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Abstract

The simplest way to obtain continuous inter-001
polation between two points in high dimen-002
sional space is to draw a line between them1.003
While previous works focused on the general004
connectivity between model parameters, we ex-005
plored linear interpolation for parameters of006
pre-trained models after fine-tuning. Surpris-007
ingly, we could perform linear interpolation008
without a performance drop in intermediate009
points for fine-tuned models. For controllable010
text generation, such interpolation could be011
seen as moving a model towards or against012
the desired text attribute (e.g., positive senti-013
ment), which could be used as grounds for fur-014
ther methods for controllable text generation015
without inference speed overhead.016

1 Introduction017

Currently, large pre-trained transformer models can018

be considered a default choice for various NLP019

tasks. Training these models is a complex non-020

linear task that is usually performed by feeding the021

model a large training corpus and training it in a022

self-supervised manner (Devlin et al., 2019; Lan023

et al., 2020; Liu et al., 2019; Radford et al., 2019).024

Weights obtained by this process are used either025

for standard fine-tuning or other methods that can026

be considered more effective in terms of trainable027

parameters (Liu et al., 2021c,b; Li and Liang, 2021;028

Lester et al., 2021; Houlsby et al., 2019; Hu et al.,029

2021).030

Since initialization using pre-trained parameters031

is crucial for the final model’s performance, it is fas-032

cinating to observe the changes in parameters dur-033

ing the fine-tuning process on downstream tasks.034

While recent works (Goodfellow et al. 2014,035

Lucas et al. 2021) explored changes in parame-036

ter space during training, there is still little known037

about the details of this process, specifically for038

model fine-tuning. In our work, we are exploring039

1That applies if you are operating in a Euclidean space.

Thi s v i deo al so cover s t he f i l m' s 
many f ai l ur es,  f r om t he f i l m' s weak 
wr i t i ng t o t he f i l m' s awf ul  paci ng.

Thi s v i deo al so cover s t he ot her  t hi ngs 
t hat  make t hi s movi e a bust ,  l i ke t he 
awf ul  musi c.

Thi s v i deo al so cover s t he f i l m' s f l aws,  some 
of  whi ch wer e r eal ,  and ot her s of  whi ch ar e 
mor e of  a Hol l ywood- st y l e spi n on r eal i t y,  but  
t hat  i s not  necessar i l y  a bad t hi ng.

Thi s v i deo al so cover s t he dar k and t r agi c under bel l y 
of  human behavi or .  But  t he beaut y of  t he f i l m i s i n 
t he char act er s and t he subt l e st or yt el l i ng.

Thi s v i deo al so cover s t he f i l m' s many posi t i ve ef f ect s,  f r om 
a posi t i ve i mpact  on soci et y t o a posi t i ve cul t ur al  i mpact .

Onl y t hese par amet er s 
ar e t r ai ned!

Figure 1: We experimented with linear interpolation
for fine-tuned Language Models. We observed that we
could fine-tune a pre-trained model on two domains
(e.g., positive and negative movie reviews) and interpo-
late between trained weights without loss in perplexity
in between these models. Furthermore, we could ex-
pand interpolation beyond trained models and get more
positive or negative models than fine-tuned ones.

properties of the fine-tuned language models ob- 040

tained by linear interpolation. 041

Surprisingly, we observed compelling evidence
of the linearity of some parameter subspace of pre-
trained models. The formula behind interpolation
is simply

αθ− + (1− α)θ+,

where α ∈ R is an interpolation weight2, and θ−, 042

θ+ are model parameters. If both θ− and θ+ are 043

fine-tuned LMs (e.g., with negative and positive 044

sentiment generations), the model parameters ob- 045

tained by applying this formula are well-behaved 046

in terms of perplexity. Therefore, the probability of 047

positive sentiment occurring in the generated text is 048

smoothly growing with the interpolation coefficient 049

weight. 050

2Note that α does not have to be restricted to be ∈ [0; 1],
since we found that it could exceed these boundaries during
our experiments.
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Interpolation between two 
fine-tuned parameters

Moving from a pre-trained 
state in the direction obtained 
by two fine-tuned parameters

Moving from a pre-trained 
state with basis formed by 

fine-tuned parameters

Figure 2: Schematic overview of interpolation schemas used in our experiments. (Left) Interpolation between
two fine-tuned model parameters g1(α). (Center) Direction obtained by two fine-tuned model parameters used to
move pre-trained model parameters to obtain g2(α). (Right) Two directions formed by fine-tuned parameters and
pre-trained weight define the basis used to define the direction in which the pre-trained parameter is moved to get
g3(α, β). See Section 3.1 for more details.

We investigated the reasons for this phenomenon051

and found that the same initialization from pre-052

trained models is crucial for the linear properties.053

Utilizing the parameter space is interesting in054

terms of theoretical results and insights, but what is055

more important is that it can be used for practical056

tasks. E.g., linear interpolation makes it possible to057

apply two attributes in a condition at the same time,058

or improve attribute presence with desired weight059

without any computational overhead.060

2 Related Work061

Goodfellow et al. 2014 found that the loss land-062

scape during interpolation between initial weights063

and weights after training has no significant peaks064

and decreases monotonically during interpolation.065

This is interesting since training is a complex non-066

linear task, and model weights tend to fall into067

a local optima point after training is complete.068

Continuing this line of research Lucas et al. 2021069

found a link between batch normalization (Ioffe070

and Szegedy, 2015) and linearity of the logits’ path071

during training.072

These observations raise a question about how073

we can interpolate between two local optima with-074

out a loss in quality. Frankle et al. 2020 discov-075

ered evidence showing that finding a winning ticket076

(Frankle and Carbin, 2018) during iterative pruning077

is closely connected to finding linear connectiv-078

ity between optimal points in a weight space. In079

addition, Frankle et al. 2020 proposed the Loss Bar-080

rier metric for evaluating the connectivity between081

parameters of two models.082

Entezari et al. 2021 explored the impact of the083

width and depth of networks on their connectivity. 084

Their findings showed that the wider the network 085

is, the lower its loss barrier. Meanwhile, the deeper 086

the network is, the higher its barrier value. Further- 087

more, Entezari et al. 2021 proposed a conjecture 088

about weight permutations and solutions obtained 089

by gradient descent. More precisely, most SGD 090

solutions belong to a set S, whose elements can be 091

permuted in such a way that there is no barrier to 092

the linear interpolation between any two permuted 093

elements in S. Ainsworth et al. 2022 proposed sev- 094

eral methods for sufficient permutation in order to 095

reduce the loss barrier. 096

To further explore why a zero loss barrier is pos- 097

sible, the Lazy Training theory (Chizat et al., 2018) 098

can be used. I.e., if a neural network has suffi- 099

cient width, the weights’ changes during training 100

are small enough to use the Taylor series expan- 101

sion for the layer outputs. Therefore, inside some 102

small neighborhood of the initial point, θ0 in the 103

weight space model can be linearized in terms of 104

the weights θ. 105

3 Understanding Pre-Trained Weights’ 106

Parameter Space 107

Having a model pre-trained on some general task 108

(e.g., Language Modeling) θ0 ∈ R|θ|, it is conven- 109

tional to initialize a new model with θ0 when solv- 110

ing a downstream task3. For example, GPT-2 could 111

be used as θ0 when training an LM on some spe- 112

3We will refer to superscription 0, − and + as a sentiment
characteristic, similar to how superscription in particle physics
refers to particle charge. 0 refers to a pre-trained model with a
neutral sentiment, as we believe that pre-trained models tend
to generate texts with a neutral sentiment.
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cific domain of data (e.g., movie reviews). Doing113

so makes it possible to obtain faster convergence114

of training procedures and better results than train-115

ing from scratch since θ0 is usually trained with a116

larger dataset than those available for downstream117

tasks.118

While many works explore the parameter space119

of models trained from scratch, we are most inter-120

ested in such a space for fine-tuned models. More121

specifically, when a model is trained from scratch122

with different starting points, there is evidence that123

different θ0 could be obtained. Furthermore, if dif-124

ferent random seeds are used to form mini-batches125

from the training dataset, additional differences126

could occur in the resulting parameters of trained127

models.128

It is important to note that, if we train a model129

from a pre-trained state, we eliminate the random-130

ness caused by different starting points of optimiza-131

tion. From such perspective, we should expect the132

parameter space of fine-tuned models to be simpler133

than that of models trained from scratch. To ex-134

plore the limits of this simplicity, we experimented135

with linear interpolation between weights of fine-136

tuned models described in the following sections.137

3.1 Linear Interpolation138

Consider two models with parameters θ+ ∈ R|θ|139

and θ− ∈ R|θ|. Both θ+ and θ− are obtained af-140

ter fine-tuning a pre-trained model θ0. For conve-141

nience, let us consider that θ0 is Language Model142

trained on general domain data (e.g., GPT-2), θ+143

and θ− are Language Models fine-tuned on posi-144

tive and negative sentiment data (e.g., SST dataset145

(Socher et al., 2013)). We could linearly interpolate146

between them as147

g1(α) = αθ+ + (1− α)θ−, g1 : R→ R|θ|. (1)148

We can also rewrite g1(α) differently:149

g1(α) =
1

2
(θ++θ−)+

1

2
(2α−1)(θ+−θ−), (2)150

which could be seen as moving from starting151

point 1
2(θ

+ + θ−) in a direction (θ+ − θ−). Ex-152

pressing interpolation with a starting point such as153

that in Equation 2 could be considered too verbose.154

However, it allows us to derive the second possible155

formulation of interpolation, for which we replace156

the starting moving point with θ0. To simplify the157

process even further, we use α′ = 2 ∗ α− 1 as an 158

interpolation weight4. 159

g2(α
′) = θ0 + α′(θ+ − θ−). (3) 160

Going even further, we can decompose the 161

(θ+ − θ−) direction into (θ+ − θ0) and (θ− − θ0), 162

obtaining new parametrization 163

g3(α, β) = θ0 + α(θ+ − θ0) + β(θ− − θ0). (4) 164

Note that α+β = 1 reparametrizes g1 and α+β = 165

0 reparametrizes g2. 166

We discuss the limits of these reparametrizations 167

in the Experiments section. 168

3.2 Ensembling 169

Another way to utilize several models at once is 170

to combine them into an ensemble. While linear 171

interpolation is performed in the weight space, en- 172

sembling can be seen as interpolating in the model 173

output space. At every step, language models yield 174

logits z for every token in vocabulary. As proposed 175

in DExperts (Liu et al., 2021a), we could use these 176

logits to obtain the final tokens’ probability: 177

P (xt|x<t) = softmax(z),

z = z0(x<t) + α · (z+(x<t)− z−(x<t))
178

However, this method requires significant com- 179

putational time overhead compared to interpolation 180

in the parameter space since it requires evaluating 181

several models to get predictions. 182

4 Experiments 183

4.1 Controllable Text Generation 184

Controllable text generation can be seen as the 185

simplest way to explore the parameter space of fine- 186

tuned models. The performance of obtained θ can 187

be quickly evaluated with automatic metrics such 188

as desired attribute probability of generated texts, 189

and text quality can be evaluated by perplexity and 190

grammar correctness. 191

Following the DExperts (Liu et al., 2021a) setup, 192

we took the SST dataset containing texts with la- 193

bels representing the sentiment of sequences. We 194

constructed a positive sentiment dataset contain- 195

ing texts with labels such as "positive" or "very 196

positive". In addition, we also created a negative 197

4Note that we have a different scale for α′, since α = 0
implies α′ = − 1

2
, and α = 1 implies α′ = 1

2
.
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Figure 3: Interpolation between two models fine-tuned on positive and negative sentiment with g1(α). We report
the Mean probability of the positive sentiment (a), the Perplexity of the generated text (b), and the Probability of the
grammatically correct text (c) for obtained interpolated models. See Section 4.1 for more details.
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Figure 4: Words’ probability during interpolation with
the text prompt "The movie was". Words leading to pos-
itive sentiment are plotted in green, and negative in red.
While interpolating between θ− and θ+, probabilities
of negative words decrease, and positive ones increase.
See Section 4.1 for more details.

dataset with "negative" and "very negative" texts.198

We then fine-tuned two GPT-2 Large models on the199

causal language modeling task on these datasets to200

obtain θ+ and θ−, respectively.201

We then evaluated the models obtained by g1 and202

g2 (See Equations 1, 3) to understand the limits of203

linear interpolation for fine-tuned models. To do so,204

we used the same prompts as DExperts (Liu et al.,205

2021a) for text generation. For every prompt, we206

generated 25 continuations with their length less or207

equal to 30 tokens.208

We used three metrics to evaluate the generated209

texts’ sentiment and quality. Positive text scores210

are evaluated using an external classifier and show211

the mean probability of positive sentiment in the212

generated text. Grammar scores are determined by213

a classifier trained on the CoLA (Wang et al., 2018)214

dataset. To evaluate the texts’ quality, we calculate215

perplexity using GPT-2 XL.216

See Section A.1 of the Appendix for more de- 217

tails on training and evaluation used in these exper- 218

iments. 219

See Figure 3 for the results. We found that per- 220

plexity with g1(α) remains stable in α ∈ [0; 1], in 221

which we have a zero perplexity barrier. A wider 222

interval of α also shows promising results, where 223

the positive sentiment probability increases with 224

α > 1. Meanwhile, perplexity and grammar re- 225

main stable. Based on this, we can assume that 226

models obtained by simple linear interpolation can 227

still be considered language models. Moreover, 228

the original’s features, such as positive sentiment 229

probability, could be enhanced by α > 1 (and vice 230

versa). In Section 5, we hypothesise why linear in- 231

terpolation in the weight space works even in cases 232

of complex non-linear models. 233

We also measured the next token probability on 234

our "The movie was" prompt using parameters ob- 235

tained from g1 interpolation. See Figure 4 for the 236

results. The probabilities of the words leading to 237

positive sentiment are monotonically increasing, 238

while the probabilities of the negative sentiment 239

words are monotonically decreasing with α. 240

4.2 Which Parametrization Is Best? 241

In Section 3.1, we discussed different ways to 242

parametrize interpolation and move the model’s 243

weights in the desired direction. However, note 244

that it is not fully clear what the differences are be- 245

tween them. To compare the proposed interpolation 246

schemes, we conducted experiments with the pre- 247

trained model GPT-2 Large as θ0 and Fine-Tuned 248

models from the previous section as θ+ and θ−. 249

Note that parametrization g2 takes three models as 250

input. 251

In this subsection, all experiments were con- 252
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Figure 5: Comparison of g1(α) and g2(α) interpolations with neutral prompts. We evaluated the positive text
score (a), perplexity (b), and Grammar Correctness (c) for interpolated models. Note that these interpolation
methods differ in the scale of α (See Section 3.1 for details). Therefore, we used different scales to report these
results. α values for g1(α) are shown below the plot, while those for g2(α) are above. While the positiveness of
both approaches is comparable, g2(α) obtained better perplexity and grammar correctness through utilizing θ0

parameters. See Section 4.2 for more details.
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Figure 6: Perplexity (a) and Positive Text Score (b)
with respect to interpolation weight in the logits space
(DExperts) and the weight space. Note that the text’s
positiveness increases smoothly in booth cases, while
perplexity remains low. See Section 4 for more details.

ducted with neutral prompts only. See Figure 5 for 253

the results. We observed that g1(α) obtained a pos- 254

itiveness score comparable with g2(α), while the 255

latter showed better perplexity and grammar cor- 256

rectness. However, we would like to note that, in 257

this case, perplexity should not be considered fully 258

representative of the generated texts’ quality. Since 259

g2(α) utilizes θ0, its samplings are more likely to 260

produce texts which would be treated as more prob- 261

able by GPT-2, while g1(α) has a stronger shift 262

towards movie reviews. 263

4.3 Interpolation Space 264

To further analyze the interpolation points, we con- 265

duct experiments with interpolation θ = g3(α, β). 266

Note that g3 : R2 → R|θ| maps point (0, 1) to 267

g(0, 1) = θ0 − θ0 + θ+ − 0 · (θ− − θ0) = θ+, 268

analogously (0, 0) → θ0 and (1, 0) → θ−. Then 269

we can choose any point in R2 = dom g and obtain 270

a model θ = g(α, β). We use a 2d uniform grid 271

with values from -4 to +4 and 20 points in every 272

dimension (G = {i/2.5}10i=−10 × {j/2.5}10j=−10) 273

to obtain 400 models, and measure the properties 274

of these models. As a result, we get 400 points of 275

perplexity and a positive sentiment score shown 276

in Figure 7. In addition, we also count the mod- 277

els’ mean negative log-likelihood loss value on a 278

test set of SST positive and negative subsets. See 279

Figure 8 for the results. 280

We found a plateau of perplexity near the α = 281

−β line. Furthermore, we also found that the loss 282

values of models near α = −β + 1 (equals to 283

θ = g2(·) parametrization) are significantly lower. 284
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Figure 7: Postive text score (a) and perplexity (b) for
g3(α, β) interpolation. Positive text score has a clear
growing direction from upper left to lower right. We
also found plateau of perplexity near α = −β line. See
Section 4.3 for more details.

These results can be explained as follows. The first285

parametrization θ = g1(·) does not utilize a pre-286

trained θ0 model. Therefore, the obtained models287

remain within the SST dataset domain (movie re-288

views). We can assume that it is because of lower289

loss on both test subsets. The perplexity of the spe-290

cific texts is higher due to them becoming biased291

toward the movie review style. The model we used292

to measure perplexity (pre-trained GPT-2 XL) is293

not a domain-specific model and therefore mea-294

sures information contained in the generated text.295

As the domain of the generated texts shifted, we296

observed consistently higher perplexity compared297

to θ = g2(·). However, this perplexity remained298

stable and in a meaningful value below 50. On the299

other hand, the parametrization θ = g2(·) did not300

shift toward the movie reviews domain because of301
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Figure 8: Positive (a) and negative (b) test set losses for
the models obtained by θ = g3(α, β) interpolation. See
Section 4.3 for more details.

the constant persistence of the θ0 term. Lower per- 302

plexity, in this case, did not indicate better quality 303

of the generated texts. 304

4.4 Interpolation vs. Ensembling 305

In this section, we compare two methods of utiliz- 306

ing several models for controllable text generation 307

tasks. 308

As discussed in 3.2, DExperts could be seen as 309

a linear interpolation in the model outputs space. 310

We generated texts with several values of the α 311

parameter. Then, we used θ+ model as an expert 312

and θ− model as an anti-expert. We compared this 313

setup with θ = g2(α) parametrization. The results 314

are presented in Figure 6. 315

We found that the curves are almost identical 316

for α ∈ [0; 1]. Similar results could be obtained if 317

all model backbones were linear. Surprisingly for 318

us, we also discovered that linear interpolation in 319
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weight space is highly competitive to ensembling320

and does not damage the internal knowledge of the321

model.322

5 Results Analysis323

To explain the results of the above observations,324

we will now try to establish some intuition on why325

linear interpolation works so well for pre-trained326

language models.327

5.1 Lazy Training328

Lazy training, introduced by Chizat et al. 2018,329

has a solid connection to linear interpolation in the330

weight space.331

Let us say that we have some function f(θ) =332

R(h(θ)) : R|θ| → R+, where h(θ) : R|θ| → F is333

our model. Now, let us define a linearized model334

h(θ) = h(θ0) − Dh(θ0)(θ0 − θ). h(θ) could be335

seen as a Taylor’s series expansion to the first order336

of h(θ). If we can accurately approximate h(θ)337

with h(θ), then f(θ) = R
(
h(θ)

)
becomes a good338

approximation of f if we are using gradient descent339

for optimizing R.340

5.2 Pre-Trained Models Fine-Tuning and341

Lazy Traing342

Chizat et al. 2018 considers function f to be a343

loss function optimized by gradient descent. In344

our work, we will talk about a proxy function that345

can be seen as a differentiable interpolation of the346

positive text score or other desired attributes for347

controllable text generation. For example, we can348

start our optimization process at θ0 and train mod-349

els θ+ and θ− using stochastic gradient descent350

on the NLL target function. We believe that after351

minimization, some function f (in our case, the352

probability of positive sentiment in the generated353

text) will have a lower value on θ− and a higher354

value on θ+. In other words, during the training355

procedure, we are trying to find weights θ− and θ+356

such that f(θ−) < f(θ0) < f(θ+).357

Conjecture. Point θ̂ with the lowest value of358

the loss function L, such as NLL, does not imply359

optimal value of the truly desired f function. In360

other words, we can find a value of θ∗ with L(θ∗) >361

L(θ̂), but f(θ∗) > f(θ̂).362

Function f can be a composition of other func-363

tions such as a weighted sum of grammar scores,364

desired and present attributes, and perplexity.365

Assumption. If the weights θ obtained after the366

fine-tuning procedure are close to pre-trained ini-367

tialization θ0, we can linearize the function f as 368

f(θ) = f(θ0) +∇f(θ0)T (θ − θ0) in some neigh- 369

bourhood of θ0. 370

If we then parametrize θ with the general 371

parametrization θ = g3(α, β) = θ0 + α(θ+ − 372

θ0) + β(θ− − θ0) and pass it to f , we obtain 373

f ◦ g(α, β) = f(θ0)

+ α · ∇f(θ0)T (θ+ − θ0)

+ β · ∇f(θ0)T (θ− − θ0)

= α · C+ + β · C−,

(5) 374

where C+ and C− are constants. 375

Note that C+ ≈ ∂(f ◦ g)/∂α and C− ≈ ∂(f ◦ 376

g)/∂β in some θ0 neighbourhood. 377

The scheme with linear interpolation works even 378

if C+ and C− are not constants, since C+(α) > 0 379

and C−(β) < 0 is a sufficient condition. 380

This model clarifies the similarity between DEx- 381

perts and linear weight interpolation in Figure 6. 382

If Assumption 5.2 holds, then the interpolation be- 383

tween weights will be approximately equal to the 384

interpolation between outputs in a small enough 385

region around θ0 386

5.3 Interpolating Between Two Different 387

Decorrelated Language Models 388

The small difference between weights is the main 389

factor for the above-mentioned theory. We hypoth- 390

esize that we obtained such a low difference since 391

we performed fine-tuning of the same pre-trained 392

model θ0. To support this, we conduct experiments 393

with two different language models. 394

For the simplicity of our experiment, we chose a 395

small DistilGPT-2 model (Sanh et al., 2019) with 396

6 hidden layers. We trained a GPT model from 397

scratch on C4 (Raffel et al., 2019), namely GPT- 398

C4 with architecture identical to DistilGPT-2. For 399

more details, refer to Appendix A.2. 400

Firstly, we measured the norm of the weight 401

differences between two pairs of models. 402

(a) Pre-trained original DistilGPT-2 ←→ Fine- 403

tuned original DistilGPT-2 on positive senti- 404

ment. 405

(b) Pre-trained original DistilGPT-2 ←→ Pre- 406

trained on C4 dataset GPT-C4. 407

To evaluate the difference between 1-d tensors
(biases), we use the scaled ℓ2-norm:

∆b =
∥b1 − b2∥√

d
=

√∑
i

(
bi1 − bi2

)2
√
d

.
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Figure 9: The norm of the weight difference for θ+ and θ0 (a), as well as DistilGPT-2 trained on C4 (Raffel et al.,
2020) from scratch and pre-trained DistilGPT-2 (b). Each row represents one layer, and the parameter names can be
found on the x-axis ticks. See Section 5.3 for more details.

(a) (b) (c)

Figure 10: Linear interpolation between DistilGPT-2 and GPT-C4 weights. We observed that points between
original weights performed poorly with increased perplexity (a), the reduced fraction of unique n-grams (b), and
grammar score (c). See Section 5.3 for more details.

For matrices with sizes n×m, we use:

∆w =
∥w1 − w2∥√

n ·m
=

√∑n
i

∑m
j

(
wij
1 − wij

2

)2

√
n ·m

.

Results showed in Figure 9. Note that two com-408

parisons are plotted on the same scale. While the409

differences between the (a) pair are small, the dif-410

ferences between (b) can be observed.411

The second experiment interpolates between two412

language models: DistilGPT-2 and GPT-C4. See413

Figure 10 for the results. We found that models ob-414

tained at every interpolation step completely forget415

the knowledge obtained during the training proce-416

dure. We additionally estimate the fraction of the417

distinct n-grams. At every point where perplexity418

becomes lower than initial values (0 and 1), we419

observe a significant drop in unique n-grams. The420

grammar score has two major peaks at points 0 and421

1.422

Models obtained by interpolating between dif-423

ferent pre-trained models were found to fail at the424

basic language model tasks. This experiment con- 425

firms the importance of initializing fine-tuned mod- 426

els in the same way. 427

6 Conclusion 428

In our paper, we looked into simple linear weight 429

interpolation between pre-trained and fine-tuned 430

models, and concluded that this method performs 431

surprisingly well. We found that different types 432

of interpolation have different strengths and flaws, 433

which we discuss in detail in the Experiments sec- 434

tion. We have researched this phenomenon and 435

provided intuition on why large language models, 436

highly non-linear complex functions, are capable 437

of generating texts with good metrics even after 438

simple linear interpolation. 439
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A Experiment Details576

A.1 Details of Controllable Text Generation577

Experiments578

We fine-tuned two GPT-2 Large models on the SST579

dataset and ran a hyperparameter search using the580

grid from Table 1.581

Parameter Values range

Learning rate [1e-4, 1e-5, 1e-6]

Batch size [32, 64, 128, 256]

Steps [500, 1000, 2000]

Table 1: Hyperparameter search ranges used in fine-
tuning.

After the training, we proceeded with the best582

model in terms of perplexity on the corresponding583

validation sets. The best parameters are reported in584

Table 2.585

Parameter Positive (θ+) Negative (θ−)

Learning rate 1e-6 1e-6

Batch size 64 64

Steps 1000 1000

Table 2: Best hyperparameters.

As a Positive Text Score metric, we use out- 586

puts of the RoBERTa-base model trained by 587

CardiffNLP5 (Rosenthal et al., 2017). The model 588

outputs consist of three probabilities: negative, neu- 589

tral and positive sentiment. For the final score, we 590

use the expectation of positive sentiment (see Equa- 591

tion 6). 592

score = 0·P (neg)+0.5·P (neutral)+1·P (pos)
(6) 593

For perplexity, we use the GPT-2 XL model and 594

count the perplexity of all generated texts. 595

We also evaluate the Grammar Score using the 596

RoBERTa-base model fine-tuned on the CoLA 597

dataset by TextAttack6 (Morris et al., 2020). The 598

final score is the mean probability of the text being 599

grammatically correct. 600

Text generation parameters can be found in Table 601

3: 602

Parameter Value

top-p 0.9

max new tokens 30

Table 3: Parameters used for text generation.

A.2 LM Training Details 603

We trained a GPT-Like language model on the C4 604

(Raffel et al., 2019) dataset. This model’s architec- 605

ture is identical to the DistilGPT-2 model (Sanh 606

et al., 2019). We used 8x NVidia A100-SXM- 607

80GB GPUs with bf16 mixed precision (Burgess 608

et al., 2019). We trained our model for 37K steps 609

with the AdamW (Loshchilov and Hutter, 2019) 610

optimizer and a cosine scheduler with warmup. Pa- 611

rameters for the training procedure can be found in 612

the table 4. Model was trained until convergence, 613

and the loss dynamic can be found in Figure 11. 614

5https://huggingface.co/cardiffnlp/twitter-roberta-base-
sentiment

6https://huggingface.co/textattack/roberta-base-CoLA
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Parameter Value

Max LR 3e-4

Weight decay 0.01

β1 0.9

β2 0.95

ε 1e-8

Warmup steps 5000

Effective batch size 1024

Table 4: Parameters used for LM training.
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Figure 11: Loss dynamic during LM training.
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