noise Type 1 5 10
40% clicks
are wrong

ICNN∗ 20.6 32.9 43.9
OAIMS 67.8 71.8 74.6

First 4 clicks wrong
on each image

ICNN∗ N/A 13.3 43.3
OAIMS N/A 56.9 75.1

40% images get
only wrong clicks

ICNN∗ 21.0 40.4 53.8
OAIMS 68.1 75.2 76.9

4 CONCLUSION

This study investigates how to train and adapt an interactive segmentation model for medical imag-
ing to better handle data distribution shifts. We proposed an online adaptation framework that in-
tegrates both Post-Interaction and Mid-Interaction approaches, enabling the model to continuously
adapt to new data distributions. A Click-Centered Gaussian loss is proposed, which enhances the
model’s responsiveness to user inputs. We demonstrate the effectiveness of our method through
extensive experiments with diverse distribution shifts. The promising performance underscores the
transformative potential of adaptive interactive segmentation in advancing both clinical practice and
research applications. The methodology is amenable to other types of user inputs beyond clicks,
such as scribbles, and different types of backbone models, which could be explored in future work.
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A APPENDIX

A.1 VISUALIZATION RESULTS

Fig. 3 presents the visualization results demonstrating the adaptation performance on the BRATS
dataset. The segmentation map is overlaid in red on the original image. Our OAIMS (PI+MI)
method produces segmentations that are closest to the ground truth (GT), with more accurate bound-
aries compared to other methods.

Fig. 4 illustrates the databases used in our experiments. This visualization helps to better understand
the distribution shifts across different databases and modalities.

Fig. 5 illustrates how the predicted segmentation evolves across interaction clicks.
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ISFCNN*GT TSCA OAIMS (PI) OAIMS (PI+MI)

ATLAS

BRATS
   T2

BRATS
   T1

Figure 3: Visualizations on BRATS Databases demonstrating adaptation to different modalities
and pathologies (Trained on BRATS Flair for BRATS T1 and BRATS T2, Trained on BRATS
Flair/T1/T1c for ATLAS

A.2 DETAILS OF THE SIMULATION PROCESS

To train and evaluate the interactive model, we simulate user interactions with an automatic point-
generation procedure that places clicks in incorrectly segmented regions.

During training, we first generate a random click inside the target foreground object as a localiza-
tion click. Based on the resulting segmentation mask and the ground truth, we identify incorrectly
segmented regions with connected components. Each erroneous component is ranked by size, and a
random point is generated within each. We then select the first K points from this queue, where K
is the desired number of clicks, and feed them into the model simultaneously. In our training, K is
randomly sampled for each iteration from a uniform distribution in the range [1, 10].

At inference time, user clicks are simulated iteratively. First, one random click is placed inside
the target foreground object. Then, based on the predicted segmentation and the ground truth, a

13
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REFUGE2

G1020

GAMMA

Gs1 PAPILA

BRATS Flair BRATS T1 BRATS T1c

BRATS T2 WMH Flair ATLAS T1

Figure 4: Illustration of the databases used. The distribution across different datasets and modalities
can be visually observed.

correction click is placed in the largest erroneous component (including both false positives and
false negatives). A new segmentation is generated using all previous clicks, and the process repeats
until a total of K clicks is reached.

For the simulation process in the Post-Interaction stage, the procedure is similar to training. How-
ever, instead of using the real ground truth, this step relies on a pseudo ground-truth mask.

A.3 EFFECT OF DIFFERENT HYPERPARAMETER SETTINGS

In this section, we evaluate the effect of three hyperparameters, α, β, and σ, on the performance of
our method. The results are presented in Table 12.

We observe that relatively small values of β (e.g., 100) and σ (e.g., 1) lead to noticeable performance
drops on the BRATS T1 dataset. This suggests that overly small values can hinder the model’s ability
to effectively utilize the CCG loss. Therefore, we recommend selecting values greater than 100 for
β and greater than 1 for σ. The choice of α also influences performance on BRATS T1, while its
impact on WMH is minimal. We do not specifically tune α to achieve the best results on BRATS
T1.

Overall, performance remains stable in most cases. Note that in our experiments, when comparing
with other methods, we did not perform hyperparameter tuning to obtain the best-performing con-
figuration for any specific database. This decision was made due to the relatively stable performance
of our method across tasks and to better demonstrate its robustness.
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Image GT 1   click 2  clicks 3  clicks 5  clicks 10  clicks

Figure 5: Illustration of how the predicted segmentation from our OAIMS (PI+MI) method evolves
as more interaction clicks are provided. The examples are brain MRI images (ATLAS and BRATS
T1). From left to right: input image, ground truth, and predictions with 1, 2, 3, 5, and 10 clicks. The
results show progressive refinement of the segmentation as more clicks are provided.

Table 12: Dice scores (%) on WMH and BRATS T1 under a 10-click interaction budget. Each value
of α, β, and σ is tested in combination with all values of the other two hyperparameters (i.e., 3 α
× 4 β × 3 σ total combinations). The reported score for a parameter’s value is the average over all
combinations that include it.

Parameter Value BRATS T1 (%) WMH (%)

α
0.3 85.6 77.7
0.5 87.0 77.6
0.7 84.3 78.3

β

100 81.3 77.5
200 86.9 77.9
300 87.2 78.1
400 87.4 78.1

σ
1 81.0 77.2
3 87.9 78.2
5 88.1 78.3

A.4 ABLATION STUDY ON PI (10 CLICKS IN TOTAL)

As supplementary information to the main paper, we provide the numerical results of the ablation
study of Post-Interaction (PI) adaptation under a budget of 10 clicks. The results are shown in
Tab. 13. PI continues to offer substantial performance gains in the early iterations; however, by the
final click, its advantage diminishes—WMH still benefits, while other methods do not. We continue
to recommend deploying both mechanisms in most situations, with further explanation provided in
the main paper.
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Table 13: Ablation study for PI with a 10-click budget. Dice shown at 1, 3, 10 clicks. PI and MI are
the proposed Post-Interaction process and the Mid-Interaction process of our method.

Dataset PI+MI MI
1 3 10 1 3 10

BRATS T1 71.2 79.4 88.0 69.1 77.7 87.6
BRATS T1c 70.4 78.9 87.5 68.3 77.9 87.7
BRATS T2 84.9 88.6 93.0 84.6 88.6 93.0
WMH Flair 58.9 68.6 78.9 58.4 68.1 78.0
TBI Flair 55.2 65.6 76.3 53.3 64.4 76.4

A.5 DICE SCORE

To evaluate segmentation performance, we use the Dice score. It measures the overlap between the
predicted segmentation mask P and the ground truth G, and is defined as:

Dice(P,G) =
2|P ∩G|
|P |+ |G|

=
2TP

2TP + FP + FN
(6)

Here, TP , FP , and FN denote the number of true positives, false positives, and false negatives,
respectively. A higher Dice score indicates a greater overlap between the prediction and the ground
truth.

The Dice score is particularly well-suited for medical image segmentation, as it emphasizes accurate
delineation of foreground regions—such as lesions—which are often small and sparse. As a result,
we adopt Dice as our evaluation metric.

A.6 USE OF LLMS

We used a large language model (LLM) only to improve the writing. Specifically, the LLM was
employed to revise some sentences, focusing on grammar and style. The LLM was not used for
generating ideas, searching related work, or contributing to the scientific content of the paper.

A.7 ALGORITHMIC DESCRIPTION

We here present the algorithmic details of the source training procedure (Algorithm 2) and the test-
time inference/adaptation loop (Algorithm 1).

Although Algorithm 1 is formulated with a fixed number of interactions (T ) for simplicity, consistent
with the main paper, in clinical practice, the user can provide any number of clicks for each image
until they are satisfied.
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Algorithm 1 Online Adaptation for Interactive Segmentation (OAIMS)
1: Input:
2: f : Base interactive Model
3: θ∗: Pretrained parameters
4: S: A sequence of images I
5: T : Number of user-interaction clicks

6: θ ← θ∗

7: for I ∈ S do ▷ Process each image sequentially
— Inference and Mid-Interaction (MI) Adaptation —

8: t = 1
9: c1 ← LocalizationClick(I) ▷ Get localization click from target foreground object

10: C ← {c1}
11: P1 ← f(I, C; θ)
12: for t = 2 to T do
13: ct ← Getclick(Pt−1, I) ▷ User provides new click
14: C ← C ∪ {ct}
15: P initial

t ← f(I, C; θ) ▷ Get P initial
t for updating the model (no gradient calculation)

16: LMI ← LDF (Pt−1, P
initial
t ) + βLCCG(Pt−1, P

initial
t , ct)

17: θ ← UpdateParameters(θ,LMI)
18: Pt ← f(I, C; θ)
19: end for
20: Pfinal ← PT ▷ Final mask after T clicks

— Post-Interaction (PI) Adaptation stage1 —
21: C ← {c1} ▷ Get first click from MI
22: P1 ← f(I, C; θ)
23: LS1PI ← LDF (P1, Pfinal)
24: θ ← UpdateParameters(θ,LS1PI)

— Post-Interaction (PI) Adaptation stage2 —
25: Ĉ ← GenerateClicks(P1, Pfinal, T ) ▷ Generate on each erroneous component (up to T)
26: P̂ ← f(I, Ĉ; θ)

27: LS2PI ← LDF (P̂ , Pfinal) + βLCCG(P̂ , Pfinal, Ĉ)
28: θ ← UpdateParameters(θ,LS2PI)
29: end for

Algorithm 2 Pretraining the Interactive Model
1: Input:
2: f : Base interactive Model
3: Dsource: Source (training) dataset (e.g. REFUGE). (I,Mgt): Image and ground-truth mask
4: Tmax: Max number of simulated clicks (e.g. 10)

5: for (I,Mgt) ∈ Dsource do
6: cloc ← SimulateLocalizationClick(Mgt)
7: Ploc ← f(I, {cloc}; θ) ▷ Get prediction from localization click
8: E ← FindErroneousRegions(Ploc,Mgt) ▷ Find all erroneous connected components
9: Cranked ← RankAndGenerateClicks(E)

▷ Rank components by size, randomly generate one click in each component
10: K ∼ U{1, Tmax} ▷ Sample K from a discrete uniform distribution
11: C ← SelectFirstM(Cranked,K) ▷ Select the top K error clicks
12: P̂ ← f(I, C; θ)

13: L ← LDF (P̂ ,Mgt) + LCCG(P̂ ,Mgt, C)
14: θ ← UpdateParameters(θ,L)
15: end for
16: return θ
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A.8 ABLATION STUDY OF σ IN CCG LOSS

We conducted an ablation study on the BRATS-T1 dataset by varying the standard deviation σ. We
evaluated σ ∈ {0, 1, 2, 3, 4, 5}, where the σ = 0 case was implemented as applying the CCG loss
only on the single pixel. The results are illustrated in Figure 6.

Figure 6: Ablation study of the Gaussian parameter σ of CCG Loss on the BRATS-T1 dataset.

As σ increases from 0 to 3, the performance improves significantly, as the model receives more
information from surrounding pixels. When σ is large enough (e.g., σ ≥ 3) the method seems
robust to the choice of its value, achieving stable performance.

We also observed that for σ = 0 the adaptation was highly unstable, sometimes resulting in very
low performance. For example, over 3 runs (RNG seeds) of the same experiment, the final score
was 79.9, 46.9, and 83.2. This instability was only observed for σ = 0. This is likely because the
model can easily overfit a single pixel, which can strongly hinder performance.

A.9 ASSESSING NUMBER OF CLICKS TO REACH TARGET DICE

To further evaluate the clinical efficiency of our method, we measure number of clicks to reach a
specified Dice score, which assesses how quickly a user can achieve satisfactory segmentation.

In this experiment, we set a target Dice score of 80% with a maximum of 20 clicks per image. If an
image failed to reach the target within 20 clicks, its click count was capped at 20. We compared our
proposed method (PI+MI) against the strongest baseline, TSCA, on the BraTS dataset (transferring
from Flair to T1, T1c, and T2).

The results are presented in Table 14. Our method requires significantly fewer clicks to reach the
target accuracy across all modalities, demonstrating superior efficiency in correcting domain shifts.

Table 14: Average number of clicks required to reach 80% Dice (lower is better), with a maximum
of 20 clicks per image

Method BRATS T1 BRATS T1C BRATS T2
TSCA 10.60 8.71 3.63
PI+MI (Ours) 4.43 4.59 2.33

A.10 COMPARISON WITH APPLYING UNSUPERVISED LOSSES ON MODEL PREDICTION

Given that our method is based on the idea of using the user-refined model predictions as pseudo-
labels, one may wonder if it would be sufficient to simply minimize Cross-Entropy (CE) between
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the model prediction and the pseudo-label, a method often used for learning from unlabeled data
Lee et al. (2013). Specifically, assume for an input image I , after t corrective clicks by the user,
the model with parameters θt predicts pt ∈ RH×W K the class-probability maps (output of softmax
in our model) and Pt = argmax(pt) ∈ RH×W the predicted segmentation. Here, H and W are
the height and width of I and these maps, and K the number of classes in the segmentation task.
Then, pkt ∈ RH×W is the class-probability map for class k, pkt (i, j) ∈ [0, 1] the probability that
the pixel with coordinates (i, j) is of class k, and Pt(i, j) the predicted class for the pixel. Then,
to optimize model parameters θt, this method minimizes for each image the Cross-Entropy loss
between predicted class-probabilities pt and the pseudo-label mask Pt:

LCE = −
∑
i,j

∑
k

1[k=Pt(i,j)] log p
k
t (i, j), (7)

where 1[A] is the indicator function that takes value 1 if A is True, i.e. only for k equal to the
predicted label) and 0 otherwise.

Another very related method is Entropy-Minimization for learning from unlabeled data Grandvalet
& Bengio (2004). Using similar notation as above, the Entropy loss for an image is defined as:

LEnt = −
∑
i,j

∑
k

pkt (i, j) log p
k
t (i, j), (8)

We experiment with these methods by replacing our own methodology during PI and MI stages
instead of our methodology. For PI, we process one image at a time (as for OAIMS) and after T
user corrections per image, we obtain the final segmentation predicted by the model Pfinal = PT

and associated probability maps pT . We then apply an update to model parameters, similar as in
our method, by minimizing one of the two above losses (using PT as pseudo-label in CE, whereas
EM does not require it). We then experiment with using these losses both during MI and PI. In this
case, after each user click t, we optimize one of the above losses, and after all T corrections were
completed, the losses are also optimized for PI as above.

We performed these experiments based on the Fundus and BRATS datasets. Hyper-parameters of
these unsupervised methods were optimized via cross-validation to get optimal performance from
them. As shown in Table 15, these losses provide almost no improvement and sometimes even yield
worse performance than our non-adaptive backbone model (ICNN*). This is likely because the
information gained from unsupervised losses is limited. Our method, OAIMS, outperforms consis-
tently, especially with fewer clicks. When the distribution shift is larger, between BRATS datasets
(Table 16), Online learning methods such as IA+SA and our OAIMS outperform unsupervised losses
in all cases with much greater difference ( 5-60% Dice dependent on setting), especially on BRATS
T1 and T1c. These experiments show that these unsupervised losses by themselves are not suffi-
cient. Although they take advantage of the corrected model predictions, they do not explicitly use
the user clicks. Instead, it is valuable to design frameworks that effectively leverage signal from
user interactions to adapt to new data, like our OAIMS framework that explicitly emphasizes areas
around user clicks via CCG.

Table 15: Performance on fundus imaging.
G1020 PAPILA GS1 GAMMA

No. Clicks 1 5 10 1 5 10 1 5 10 1 5 10
ICNN∗ 89.4/77.4 93.1/83.1 95.1/88.0 88.3/60.3 92.6/70.2 94.6/77.1 96.6/82.4 97.2/90.4 97.7/94.1 94.4/83.3 96.3/89.8 97.2/93.3
Entropy-Min PI 89.4/77.2 93.1/83.1 95.0/87.9 88.7/60.4 92.7/70.4 94.9/77.3 96.7/82.5 97.2/90.5 97.7/94.1 94.4/83.5 96.1/89.6 97.2/93.0
Entropy-Min MI+PI 89.7/77.7 93.3/83.0 95.1/87.4 89.6/61.2 93.3/70.4 95.1/76.8 96.6/82.1 97.1/90.0 97.6/93.7 94.5/83.8 96.1/89.7 97.2/93.0
Cross-Entropy PI 89.2/77.4 93.1/83.1 95.1/88.2 88.3/60.3 92.6/70.3 94.8/76.7 96.6/82.6 97.1/90.8 97.6/94.1 94.4/83.5 96.2/89.6 97.1/93.0
Cross-Entropy MI+PI 89.6/77.7 93.3/83.3 95.0/87.4 89.5/61.1 93.1/70.6 95.1/76.8 96.7/83.7 97.1/90.7 97.7/93.9 94.5/83.8 96.2/89.9 97.1/93.1
IA+SA 90.5/77.8 94.3/84.5 96.1/90.3 89.4/61.3 93.3/70.5 95.3/77.6 96.8/83.4 97.4/91.5 98.0/94.8 94.7/84.0 96.3/90.2 97.4/93.9
TSCA 89.9/77.6 94.2/85.0 96.1/90.7 89.6/61.7 94.0/72.2 96.1/79.0 96.9/85.4 97.5/92.9 98.0/95.5 94.6/84.2 96.4/90.7 97.5/94.1
OAIMS (PI+MI) 93.6/82.2 96.4/90.0 97.5/92.7 94.7/73.0 96.5/81.0 97.5/86.2 97.3/89.3 97.8/94.5 98.4/96.5 95.1/85.8 96.7/91.3 97.9/93.9

A.11 EXPERIMENTS ON SOURCE-LIKE DATA

We here conducted additional experiments to evaluate our method’s performance on source-like
data, to ensure the adaptation does not degrade performance at the absence of distribution shift.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 16: Performance on different MRI modalities.
BRATS T1 BRATS T1c BRATS T2

No. Clicks 1 5 10 1 5 10 1 5 10
ICNN∗ 20.7 46.8 62.5 45.4 63.8 75.4 72.1 81.4 85.7
Entropy-Min PI 20.1 48.2 65.6 45.4 65.3 76.3 72.6 82.0 86.5
Entropy-Min MI+PI 13.8 38.1 57.1 42.3 57.8 66.8 70.0 81.2 86.8
Cross-Entropy PI 20.0 49.7 66.0 46.6 65.6 76.7 72.5 82.1 86.6
Cross-Entropy MI+PI 14.0 42.4 61.3 42.5 59.6 68.9 72.0 82.6 87.3
IA+SA 28.6 57.0 70.6 48.3 67.1 78.2 76.5 84.1 87.9
TSCA 34.4 60.9 74.0 50.1 70.2 79.6 77.7 85.8 89.0
OAIMS(PI+MI) 71.2 83.4 88.0 70.4 82.9 87.5 84.9 90.6 93.0

First, we tested the model directly on the exact domain it was trained on (source domain): Train on
BraTS Flair (Train set) → Test on BraTS Flair (Test set). In this ”no shift” scenario, we want to
ensure that the adaptation mechanism does not degrade performance. As shown in Table 17, both
our PI and PI+MI variants perform similarly to the non-adaptive baseline ICNN*, demonstrating the
stability of our method.

Table 17: Performance on Source Domain (Minor Shift). Trained and Tested on BraTS Flair.
No. Clicks 1 5 10
ICNN∗ 93.4 95.6 96.4
Ours (PI) 93.4 95.5 96.3
Ours (PI+MI) 93.3 95.8 96.6

Second, we assessed a scenario to see if the model could regain performance on the source domain
after adapting to a new domain. We first trained a model on BRATS Flair (train set), then adapted
it to a different dataset (TBI Flair), and then applied it back to the original source domain (BraTS
Flair). We compare this with performance of our backbone model (ICNN*) without adaptation. The
results are shown in Table 18. When OAIMS adapts model parameters to TBI, the middle database,
but then we do not allow it to re-adapt to the source data when it’s tested on them (No Re-adaptation),
it shows a slight drop in performance, especially with 1 click (90.5% vs 93.4%). However, if we
allow OAIMS to re-adapt to the source data BRATS Flair via our standard online learning process
(OAIMS (Re-adapt)), it recovers its original performance well, even with just 1 click of interaction.

We note that in practice, perhaps the most practical scenario are distribution shifts between training
data and the database of deployment. Therefore, we are primarily interested in learning to adapt
and perform well on the new domain, whereas continuing to perform well on the training domain
is lower priority. However, this experiment shows the flexibility of OAIMS and its effectiveness to
re-adapt to the original data easily and effectively.

Table 18: Performance on BraTS Flair after adapting to TBI.
No. Clicks 1 5 10
ICNN∗ 93.4 95.6 96.4
OAIMS (No Re-adapt) 90.5 94.8 95.7
OAIMS (Re-adapt) 93.5 95.8 96.6
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