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ABSTRACT

Instruction-guided video editing has emerged as a rapidly advancing research
direction, offering new opportunities for intuitive content transformation while
also posing significant challenges for systematic evaluation. Existing video editing
benchmarks fail to support the evaluation of instruction-guided video editing
adequately and further suffer from limited source diversity, narrow task coverage
and incomplete evaluation metrics. To address the above limitations, we introduce
IVEBench, a modern benchmark suite specifically designed for instruction-guided
video editing assessment. IVEBench comprises a diverse database of 600 high-
quality source videos, spanning seven semantic dimensions, and covering video
lengths ranging from 32 to 1,024 frames. It further includes 8 categories of editing
tasks with 35 subcategories, whose prompts are generated and refined through
large language models and expert review. Crucially, IVEBench establishes a
three-dimensional evaluation protocol encompassing video quality, instruction
compliance and video fidelity, integrating both traditional metrics and multimodal
large language model-based assessments. Extensive experiments demonstrate the
effectiveness of IVEBench in benchmarking state-of-the-art instruction-guided
video editing methods, showing its ability to provide comprehensive and human-
aligned evaluation outcomes. All data and code will be made publicly available.

1 INTRODUCTION

Video editing, which aims to transform source videos to satisfy user-specified editing requirements,
has emerged as a crucial capability in both creative industries and practical applications. As the field
of generative modeling and multimodal understanding advances (Yang et al., 2024; Bai et al., 2025b),
Instruction-guided Video Editing (abbreviated as IVE that edits are directed by natural language
instruction) has attracted significant research interest (Cheng et al., 2023). This paradigm promises
intuitive and fine-grained control over video content, unlocking new possibilities for content creation,
entertainment, and human-computer interaction.

Despite rapid progress, current video editing benchmarks still present notable limitations. Existing
benchmarks (Sun et al., 2025b) suffer from three major challenges: i) Insufficient diversity in
video sources: The coverage of semantic categories, scenes, and editing instructions remains limited,
constraining the generalizability of evaluation results (Chen et al., 2025; Li et al., 2025b). ii)
Restricted editing prompts: Editing instructions are often narrowly defined or lack granularity,
failing to reflect the diverse and complex requirements of real-world editing scenarios (Wang et al.,
2025a). iii) Fragile evaluation metrics: Current evaluation protocols are frequently restricted
to basic quality or alignment measures, lacking a comprehensive, multidimensional assessment,
especially those leveraging advances in Multimodal Large Language Models (MLLMs) for semantic
understanding (Sun et al., 2025b; Chen et al., 2025). Besides, existing benchmarks are primarily
designed for video editing methods based on source-target prompts. However, due to their poor
user-friendliness and unclear editing requirements, mainstream video editing methods have now
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shifted toward instruction-guided approaches (Cheng et al., 2023), mirroring a similar trend in image
editing (Brooks et al., 2023). Therefore, there is an urgent need for a comprehensive benchmark
that fully supports IVE.
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Figure 1: Overview of our proposed IVEBench. 1) We construct a diverse video corpus consisting
of 600 high-quality source videos systematically organized across 7 semantic dimensions. 2) For
source videos, we design carefully crafted edit prompts, covering 8 major editing task categories with
35 subcategories. 3) We establish a comprehensive three-dimensional evaluation protocol comprising
12 metrics, enabling human-aligned benchmarking of state-of-the-art IVE methods.
In this paper, we propose a modern benchmark suite termed IVEBench for IVE assessment, which
tackles the aforementioned challenges through three key innovations: 1) Diverse video corpus:
We construct a highly diverse dataset of 600 source videos, systematically collected and filtered to
cover a wide range of topics across 7 semantic dimensions (see Fig. 1). 2) Comprehensive editing
prompts: Editing tasks are designed to cover 8 categories, with prompts generated and refined via
Large Language Models (LLMs) and expert review. 3) Robust evaluation metrics: We introduce
a three-dimensional evaluation protocol encompassing video quality, instruction compliance, and
video fidelity, incorporating both traditional metrics and MLLM-based assessments for richer, more
objective evaluation.

We systematically demonstrate that our evaluation suite exhibits a high degree of alignment with
human perception across all metrics. Through both qualitative and quantitative analyses of mainstream
IVE methods, we provide valuable insights for the field of video editing. We will open-source the
code, release the dataset, and keep track of the latest IVE methods.

2 RELATED WORK

Instruction-guided video editing. In recent years, the rapid advancement of image editing tech-
nologies has laid a solid foundation for video editing tasks. As the demand for understanding and
generating higher-dimensional content increases, research focus has gradually shifted from static
image editing to dynamic video editing (Wu et al., 2023). Early video editing methods are initially
influenced by inversion techniques in the image editing domain (mainly DDIM Inversion (Song et al.,
2021)), leading to the development of numerous source-target prompt-based editing approaches (Qi
et al., 2023; Ceylan et al., 2023; Li et al., 2024). Although these approaches can accurately preserve
object locations and poses during the inversion process (Geyer et al., 2023; Jeong & Ye, 2023; Cong
et al., 2023), they are inherently limited when it comes to editing tasks involving subject movement
or camera motion (Yatim et al., 2024; Kara et al., 2024). Furthermore, rather than providing detailed
target prompts, users tend to express their editing requirements through instructions (Cheng et al.,
2023). Given these limitations, IVE methods have gained burgeoning attention in the industry due to
their greater user-friendliness and adaptability to diverse editing needs (Cheng et al., 2023). Main-
stream approaches typically combine InstructPix2Pix (Brooks et al., 2023) for first-frame editing and
then leverage generative models to propagate the modifications across the entire video (Khachatryan
et al., 2023; Ku et al., 2024; Liu et al., 2024a). To overcome the quality bottleneck in such pipelines,
Ditto (Bai et al., 2025a) further introduces a scalable synthetic data generation pipeline, leveraging
high-quality image editors and in-context video generators to construct massive high-fidelity editing
pairs. In contrast to these paradigms, InsV2V (Cheng et al., 2023) retrains the model on synthetic
triplets of input video, editing instruction, and target video, enabling direct learning of instruction-
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Figure 2: Data acquisition and processing pipeline of IVEBench includes: 1) Curation process to
600 high-quality diverse videos. 2) Well-designed pipeline for comprehensive editing prompts.

driven video modification for consistent long video editing. Building on this, InsViE-1M (Wu et al.,
2025) further adopts multi-stage training on CogVideoX-2B (Yang et al., 2024) and supports static
video editing tasks involving camera motion. Lucy-Edit (Team, 2025) employs a rectified-flow
framework with channel concatenation to achieve high-fidelity editing without requiring masks or
auxiliary inputs. Subsequently, ICVE (Liao et al., 2025) introduces a low-cost pretraining strategy
leveraging in-context learning from unpaired video clips to learn general editing concepts. Recently,
there is a growing trend towards unifying video understanding, generation, and editing within a
single framework by integrating MLLMs with Diffusion Transformers (DiTs). Omni-Video (Tan
et al., 2025) and UniVideo (Wei et al., 2025) propose dual-stream or unified architectures where the
MLLM handles complex multimodal instruction understanding and guides the DiT for consistent
video generation and editing. Based on this, InstructX (Mou et al., 2025) further utilizing mixed
image-video training to transfer robust editing capabilities to the video domain.

Video editing benchmarks. With the introduction of benchmarks such as VBench (Huang et al.,
2024) and T2V-CompBench (Sun et al., 2025a), the evaluation systems in the field of video generation
have become increasingly comprehensive. Concurrently, video editing has also garnered significant
attention, leading to the recent emergence of dedicated benchmarks for text-driven video editing.
Among them, VE-Bench (Sun et al., 2025b) and EditBoard (Chen et al., 2025) introduce dedicated
datasets and evaluation systems for text-driven video editing, partially covering editing tasks of
subject, style and attribute editing. Building on these foundations, FiVE (Li et al., 2025b) and
TDVE-Assessor (Wang et al., 2025a) further push evaluation by proposing MLLM-based metrics that
enhance the objectivity of evaluation. However, a significant limitation of these existing benchmarks
is that they are designed to support source-target prompt-based editing methods, while offering no
or only partial support for IVE methods (Sun et al., 2025b; Chen et al., 2025). Furthermore, these
benchmarks are constrained by limited dataset sizes, narrow content coverage, and include only a
small subset of editing task types (Li et al., 2025b; Wang et al., 2025a). To address these issues, we
propose IVEBench, a thorough benchmark suite specifically designed for IVE methods.

3 IVEBENCH DATABASE

3.1 DIVERSE VIDEO COLLECTION FOR IVE

Video data source. To ensure the comprehensiveness of our benchmark for video editing evaluation,
we first expand the semantic coverage of source videos. Specifically, we define seven semantic
dimensions and further subdivide each dimension into multiple fine-grained topics, resulting in a total
of 30 topics. These subdivisions form a diverse set of semantic requirements for source videos, as
illustrated in Fig. 3 (b). Based on these requirements, we manually collect high-quality video samples
(≥2K) on Pexels (Ingo et al., 2014) and Mixkit (Ta’eed & Assi, 2019), as well as some from open-
source UltraVideo (Xue et al., 2025). In addition, we incorporate a subset from OpenHumanVid (Li
et al., 2025a) dataset to further enhance the quantity and diversity of human-centric videos (see Fig. 2).

Hybrid automated and manual filtering. All candidate videos undergo a two-stage processing
pipeline. In the automatic preprocessing stage, black borders, subtitles, and low-quality content are
removed. Subsequently, during the manual screening stage, we further ensure that the video content
is suitable for editing and capable of covering a wide spectrum of tasks ranging from simple to
complex. Ultimately, we construct a source video dataset comprising 600 videos with comprehensive
semantic coverage, high resolution, and varied frame lengths. The dataset is organized into two
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Figure 3: Statistical distributions of IVEBench.

subsets according to frame count: i) the short subset contains 400 videos ranging from 32 to 128
frames. ii) the long subset includes 200 videos ranging from 129 to 1,024 frames, representing a
higher standard for long-sequence evaluation.

Structural video caption. After obtaining the high-quality source videos, we employ Qwen2.5-
VL-72B (Bai et al., 2025b) to generate captions of appropriate length for each video, capturing
key aspects such as subjects, backgrounds, subject actions, emotional atmosphere, visual styles,
as well as camera perspectives and movements. These annotated attributes are designed to form a
structured vocabulary of editable elements, establishing a robust foundation for subsequent user-driven
modification requests.

3.2 COMPREHENSIVE IVE PROMPT GENERATION

Diversified editing objectives. To ensure comprehensive coverage of task types in our benchmark
for video editing evaluation, we categorize the editing prompts into eight major classes. Each of these
main categories is further subdivided into more fine-grained subcategories, resulting in a total of 35
subcategories, as illustrated in Fig. 3 (a). Together, these eight categories encompass the full range of
current requirements for IVE tasks and effectively address the limitations of existing benchmarks in
terms of task coverage.

LLM-assisted prompt generation and selection. For each source video, we employ Doubao-1.5-
pro (Seed et al., 2025), together with previously obtained detailed captions, to automatically select the
most suitable editing category and generate a corresponding editing prompt. In addition, the system
simultaneously produces the associated target prompt and target phrase, which serve as references
for subsequent evaluation metrics. This design ensures that our benchmark can also accommodate
text-driven video editing methods. All editing categories and prompts are further manually reviewed
and refined to guarantee balanced category distribution as well as clear and reasonable prompts.

4 COMPREHENSIVE METRICS OF IVEBENCH

In the context of IVE tasks, we define a video editing instance as comprising three data elements:
the source video, the edit prompt (i.e., the editing instruction expressed in natural language), and the
target video. Based on the relationships among these elements, we evaluate the target video along
three dimensions: 1) Video Quality focuses on the quality of the target video itself; 2) Instruction
Compliance focuses on the alignment between the edit prompt and the target video; 3) Fidelity
focuses on the consistency between the source video and the target video. Notably, the dimensions
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of Video Quality and Instruction Compliance are also applicable as evaluation criteria in video
generation tasks, whereas Fidelity is a dimension specific to video editing.

4.1 VIDEO QUALITY

Since a video is essentially composed of a sequence of image frames arranged in chronological order,
video quality can be subdivided into two aspects: temporal quality and spatial quality. Temporal
quality focuses on the consistency and continuity between consecutive video frames, while spatial
quality emphasizes aspects such as aesthetic value, image sharpness and the naturalness of the content.

Subject Consistency (SC). For the subjects in a video, we assess whether their appearance remains
consistent throughout the sequence by computing the cross-frame similarity of DINO (Caron et al.,
2021) feature, which serves to evaluate different models’ capability in maintaining subject consistency.

Background Consistency (BC). For the video’s overall background, we evaluate the temporal
consistency of the background scene by computing the cross-frame similarity of the CLIP (Radford
et al., 2021) feature.

Temporal Flickering (TF). We observe that videos produced by many editing models exhibit
temporal flickering. Accordingly, we quantify temporal flicker by sampling frames and computing
the mean absolute difference across frames.

Motion Smoothness (MS). Motion smoothness is utilized to evaluate the continuity and naturalness
of subject or camera movements. Under normal circumstances, a video should be free from jitter
and unnatural acceleration variations. We adopt the motion priors from the video frame interpolation
model (Li et al., 2023) to assess the smoothness of motion in the edited videos.

Video Training Suitability Score (VTSS) (Wang et al., 2025b) is the output of a supervised model
trained on human-annotated data. It integrates indicators such as compositional coherence, aesthetic
quality, image sharpness, color saturation, content naturalness, and motion stability, thereby enabling
a comprehensive assessment of a video’s spatial quality.

4.2 INSTRUCTION COMPLIANCE

Instruction compliance is used to evaluate whether the generated target video correctly fulfills the
requirements specified in the editing prompt, and whether it is semantically aligned with the target
prompt. In addition to general metrics and task-specific criteria for different editing tasks, we further
employ MLLM to assist in assessing the semantic consistency between the video content and the
editing instructions, thereby enhancing the comprehensiveness and objectivity of the evaluation.

Overall Semantic Consistency (OSC). Global semantic consistency is used to holistically evaluate
the semantic correspondence between the target video’s content and the instruction’s intent, with
an emphasis on the overall scene. Therefore, we employ VideoCLIP-XL2 (Wang et al., 2024) to
compute the semantic similarity between the target video and the target prompt.

Phrase Semantic Consistency (PSC). Phrase-level editing adherence is used to assess whether the
specific phrases or operations in the instruction are accurately reflected in the target video, with
greater emphasis on the edited subject. Accordingly, we employ VideoCLIP-XL2 (Wang et al., 2024)
to compute the semantic similarity between the target video and the target phrase.

Instruction Satisfaction (IS). Since tasks such as subject motion editing, camera motion editing
and camera angle editing are difficult to evaluate accurately using traditional methods, we employ
Qwen2.5-VL (Bai et al., 2025b) to assist in determining whether the target video has faithfully
executed the edit prompt. Specifically, we input both the edit prompt and the target video into the
model, instructing it to assign a score on a five-point scale to indicate the accuracy of execution.
Furthermore, we provide detailed descriptions for each score level to ensure that the model maintains
consistent evaluation criteria across multiple rounds of assessment.

Quantity Accuracy (QA). Quantity correctness is a metric specifically designed for quality editing
tasks. This metric uses the target span as input to Grounding DINO (Liu et al., 2024b), compares
the number of detected bounding boxes with the quantity specified in the edit prompt, and assigns a
score of 1 for correctness and 0 for incorrectness.
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Table 1: Attributes comparison with open-source video editing benchmarks. Our proposed
IVEBench boasts distinct advantages across various key dimensions.

Method Video Collection Prompt Type Evaluation Metrics Year
Video
Count

Prompt
Count

Quantity
Editing

Subject Motion
Editing

Camera Editing
(Motion and Angle)

Visual Effect
Editing

Instruction
Compliance

Video
Fidelity MLLM

VE-Bench 169 148 ✘ ✘ ✘ ✘ ✔ ✔ ✘ 2025
EditBoard 40 80 ✘ ✘ ✘ ✘ ✔ ✔ ✘ 2025

VACE-Benchmark 240 480 ✘ ✔ ✘ ✘ ✔ ✔ ✘ 2025
FiVE 100 420 ✘ ✘ ✘ ✘ ✔ ✔ ✔ 2025

TDVE-Assessor 180 340 ✘ ✔ ✘ ✘ ✔ ✔ ✔ 2025
IVEBench 600 600 ✔ ✔ ✔ ✔ ✔ ✔ ✔ 2025

4.3 VIDEO FIDELITY

Fidelity is utilized to assess whether the target video retains the unedited portions of the source video,
thereby ensuring that the editing process does not introduce irrelevant alterations. In addition to
devising conventional metrics from the perspectives of motion and semantics, we further leverage
MLLM to assess the content fidelity of the target video, enhancing the robustness of the metric on
more challenging tasks.

Semantic Fidelity (SF). To quantify the degree of semantic preservation in the target video, we
employ VideoCLIP-XL2 (Wang et al., 2024) to compute the feature similarity between the source
and target videos.

Motion Fidelity (MF). Existing video motion detection often relies on optical flow, but it struggles
with occlusions. Therefore, we employ Cotracker3 (Karaev et al., 2024), which is capable of
handling occlusions, for extracting reliable motion trajectories. The details of the trajectory similarity
computation are provided in Appendix B.

Content Fidelity (CF). For tasks such as camera movement editing, camera angle editing and
transition editing, the same subject may display different orientations due to variations in perspective,
which makes it difficult for traditional metrics to adequately capture content preservation. To address
this limitation, we use Qwen2.5-VL (Bai et al., 2025b) to assist in evaluating whether the target video
correctly retains those elements that should remain unedited. Specifically, we input the source prompt,
the edit prompt, and the target video into the model, instructing it to assign a score on a five-point
scale reflecting the fidelity of the unedited content. In addition, we provide detailed descriptions for
each score level to ensure that the model adheres to consistent evaluation standards across multiple
rounds of assessment.

Among these 12 metrics, SC, BC, TF, and MS are adopted from VBench (Huang et al., 2024). We
conducted independence tests on the remaining 8 metrics (detailed in Appendix G), demonstrating
that the IVEBench metrics exhibit a high degree of independence.

4.4 HUMAN ALIGNMENT FOR BENCHMARK VALIDATION

We select three video editing models {A,B,C} and provide 30 source videos with corresponding
editing instructions. For a given source video vi and its editing instruction pi, each selected video
editing model produces an edited video, resulting in a set Gi = {Vi,A, Vi,B , Vi,C}. Within each
set, the generated videos are compared in pairs, yielding C2

3 = 3 pairwise comparisons. For each
evaluation dimension, we prepare detailed guidelines and illustrative examples, and participants
receive prior training to ensure a clear understanding of the dimension definitions. In every pairwise
comparison, human annotators are instructed to evaluate the videos exclusively with respect to
the specified metric (see Fig. 4), and to subjectively judge which video performs better in that
dimension, or to mark the pair as ”hard to distinguish.” We recruit 30 participants to conduct the
human annotation. The conclusions of this experiment will be presented in Sec. 6.2, with further
details provided in Appendix F.

4.5 UNIFIED SCORING FOR BENCHMARK ASSESSMENT

Each evaluation dimension comprises multiple metrics. To assess their relative importance, trained
annotators rate the contribution of each metric and dimension. The average ratings are rounded to the
nearest integer and used as weights in the scoring formulas. Detailed formulas for dimensions and
total score are provided in Appendix C.
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Table 2: Performance comparison of different video editing methods on our benchmark.Higher
values indicate better performance. † denotes that certain high-frame videos fail during inference due
to out-of-memory issues. ‡ denotes that the method has a fixed maximum frame number, which is
lower than the maximum length of the source videos.

Database Method
Dimension Performance Metric Performance

Total
Score

Video
Quality

Instruction
Compliance

Video
Fidelity SC BC TF MS VTSS OSC PSC IS QA SF MF CF

Short

InsV2V 0.67 0.80 0.39 0.82 0.94 0.96 0.97 0.97 0.045 0.24 0.23 3.10 0.30 0.95 0.86 4.05
AnyV2V 0.58 0.73 0.42 0.59 0.89 0.94 0.97 0.97 0.026 0.22 0.24 3.33 0.30 0.80 0.82 2.75

StableV2V 0.51 0.69 0.43 0.41 0.85 0.92 0.96 0.96 0.019 0.20 0.24 3.56 0.20 0.70 0.75 1.79
VACE‡ 0.63 0.80 0.25 0.83 0.95 0.98 0.98 0.98 0.045 0.23 0.22 2.16 0.20 0.97 0.89 4.03

Lucy-Edit-Dev 0.64 0.82 0.34 0.75 0.95 0.96 0.98 0.99 0.051 0.24 0.22 2.84 0.20 0.93 0.68 3.83
Omni-Video‡ 0.59 0.78 0.44 0.54 0.96 0.97 0.98 0.99 0.038 0.22 0.23 3.36 0.40 0.81 0.51 2.85

ICVE‡ 0.60 0.71 0.45 0.64 0.95 0.97 0.99 1.00 0.017 0.23 0.23 3.62 0.30 0.85 0.46 3.55
Ditto‡ 0.67 0.78 0.49 0.73 0.96 0.98 0.97 0.99 0.038 0.25 0.24 3.87 0.30 0.89 0.79 3.64

Long

InsV2V 0.66 0.80 0.37 0.79 0.90 0.94 0.98 0.98 0.048 0.24 0.23 3.10 0.20 0.95 0.68 4.13
AnyV2V† 0.55 0.72 0.36 0.57 0.84 0.92 0.97 0.97 0.029 0.22 0.23 3.25 0.00 0.80 0.82 2.65

StableV2VE† 0.51 0.69 0.42 0.41 0.83 0.91 0.96 0.96 0.021 0.23 0.23 3.45 0.25 0.70 0.77 1.79
VACE‡ 0.62 0.80 0.27 0.78 0.92 0.95 0.96 0.96 0.048 0.24 0.22 2.27 0.20 0.96 0.96 3.74

Lucy-Edit-Dev 0.65 0.82 0.32 0.81 0.91 0.95 0.98 0.99 0.053 0.24 0.22 2.65 0.20 0.97 0.73 4.13
Omni-Video‡ 0.57 0.78 0.42 0.51 0.94 0.96 0.97 0.98 0.039 0.22 0.23 3.53 0.20 0.81 0.55 2.59

ICVE‡ 0.59 0.72 0.40 0.64 0.95 0.97 0.99 1.00 0.019 0.23 0.23 3.63 0.00 0.86 0.48 3.48
Ditto‡ 0.66 0.78 0.48 0.72 0.96 0.98 0.97 0.99 0.038 0.23 0.24 3.93 0.20 0.86 0.73 3.69

5 DISCUSSION WITH RECENT VIDEO EDITING BENCHMARKS

Existing video editing benchmarks are primarily designed for source-target prompt-based methods,
and they either fail to support or can only minimally accommodate IVE methods (Li et al., 2025b).
As summarized in Tab. 1, these benchmarks exhibit clear limitations in dataset scale and coverage.
More critically, their prompt design largely remains confined to image editing types (subject editing,
attribute editing, or style editing) without dedicated task formulations that address the temporal nature
of video. In contrast, IVEBench provides a comprehensive and instruction-centered evaluation suite
that introduces three substantial advances: 1) A large-scale dataset of 600 videos, covering 35 topics
across 7 dimensions, with lengths ranging from 32 to 1024 frames, organized into short and long
subsets to enhance source diversity and semantic coverage. 2) Full coverage of eight major categories
and thirty-five subcategories of editing tasks, including those that explicitly leverage the unique
properties of video, spanning different levels of granularity as well as tasks involving both single and
multiple subjects. 3) MLLM-based metrics specifically designed for Instruction Compliance and
Video Fidelity, coupled with human-annotated weightings and dimensions scoring formulas. These
innovations enable IVEBench to surpass existing benchmarks in video collection, task coverage, and
evaluation methodology, thereby establishing a systematic and practically relevant standard for IVE.

6 BENCHMARKING VIDEO EDITING METHOD IN IVEBENCH

6.1 EXPERIMENTAL SETUP

We evaluate state-of-the-art IVE models InsV2V (Cheng et al., 2023), AnyV2V (Ku et al., 2024)
and StableV2V (Liu et al., 2024a), Lucy-Edit-Dev (Team, 2025), Omni-Video (Tan et al., 2025),
ICVE (Liao et al., 2025), Ditto (Bai et al., 2025a) as well as the multi-conditional video editing
model VACE (Jiang et al., 2025) using IVEBench, all employed with their official implementations
and pretrained weights. Evaluations are conducted on the IVEBench Database. Model-specific
configurations, hardware requirements, treatment of failure cases, and evaluation details are described
in Appendix D.

6.2 BENCHMARKING STATE-OF-THE-ART METHODS ON IVEBENCH

Quantitative analysis. From the numerical results in Tab. 2 and Tab. 3 as well as the visualizations
in Fig. 4, it can be observed that eight evaluated methods demonstrate relatively good frame-to-frame
consistency. However, the per-frame image quality remains unsatisfactory, which consequently
leads to low Video Fidelity scores. Moreover, these methods achieve very limited performance
in instruction adherence, primarily due to the narrow range of task types they support. Among
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Figure 4: IVEBench Evaluation Results of Video Editing Models. We visualize the evaluation
results of eight IVE models in 12 IVEBench metrics. We normalize the results per dimension for
clearer comparisons. For comprehensive numerical results, please refer to Tab. 2.

them, Lucy-Edit-Dev (Team, 2025) exhibits the best performance in editing speed. Ditto (Bai et al.,
2025a) and InsV2V (Cheng et al., 2023) demonstrate the best performance in terms of editing
capability, as they can execute editing prompts while preserving visual integrity. Furthermore, since
Ditto successfully handles a larger number of cases, it achieves the best performance in Instruction
Compliance. Nevertheless, these models achieve a Total Score of no more than 0.7 and an Instruction
Compliance score of no more than 0.5, indicating that existing IVE methods still have substantial
room for improvement in overall editing capability, particularly in Instruction Compliance.

Table 3: Inference efficiency and resolution.

Database Method Time per
Frame↓

Max
Memory↓

Video
Resolution

Short

InsV2V 3.96s 12.81GB 512×512
AnyV2V 11.66s 27.37GB 512×512

StableV2V 3.90s 28.31GB 512×512
VACE‡ 27.03s 122.18GB 1280×720

Lucy-Edit-Dev 1.52s 32.21GB 832×480
Omni-Video‡ 1.80s 36.37GB 640×352

ICVE‡ 5.05s 88.33GB 384×240
Ditto‡ 19.69s 38.49GB 832×480

Long

InsV2V 4.05s 13.48GB 512×512
AnyV2V† 11.47s 63.15GB 512×512

StableV2V† 3.72s 49.82GB 512×512
VACE‡ 51.00s 132.90GB 1280×720

Lucy-Edit-Dev 2.23s 34.33GB 832×480
Omni-Video‡ 2.04s 36.37GB 640×352

ICVE‡ 5.28s 91.67GB 384×240
Ditto‡ 20.15s 38.86GB 832×480

Qualitative analysis. As illustrated in Fig. 5,
the outputs of different models reveal consistent
weaknesses across multiple editing scenarios.
First, all models tend to introduce inaccurate lo-
calization of the desired edit, leading to visible
artifacts such as geometric distortion, semantic
bleeding, semantic collapsing, boundary blur-
ring, and texture flickering. These artifacts sig-
nificantly compromise the per-frame visual qual-
ity of edited videos, which in turn diminishes
their overall fidelity. Second, when observing
more challenging editing types, such as subject
motion editing and camera angle editing, we
find that the editing capability of current models
is particularly limited, underscoring an urgent
need for broader task coverage in future devel-
opment. Moreover, the models show distinct
behavioral patterns: StableV2V (Liu et al., 2024a) often applies overly aggressive modifications that
satisfy the editing prompt but neglect the preservation of unedited content; InsV2V (Cheng et al.,
2023), in contrast, tends to adopt a conservative strategy, retaining much of the source content when
dealing with unfamiliar instructions; while VACE (Jiang et al., 2025), not being a native IVE model,
frequently fails to properly execute the given edits, resulting in weak compliance with the prompts.
These qualitative findings highlight that improving per-frame image fidelity and expanding editing

8
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InsV2V StableV2V VACEAnyV2VSource VideoCategory
Subcategory Edit Prompt

Subject
Replace subject

Make the parents and 
five children clap their 
hands.

Style
Low-poly

Subject Motion
Multi subject motion

Camera Angle
High angle

Convert the video to a 
low-poly style

Replace the water 
bottle in the scene 
with a newspaper.

Change the view to a 
high angle.

Figure 5: Qualitative comparison of selected IVE methods.

versatility are essential directions for advancing IVE models. More detailed qualitative comparisons
and analyses can be found in Appendix E.

Table 4: Spearman’s Rho (ρ) across different metrics. These scores show that IVEBench metrics
are highly aligned with human judgments.

Video Quality Instruction Compliance Video Fidelity

SC BC TF MS VTSS OSC PSC IS QA SF MF CF

ρ 0.9536 0.9503 0.8842 0.9774 0.9985 0.7210 0.8316 0.9834 0.8104 0.9453 0.9371 0.9892

Human alignment results. To validate that our evaluation metrics align with human perception, as
described in Sec. 4.4, we conduct human annotations for each metric. In pairwise model comparisons,
the preferred model is assigned a score of 1, while the other receives 0. If annotators express no
preference, both models are assigned 0.5. For each metric, a model’s final human score is computed as
the total score divided by the number of comparisons. We then calculate Spearman’s rank correlation
coefficient between these human scores and the automatic evaluation metric scores. The results
in Tab. 4 demonstrate that our proposed evaluation metrics exhibit a high degree of consistency
with human preferences. Furthermore, to ensure the inter-rater reliability of the evaluation, we
calculated Fleiss’ Kappa for our human annotations and obtained a score of 0.78, which indicates
’substantial agreement’ according to Landis and Koch (Landis & Koch, 1977). This demonstrates
that our rigorous calibration process effectively aligned the standards of different annotators.

6.3 INSIGHTS AND DISCUSSIONS

High frame-to-frame consistency, weak single-frame quality. Across models, frame-to-frame
consistency is generally well preserved, with limited temporal flickering. However, the quality
of individual frames often shows frequent visible artifacts such as semantic bleeding, boundary
blurring and texture flickering. These issues also lead to a noticeable degradation in Video Fidelity,
highlighting the necessity for future work to develop effective strategies to mitigate such artifacts.

Limited support for diverse editing prompt types. Models perform poorly in the Compliance
dimension mainly because they only handle a few basic editing types reasonably well, namely
subject editing, style editing and attribution editing. In contrast, they lack the capacity to execute
more advanced editing types such as quantity editing, subject motion editing, visual effect editing,
camera motion editing and camera angle editing. This leads to consistently low scores across all
compliance-related metrics. Future video editing models should therefore place greater emphasis on
broadening the range of supported editing prompts.

Intrinsic limitations of first-frame-based editing models. Video editing, unlike image editing,
requires maintaining temporal coherence, which introduces the need to modify middle or later frames

9
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of a video. For example, to handle transitions or to insert intermediate events. These tasks do not
originate from modifications in the initial frames but instead focus on transformations that occur
later in the sequence. First-frame-based models, however, propagate changes from the beginning
throughout the entire video, making them inadequate for such editing requirements.

Scalability to long video sequences. A critical challenge in IVE lies in handling long sequences with
hundreds or even thousands of frames. Most existing methods, especially those relying on frame-wise
diffusion or first-frame propagation, exhibit a near-linear growth in GPU memory consumption
and latency as sequence length increases, making them impractical for videos beyond 128 frames.
In contrast, InsV2V (Cheng et al., 2023) demonstrates superior scalability by adopting a chunked
inference strategy with latent overlap, where only a limited set of reference frames is preserved across
segments. This design effectively constrains memory growth while maintaining temporal continuity.

Resolution limitations. Existing IVE methods, typically operate at 512×512 or 832×480 resolution,
which is far below the standard of real-world user content. The multi-conditional video editing model
VACE (Jiang et al., 2025) can support 720P outputs; however, this still falls short of the practical
demand, as user videos are commonly recorded in 1080P or higher resolutions, and the expectation
is that edited outputs should preserve this level of detail. The low-resolution setting limits visual
fidelity, which results in artifacts such as blurred textures and edge degradation, and also reduces
usability in professional media workflows.

7 CONCLUSION

With the rapid progress of IVE, how to systematically and comprehensively evaluate these methods
has become a central challenge in the field. Existing benchmarks exhibit clear limitations in terms of
video source diversity, task coverage, and evaluation dimensions, making them insufficient to reliably
reflect the true capabilities of current approaches or to provide meaningful guidance for subsequent
research. To address these issues, we propose IVEBench, a modern benchmarking suite designed for
IVE models. IVEBench integrates a large-scale and diverse dataset, a broad range of editing tasks,
and a multi-dimensional evaluation protocol that leverages MLLMs and aligns closely with human
perception. We expect IVEBench to play a key role in the evaluation of video editing models and in
advancing the development of the field.

Limitation and future work. As more IVE models are released as open source, we plan to
incorporate them into IVEBench for further benchmarking and comparison. In the future, with the
increase of computational power, we will also expand the scale of data used for evaluation.
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APPENDIX

OVERVIEW

The supplementary material presents more comprehensive results of our IVEBench to facilitate the
comparison of subsequent benchmarks:

• Appendix A provides more detailed descriptions of edit prompt subcategories, accompanied
by concrete examples.

• Appendix B provides the detailed procedure for computing motion fidelity score
• Appendix C provides the unified scoring formulation and detailed explanations of the

weighting strategy across metrics and dimensions
• Appendix D provides experimental details, including hardware configurations, dataset

partitioning for evaluation, model implementations and failed video IDs.
• Appendix E provides a detailed comparison of model performance.
• Appendix F provides human alignment details, including annotator guideline design and

annotation interface.
• Appendix G provides independence analysis for the metrics introduced in IVEBench.
• Appendix H provides information on the use of LLMs.

A DESCRIPTIONS OF VARIOUS CATEGORIES OF EDIT PROMPTS

In this section, we provide detailed descriptions of all 35 subcategories of editing prompts included
in IVEBench. Each subcategory is defined with its specific editing operation and supported by a
representative example to illustrate how the editing request is expressed. The purpose of this collection
is to ensure clarity, reproducibility, and comprehensive coverage of diverse instruction-guided video
editing tasks. Tab. A1 summarizes the categories, subcategories, descriptions, and corresponding
examples for ease of reference.

Table A1: Description and example for each subcategory. We provide detailed descriptions of 35
subcategories along with corresponding examples to facilitate understanding.

Category Subcategory Description Example

Style Editing watercolor Apply watercolor
painting style to video

Convert the video to a watercolor
style

Style Editing pixel Convert video to retro
pixel art style Convert the video to a pixel-style

Style Editing anime Render video in anime
style

Change the style of the video to
anime

Style Editing American
comic style

Apply American
comic book style

Transform the video into a Ameri-
can comic style

Style Editing ukiyo-e Render video in
Japanese ukiyo-e style Convert the video style to ukiyo-e

Style Editing black and
white

Convert video to
black-and-white tones Convert the video to black and white

Style Editing oil painting Apply oil painting ef-
fect to video

Transform the video into an oil paint-
ing style

Style Editing cyberpunk
Render video in neon
futuristic cyberpunk
style

Convert the video to a cyberpunk
style

Style Editing Ghibli
Apply Studio Ghibli-
inspired animation
style

Change the video style to Ghibli
style
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Category Subcategory Description Example

Style Editing low-poly
Convert video to sim-
plified low-poly visu-
als

Transform the video into a low-poly
style

Style Editing weather shift Change weather condi-
tions in the video

Change the weather to a torrential
downpour

Subject Edit-
ing

add new sub-
ject

Add a new subject into
the video

Add a heron standing among the
reeds

Subject Edit-
ing

remove exist-
ing subject

Remove a subject
from the video

Remove the young child from the
video

Subject Edit-
ing

replace exist-
ing subject

Replace one subject
with another

Replace the grotesque creatures with
friendly fairy-like beings

Attribute Edit-
ing

color adjust-
ment

Adjust colors of video
or subjects Change the sky to a deep red color

Attribute Edit-
ing

subject scal-
ing

Resize a subject in the
video

Scale up the man dressed in ancient
Egyptian attire

Attribute Edit-
ing

position
change

Change subject posi-
tion in the scene

Move the girl to the left side of the
stone steps

Subject Mo-
tion Editing

single subject
motion

Animate or adjust one
subject’s motion

Make the man in the black leather
jacket stand up and stretch

Subject Mo-
tion Editing

multiple sub-
ject motion

Animate or adjust mul-
tiple subjects’ motions

Make the woman and the man cry
and wipe their tears with their hands

Camera Mo-
tion Editing dolly in Simulate camera mov-

ing forward
Move the camera closer to the man
in the black shirt

Camera Mo-
tion Editing dolly out Simulate camera mov-

ing backward
Gradually move the camera away
from the group of men

Camera Mo-
tion Editing tracking Simulate camera fol-

lowing a subject
Track the movement of the red pow-
der as it falls into the bottle

Camera Mo-
tion Editing boom up Simulate camera mov-

ing upward
Perform a boom up shot on the white
Toyota SUV driving up the dirt hill

Camera Mo-
tion Editing arc shot Simulate camera cir-

cling around a subject
Perform an arc shot around the tram
as it arrives at the station

Camera Mo-
tion Editing zoom in Zoom in on the video

subject
Zoom in on the slice of yellow cake
being lifted

Camera Mo-
tion Editing zoom out Zoom out to show

more scene
Gradually move the camera away to
the ancient temple

Camera Angle
Editing high angle View subject from a

high angle Change the view to a high angle

Camera Angle
Editing low angle View subject from a

low angle Change the view to a low angle

Camera Angle
Editing front view Show subject from the

front Change the view to a front view

Camera Angle
Editing side view Show subject from the

side Change the view to a side view

Quantity Edit-
ing increase Increase number of

subjects
Increase the number of A woman
with a tattoo to 2

Quantity Edit-
ing decrease Decrease number of

subjects Decrease the number of flowers to 1

Visual Effect
Editing transition Add transition be-

tween video contents
A particle effect transition, the man
wearing sunglasses and smiling

Visual Effect
Editing

decoration ef-
fect

Add decorative visual
overlays Add a flame effect to the metal file
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Category Subcategory Description Example
Visual Effect
Editing event effect Add event-based ef-

fects
The man turns into sand and is
blown away

B MOTION FIDELITY COMPUTATION DETAILS

We describe the computation of motion fidelity between a source video and a target video. Given
a video sequence, we sample query points on a uniform grid of size g. For each query point p,
CoTracker3 (Karaev et al., 2024) outputs a trajectory xp = (xp

1,x
p
2, . . . ,x

p
T ) with xp

t ∈ R2, together
with a visibility vector vp = (vp1 , v

p
2 , . . . , v

p
T ) where vpt ∈ [0, 1] indicates whether p is visible at

frame t. To compare two videos of different lengths, all trajectories are interpolated to a synchronized
length T = min(T1, T2) using linear interpolation based on visible frames.

Given two synchronized tracks (x̃p, ṽp) and (ỹq, w̃q), we compute the frame-wise position distance

dpos
t = ∥x̃p

t − ỹq
t ∥2,

and velocity distance

dvel
t = ∥(x̃p

t − x̃p
t−1)− (ỹq

t − ỹq
t−1)∥2 for t > 1,

with dvel
1 = dvel

2 . Both distances are normalized by the average spatial span of the tracks

α = 1
2

(
∥max

t
x̃p
t −min

t
x̃p
t ∥2 + ∥max

t
ỹq
t −min

t
ỹq
t ∥2

)
,

with α ≥ 10−6. We then define normalized distances d̂pos
t = dpos

t /α, d̂vel
t = dvel

t /α and convert them
into similarities spos

t = 1/(1 + d̂pos
t ), svel

t = 1/(1 + d̂vel
t ). The frame-wise similarity is obtained by

weighted combination

st = 0.7spos
t + 0.3svel

t ,

and further weighted by visibility wt = min(ṽpt , w̃
q
t ). The overall track similarity is

S(p, q) =


∑T

t=1 stwt∑T
t=1 wt

, if
∑

t wt > 0,

0, otherwise.

Let N1 and N2 be the numbers of valid tracks in the source and target videos. We construct a
similarity matrix M ∈ RN1×N2 with Mij = S(pi, qj). To establish correspondence, we apply the
Hungarian algorithm to maximize

∑
i Mi,π(i) with one-to-one mapping π. We discard pairs with

Mi,π(i) ≤ 0.3 and compute the final motion fidelity between videos V1 and V2 as

MF(V1, V2) =
1

|P|
∑
i∈P

Mi,π(i),

where P = {i | Mi,π(i) > 0.3} is the set of valid correspondences. Finally, given K video pairs, the
dataset-level motion fidelity score is

MF =
1

K

K∑
k=1

MF(V (k)
src , V

(k)
tgt ).

Here, T is the number of synchronized frames, xp
t ∈ R2 is the 2D position of track p at time t, vpt is

its visibility, dpos
t and dvel

t are frame-wise distances, st ∈ [0, 1] is the frame-wise similarity, S(p, q) is
the similarity of two tracks, Mij the similarity matrix, and π the matching permutation given by the
Hungarian algorithm.
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C UNIFIED SCORING FORMULATION AND DETAILS

For a given evaluation dimension D, let the set of metrics be {m1,m2, . . . ,mnD
} with corresponding

weights {w1, w2, . . . , wnD
}. The score for dimension D is defined as:

SD =

∑nD

i=1 wi ·mi∑nD

i=1 wi
.

In our study, the three dimensions are computed as:

Video Quality =

∑
i∈V wi ·mi∑

i∈V wi
,

Instruction Compliance =

∑
i∈I wi ·mi∑

i∈I wi
,

Video Fidelity =

∑
i∈F wi ·mi∑

i∈F wi
.

where V , I, and F denote the sets of metrics belonging to Video Quality, Instruction Compliance,
and Video Fidelity, respectively. The overall score is obtained by treating the three dimension scores
as higher-level metrics. Let the set of dimensions be D, with scores {Sj} and corresponding weights
{αj}. The total score is given by:

Total Score =

∑
j∈D αj · Sj∑

j∈D αj
.

Both metric-level weights wi and dimension-level weights αj are determined from the user study:
each participant provided importance ratings (0-5) for metrics and dimensions. The ratings were
averaged across participants, rounded to the nearest integer, and applied directly in the above formulas.
According to the participants’ ratings, the weight of VTSS is 5, the weights of IS and CF are 3, while
the weights of other metrics are 1. Since the weights of the three dimensions are all 4, they are
normalized to 1. The resulting scores for different models are reported in Tab. 2.

D EXPERIMENT DETAILS

All experiments were performed on NVIDIA H20 GPUs: InsV2V, AnyV2V, and StableV2V were
run on a single GPU, while VACE required two GPUs for 720P inputs. Each model’s output video
resolution followed its officially recommended setting, and the number of generated frames was
matched to the input sequence. When certain videos could not be processed due to out-of-memory
errors, the corresponding results were excluded, and the indices of these failed videos are provided
in Tab. A2. Moreover, due to VACE’s fixed maximum frame limit of 81 frames (Jiang et al.,
2025), source videos exceeding this length were uniformly sampled to 81 frames specifically for
VACE editing. The maximum frame count for ICVE (Liao et al., 2025) is set to the officially
recommended 81 frames, as exceeding this limit results in excessive GPU memory usage. Similarly,
Omni-Video (Tan et al., 2025) is configured with a maximum of 17 frames to prevent output noise,
while Ditto (Bai et al., 2025a) is set to the officially recommended 73 frames. Both short and long
subsets of the IVEBench Database were used to assess editing capability across video lengths. For
each model and subset, we also recorded the average runtime per frame and the peak GPU memory
consumption. Evaluation was carried out using the twelve indicators of IVEBench Metrics, organized
into three dimensions, where indicator scores were first computed per task, then averaged across
videos, with irrelevant indicators omitted depending on the editing type; finally, all scores were
normalized before visualization.
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Table A2: Failed video count and IDs of IVE methods. We present the methods that cause GPU
memory usage to exceed the capacity of a single H20 card due to excessively long frame sequences
in certain videos.

Method Failed videos count Failed video IDs

AnyV2V 65

long 0001, long 0004, long 0005, long 0007,
long 0008, long 0009, long 0010, long 0011,
long 0013, long 0014, long 0015, long 0016,
long 0018, long 0020, long 0021, long 0022,
long 0023, long 0025, long 0028, long 0029,
long 0030, long 0031, long 0032, long 0033,
long 0034, long 0035, long 0037, long 0039,
long 0042, long 0043, long 0053, long 0055,
long 0058, long 0059, long 0060, long 0061,
long 0064, long 0068, long 0070, long 0074,
long 0075, long 0082, long 0088, long 0091,
long 0094, long 0095, long 0096, long 0098,
long 0100, long 0104, long 0113, long 0114,
long 0115, long 0117, long 0125, long 0150,
long 0152, long 0153, long 0155, long 0159,
long 0169, long 0179, long 0180, long 0186,
long 0200

StableV2V 102

long 0001, long 0004, long 0005, long 0007,
long 0008, long 0009, long 0010, long 0011,
long 0012, long 0013, long 0014, long 0015,
long 0016, long 0018, long 0020, long 0021,
long 0022, long 0023, long 0025, long 0028,
long 0029, long 0030, long 0031, long 0032,
long 0033, long 0034, long 0035, long 0036,
long 0037, long 0038, long 0039, long 0040,
long 0041, long 0042, long 0043, long 0044,
long 0045, long 0047, long 0049, long 0053,
long 0055, long 0057, long 0058, long 0059,
long 0060, long 0061, long 0064, long 0067,
long 0068, long 0070, long 0071, long 0073,
long 0074, long 0075, long 0077, long 0079,
long 0082, long 0083, long 0088, long 0089,
long 0091, long 0094, long 0095, long 0096,
long 0097, long 0098, long 0100, long 0102,
long 0104, long 0106, long 0108, long 0110,
long 0111, long 0112, long 0113, long 0114,
long 0115, long 0117, long 0123, long 0124,
long 0125, long 0128, long 0130, long 0150,
long 0152, long 0155, long 0159, long 0160,
long 0164, long 0168, long 0169, long 0171,
long 0173, long 0177, long 0179, long 0180,
long 0186, long 0188, long 0195, long 0197,
long 0198, long 0200

E DETAILED QUANTITATIVE COMPARISON AND ANALYSIS

In this section, we provide a more detailed quantitative comparison of the evaluated models across
different categories of instruction-guided video editing. While the main results are summarized in
Table 2 and Figure 4 of the main paper, here we extend the analysis to highlight model behaviors
under specific editing tasks and frame lengths. We further complement the numerical results with
Fig. A1, which illustrates representative editing scenarios by concatenating the first, middle, and last
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Figure A1: Visualization of Model Output Comparison. We concatenate the first, middle, and last
frames of the video to facilitate comparison of the temporal performance across different models.

frames of each generated video. This visualization helps reveal temporal dynamics and qualitative
differences that may not always be fully captured by scalar metrics.

Specifically, InsV2V demonstrates relatively balanced performance across most categories, main-
taining higher semantic fidelity and motion fidelity even in longer sequences. However, its conserva-
tive strategy sometimes leads to under-editing, resulting in lower scores in instruction satisfaction.
AnyV2V exhibits strong Instruction Compliance in simpler style and attribute editing tasks, yet
struggles under difficult editing tasks. The aggressive editing strategy of stableV2V leads to a
higher instruction satisfaction score, but visual inspections clearly show severe semantic bleeding
and boundary artifacts when dealing with complex prompts. Finally, VACE, though not originally
designed for IVE, achieves reasonable temporal smoothness and high resolution outputs; nevertheless,
its restricted maximum frame length limits its applicability, and its overall performance in instruction
compliance remains unsatisfactory compared to native IVE models.
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Figure A2: Human Annotation Interface for Benchmark Validation. The interface presents the
source video, the editing instruction, and the outputs of different models under a specified evaluation
dimension, enabling annotators to conduct pairwise comparisons and judge which video better
satisfies the given criterion.

Taken together, these detailed results and the examples in Fig. A1 confirm that current models,
while capable of maintaining frame-to-frame coherence, still fall short in faithfully executing diverse
instructions and preserving high per-frame fidelity. This underscores the necessity of IVEBench
in identifying fine-grained weaknesses and providing clear guidance for future methodological
improvements.

F HUMAN ALIGNMENT DETAILS

To validate the alignment of IVEBench metrics, we first provided each annotator with a detailed
explanation of the meaning of each metric along with illustrative examples of good and poor cases,
followed by additional case-based tests to ensure that the annotators fully understood the intended
interpretation of the metric. Moreover, we conducted further tests to confirm that the annotators
focused exclusively on the designated metric during comparisons, rather than being influenced by
the overall quality of the videos. For ease of experimentation, we designed a dedicated annotation
interface for human evaluators. The interface displays the source video, editing instruction, and the
outputs of different models for direct comparison under a specified evaluation dimension. Annotators
are instructed to make pairwise comparisons between outputs, choosing the video that better satisfies
the designated metric or marking them as indistinguishable when necessary. The design of the
interface is illustrated in Fig. A2.
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Figure A3: Heatmap of metric independence coefficients. We calculated the Spearman correlation
coefficient matrix across the results of all the eight IVE models.

G INDEPENDENCE OF METRICS

Metric independence is crucial for a benchmark, as it helps avoid redundancy and better reveals the
trade-offs among the evaluated models. To quantitatively verify the independence of the 8 metrics
proposed in IVEBench (distinct from SC, BC, TF, and MS, which are adopted from VBench (Huang
et al., 2024)), we calculated the Spearman correlation coefficient matrix across the results of all
models, as shown in Fig. A3. The results demonstrate that the Spearman correlation coefficients
among all metrics do not exceed 0.65. This indicates the absence of collinearity (Dormann et al.,
2013), supporting the independence and distinctiveness of our metric design. Additionally, negative
correlations observed among several metrics suggest that IVEBench metrics can effectively reveal
the trade-offs within the evaluated models.

H THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.
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